LowerSwitch.cpp revision 309124
1//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LowerSwitch transformation rewrites switch instructions with a sequence
11// of branches, which allows targets to get away with not implementing the
12// switch instruction until it is convenient.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/IR/CFG.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Function.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/LLVMContext.h"
23#include "llvm/Pass.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
28#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
29#include <algorithm>
30using namespace llvm;
31
32#define DEBUG_TYPE "lower-switch"
33
34namespace {
35  struct IntRange {
36    int64_t Low, High;
37  };
38  // Return true iff R is covered by Ranges.
39  static bool IsInRanges(const IntRange &R,
40                         const std::vector<IntRange> &Ranges) {
41    // Note: Ranges must be sorted, non-overlapping and non-adjacent.
42
43    // Find the first range whose High field is >= R.High,
44    // then check if the Low field is <= R.Low. If so, we
45    // have a Range that covers R.
46    auto I = std::lower_bound(
47        Ranges.begin(), Ranges.end(), R,
48        [](const IntRange &A, const IntRange &B) { return A.High < B.High; });
49    return I != Ranges.end() && I->Low <= R.Low;
50  }
51
52  /// Replace all SwitchInst instructions with chained branch instructions.
53  class LowerSwitch : public FunctionPass {
54  public:
55    static char ID; // Pass identification, replacement for typeid
56    LowerSwitch() : FunctionPass(ID) {
57      initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
58    }
59
60    bool runOnFunction(Function &F) override;
61
62    struct CaseRange {
63      ConstantInt* Low;
64      ConstantInt* High;
65      BasicBlock* BB;
66
67      CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
68          : Low(low), High(high), BB(bb) {}
69    };
70
71    typedef std::vector<CaseRange> CaseVector;
72    typedef std::vector<CaseRange>::iterator CaseItr;
73  private:
74    void processSwitchInst(SwitchInst *SI, SmallPtrSetImpl<BasicBlock*> &DeleteList);
75
76    BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
77                              ConstantInt *LowerBound, ConstantInt *UpperBound,
78                              Value *Val, BasicBlock *Predecessor,
79                              BasicBlock *OrigBlock, BasicBlock *Default,
80                              const std::vector<IntRange> &UnreachableRanges);
81    BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
82                             BasicBlock *Default);
83    unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
84  };
85
86  /// The comparison function for sorting the switch case values in the vector.
87  /// WARNING: Case ranges should be disjoint!
88  struct CaseCmp {
89    bool operator () (const LowerSwitch::CaseRange& C1,
90                      const LowerSwitch::CaseRange& C2) {
91
92      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
93      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
94      return CI1->getValue().slt(CI2->getValue());
95    }
96  };
97}
98
99char LowerSwitch::ID = 0;
100INITIALIZE_PASS(LowerSwitch, "lowerswitch",
101                "Lower SwitchInst's to branches", false, false)
102
103// Publicly exposed interface to pass...
104char &llvm::LowerSwitchID = LowerSwitch::ID;
105// createLowerSwitchPass - Interface to this file...
106FunctionPass *llvm::createLowerSwitchPass() {
107  return new LowerSwitch();
108}
109
110bool LowerSwitch::runOnFunction(Function &F) {
111  bool Changed = false;
112  SmallPtrSet<BasicBlock*, 8> DeleteList;
113
114  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
115    BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks
116
117    // If the block is a dead Default block that will be deleted later, don't
118    // waste time processing it.
119    if (DeleteList.count(Cur))
120      continue;
121
122    if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
123      Changed = true;
124      processSwitchInst(SI, DeleteList);
125    }
126  }
127
128  for (BasicBlock* BB: DeleteList) {
129    DeleteDeadBlock(BB);
130  }
131
132  return Changed;
133}
134
135/// Used for debugging purposes.
136static raw_ostream& operator<<(raw_ostream &O,
137                               const LowerSwitch::CaseVector &C)
138    LLVM_ATTRIBUTE_USED;
139static raw_ostream& operator<<(raw_ostream &O,
140                               const LowerSwitch::CaseVector &C) {
141  O << "[";
142
143  for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
144         E = C.end(); B != E; ) {
145    O << *B->Low << " -" << *B->High;
146    if (++B != E) O << ", ";
147  }
148
149  return O << "]";
150}
151
152/// \brief Update the first occurrence of the "switch statement" BB in the PHI
153/// node with the "new" BB. The other occurrences will:
154///
155/// 1) Be updated by subsequent calls to this function.  Switch statements may
156/// have more than one outcoming edge into the same BB if they all have the same
157/// value. When the switch statement is converted these incoming edges are now
158/// coming from multiple BBs.
159/// 2) Removed if subsequent incoming values now share the same case, i.e.,
160/// multiple outcome edges are condensed into one. This is necessary to keep the
161/// number of phi values equal to the number of branches to SuccBB.
162static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
163                    unsigned NumMergedCases) {
164  for (BasicBlock::iterator I = SuccBB->begin(),
165                            IE = SuccBB->getFirstNonPHI()->getIterator();
166       I != IE; ++I) {
167    PHINode *PN = cast<PHINode>(I);
168
169    // Only update the first occurrence.
170    unsigned Idx = 0, E = PN->getNumIncomingValues();
171    unsigned LocalNumMergedCases = NumMergedCases;
172    for (; Idx != E; ++Idx) {
173      if (PN->getIncomingBlock(Idx) == OrigBB) {
174        PN->setIncomingBlock(Idx, NewBB);
175        break;
176      }
177    }
178
179    // Remove additional occurrences coming from condensed cases and keep the
180    // number of incoming values equal to the number of branches to SuccBB.
181    SmallVector<unsigned, 8> Indices;
182    for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
183      if (PN->getIncomingBlock(Idx) == OrigBB) {
184        Indices.push_back(Idx);
185        LocalNumMergedCases--;
186      }
187    // Remove incoming values in the reverse order to prevent invalidating
188    // *successive* index.
189    for (unsigned III : reverse(Indices))
190      PN->removeIncomingValue(III);
191  }
192}
193
194/// Convert the switch statement into a binary lookup of the case values.
195/// The function recursively builds this tree. LowerBound and UpperBound are
196/// used to keep track of the bounds for Val that have already been checked by
197/// a block emitted by one of the previous calls to switchConvert in the call
198/// stack.
199BasicBlock *
200LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
201                           ConstantInt *UpperBound, Value *Val,
202                           BasicBlock *Predecessor, BasicBlock *OrigBlock,
203                           BasicBlock *Default,
204                           const std::vector<IntRange> &UnreachableRanges) {
205  unsigned Size = End - Begin;
206
207  if (Size == 1) {
208    // Check if the Case Range is perfectly squeezed in between
209    // already checked Upper and Lower bounds. If it is then we can avoid
210    // emitting the code that checks if the value actually falls in the range
211    // because the bounds already tell us so.
212    if (Begin->Low == LowerBound && Begin->High == UpperBound) {
213      unsigned NumMergedCases = 0;
214      if (LowerBound && UpperBound)
215        NumMergedCases =
216            UpperBound->getSExtValue() - LowerBound->getSExtValue();
217      fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
218      return Begin->BB;
219    }
220    return newLeafBlock(*Begin, Val, OrigBlock, Default);
221  }
222
223  unsigned Mid = Size / 2;
224  std::vector<CaseRange> LHS(Begin, Begin + Mid);
225  DEBUG(dbgs() << "LHS: " << LHS << "\n");
226  std::vector<CaseRange> RHS(Begin + Mid, End);
227  DEBUG(dbgs() << "RHS: " << RHS << "\n");
228
229  CaseRange &Pivot = *(Begin + Mid);
230  DEBUG(dbgs() << "Pivot ==> "
231               << Pivot.Low->getValue()
232               << " -" << Pivot.High->getValue() << "\n");
233
234  // NewLowerBound here should never be the integer minimal value.
235  // This is because it is computed from a case range that is never
236  // the smallest, so there is always a case range that has at least
237  // a smaller value.
238  ConstantInt *NewLowerBound = Pivot.Low;
239
240  // Because NewLowerBound is never the smallest representable integer
241  // it is safe here to subtract one.
242  ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
243                                                NewLowerBound->getValue() - 1);
244
245  if (!UnreachableRanges.empty()) {
246    // Check if the gap between LHS's highest and NewLowerBound is unreachable.
247    int64_t GapLow = LHS.back().High->getSExtValue() + 1;
248    int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
249    IntRange Gap = { GapLow, GapHigh };
250    if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
251      NewUpperBound = LHS.back().High;
252  }
253
254  DEBUG(dbgs() << "LHS Bounds ==> ";
255        if (LowerBound) {
256          dbgs() << LowerBound->getSExtValue();
257        } else {
258          dbgs() << "NONE";
259        }
260        dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
261        dbgs() << "RHS Bounds ==> ";
262        dbgs() << NewLowerBound->getSExtValue() << " - ";
263        if (UpperBound) {
264          dbgs() << UpperBound->getSExtValue() << "\n";
265        } else {
266          dbgs() << "NONE\n";
267        });
268
269  // Create a new node that checks if the value is < pivot. Go to the
270  // left branch if it is and right branch if not.
271  Function* F = OrigBlock->getParent();
272  BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
273
274  ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
275                                Val, Pivot.Low, "Pivot");
276
277  BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
278                                      NewUpperBound, Val, NewNode, OrigBlock,
279                                      Default, UnreachableRanges);
280  BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
281                                      UpperBound, Val, NewNode, OrigBlock,
282                                      Default, UnreachableRanges);
283
284  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
285  NewNode->getInstList().push_back(Comp);
286
287  BranchInst::Create(LBranch, RBranch, Comp, NewNode);
288  return NewNode;
289}
290
291/// Create a new leaf block for the binary lookup tree. It checks if the
292/// switch's value == the case's value. If not, then it jumps to the default
293/// branch. At this point in the tree, the value can't be another valid case
294/// value, so the jump to the "default" branch is warranted.
295BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
296                                      BasicBlock* OrigBlock,
297                                      BasicBlock* Default)
298{
299  Function* F = OrigBlock->getParent();
300  BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
301  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
302
303  // Emit comparison
304  ICmpInst* Comp = nullptr;
305  if (Leaf.Low == Leaf.High) {
306    // Make the seteq instruction...
307    Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
308                        Leaf.Low, "SwitchLeaf");
309  } else {
310    // Make range comparison
311    if (Leaf.Low->isMinValue(true /*isSigned*/)) {
312      // Val >= Min && Val <= Hi --> Val <= Hi
313      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
314                          "SwitchLeaf");
315    } else if (Leaf.Low->isZero()) {
316      // Val >= 0 && Val <= Hi --> Val <=u Hi
317      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
318                          "SwitchLeaf");
319    } else {
320      // Emit V-Lo <=u Hi-Lo
321      Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
322      Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
323                                                   Val->getName()+".off",
324                                                   NewLeaf);
325      Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
326      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
327                          "SwitchLeaf");
328    }
329  }
330
331  // Make the conditional branch...
332  BasicBlock* Succ = Leaf.BB;
333  BranchInst::Create(Succ, Default, Comp, NewLeaf);
334
335  // If there were any PHI nodes in this successor, rewrite one entry
336  // from OrigBlock to come from NewLeaf.
337  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
338    PHINode* PN = cast<PHINode>(I);
339    // Remove all but one incoming entries from the cluster
340    uint64_t Range = Leaf.High->getSExtValue() -
341                     Leaf.Low->getSExtValue();
342    for (uint64_t j = 0; j < Range; ++j) {
343      PN->removeIncomingValue(OrigBlock);
344    }
345
346    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
347    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
348    PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
349  }
350
351  return NewLeaf;
352}
353
354/// Transform simple list of Cases into list of CaseRange's.
355unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
356  unsigned numCmps = 0;
357
358  // Start with "simple" cases
359  for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
360    Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(),
361                              i.getCaseSuccessor()));
362
363  std::sort(Cases.begin(), Cases.end(), CaseCmp());
364
365  // Merge case into clusters
366  if (Cases.size() >= 2) {
367    CaseItr I = Cases.begin();
368    for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
369      int64_t nextValue = J->Low->getSExtValue();
370      int64_t currentValue = I->High->getSExtValue();
371      BasicBlock* nextBB = J->BB;
372      BasicBlock* currentBB = I->BB;
373
374      // If the two neighboring cases go to the same destination, merge them
375      // into a single case.
376      assert(nextValue > currentValue && "Cases should be strictly ascending");
377      if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
378        I->High = J->High;
379        // FIXME: Combine branch weights.
380      } else if (++I != J) {
381        *I = *J;
382      }
383    }
384    Cases.erase(std::next(I), Cases.end());
385  }
386
387  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
388    if (I->Low != I->High)
389      // A range counts double, since it requires two compares.
390      ++numCmps;
391  }
392
393  return numCmps;
394}
395
396/// Replace the specified switch instruction with a sequence of chained if-then
397/// insts in a balanced binary search.
398void LowerSwitch::processSwitchInst(SwitchInst *SI,
399                                    SmallPtrSetImpl<BasicBlock*> &DeleteList) {
400  BasicBlock *CurBlock = SI->getParent();
401  BasicBlock *OrigBlock = CurBlock;
402  Function *F = CurBlock->getParent();
403  Value *Val = SI->getCondition();  // The value we are switching on...
404  BasicBlock* Default = SI->getDefaultDest();
405
406  // If there is only the default destination, just branch.
407  if (!SI->getNumCases()) {
408    BranchInst::Create(Default, CurBlock);
409    SI->eraseFromParent();
410    return;
411  }
412
413  // Prepare cases vector.
414  CaseVector Cases;
415  unsigned numCmps = Clusterify(Cases, SI);
416  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
417               << ". Total compares: " << numCmps << "\n");
418  DEBUG(dbgs() << "Cases: " << Cases << "\n");
419  (void)numCmps;
420
421  ConstantInt *LowerBound = nullptr;
422  ConstantInt *UpperBound = nullptr;
423  std::vector<IntRange> UnreachableRanges;
424
425  if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
426    // Make the bounds tightly fitted around the case value range, because we
427    // know that the value passed to the switch must be exactly one of the case
428    // values.
429    assert(!Cases.empty());
430    LowerBound = Cases.front().Low;
431    UpperBound = Cases.back().High;
432
433    DenseMap<BasicBlock *, unsigned> Popularity;
434    unsigned MaxPop = 0;
435    BasicBlock *PopSucc = nullptr;
436
437    IntRange R = { INT64_MIN, INT64_MAX };
438    UnreachableRanges.push_back(R);
439    for (const auto &I : Cases) {
440      int64_t Low = I.Low->getSExtValue();
441      int64_t High = I.High->getSExtValue();
442
443      IntRange &LastRange = UnreachableRanges.back();
444      if (LastRange.Low == Low) {
445        // There is nothing left of the previous range.
446        UnreachableRanges.pop_back();
447      } else {
448        // Terminate the previous range.
449        assert(Low > LastRange.Low);
450        LastRange.High = Low - 1;
451      }
452      if (High != INT64_MAX) {
453        IntRange R = { High + 1, INT64_MAX };
454        UnreachableRanges.push_back(R);
455      }
456
457      // Count popularity.
458      int64_t N = High - Low + 1;
459      unsigned &Pop = Popularity[I.BB];
460      if ((Pop += N) > MaxPop) {
461        MaxPop = Pop;
462        PopSucc = I.BB;
463      }
464    }
465#ifndef NDEBUG
466    /* UnreachableRanges should be sorted and the ranges non-adjacent. */
467    for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
468         I != E; ++I) {
469      assert(I->Low <= I->High);
470      auto Next = I + 1;
471      if (Next != E) {
472        assert(Next->Low > I->High);
473      }
474    }
475#endif
476
477    // Use the most popular block as the new default, reducing the number of
478    // cases.
479    assert(MaxPop > 0 && PopSucc);
480    Default = PopSucc;
481    Cases.erase(std::remove_if(
482                    Cases.begin(), Cases.end(),
483                    [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
484                Cases.end());
485
486    // If there are no cases left, just branch.
487    if (Cases.empty()) {
488      BranchInst::Create(Default, CurBlock);
489      SI->eraseFromParent();
490      return;
491    }
492  }
493
494  // Create a new, empty default block so that the new hierarchy of
495  // if-then statements go to this and the PHI nodes are happy.
496  BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
497  F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
498  BranchInst::Create(Default, NewDefault);
499
500  // If there is an entry in any PHI nodes for the default edge, make sure
501  // to update them as well.
502  for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
503    PHINode *PN = cast<PHINode>(I);
504    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
505    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
506    PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
507  }
508
509  BasicBlock *SwitchBlock =
510      switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
511                    OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
512
513  // Branch to our shiny new if-then stuff...
514  BranchInst::Create(SwitchBlock, OrigBlock);
515
516  // We are now done with the switch instruction, delete it.
517  BasicBlock *OldDefault = SI->getDefaultDest();
518  CurBlock->getInstList().erase(SI);
519
520  // If the Default block has no more predecessors just add it to DeleteList.
521  if (pred_begin(OldDefault) == pred_end(OldDefault))
522    DeleteList.insert(OldDefault);
523}
524