LowerSwitch.cpp revision 296417
1//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LowerSwitch transformation rewrites switch instructions with a sequence
11// of branches, which allows targets to get away with not implementing the
12// switch instruction until it is convenient.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/IR/CFG.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Function.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/LLVMContext.h"
23#include "llvm/Pass.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
28#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
29#include <algorithm>
30using namespace llvm;
31
32#define DEBUG_TYPE "lower-switch"
33
34namespace {
35  struct IntRange {
36    int64_t Low, High;
37  };
38  // Return true iff R is covered by Ranges.
39  static bool IsInRanges(const IntRange &R,
40                         const std::vector<IntRange> &Ranges) {
41    // Note: Ranges must be sorted, non-overlapping and non-adjacent.
42
43    // Find the first range whose High field is >= R.High,
44    // then check if the Low field is <= R.Low. If so, we
45    // have a Range that covers R.
46    auto I = std::lower_bound(
47        Ranges.begin(), Ranges.end(), R,
48        [](const IntRange &A, const IntRange &B) { return A.High < B.High; });
49    return I != Ranges.end() && I->Low <= R.Low;
50  }
51
52  /// Replace all SwitchInst instructions with chained branch instructions.
53  class LowerSwitch : public FunctionPass {
54  public:
55    static char ID; // Pass identification, replacement for typeid
56    LowerSwitch() : FunctionPass(ID) {
57      initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
58    }
59
60    bool runOnFunction(Function &F) override;
61
62    void getAnalysisUsage(AnalysisUsage &AU) const override {
63      // This is a cluster of orthogonal Transforms
64      AU.addPreserved<UnifyFunctionExitNodes>();
65      AU.addPreservedID(LowerInvokePassID);
66    }
67
68    struct CaseRange {
69      ConstantInt* Low;
70      ConstantInt* High;
71      BasicBlock* BB;
72
73      CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
74          : Low(low), High(high), BB(bb) {}
75    };
76
77    typedef std::vector<CaseRange> CaseVector;
78    typedef std::vector<CaseRange>::iterator CaseItr;
79  private:
80    void processSwitchInst(SwitchInst *SI, SmallPtrSetImpl<BasicBlock*> &DeleteList);
81
82    BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
83                              ConstantInt *LowerBound, ConstantInt *UpperBound,
84                              Value *Val, BasicBlock *Predecessor,
85                              BasicBlock *OrigBlock, BasicBlock *Default,
86                              const std::vector<IntRange> &UnreachableRanges);
87    BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
88                             BasicBlock *Default);
89    unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
90  };
91
92  /// The comparison function for sorting the switch case values in the vector.
93  /// WARNING: Case ranges should be disjoint!
94  struct CaseCmp {
95    bool operator () (const LowerSwitch::CaseRange& C1,
96                      const LowerSwitch::CaseRange& C2) {
97
98      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
99      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
100      return CI1->getValue().slt(CI2->getValue());
101    }
102  };
103}
104
105char LowerSwitch::ID = 0;
106INITIALIZE_PASS(LowerSwitch, "lowerswitch",
107                "Lower SwitchInst's to branches", false, false)
108
109// Publicly exposed interface to pass...
110char &llvm::LowerSwitchID = LowerSwitch::ID;
111// createLowerSwitchPass - Interface to this file...
112FunctionPass *llvm::createLowerSwitchPass() {
113  return new LowerSwitch();
114}
115
116bool LowerSwitch::runOnFunction(Function &F) {
117  bool Changed = false;
118  SmallPtrSet<BasicBlock*, 8> DeleteList;
119
120  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
121    BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks
122
123    // If the block is a dead Default block that will be deleted later, don't
124    // waste time processing it.
125    if (DeleteList.count(Cur))
126      continue;
127
128    if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
129      Changed = true;
130      processSwitchInst(SI, DeleteList);
131    }
132  }
133
134  for (BasicBlock* BB: DeleteList) {
135    DeleteDeadBlock(BB);
136  }
137
138  return Changed;
139}
140
141/// Used for debugging purposes.
142static raw_ostream& operator<<(raw_ostream &O,
143                               const LowerSwitch::CaseVector &C)
144    LLVM_ATTRIBUTE_USED;
145static raw_ostream& operator<<(raw_ostream &O,
146                               const LowerSwitch::CaseVector &C) {
147  O << "[";
148
149  for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
150         E = C.end(); B != E; ) {
151    O << *B->Low << " -" << *B->High;
152    if (++B != E) O << ", ";
153  }
154
155  return O << "]";
156}
157
158/// \brief Update the first occurrence of the "switch statement" BB in the PHI
159/// node with the "new" BB. The other occurrences will:
160///
161/// 1) Be updated by subsequent calls to this function.  Switch statements may
162/// have more than one outcoming edge into the same BB if they all have the same
163/// value. When the switch statement is converted these incoming edges are now
164/// coming from multiple BBs.
165/// 2) Removed if subsequent incoming values now share the same case, i.e.,
166/// multiple outcome edges are condensed into one. This is necessary to keep the
167/// number of phi values equal to the number of branches to SuccBB.
168static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
169                    unsigned NumMergedCases) {
170  for (BasicBlock::iterator I = SuccBB->begin(),
171                            IE = SuccBB->getFirstNonPHI()->getIterator();
172       I != IE; ++I) {
173    PHINode *PN = cast<PHINode>(I);
174
175    // Only update the first occurrence.
176    unsigned Idx = 0, E = PN->getNumIncomingValues();
177    unsigned LocalNumMergedCases = NumMergedCases;
178    for (; Idx != E; ++Idx) {
179      if (PN->getIncomingBlock(Idx) == OrigBB) {
180        PN->setIncomingBlock(Idx, NewBB);
181        break;
182      }
183    }
184
185    // Remove additional occurrences coming from condensed cases and keep the
186    // number of incoming values equal to the number of branches to SuccBB.
187    SmallVector<unsigned, 8> Indices;
188    for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
189      if (PN->getIncomingBlock(Idx) == OrigBB) {
190        Indices.push_back(Idx);
191        LocalNumMergedCases--;
192      }
193    // Remove incoming values in the reverse order to prevent invalidating
194    // *successive* index.
195    for (auto III = Indices.rbegin(), IIE = Indices.rend(); III != IIE; ++III)
196      PN->removeIncomingValue(*III);
197  }
198}
199
200/// Convert the switch statement into a binary lookup of the case values.
201/// The function recursively builds this tree. LowerBound and UpperBound are
202/// used to keep track of the bounds for Val that have already been checked by
203/// a block emitted by one of the previous calls to switchConvert in the call
204/// stack.
205BasicBlock *
206LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
207                           ConstantInt *UpperBound, Value *Val,
208                           BasicBlock *Predecessor, BasicBlock *OrigBlock,
209                           BasicBlock *Default,
210                           const std::vector<IntRange> &UnreachableRanges) {
211  unsigned Size = End - Begin;
212
213  if (Size == 1) {
214    // Check if the Case Range is perfectly squeezed in between
215    // already checked Upper and Lower bounds. If it is then we can avoid
216    // emitting the code that checks if the value actually falls in the range
217    // because the bounds already tell us so.
218    if (Begin->Low == LowerBound && Begin->High == UpperBound) {
219      unsigned NumMergedCases = 0;
220      if (LowerBound && UpperBound)
221        NumMergedCases =
222            UpperBound->getSExtValue() - LowerBound->getSExtValue();
223      fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
224      return Begin->BB;
225    }
226    return newLeafBlock(*Begin, Val, OrigBlock, Default);
227  }
228
229  unsigned Mid = Size / 2;
230  std::vector<CaseRange> LHS(Begin, Begin + Mid);
231  DEBUG(dbgs() << "LHS: " << LHS << "\n");
232  std::vector<CaseRange> RHS(Begin + Mid, End);
233  DEBUG(dbgs() << "RHS: " << RHS << "\n");
234
235  CaseRange &Pivot = *(Begin + Mid);
236  DEBUG(dbgs() << "Pivot ==> "
237               << Pivot.Low->getValue()
238               << " -" << Pivot.High->getValue() << "\n");
239
240  // NewLowerBound here should never be the integer minimal value.
241  // This is because it is computed from a case range that is never
242  // the smallest, so there is always a case range that has at least
243  // a smaller value.
244  ConstantInt *NewLowerBound = Pivot.Low;
245
246  // Because NewLowerBound is never the smallest representable integer
247  // it is safe here to subtract one.
248  ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
249                                                NewLowerBound->getValue() - 1);
250
251  if (!UnreachableRanges.empty()) {
252    // Check if the gap between LHS's highest and NewLowerBound is unreachable.
253    int64_t GapLow = LHS.back().High->getSExtValue() + 1;
254    int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
255    IntRange Gap = { GapLow, GapHigh };
256    if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
257      NewUpperBound = LHS.back().High;
258  }
259
260  DEBUG(dbgs() << "LHS Bounds ==> ";
261        if (LowerBound) {
262          dbgs() << LowerBound->getSExtValue();
263        } else {
264          dbgs() << "NONE";
265        }
266        dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
267        dbgs() << "RHS Bounds ==> ";
268        dbgs() << NewLowerBound->getSExtValue() << " - ";
269        if (UpperBound) {
270          dbgs() << UpperBound->getSExtValue() << "\n";
271        } else {
272          dbgs() << "NONE\n";
273        });
274
275  // Create a new node that checks if the value is < pivot. Go to the
276  // left branch if it is and right branch if not.
277  Function* F = OrigBlock->getParent();
278  BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
279
280  ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
281                                Val, Pivot.Low, "Pivot");
282
283  BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
284                                      NewUpperBound, Val, NewNode, OrigBlock,
285                                      Default, UnreachableRanges);
286  BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
287                                      UpperBound, Val, NewNode, OrigBlock,
288                                      Default, UnreachableRanges);
289
290  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
291  NewNode->getInstList().push_back(Comp);
292
293  BranchInst::Create(LBranch, RBranch, Comp, NewNode);
294  return NewNode;
295}
296
297/// Create a new leaf block for the binary lookup tree. It checks if the
298/// switch's value == the case's value. If not, then it jumps to the default
299/// branch. At this point in the tree, the value can't be another valid case
300/// value, so the jump to the "default" branch is warranted.
301BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
302                                      BasicBlock* OrigBlock,
303                                      BasicBlock* Default)
304{
305  Function* F = OrigBlock->getParent();
306  BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
307  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
308
309  // Emit comparison
310  ICmpInst* Comp = nullptr;
311  if (Leaf.Low == Leaf.High) {
312    // Make the seteq instruction...
313    Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
314                        Leaf.Low, "SwitchLeaf");
315  } else {
316    // Make range comparison
317    if (Leaf.Low->isMinValue(true /*isSigned*/)) {
318      // Val >= Min && Val <= Hi --> Val <= Hi
319      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
320                          "SwitchLeaf");
321    } else if (Leaf.Low->isZero()) {
322      // Val >= 0 && Val <= Hi --> Val <=u Hi
323      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
324                          "SwitchLeaf");
325    } else {
326      // Emit V-Lo <=u Hi-Lo
327      Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
328      Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
329                                                   Val->getName()+".off",
330                                                   NewLeaf);
331      Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
332      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
333                          "SwitchLeaf");
334    }
335  }
336
337  // Make the conditional branch...
338  BasicBlock* Succ = Leaf.BB;
339  BranchInst::Create(Succ, Default, Comp, NewLeaf);
340
341  // If there were any PHI nodes in this successor, rewrite one entry
342  // from OrigBlock to come from NewLeaf.
343  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
344    PHINode* PN = cast<PHINode>(I);
345    // Remove all but one incoming entries from the cluster
346    uint64_t Range = Leaf.High->getSExtValue() -
347                     Leaf.Low->getSExtValue();
348    for (uint64_t j = 0; j < Range; ++j) {
349      PN->removeIncomingValue(OrigBlock);
350    }
351
352    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
353    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
354    PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
355  }
356
357  return NewLeaf;
358}
359
360/// Transform simple list of Cases into list of CaseRange's.
361unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
362  unsigned numCmps = 0;
363
364  // Start with "simple" cases
365  for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
366    Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(),
367                              i.getCaseSuccessor()));
368
369  std::sort(Cases.begin(), Cases.end(), CaseCmp());
370
371  // Merge case into clusters
372  if (Cases.size() >= 2) {
373    CaseItr I = Cases.begin();
374    for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
375      int64_t nextValue = J->Low->getSExtValue();
376      int64_t currentValue = I->High->getSExtValue();
377      BasicBlock* nextBB = J->BB;
378      BasicBlock* currentBB = I->BB;
379
380      // If the two neighboring cases go to the same destination, merge them
381      // into a single case.
382      assert(nextValue > currentValue && "Cases should be strictly ascending");
383      if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
384        I->High = J->High;
385        // FIXME: Combine branch weights.
386      } else if (++I != J) {
387        *I = *J;
388      }
389    }
390    Cases.erase(std::next(I), Cases.end());
391  }
392
393  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
394    if (I->Low != I->High)
395      // A range counts double, since it requires two compares.
396      ++numCmps;
397  }
398
399  return numCmps;
400}
401
402/// Replace the specified switch instruction with a sequence of chained if-then
403/// insts in a balanced binary search.
404void LowerSwitch::processSwitchInst(SwitchInst *SI,
405                                    SmallPtrSetImpl<BasicBlock*> &DeleteList) {
406  BasicBlock *CurBlock = SI->getParent();
407  BasicBlock *OrigBlock = CurBlock;
408  Function *F = CurBlock->getParent();
409  Value *Val = SI->getCondition();  // The value we are switching on...
410  BasicBlock* Default = SI->getDefaultDest();
411
412  // If there is only the default destination, just branch.
413  if (!SI->getNumCases()) {
414    BranchInst::Create(Default, CurBlock);
415    SI->eraseFromParent();
416    return;
417  }
418
419  // Prepare cases vector.
420  CaseVector Cases;
421  unsigned numCmps = Clusterify(Cases, SI);
422  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
423               << ". Total compares: " << numCmps << "\n");
424  DEBUG(dbgs() << "Cases: " << Cases << "\n");
425  (void)numCmps;
426
427  ConstantInt *LowerBound = nullptr;
428  ConstantInt *UpperBound = nullptr;
429  std::vector<IntRange> UnreachableRanges;
430
431  if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
432    // Make the bounds tightly fitted around the case value range, because we
433    // know that the value passed to the switch must be exactly one of the case
434    // values.
435    assert(!Cases.empty());
436    LowerBound = Cases.front().Low;
437    UpperBound = Cases.back().High;
438
439    DenseMap<BasicBlock *, unsigned> Popularity;
440    unsigned MaxPop = 0;
441    BasicBlock *PopSucc = nullptr;
442
443    IntRange R = { INT64_MIN, INT64_MAX };
444    UnreachableRanges.push_back(R);
445    for (const auto &I : Cases) {
446      int64_t Low = I.Low->getSExtValue();
447      int64_t High = I.High->getSExtValue();
448
449      IntRange &LastRange = UnreachableRanges.back();
450      if (LastRange.Low == Low) {
451        // There is nothing left of the previous range.
452        UnreachableRanges.pop_back();
453      } else {
454        // Terminate the previous range.
455        assert(Low > LastRange.Low);
456        LastRange.High = Low - 1;
457      }
458      if (High != INT64_MAX) {
459        IntRange R = { High + 1, INT64_MAX };
460        UnreachableRanges.push_back(R);
461      }
462
463      // Count popularity.
464      int64_t N = High - Low + 1;
465      unsigned &Pop = Popularity[I.BB];
466      if ((Pop += N) > MaxPop) {
467        MaxPop = Pop;
468        PopSucc = I.BB;
469      }
470    }
471#ifndef NDEBUG
472    /* UnreachableRanges should be sorted and the ranges non-adjacent. */
473    for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
474         I != E; ++I) {
475      assert(I->Low <= I->High);
476      auto Next = I + 1;
477      if (Next != E) {
478        assert(Next->Low > I->High);
479      }
480    }
481#endif
482
483    // Use the most popular block as the new default, reducing the number of
484    // cases.
485    assert(MaxPop > 0 && PopSucc);
486    Default = PopSucc;
487    Cases.erase(std::remove_if(
488                    Cases.begin(), Cases.end(),
489                    [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
490                Cases.end());
491
492    // If there are no cases left, just branch.
493    if (Cases.empty()) {
494      BranchInst::Create(Default, CurBlock);
495      SI->eraseFromParent();
496      return;
497    }
498  }
499
500  // Create a new, empty default block so that the new hierarchy of
501  // if-then statements go to this and the PHI nodes are happy.
502  BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
503  F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
504  BranchInst::Create(Default, NewDefault);
505
506  // If there is an entry in any PHI nodes for the default edge, make sure
507  // to update them as well.
508  for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
509    PHINode *PN = cast<PHINode>(I);
510    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
511    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
512    PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
513  }
514
515  BasicBlock *SwitchBlock =
516      switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
517                    OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
518
519  // Branch to our shiny new if-then stuff...
520  BranchInst::Create(SwitchBlock, OrigBlock);
521
522  // We are now done with the switch instruction, delete it.
523  BasicBlock *OldDefault = SI->getDefaultDest();
524  CurBlock->getInstList().erase(SI);
525
526  // If the Default block has no more predecessors just add it to DeleteList.
527  if (pred_begin(OldDefault) == pred_end(OldDefault))
528    DeleteList.insert(OldDefault);
529}
530