LowerSwitch.cpp revision 280031
1//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LowerSwitch transformation rewrites switch instructions with a sequence
11// of branches, which allows targets to get away with not implementing the
12// switch instruction until it is convenient.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/Transforms/Utils/BasicBlockUtils.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Function.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/LLVMContext.h"
23#include "llvm/IR/CFG.h"
24#include "llvm/Pass.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
29#include <algorithm>
30using namespace llvm;
31
32#define DEBUG_TYPE "lower-switch"
33
34namespace {
35  /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch
36  /// instructions.
37  class LowerSwitch : public FunctionPass {
38  public:
39    static char ID; // Pass identification, replacement for typeid
40    LowerSwitch() : FunctionPass(ID) {
41      initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
42    }
43
44    bool runOnFunction(Function &F) override;
45
46    void getAnalysisUsage(AnalysisUsage &AU) const override {
47      // This is a cluster of orthogonal Transforms
48      AU.addPreserved<UnifyFunctionExitNodes>();
49      AU.addPreservedID(LowerInvokePassID);
50    }
51
52    struct CaseRange {
53      Constant* Low;
54      Constant* High;
55      BasicBlock* BB;
56
57      CaseRange(Constant *low = nullptr, Constant *high = nullptr,
58                BasicBlock *bb = nullptr) :
59        Low(low), High(high), BB(bb) { }
60    };
61
62    typedef std::vector<CaseRange> CaseVector;
63    typedef std::vector<CaseRange>::iterator CaseItr;
64  private:
65    void processSwitchInst(SwitchInst *SI);
66
67    BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
68                              ConstantInt *LowerBound, ConstantInt *UpperBound,
69                              Value *Val, BasicBlock *Predecessor,
70                              BasicBlock *OrigBlock, BasicBlock *Default);
71    BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
72                             BasicBlock *Default);
73    unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
74  };
75
76  /// The comparison function for sorting the switch case values in the vector.
77  /// WARNING: Case ranges should be disjoint!
78  struct CaseCmp {
79    bool operator () (const LowerSwitch::CaseRange& C1,
80                      const LowerSwitch::CaseRange& C2) {
81
82      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
83      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
84      return CI1->getValue().slt(CI2->getValue());
85    }
86  };
87}
88
89char LowerSwitch::ID = 0;
90INITIALIZE_PASS(LowerSwitch, "lowerswitch",
91                "Lower SwitchInst's to branches", false, false)
92
93// Publicly exposed interface to pass...
94char &llvm::LowerSwitchID = LowerSwitch::ID;
95// createLowerSwitchPass - Interface to this file...
96FunctionPass *llvm::createLowerSwitchPass() {
97  return new LowerSwitch();
98}
99
100bool LowerSwitch::runOnFunction(Function &F) {
101  bool Changed = false;
102
103  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
104    BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks
105
106    if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
107      Changed = true;
108      processSwitchInst(SI);
109    }
110  }
111
112  return Changed;
113}
114
115// operator<< - Used for debugging purposes.
116//
117static raw_ostream& operator<<(raw_ostream &O,
118                               const LowerSwitch::CaseVector &C)
119    LLVM_ATTRIBUTE_USED;
120static raw_ostream& operator<<(raw_ostream &O,
121                               const LowerSwitch::CaseVector &C) {
122  O << "[";
123
124  for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
125         E = C.end(); B != E; ) {
126    O << *B->Low << " -" << *B->High;
127    if (++B != E) O << ", ";
128  }
129
130  return O << "]";
131}
132
133// \brief Update the first occurrence of the "switch statement" BB in the PHI
134// node with the "new" BB. The other occurrences will:
135//
136// 1) Be updated by subsequent calls to this function.  Switch statements may
137// have more than one outcoming edge into the same BB if they all have the same
138// value. When the switch statement is converted these incoming edges are now
139// coming from multiple BBs.
140// 2) Removed if subsequent incoming values now share the same case, i.e.,
141// multiple outcome edges are condensed into one. This is necessary to keep the
142// number of phi values equal to the number of branches to SuccBB.
143static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
144                    unsigned NumMergedCases) {
145  for (BasicBlock::iterator I = SuccBB->begin(), IE = SuccBB->getFirstNonPHI();
146       I != IE; ++I) {
147    PHINode *PN = cast<PHINode>(I);
148
149    // Only update the first occurence.
150    unsigned Idx = 0, E = PN->getNumIncomingValues();
151    unsigned LocalNumMergedCases = NumMergedCases;
152    for (; Idx != E; ++Idx) {
153      if (PN->getIncomingBlock(Idx) == OrigBB) {
154        PN->setIncomingBlock(Idx, NewBB);
155        break;
156      }
157    }
158
159    // Remove additional occurences coming from condensed cases and keep the
160    // number of incoming values equal to the number of branches to SuccBB.
161    for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
162      if (PN->getIncomingBlock(Idx) == OrigBB) {
163        PN->removeIncomingValue(Idx);
164        LocalNumMergedCases--;
165      }
166  }
167}
168
169// switchConvert - Convert the switch statement into a binary lookup of
170// the case values. The function recursively builds this tree.
171// LowerBound and UpperBound are used to keep track of the bounds for Val
172// that have already been checked by a block emitted by one of the previous
173// calls to switchConvert in the call stack.
174BasicBlock *LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
175                                       ConstantInt *LowerBound,
176                                       ConstantInt *UpperBound, Value *Val,
177                                       BasicBlock *Predecessor,
178                                       BasicBlock *OrigBlock,
179                                       BasicBlock *Default) {
180  unsigned Size = End - Begin;
181
182  if (Size == 1) {
183    // Check if the Case Range is perfectly squeezed in between
184    // already checked Upper and Lower bounds. If it is then we can avoid
185    // emitting the code that checks if the value actually falls in the range
186    // because the bounds already tell us so.
187    if (Begin->Low == LowerBound && Begin->High == UpperBound) {
188      unsigned NumMergedCases = 0;
189      if (LowerBound && UpperBound)
190        NumMergedCases =
191            UpperBound->getSExtValue() - LowerBound->getSExtValue();
192      fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
193      return Begin->BB;
194    }
195    return newLeafBlock(*Begin, Val, OrigBlock, Default);
196  }
197
198  unsigned Mid = Size / 2;
199  std::vector<CaseRange> LHS(Begin, Begin + Mid);
200  DEBUG(dbgs() << "LHS: " << LHS << "\n");
201  std::vector<CaseRange> RHS(Begin + Mid, End);
202  DEBUG(dbgs() << "RHS: " << RHS << "\n");
203
204  CaseRange &Pivot = *(Begin + Mid);
205  DEBUG(dbgs() << "Pivot ==> "
206               << cast<ConstantInt>(Pivot.Low)->getValue()
207               << " -" << cast<ConstantInt>(Pivot.High)->getValue() << "\n");
208
209  // NewLowerBound here should never be the integer minimal value.
210  // This is because it is computed from a case range that is never
211  // the smallest, so there is always a case range that has at least
212  // a smaller value.
213  ConstantInt *NewLowerBound = cast<ConstantInt>(Pivot.Low);
214  ConstantInt *NewUpperBound;
215
216  // If we don't have a Default block then it means that we can never
217  // have a value outside of a case range, so set the UpperBound to the highest
218  // value in the LHS part of the case ranges.
219  if (Default != nullptr) {
220    // Because NewLowerBound is never the smallest representable integer
221    // it is safe here to subtract one.
222    NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
223                                     NewLowerBound->getValue() - 1);
224  } else {
225    CaseItr LastLHS = LHS.begin() + LHS.size() - 1;
226    NewUpperBound = cast<ConstantInt>(LastLHS->High);
227  }
228
229  DEBUG(dbgs() << "LHS Bounds ==> ";
230        if (LowerBound) {
231          dbgs() << cast<ConstantInt>(LowerBound)->getSExtValue();
232        } else {
233          dbgs() << "NONE";
234        }
235        dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
236        dbgs() << "RHS Bounds ==> ";
237        dbgs() << NewLowerBound->getSExtValue() << " - ";
238        if (UpperBound) {
239          dbgs() << cast<ConstantInt>(UpperBound)->getSExtValue() << "\n";
240        } else {
241          dbgs() << "NONE\n";
242        });
243
244  // Create a new node that checks if the value is < pivot. Go to the
245  // left branch if it is and right branch if not.
246  Function* F = OrigBlock->getParent();
247  BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
248
249  ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
250                                Val, Pivot.Low, "Pivot");
251
252  BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
253                                      NewUpperBound, Val, NewNode, OrigBlock,
254                                      Default);
255  BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
256                                      UpperBound, Val, NewNode, OrigBlock,
257                                      Default);
258
259  Function::iterator FI = OrigBlock;
260  F->getBasicBlockList().insert(++FI, NewNode);
261  NewNode->getInstList().push_back(Comp);
262
263  BranchInst::Create(LBranch, RBranch, Comp, NewNode);
264  return NewNode;
265}
266
267// newLeafBlock - Create a new leaf block for the binary lookup tree. It
268// checks if the switch's value == the case's value. If not, then it
269// jumps to the default branch. At this point in the tree, the value
270// can't be another valid case value, so the jump to the "default" branch
271// is warranted.
272//
273BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
274                                      BasicBlock* OrigBlock,
275                                      BasicBlock* Default)
276{
277  Function* F = OrigBlock->getParent();
278  BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
279  Function::iterator FI = OrigBlock;
280  F->getBasicBlockList().insert(++FI, NewLeaf);
281
282  // Emit comparison
283  ICmpInst* Comp = nullptr;
284  if (Leaf.Low == Leaf.High) {
285    // Make the seteq instruction...
286    Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
287                        Leaf.Low, "SwitchLeaf");
288  } else {
289    // Make range comparison
290    if (cast<ConstantInt>(Leaf.Low)->isMinValue(true /*isSigned*/)) {
291      // Val >= Min && Val <= Hi --> Val <= Hi
292      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
293                          "SwitchLeaf");
294    } else if (cast<ConstantInt>(Leaf.Low)->isZero()) {
295      // Val >= 0 && Val <= Hi --> Val <=u Hi
296      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
297                          "SwitchLeaf");
298    } else {
299      // Emit V-Lo <=u Hi-Lo
300      Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
301      Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
302                                                   Val->getName()+".off",
303                                                   NewLeaf);
304      Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
305      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
306                          "SwitchLeaf");
307    }
308  }
309
310  // Make the conditional branch...
311  BasicBlock* Succ = Leaf.BB;
312  BranchInst::Create(Succ, Default, Comp, NewLeaf);
313
314  // If there were any PHI nodes in this successor, rewrite one entry
315  // from OrigBlock to come from NewLeaf.
316  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
317    PHINode* PN = cast<PHINode>(I);
318    // Remove all but one incoming entries from the cluster
319    uint64_t Range = cast<ConstantInt>(Leaf.High)->getSExtValue() -
320                     cast<ConstantInt>(Leaf.Low)->getSExtValue();
321    for (uint64_t j = 0; j < Range; ++j) {
322      PN->removeIncomingValue(OrigBlock);
323    }
324
325    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
326    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
327    PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
328  }
329
330  return NewLeaf;
331}
332
333// Clusterify - Transform simple list of Cases into list of CaseRange's
334unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
335  unsigned numCmps = 0;
336
337  // Start with "simple" cases
338  for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
339    Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(),
340                              i.getCaseSuccessor()));
341
342  std::sort(Cases.begin(), Cases.end(), CaseCmp());
343
344  // Merge case into clusters
345  if (Cases.size()>=2)
346    for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
347         J != Cases.end();) {
348      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
349      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
350      BasicBlock* nextBB = J->BB;
351      BasicBlock* currentBB = I->BB;
352
353      // If the two neighboring cases go to the same destination, merge them
354      // into a single case.
355      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
356        I->High = J->High;
357        J = Cases.erase(J);
358      } else {
359        I = J++;
360      }
361    }
362
363  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
364    if (I->Low != I->High)
365      // A range counts double, since it requires two compares.
366      ++numCmps;
367  }
368
369  return numCmps;
370}
371
372// processSwitchInst - Replace the specified switch instruction with a sequence
373// of chained if-then insts in a balanced binary search.
374//
375void LowerSwitch::processSwitchInst(SwitchInst *SI) {
376  BasicBlock *CurBlock = SI->getParent();
377  BasicBlock *OrigBlock = CurBlock;
378  Function *F = CurBlock->getParent();
379  Value *Val = SI->getCondition();  // The value we are switching on...
380  BasicBlock* Default = SI->getDefaultDest();
381
382  // If there is only the default destination, don't bother with the code below.
383  if (!SI->getNumCases()) {
384    BranchInst::Create(SI->getDefaultDest(), CurBlock);
385    CurBlock->getInstList().erase(SI);
386    return;
387  }
388
389  const bool DefaultIsUnreachable =
390      Default->size() == 1 && isa<UnreachableInst>(Default->getTerminator());
391  // Create a new, empty default block so that the new hierarchy of
392  // if-then statements go to this and the PHI nodes are happy.
393  // if the default block is set as an unreachable we avoid creating one
394  // because will never be a valid target.
395  BasicBlock *NewDefault = nullptr;
396  if (!DefaultIsUnreachable) {
397    NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
398    F->getBasicBlockList().insert(Default, NewDefault);
399
400    BranchInst::Create(Default, NewDefault);
401  }
402  // If there is an entry in any PHI nodes for the default edge, make sure
403  // to update them as well.
404  for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
405    PHINode *PN = cast<PHINode>(I);
406    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
407    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
408    PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
409  }
410
411  // Prepare cases vector.
412  CaseVector Cases;
413  unsigned numCmps = Clusterify(Cases, SI);
414
415  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
416               << ". Total compares: " << numCmps << "\n");
417  DEBUG(dbgs() << "Cases: " << Cases << "\n");
418  (void)numCmps;
419
420  ConstantInt *UpperBound = nullptr;
421  ConstantInt *LowerBound = nullptr;
422
423  // Optimize the condition where Default is an unreachable block. In this case
424  // we can make the bounds tightly fitted around the case value ranges,
425  // because we know that the value passed to the switch should always be
426  // exactly one of the case values.
427  if (DefaultIsUnreachable) {
428    CaseItr LastCase = Cases.begin() + Cases.size() - 1;
429    UpperBound = cast<ConstantInt>(LastCase->High);
430    LowerBound = cast<ConstantInt>(Cases.begin()->Low);
431  }
432  BasicBlock *SwitchBlock =
433      switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
434                    OrigBlock, OrigBlock, NewDefault);
435
436  // Branch to our shiny new if-then stuff...
437  BranchInst::Create(SwitchBlock, OrigBlock);
438
439  // We are now done with the switch instruction, delete it.
440  CurBlock->getInstList().erase(SI);
441
442  pred_iterator PI = pred_begin(Default), E = pred_end(Default);
443  // If the Default block has no more predecessors just remove it
444  if (PI == E) {
445    DeleteDeadBlock(Default);
446  }
447}
448