1//===- Local.cpp - Functions to perform local transformations -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This family of functions perform various local transformations to the
10// program.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/Local.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseMapInfo.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SetVector.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/TinyPtrVector.h"
28#include "llvm/Analysis/ConstantFolding.h"
29#include "llvm/Analysis/DomTreeUpdater.h"
30#include "llvm/Analysis/EHPersonalities.h"
31#include "llvm/Analysis/InstructionSimplify.h"
32#include "llvm/Analysis/LazyValueInfo.h"
33#include "llvm/Analysis/MemoryBuiltins.h"
34#include "llvm/Analysis/MemorySSAUpdater.h"
35#include "llvm/Analysis/TargetLibraryInfo.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/Analysis/VectorUtils.h"
38#include "llvm/BinaryFormat/Dwarf.h"
39#include "llvm/IR/Argument.h"
40#include "llvm/IR/Attributes.h"
41#include "llvm/IR/BasicBlock.h"
42#include "llvm/IR/CFG.h"
43#include "llvm/IR/CallSite.h"
44#include "llvm/IR/Constant.h"
45#include "llvm/IR/ConstantRange.h"
46#include "llvm/IR/Constants.h"
47#include "llvm/IR/DIBuilder.h"
48#include "llvm/IR/DataLayout.h"
49#include "llvm/IR/DebugInfoMetadata.h"
50#include "llvm/IR/DebugLoc.h"
51#include "llvm/IR/DerivedTypes.h"
52#include "llvm/IR/Dominators.h"
53#include "llvm/IR/Function.h"
54#include "llvm/IR/GetElementPtrTypeIterator.h"
55#include "llvm/IR/GlobalObject.h"
56#include "llvm/IR/IRBuilder.h"
57#include "llvm/IR/InstrTypes.h"
58#include "llvm/IR/Instruction.h"
59#include "llvm/IR/Instructions.h"
60#include "llvm/IR/IntrinsicInst.h"
61#include "llvm/IR/Intrinsics.h"
62#include "llvm/IR/LLVMContext.h"
63#include "llvm/IR/MDBuilder.h"
64#include "llvm/IR/Metadata.h"
65#include "llvm/IR/Module.h"
66#include "llvm/IR/Operator.h"
67#include "llvm/IR/PatternMatch.h"
68#include "llvm/IR/Type.h"
69#include "llvm/IR/Use.h"
70#include "llvm/IR/User.h"
71#include "llvm/IR/Value.h"
72#include "llvm/IR/ValueHandle.h"
73#include "llvm/Support/Casting.h"
74#include "llvm/Support/Debug.h"
75#include "llvm/Support/ErrorHandling.h"
76#include "llvm/Support/KnownBits.h"
77#include "llvm/Support/raw_ostream.h"
78#include "llvm/Transforms/Utils/ValueMapper.h"
79#include <algorithm>
80#include <cassert>
81#include <climits>
82#include <cstdint>
83#include <iterator>
84#include <map>
85#include <utility>
86
87using namespace llvm;
88using namespace llvm::PatternMatch;
89
90#define DEBUG_TYPE "local"
91
92STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93
94// Max recursion depth for collectBitParts used when detecting bswap and
95// bitreverse idioms
96static const unsigned BitPartRecursionMaxDepth = 64;
97
98//===----------------------------------------------------------------------===//
99//  Local constant propagation.
100//
101
102/// ConstantFoldTerminator - If a terminator instruction is predicated on a
103/// constant value, convert it into an unconditional branch to the constant
104/// destination.  This is a nontrivial operation because the successors of this
105/// basic block must have their PHI nodes updated.
106/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
107/// conditions and indirectbr addresses this might make dead if
108/// DeleteDeadConditions is true.
109bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
110                                  const TargetLibraryInfo *TLI,
111                                  DomTreeUpdater *DTU) {
112  Instruction *T = BB->getTerminator();
113  IRBuilder<> Builder(T);
114
115  // Branch - See if we are conditional jumping on constant
116  if (auto *BI = dyn_cast<BranchInst>(T)) {
117    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
118    BasicBlock *Dest1 = BI->getSuccessor(0);
119    BasicBlock *Dest2 = BI->getSuccessor(1);
120
121    if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
122      // Are we branching on constant?
123      // YES.  Change to unconditional branch...
124      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
125      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
126
127      // Let the basic block know that we are letting go of it.  Based on this,
128      // it will adjust it's PHI nodes.
129      OldDest->removePredecessor(BB);
130
131      // Replace the conditional branch with an unconditional one.
132      Builder.CreateBr(Destination);
133      BI->eraseFromParent();
134      if (DTU)
135        DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}});
136      return true;
137    }
138
139    if (Dest2 == Dest1) {       // Conditional branch to same location?
140      // This branch matches something like this:
141      //     br bool %cond, label %Dest, label %Dest
142      // and changes it into:  br label %Dest
143
144      // Let the basic block know that we are letting go of one copy of it.
145      assert(BI->getParent() && "Terminator not inserted in block!");
146      Dest1->removePredecessor(BI->getParent());
147
148      // Replace the conditional branch with an unconditional one.
149      Builder.CreateBr(Dest1);
150      Value *Cond = BI->getCondition();
151      BI->eraseFromParent();
152      if (DeleteDeadConditions)
153        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
154      return true;
155    }
156    return false;
157  }
158
159  if (auto *SI = dyn_cast<SwitchInst>(T)) {
160    // If we are switching on a constant, we can convert the switch to an
161    // unconditional branch.
162    auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
163    BasicBlock *DefaultDest = SI->getDefaultDest();
164    BasicBlock *TheOnlyDest = DefaultDest;
165
166    // If the default is unreachable, ignore it when searching for TheOnlyDest.
167    if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
168        SI->getNumCases() > 0) {
169      TheOnlyDest = SI->case_begin()->getCaseSuccessor();
170    }
171
172    // Figure out which case it goes to.
173    for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
174      // Found case matching a constant operand?
175      if (i->getCaseValue() == CI) {
176        TheOnlyDest = i->getCaseSuccessor();
177        break;
178      }
179
180      // Check to see if this branch is going to the same place as the default
181      // dest.  If so, eliminate it as an explicit compare.
182      if (i->getCaseSuccessor() == DefaultDest) {
183        MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
184        unsigned NCases = SI->getNumCases();
185        // Fold the case metadata into the default if there will be any branches
186        // left, unless the metadata doesn't match the switch.
187        if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
188          // Collect branch weights into a vector.
189          SmallVector<uint32_t, 8> Weights;
190          for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
191               ++MD_i) {
192            auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
193            Weights.push_back(CI->getValue().getZExtValue());
194          }
195          // Merge weight of this case to the default weight.
196          unsigned idx = i->getCaseIndex();
197          Weights[0] += Weights[idx+1];
198          // Remove weight for this case.
199          std::swap(Weights[idx+1], Weights.back());
200          Weights.pop_back();
201          SI->setMetadata(LLVMContext::MD_prof,
202                          MDBuilder(BB->getContext()).
203                          createBranchWeights(Weights));
204        }
205        // Remove this entry.
206        BasicBlock *ParentBB = SI->getParent();
207        DefaultDest->removePredecessor(ParentBB);
208        i = SI->removeCase(i);
209        e = SI->case_end();
210        if (DTU)
211          DTU->applyUpdatesPermissive(
212              {{DominatorTree::Delete, ParentBB, DefaultDest}});
213        continue;
214      }
215
216      // Otherwise, check to see if the switch only branches to one destination.
217      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
218      // destinations.
219      if (i->getCaseSuccessor() != TheOnlyDest)
220        TheOnlyDest = nullptr;
221
222      // Increment this iterator as we haven't removed the case.
223      ++i;
224    }
225
226    if (CI && !TheOnlyDest) {
227      // Branching on a constant, but not any of the cases, go to the default
228      // successor.
229      TheOnlyDest = SI->getDefaultDest();
230    }
231
232    // If we found a single destination that we can fold the switch into, do so
233    // now.
234    if (TheOnlyDest) {
235      // Insert the new branch.
236      Builder.CreateBr(TheOnlyDest);
237      BasicBlock *BB = SI->getParent();
238      std::vector <DominatorTree::UpdateType> Updates;
239      if (DTU)
240        Updates.reserve(SI->getNumSuccessors() - 1);
241
242      // Remove entries from PHI nodes which we no longer branch to...
243      for (BasicBlock *Succ : successors(SI)) {
244        // Found case matching a constant operand?
245        if (Succ == TheOnlyDest) {
246          TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
247        } else {
248          Succ->removePredecessor(BB);
249          if (DTU)
250            Updates.push_back({DominatorTree::Delete, BB, Succ});
251        }
252      }
253
254      // Delete the old switch.
255      Value *Cond = SI->getCondition();
256      SI->eraseFromParent();
257      if (DeleteDeadConditions)
258        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
259      if (DTU)
260        DTU->applyUpdatesPermissive(Updates);
261      return true;
262    }
263
264    if (SI->getNumCases() == 1) {
265      // Otherwise, we can fold this switch into a conditional branch
266      // instruction if it has only one non-default destination.
267      auto FirstCase = *SI->case_begin();
268      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
269          FirstCase.getCaseValue(), "cond");
270
271      // Insert the new branch.
272      BranchInst *NewBr = Builder.CreateCondBr(Cond,
273                                               FirstCase.getCaseSuccessor(),
274                                               SI->getDefaultDest());
275      MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
276      if (MD && MD->getNumOperands() == 3) {
277        ConstantInt *SICase =
278            mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
279        ConstantInt *SIDef =
280            mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
281        assert(SICase && SIDef);
282        // The TrueWeight should be the weight for the single case of SI.
283        NewBr->setMetadata(LLVMContext::MD_prof,
284                        MDBuilder(BB->getContext()).
285                        createBranchWeights(SICase->getValue().getZExtValue(),
286                                            SIDef->getValue().getZExtValue()));
287      }
288
289      // Update make.implicit metadata to the newly-created conditional branch.
290      MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
291      if (MakeImplicitMD)
292        NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
293
294      // Delete the old switch.
295      SI->eraseFromParent();
296      return true;
297    }
298    return false;
299  }
300
301  if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
302    // indirectbr blockaddress(@F, @BB) -> br label @BB
303    if (auto *BA =
304          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
305      BasicBlock *TheOnlyDest = BA->getBasicBlock();
306      std::vector <DominatorTree::UpdateType> Updates;
307      if (DTU)
308        Updates.reserve(IBI->getNumDestinations() - 1);
309
310      // Insert the new branch.
311      Builder.CreateBr(TheOnlyDest);
312
313      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
314        if (IBI->getDestination(i) == TheOnlyDest) {
315          TheOnlyDest = nullptr;
316        } else {
317          BasicBlock *ParentBB = IBI->getParent();
318          BasicBlock *DestBB = IBI->getDestination(i);
319          DestBB->removePredecessor(ParentBB);
320          if (DTU)
321            Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
322        }
323      }
324      Value *Address = IBI->getAddress();
325      IBI->eraseFromParent();
326      if (DeleteDeadConditions)
327        // Delete pointer cast instructions.
328        RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
329
330      // Also zap the blockaddress constant if there are no users remaining,
331      // otherwise the destination is still marked as having its address taken.
332      if (BA->use_empty())
333        BA->destroyConstant();
334
335      // If we didn't find our destination in the IBI successor list, then we
336      // have undefined behavior.  Replace the unconditional branch with an
337      // 'unreachable' instruction.
338      if (TheOnlyDest) {
339        BB->getTerminator()->eraseFromParent();
340        new UnreachableInst(BB->getContext(), BB);
341      }
342
343      if (DTU)
344        DTU->applyUpdatesPermissive(Updates);
345      return true;
346    }
347  }
348
349  return false;
350}
351
352//===----------------------------------------------------------------------===//
353//  Local dead code elimination.
354//
355
356/// isInstructionTriviallyDead - Return true if the result produced by the
357/// instruction is not used, and the instruction has no side effects.
358///
359bool llvm::isInstructionTriviallyDead(Instruction *I,
360                                      const TargetLibraryInfo *TLI) {
361  if (!I->use_empty())
362    return false;
363  return wouldInstructionBeTriviallyDead(I, TLI);
364}
365
366bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
367                                           const TargetLibraryInfo *TLI) {
368  if (I->isTerminator())
369    return false;
370
371  // We don't want the landingpad-like instructions removed by anything this
372  // general.
373  if (I->isEHPad())
374    return false;
375
376  // We don't want debug info removed by anything this general, unless
377  // debug info is empty.
378  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
379    if (DDI->getAddress())
380      return false;
381    return true;
382  }
383  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
384    if (DVI->getValue())
385      return false;
386    return true;
387  }
388  if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
389    if (DLI->getLabel())
390      return false;
391    return true;
392  }
393
394  if (!I->mayHaveSideEffects())
395    return true;
396
397  // Special case intrinsics that "may have side effects" but can be deleted
398  // when dead.
399  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
400    // Safe to delete llvm.stacksave and launder.invariant.group if dead.
401    if (II->getIntrinsicID() == Intrinsic::stacksave ||
402        II->getIntrinsicID() == Intrinsic::launder_invariant_group)
403      return true;
404
405    // Lifetime intrinsics are dead when their right-hand is undef.
406    if (II->isLifetimeStartOrEnd())
407      return isa<UndefValue>(II->getArgOperand(1));
408
409    // Assumptions are dead if their condition is trivially true.  Guards on
410    // true are operationally no-ops.  In the future we can consider more
411    // sophisticated tradeoffs for guards considering potential for check
412    // widening, but for now we keep things simple.
413    if (II->getIntrinsicID() == Intrinsic::assume ||
414        II->getIntrinsicID() == Intrinsic::experimental_guard) {
415      if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
416        return !Cond->isZero();
417
418      return false;
419    }
420  }
421
422  if (isAllocLikeFn(I, TLI))
423    return true;
424
425  if (CallInst *CI = isFreeCall(I, TLI))
426    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
427      return C->isNullValue() || isa<UndefValue>(C);
428
429  if (auto *Call = dyn_cast<CallBase>(I))
430    if (isMathLibCallNoop(Call, TLI))
431      return true;
432
433  return false;
434}
435
436/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
437/// trivially dead instruction, delete it.  If that makes any of its operands
438/// trivially dead, delete them too, recursively.  Return true if any
439/// instructions were deleted.
440bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
441    Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
442  Instruction *I = dyn_cast<Instruction>(V);
443  if (!I || !isInstructionTriviallyDead(I, TLI))
444    return false;
445
446  SmallVector<Instruction*, 16> DeadInsts;
447  DeadInsts.push_back(I);
448  RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
449
450  return true;
451}
452
453void llvm::RecursivelyDeleteTriviallyDeadInstructions(
454    SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
455    MemorySSAUpdater *MSSAU) {
456  // Process the dead instruction list until empty.
457  while (!DeadInsts.empty()) {
458    Instruction &I = *DeadInsts.pop_back_val();
459    assert(I.use_empty() && "Instructions with uses are not dead.");
460    assert(isInstructionTriviallyDead(&I, TLI) &&
461           "Live instruction found in dead worklist!");
462
463    // Don't lose the debug info while deleting the instructions.
464    salvageDebugInfo(I);
465
466    // Null out all of the instruction's operands to see if any operand becomes
467    // dead as we go.
468    for (Use &OpU : I.operands()) {
469      Value *OpV = OpU.get();
470      OpU.set(nullptr);
471
472      if (!OpV->use_empty())
473        continue;
474
475      // If the operand is an instruction that became dead as we nulled out the
476      // operand, and if it is 'trivially' dead, delete it in a future loop
477      // iteration.
478      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
479        if (isInstructionTriviallyDead(OpI, TLI))
480          DeadInsts.push_back(OpI);
481    }
482    if (MSSAU)
483      MSSAU->removeMemoryAccess(&I);
484
485    I.eraseFromParent();
486  }
487}
488
489bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
490  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
491  findDbgUsers(DbgUsers, I);
492  for (auto *DII : DbgUsers) {
493    Value *Undef = UndefValue::get(I->getType());
494    DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
495                                            ValueAsMetadata::get(Undef)));
496  }
497  return !DbgUsers.empty();
498}
499
500/// areAllUsesEqual - Check whether the uses of a value are all the same.
501/// This is similar to Instruction::hasOneUse() except this will also return
502/// true when there are no uses or multiple uses that all refer to the same
503/// value.
504static bool areAllUsesEqual(Instruction *I) {
505  Value::user_iterator UI = I->user_begin();
506  Value::user_iterator UE = I->user_end();
507  if (UI == UE)
508    return true;
509
510  User *TheUse = *UI;
511  for (++UI; UI != UE; ++UI) {
512    if (*UI != TheUse)
513      return false;
514  }
515  return true;
516}
517
518/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
519/// dead PHI node, due to being a def-use chain of single-use nodes that
520/// either forms a cycle or is terminated by a trivially dead instruction,
521/// delete it.  If that makes any of its operands trivially dead, delete them
522/// too, recursively.  Return true if a change was made.
523bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
524                                        const TargetLibraryInfo *TLI) {
525  SmallPtrSet<Instruction*, 4> Visited;
526  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
527       I = cast<Instruction>(*I->user_begin())) {
528    if (I->use_empty())
529      return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
530
531    // If we find an instruction more than once, we're on a cycle that
532    // won't prove fruitful.
533    if (!Visited.insert(I).second) {
534      // Break the cycle and delete the instruction and its operands.
535      I->replaceAllUsesWith(UndefValue::get(I->getType()));
536      (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
537      return true;
538    }
539  }
540  return false;
541}
542
543static bool
544simplifyAndDCEInstruction(Instruction *I,
545                          SmallSetVector<Instruction *, 16> &WorkList,
546                          const DataLayout &DL,
547                          const TargetLibraryInfo *TLI) {
548  if (isInstructionTriviallyDead(I, TLI)) {
549    salvageDebugInfo(*I);
550
551    // Null out all of the instruction's operands to see if any operand becomes
552    // dead as we go.
553    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
554      Value *OpV = I->getOperand(i);
555      I->setOperand(i, nullptr);
556
557      if (!OpV->use_empty() || I == OpV)
558        continue;
559
560      // If the operand is an instruction that became dead as we nulled out the
561      // operand, and if it is 'trivially' dead, delete it in a future loop
562      // iteration.
563      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
564        if (isInstructionTriviallyDead(OpI, TLI))
565          WorkList.insert(OpI);
566    }
567
568    I->eraseFromParent();
569
570    return true;
571  }
572
573  if (Value *SimpleV = SimplifyInstruction(I, DL)) {
574    // Add the users to the worklist. CAREFUL: an instruction can use itself,
575    // in the case of a phi node.
576    for (User *U : I->users()) {
577      if (U != I) {
578        WorkList.insert(cast<Instruction>(U));
579      }
580    }
581
582    // Replace the instruction with its simplified value.
583    bool Changed = false;
584    if (!I->use_empty()) {
585      I->replaceAllUsesWith(SimpleV);
586      Changed = true;
587    }
588    if (isInstructionTriviallyDead(I, TLI)) {
589      I->eraseFromParent();
590      Changed = true;
591    }
592    return Changed;
593  }
594  return false;
595}
596
597/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
598/// simplify any instructions in it and recursively delete dead instructions.
599///
600/// This returns true if it changed the code, note that it can delete
601/// instructions in other blocks as well in this block.
602bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
603                                       const TargetLibraryInfo *TLI) {
604  bool MadeChange = false;
605  const DataLayout &DL = BB->getModule()->getDataLayout();
606
607#ifndef NDEBUG
608  // In debug builds, ensure that the terminator of the block is never replaced
609  // or deleted by these simplifications. The idea of simplification is that it
610  // cannot introduce new instructions, and there is no way to replace the
611  // terminator of a block without introducing a new instruction.
612  AssertingVH<Instruction> TerminatorVH(&BB->back());
613#endif
614
615  SmallSetVector<Instruction *, 16> WorkList;
616  // Iterate over the original function, only adding insts to the worklist
617  // if they actually need to be revisited. This avoids having to pre-init
618  // the worklist with the entire function's worth of instructions.
619  for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
620       BI != E;) {
621    assert(!BI->isTerminator());
622    Instruction *I = &*BI;
623    ++BI;
624
625    // We're visiting this instruction now, so make sure it's not in the
626    // worklist from an earlier visit.
627    if (!WorkList.count(I))
628      MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
629  }
630
631  while (!WorkList.empty()) {
632    Instruction *I = WorkList.pop_back_val();
633    MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
634  }
635  return MadeChange;
636}
637
638//===----------------------------------------------------------------------===//
639//  Control Flow Graph Restructuring.
640//
641
642void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
643                                        DomTreeUpdater *DTU) {
644  // This only adjusts blocks with PHI nodes.
645  if (!isa<PHINode>(BB->begin()))
646    return;
647
648  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
649  // them down.  This will leave us with single entry phi nodes and other phis
650  // that can be removed.
651  BB->removePredecessor(Pred, true);
652
653  WeakTrackingVH PhiIt = &BB->front();
654  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
655    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
656    Value *OldPhiIt = PhiIt;
657
658    if (!recursivelySimplifyInstruction(PN))
659      continue;
660
661    // If recursive simplification ended up deleting the next PHI node we would
662    // iterate to, then our iterator is invalid, restart scanning from the top
663    // of the block.
664    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
665  }
666  if (DTU)
667    DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}});
668}
669
670void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
671                                       DomTreeUpdater *DTU) {
672
673  // If BB has single-entry PHI nodes, fold them.
674  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
675    Value *NewVal = PN->getIncomingValue(0);
676    // Replace self referencing PHI with undef, it must be dead.
677    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
678    PN->replaceAllUsesWith(NewVal);
679    PN->eraseFromParent();
680  }
681
682  BasicBlock *PredBB = DestBB->getSinglePredecessor();
683  assert(PredBB && "Block doesn't have a single predecessor!");
684
685  bool ReplaceEntryBB = false;
686  if (PredBB == &DestBB->getParent()->getEntryBlock())
687    ReplaceEntryBB = true;
688
689  // DTU updates: Collect all the edges that enter
690  // PredBB. These dominator edges will be redirected to DestBB.
691  SmallVector<DominatorTree::UpdateType, 32> Updates;
692
693  if (DTU) {
694    Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
695    for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
696      Updates.push_back({DominatorTree::Delete, *I, PredBB});
697      // This predecessor of PredBB may already have DestBB as a successor.
698      if (llvm::find(successors(*I), DestBB) == succ_end(*I))
699        Updates.push_back({DominatorTree::Insert, *I, DestBB});
700    }
701  }
702
703  // Zap anything that took the address of DestBB.  Not doing this will give the
704  // address an invalid value.
705  if (DestBB->hasAddressTaken()) {
706    BlockAddress *BA = BlockAddress::get(DestBB);
707    Constant *Replacement =
708      ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
709    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
710                                                     BA->getType()));
711    BA->destroyConstant();
712  }
713
714  // Anything that branched to PredBB now branches to DestBB.
715  PredBB->replaceAllUsesWith(DestBB);
716
717  // Splice all the instructions from PredBB to DestBB.
718  PredBB->getTerminator()->eraseFromParent();
719  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
720  new UnreachableInst(PredBB->getContext(), PredBB);
721
722  // If the PredBB is the entry block of the function, move DestBB up to
723  // become the entry block after we erase PredBB.
724  if (ReplaceEntryBB)
725    DestBB->moveAfter(PredBB);
726
727  if (DTU) {
728    assert(PredBB->getInstList().size() == 1 &&
729           isa<UnreachableInst>(PredBB->getTerminator()) &&
730           "The successor list of PredBB isn't empty before "
731           "applying corresponding DTU updates.");
732    DTU->applyUpdatesPermissive(Updates);
733    DTU->deleteBB(PredBB);
734    // Recalculation of DomTree is needed when updating a forward DomTree and
735    // the Entry BB is replaced.
736    if (ReplaceEntryBB && DTU->hasDomTree()) {
737      // The entry block was removed and there is no external interface for
738      // the dominator tree to be notified of this change. In this corner-case
739      // we recalculate the entire tree.
740      DTU->recalculate(*(DestBB->getParent()));
741    }
742  }
743
744  else {
745    PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
746  }
747}
748
749/// Return true if we can choose one of these values to use in place of the
750/// other. Note that we will always choose the non-undef value to keep.
751static bool CanMergeValues(Value *First, Value *Second) {
752  return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
753}
754
755/// Return true if we can fold BB, an almost-empty BB ending in an unconditional
756/// branch to Succ, into Succ.
757///
758/// Assumption: Succ is the single successor for BB.
759static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
760  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
761
762  LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
763                    << Succ->getName() << "\n");
764  // Shortcut, if there is only a single predecessor it must be BB and merging
765  // is always safe
766  if (Succ->getSinglePredecessor()) return true;
767
768  // Make a list of the predecessors of BB
769  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
770
771  // Look at all the phi nodes in Succ, to see if they present a conflict when
772  // merging these blocks
773  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
774    PHINode *PN = cast<PHINode>(I);
775
776    // If the incoming value from BB is again a PHINode in
777    // BB which has the same incoming value for *PI as PN does, we can
778    // merge the phi nodes and then the blocks can still be merged
779    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
780    if (BBPN && BBPN->getParent() == BB) {
781      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
782        BasicBlock *IBB = PN->getIncomingBlock(PI);
783        if (BBPreds.count(IBB) &&
784            !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
785                            PN->getIncomingValue(PI))) {
786          LLVM_DEBUG(dbgs()
787                     << "Can't fold, phi node " << PN->getName() << " in "
788                     << Succ->getName() << " is conflicting with "
789                     << BBPN->getName() << " with regard to common predecessor "
790                     << IBB->getName() << "\n");
791          return false;
792        }
793      }
794    } else {
795      Value* Val = PN->getIncomingValueForBlock(BB);
796      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
797        // See if the incoming value for the common predecessor is equal to the
798        // one for BB, in which case this phi node will not prevent the merging
799        // of the block.
800        BasicBlock *IBB = PN->getIncomingBlock(PI);
801        if (BBPreds.count(IBB) &&
802            !CanMergeValues(Val, PN->getIncomingValue(PI))) {
803          LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
804                            << " in " << Succ->getName()
805                            << " is conflicting with regard to common "
806                            << "predecessor " << IBB->getName() << "\n");
807          return false;
808        }
809      }
810    }
811  }
812
813  return true;
814}
815
816using PredBlockVector = SmallVector<BasicBlock *, 16>;
817using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
818
819/// Determines the value to use as the phi node input for a block.
820///
821/// Select between \p OldVal any value that we know flows from \p BB
822/// to a particular phi on the basis of which one (if either) is not
823/// undef. Update IncomingValues based on the selected value.
824///
825/// \param OldVal The value we are considering selecting.
826/// \param BB The block that the value flows in from.
827/// \param IncomingValues A map from block-to-value for other phi inputs
828/// that we have examined.
829///
830/// \returns the selected value.
831static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
832                                          IncomingValueMap &IncomingValues) {
833  if (!isa<UndefValue>(OldVal)) {
834    assert((!IncomingValues.count(BB) ||
835            IncomingValues.find(BB)->second == OldVal) &&
836           "Expected OldVal to match incoming value from BB!");
837
838    IncomingValues.insert(std::make_pair(BB, OldVal));
839    return OldVal;
840  }
841
842  IncomingValueMap::const_iterator It = IncomingValues.find(BB);
843  if (It != IncomingValues.end()) return It->second;
844
845  return OldVal;
846}
847
848/// Create a map from block to value for the operands of a
849/// given phi.
850///
851/// Create a map from block to value for each non-undef value flowing
852/// into \p PN.
853///
854/// \param PN The phi we are collecting the map for.
855/// \param IncomingValues [out] The map from block to value for this phi.
856static void gatherIncomingValuesToPhi(PHINode *PN,
857                                      IncomingValueMap &IncomingValues) {
858  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
859    BasicBlock *BB = PN->getIncomingBlock(i);
860    Value *V = PN->getIncomingValue(i);
861
862    if (!isa<UndefValue>(V))
863      IncomingValues.insert(std::make_pair(BB, V));
864  }
865}
866
867/// Replace the incoming undef values to a phi with the values
868/// from a block-to-value map.
869///
870/// \param PN The phi we are replacing the undefs in.
871/// \param IncomingValues A map from block to value.
872static void replaceUndefValuesInPhi(PHINode *PN,
873                                    const IncomingValueMap &IncomingValues) {
874  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
875    Value *V = PN->getIncomingValue(i);
876
877    if (!isa<UndefValue>(V)) continue;
878
879    BasicBlock *BB = PN->getIncomingBlock(i);
880    IncomingValueMap::const_iterator It = IncomingValues.find(BB);
881    if (It == IncomingValues.end()) continue;
882
883    PN->setIncomingValue(i, It->second);
884  }
885}
886
887/// Replace a value flowing from a block to a phi with
888/// potentially multiple instances of that value flowing from the
889/// block's predecessors to the phi.
890///
891/// \param BB The block with the value flowing into the phi.
892/// \param BBPreds The predecessors of BB.
893/// \param PN The phi that we are updating.
894static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
895                                                const PredBlockVector &BBPreds,
896                                                PHINode *PN) {
897  Value *OldVal = PN->removeIncomingValue(BB, false);
898  assert(OldVal && "No entry in PHI for Pred BB!");
899
900  IncomingValueMap IncomingValues;
901
902  // We are merging two blocks - BB, and the block containing PN - and
903  // as a result we need to redirect edges from the predecessors of BB
904  // to go to the block containing PN, and update PN
905  // accordingly. Since we allow merging blocks in the case where the
906  // predecessor and successor blocks both share some predecessors,
907  // and where some of those common predecessors might have undef
908  // values flowing into PN, we want to rewrite those values to be
909  // consistent with the non-undef values.
910
911  gatherIncomingValuesToPhi(PN, IncomingValues);
912
913  // If this incoming value is one of the PHI nodes in BB, the new entries
914  // in the PHI node are the entries from the old PHI.
915  if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
916    PHINode *OldValPN = cast<PHINode>(OldVal);
917    for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
918      // Note that, since we are merging phi nodes and BB and Succ might
919      // have common predecessors, we could end up with a phi node with
920      // identical incoming branches. This will be cleaned up later (and
921      // will trigger asserts if we try to clean it up now, without also
922      // simplifying the corresponding conditional branch).
923      BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
924      Value *PredVal = OldValPN->getIncomingValue(i);
925      Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
926                                                    IncomingValues);
927
928      // And add a new incoming value for this predecessor for the
929      // newly retargeted branch.
930      PN->addIncoming(Selected, PredBB);
931    }
932  } else {
933    for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
934      // Update existing incoming values in PN for this
935      // predecessor of BB.
936      BasicBlock *PredBB = BBPreds[i];
937      Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
938                                                    IncomingValues);
939
940      // And add a new incoming value for this predecessor for the
941      // newly retargeted branch.
942      PN->addIncoming(Selected, PredBB);
943    }
944  }
945
946  replaceUndefValuesInPhi(PN, IncomingValues);
947}
948
949bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
950                                                   DomTreeUpdater *DTU) {
951  assert(BB != &BB->getParent()->getEntryBlock() &&
952         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
953
954  // We can't eliminate infinite loops.
955  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
956  if (BB == Succ) return false;
957
958  // Check to see if merging these blocks would cause conflicts for any of the
959  // phi nodes in BB or Succ. If not, we can safely merge.
960  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
961
962  // Check for cases where Succ has multiple predecessors and a PHI node in BB
963  // has uses which will not disappear when the PHI nodes are merged.  It is
964  // possible to handle such cases, but difficult: it requires checking whether
965  // BB dominates Succ, which is non-trivial to calculate in the case where
966  // Succ has multiple predecessors.  Also, it requires checking whether
967  // constructing the necessary self-referential PHI node doesn't introduce any
968  // conflicts; this isn't too difficult, but the previous code for doing this
969  // was incorrect.
970  //
971  // Note that if this check finds a live use, BB dominates Succ, so BB is
972  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
973  // folding the branch isn't profitable in that case anyway.
974  if (!Succ->getSinglePredecessor()) {
975    BasicBlock::iterator BBI = BB->begin();
976    while (isa<PHINode>(*BBI)) {
977      for (Use &U : BBI->uses()) {
978        if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
979          if (PN->getIncomingBlock(U) != BB)
980            return false;
981        } else {
982          return false;
983        }
984      }
985      ++BBI;
986    }
987  }
988
989  // We cannot fold the block if it's a branch to an already present callbr
990  // successor because that creates duplicate successors.
991  for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
992    if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
993      if (Succ == CBI->getDefaultDest())
994        return false;
995      for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
996        if (Succ == CBI->getIndirectDest(i))
997          return false;
998    }
999  }
1000
1001  LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1002
1003  SmallVector<DominatorTree::UpdateType, 32> Updates;
1004  if (DTU) {
1005    Updates.push_back({DominatorTree::Delete, BB, Succ});
1006    // All predecessors of BB will be moved to Succ.
1007    for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1008      Updates.push_back({DominatorTree::Delete, *I, BB});
1009      // This predecessor of BB may already have Succ as a successor.
1010      if (llvm::find(successors(*I), Succ) == succ_end(*I))
1011        Updates.push_back({DominatorTree::Insert, *I, Succ});
1012    }
1013  }
1014
1015  if (isa<PHINode>(Succ->begin())) {
1016    // If there is more than one pred of succ, and there are PHI nodes in
1017    // the successor, then we need to add incoming edges for the PHI nodes
1018    //
1019    const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1020
1021    // Loop over all of the PHI nodes in the successor of BB.
1022    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1023      PHINode *PN = cast<PHINode>(I);
1024
1025      redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1026    }
1027  }
1028
1029  if (Succ->getSinglePredecessor()) {
1030    // BB is the only predecessor of Succ, so Succ will end up with exactly
1031    // the same predecessors BB had.
1032
1033    // Copy over any phi, debug or lifetime instruction.
1034    BB->getTerminator()->eraseFromParent();
1035    Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1036                               BB->getInstList());
1037  } else {
1038    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1039      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1040      assert(PN->use_empty() && "There shouldn't be any uses here!");
1041      PN->eraseFromParent();
1042    }
1043  }
1044
1045  // If the unconditional branch we replaced contains llvm.loop metadata, we
1046  // add the metadata to the branch instructions in the predecessors.
1047  unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1048  Instruction *TI = BB->getTerminator();
1049  if (TI)
1050    if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1051      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1052        BasicBlock *Pred = *PI;
1053        Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1054      }
1055
1056  // Everything that jumped to BB now goes to Succ.
1057  BB->replaceAllUsesWith(Succ);
1058  if (!Succ->hasName()) Succ->takeName(BB);
1059
1060  // Clear the successor list of BB to match updates applying to DTU later.
1061  if (BB->getTerminator())
1062    BB->getInstList().pop_back();
1063  new UnreachableInst(BB->getContext(), BB);
1064  assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1065                           "applying corresponding DTU updates.");
1066
1067  if (DTU) {
1068    DTU->applyUpdatesPermissive(Updates);
1069    DTU->deleteBB(BB);
1070  } else {
1071    BB->eraseFromParent(); // Delete the old basic block.
1072  }
1073  return true;
1074}
1075
1076bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1077  // This implementation doesn't currently consider undef operands
1078  // specially. Theoretically, two phis which are identical except for
1079  // one having an undef where the other doesn't could be collapsed.
1080
1081  struct PHIDenseMapInfo {
1082    static PHINode *getEmptyKey() {
1083      return DenseMapInfo<PHINode *>::getEmptyKey();
1084    }
1085
1086    static PHINode *getTombstoneKey() {
1087      return DenseMapInfo<PHINode *>::getTombstoneKey();
1088    }
1089
1090    static unsigned getHashValue(PHINode *PN) {
1091      // Compute a hash value on the operands. Instcombine will likely have
1092      // sorted them, which helps expose duplicates, but we have to check all
1093      // the operands to be safe in case instcombine hasn't run.
1094      return static_cast<unsigned>(hash_combine(
1095          hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1096          hash_combine_range(PN->block_begin(), PN->block_end())));
1097    }
1098
1099    static bool isEqual(PHINode *LHS, PHINode *RHS) {
1100      if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1101          RHS == getEmptyKey() || RHS == getTombstoneKey())
1102        return LHS == RHS;
1103      return LHS->isIdenticalTo(RHS);
1104    }
1105  };
1106
1107  // Set of unique PHINodes.
1108  DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1109
1110  // Examine each PHI.
1111  bool Changed = false;
1112  for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1113    auto Inserted = PHISet.insert(PN);
1114    if (!Inserted.second) {
1115      // A duplicate. Replace this PHI with its duplicate.
1116      PN->replaceAllUsesWith(*Inserted.first);
1117      PN->eraseFromParent();
1118      Changed = true;
1119
1120      // The RAUW can change PHIs that we already visited. Start over from the
1121      // beginning.
1122      PHISet.clear();
1123      I = BB->begin();
1124    }
1125  }
1126
1127  return Changed;
1128}
1129
1130/// enforceKnownAlignment - If the specified pointer points to an object that
1131/// we control, modify the object's alignment to PrefAlign. This isn't
1132/// often possible though. If alignment is important, a more reliable approach
1133/// is to simply align all global variables and allocation instructions to
1134/// their preferred alignment from the beginning.
1135static unsigned enforceKnownAlignment(Value *V, unsigned Alignment,
1136                                      unsigned PrefAlign,
1137                                      const DataLayout &DL) {
1138  assert(PrefAlign > Alignment);
1139
1140  V = V->stripPointerCasts();
1141
1142  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1143    // TODO: ideally, computeKnownBits ought to have used
1144    // AllocaInst::getAlignment() in its computation already, making
1145    // the below max redundant. But, as it turns out,
1146    // stripPointerCasts recurses through infinite layers of bitcasts,
1147    // while computeKnownBits is not allowed to traverse more than 6
1148    // levels.
1149    Alignment = std::max(AI->getAlignment(), Alignment);
1150    if (PrefAlign <= Alignment)
1151      return Alignment;
1152
1153    // If the preferred alignment is greater than the natural stack alignment
1154    // then don't round up. This avoids dynamic stack realignment.
1155    if (DL.exceedsNaturalStackAlignment(Align(PrefAlign)))
1156      return Alignment;
1157    AI->setAlignment(MaybeAlign(PrefAlign));
1158    return PrefAlign;
1159  }
1160
1161  if (auto *GO = dyn_cast<GlobalObject>(V)) {
1162    // TODO: as above, this shouldn't be necessary.
1163    Alignment = std::max(GO->getAlignment(), Alignment);
1164    if (PrefAlign <= Alignment)
1165      return Alignment;
1166
1167    // If there is a large requested alignment and we can, bump up the alignment
1168    // of the global.  If the memory we set aside for the global may not be the
1169    // memory used by the final program then it is impossible for us to reliably
1170    // enforce the preferred alignment.
1171    if (!GO->canIncreaseAlignment())
1172      return Alignment;
1173
1174    GO->setAlignment(MaybeAlign(PrefAlign));
1175    return PrefAlign;
1176  }
1177
1178  return Alignment;
1179}
1180
1181unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1182                                          const DataLayout &DL,
1183                                          const Instruction *CxtI,
1184                                          AssumptionCache *AC,
1185                                          const DominatorTree *DT) {
1186  assert(V->getType()->isPointerTy() &&
1187         "getOrEnforceKnownAlignment expects a pointer!");
1188
1189  KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1190  unsigned TrailZ = Known.countMinTrailingZeros();
1191
1192  // Avoid trouble with ridiculously large TrailZ values, such as
1193  // those computed from a null pointer.
1194  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1195
1196  unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1197
1198  // LLVM doesn't support alignments larger than this currently.
1199  Align = std::min(Align, +Value::MaximumAlignment);
1200
1201  if (PrefAlign > Align)
1202    Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1203
1204  // We don't need to make any adjustment.
1205  return Align;
1206}
1207
1208///===---------------------------------------------------------------------===//
1209///  Dbg Intrinsic utilities
1210///
1211
1212/// See if there is a dbg.value intrinsic for DIVar before I.
1213static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1214                              Instruction *I) {
1215  // Since we can't guarantee that the original dbg.declare instrinsic
1216  // is removed by LowerDbgDeclare(), we need to make sure that we are
1217  // not inserting the same dbg.value intrinsic over and over.
1218  BasicBlock::InstListType::iterator PrevI(I);
1219  if (PrevI != I->getParent()->getInstList().begin()) {
1220    --PrevI;
1221    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1222      if (DVI->getValue() == I->getOperand(0) &&
1223          DVI->getVariable() == DIVar &&
1224          DVI->getExpression() == DIExpr)
1225        return true;
1226  }
1227  return false;
1228}
1229
1230/// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1231static bool PhiHasDebugValue(DILocalVariable *DIVar,
1232                             DIExpression *DIExpr,
1233                             PHINode *APN) {
1234  // Since we can't guarantee that the original dbg.declare instrinsic
1235  // is removed by LowerDbgDeclare(), we need to make sure that we are
1236  // not inserting the same dbg.value intrinsic over and over.
1237  SmallVector<DbgValueInst *, 1> DbgValues;
1238  findDbgValues(DbgValues, APN);
1239  for (auto *DVI : DbgValues) {
1240    assert(DVI->getValue() == APN);
1241    if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1242      return true;
1243  }
1244  return false;
1245}
1246
1247/// Check if the alloc size of \p ValTy is large enough to cover the variable
1248/// (or fragment of the variable) described by \p DII.
1249///
1250/// This is primarily intended as a helper for the different
1251/// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1252/// converted describes an alloca'd variable, so we need to use the
1253/// alloc size of the value when doing the comparison. E.g. an i1 value will be
1254/// identified as covering an n-bit fragment, if the store size of i1 is at
1255/// least n bits.
1256static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1257  const DataLayout &DL = DII->getModule()->getDataLayout();
1258  uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1259  if (auto FragmentSize = DII->getFragmentSizeInBits())
1260    return ValueSize >= *FragmentSize;
1261  // We can't always calculate the size of the DI variable (e.g. if it is a
1262  // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1263  // intead.
1264  if (DII->isAddressOfVariable())
1265    if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1266      if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1267        return ValueSize >= *FragmentSize;
1268  // Could not determine size of variable. Conservatively return false.
1269  return false;
1270}
1271
1272/// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1273/// to a dbg.value. Because no machine insts can come from debug intrinsics,
1274/// only the scope and inlinedAt is significant. Zero line numbers are used in
1275/// case this DebugLoc leaks into any adjacent instructions.
1276static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1277  // Original dbg.declare must have a location.
1278  DebugLoc DeclareLoc = DII->getDebugLoc();
1279  MDNode *Scope = DeclareLoc.getScope();
1280  DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1281  // Produce an unknown location with the correct scope / inlinedAt fields.
1282  return DebugLoc::get(0, 0, Scope, InlinedAt);
1283}
1284
1285/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1286/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1287void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1288                                           StoreInst *SI, DIBuilder &Builder) {
1289  assert(DII->isAddressOfVariable());
1290  auto *DIVar = DII->getVariable();
1291  assert(DIVar && "Missing variable");
1292  auto *DIExpr = DII->getExpression();
1293  Value *DV = SI->getValueOperand();
1294
1295  DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1296
1297  if (!valueCoversEntireFragment(DV->getType(), DII)) {
1298    // FIXME: If storing to a part of the variable described by the dbg.declare,
1299    // then we want to insert a dbg.value for the corresponding fragment.
1300    LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1301                      << *DII << '\n');
1302    // For now, when there is a store to parts of the variable (but we do not
1303    // know which part) we insert an dbg.value instrinsic to indicate that we
1304    // know nothing about the variable's content.
1305    DV = UndefValue::get(DV->getType());
1306    if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1307      Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1308    return;
1309  }
1310
1311  if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1312    Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1313}
1314
1315/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1316/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1317void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1318                                           LoadInst *LI, DIBuilder &Builder) {
1319  auto *DIVar = DII->getVariable();
1320  auto *DIExpr = DII->getExpression();
1321  assert(DIVar && "Missing variable");
1322
1323  if (LdStHasDebugValue(DIVar, DIExpr, LI))
1324    return;
1325
1326  if (!valueCoversEntireFragment(LI->getType(), DII)) {
1327    // FIXME: If only referring to a part of the variable described by the
1328    // dbg.declare, then we want to insert a dbg.value for the corresponding
1329    // fragment.
1330    LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1331                      << *DII << '\n');
1332    return;
1333  }
1334
1335  DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1336
1337  // We are now tracking the loaded value instead of the address. In the
1338  // future if multi-location support is added to the IR, it might be
1339  // preferable to keep tracking both the loaded value and the original
1340  // address in case the alloca can not be elided.
1341  Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1342      LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1343  DbgValue->insertAfter(LI);
1344}
1345
1346/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1347/// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1348void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1349                                           PHINode *APN, DIBuilder &Builder) {
1350  auto *DIVar = DII->getVariable();
1351  auto *DIExpr = DII->getExpression();
1352  assert(DIVar && "Missing variable");
1353
1354  if (PhiHasDebugValue(DIVar, DIExpr, APN))
1355    return;
1356
1357  if (!valueCoversEntireFragment(APN->getType(), DII)) {
1358    // FIXME: If only referring to a part of the variable described by the
1359    // dbg.declare, then we want to insert a dbg.value for the corresponding
1360    // fragment.
1361    LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1362                      << *DII << '\n');
1363    return;
1364  }
1365
1366  BasicBlock *BB = APN->getParent();
1367  auto InsertionPt = BB->getFirstInsertionPt();
1368
1369  DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1370
1371  // The block may be a catchswitch block, which does not have a valid
1372  // insertion point.
1373  // FIXME: Insert dbg.value markers in the successors when appropriate.
1374  if (InsertionPt != BB->end())
1375    Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1376}
1377
1378/// Determine whether this alloca is either a VLA or an array.
1379static bool isArray(AllocaInst *AI) {
1380  return AI->isArrayAllocation() ||
1381         (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1382}
1383
1384/// Determine whether this alloca is a structure.
1385static bool isStructure(AllocaInst *AI) {
1386  return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1387}
1388
1389/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1390/// of llvm.dbg.value intrinsics.
1391bool llvm::LowerDbgDeclare(Function &F) {
1392  DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1393  SmallVector<DbgDeclareInst *, 4> Dbgs;
1394  for (auto &FI : F)
1395    for (Instruction &BI : FI)
1396      if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1397        Dbgs.push_back(DDI);
1398
1399  if (Dbgs.empty())
1400    return false;
1401
1402  for (auto &I : Dbgs) {
1403    DbgDeclareInst *DDI = I;
1404    AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1405    // If this is an alloca for a scalar variable, insert a dbg.value
1406    // at each load and store to the alloca and erase the dbg.declare.
1407    // The dbg.values allow tracking a variable even if it is not
1408    // stored on the stack, while the dbg.declare can only describe
1409    // the stack slot (and at a lexical-scope granularity). Later
1410    // passes will attempt to elide the stack slot.
1411    if (!AI || isArray(AI) || isStructure(AI))
1412      continue;
1413
1414    // A volatile load/store means that the alloca can't be elided anyway.
1415    if (llvm::any_of(AI->users(), [](User *U) -> bool {
1416          if (LoadInst *LI = dyn_cast<LoadInst>(U))
1417            return LI->isVolatile();
1418          if (StoreInst *SI = dyn_cast<StoreInst>(U))
1419            return SI->isVolatile();
1420          return false;
1421        }))
1422      continue;
1423
1424    SmallVector<const Value *, 8> WorkList;
1425    WorkList.push_back(AI);
1426    while (!WorkList.empty()) {
1427      const Value *V = WorkList.pop_back_val();
1428      for (auto &AIUse : V->uses()) {
1429        User *U = AIUse.getUser();
1430        if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1431          if (AIUse.getOperandNo() == 1)
1432            ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1433        } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1434          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1435        } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1436          // This is a call by-value or some other instruction that takes a
1437          // pointer to the variable. Insert a *value* intrinsic that describes
1438          // the variable by dereferencing the alloca.
1439          if (!CI->isLifetimeStartOrEnd()) {
1440            DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1441            auto *DerefExpr =
1442                DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1443            DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1444                                        NewLoc, CI);
1445          }
1446        } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1447          if (BI->getType()->isPointerTy())
1448            WorkList.push_back(BI);
1449        }
1450      }
1451    }
1452    DDI->eraseFromParent();
1453  }
1454  return true;
1455}
1456
1457/// Propagate dbg.value intrinsics through the newly inserted PHIs.
1458void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1459                                    SmallVectorImpl<PHINode *> &InsertedPHIs) {
1460  assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1461  if (InsertedPHIs.size() == 0)
1462    return;
1463
1464  // Map existing PHI nodes to their dbg.values.
1465  ValueToValueMapTy DbgValueMap;
1466  for (auto &I : *BB) {
1467    if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1468      if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1469        DbgValueMap.insert({Loc, DbgII});
1470    }
1471  }
1472  if (DbgValueMap.size() == 0)
1473    return;
1474
1475  // Then iterate through the new PHIs and look to see if they use one of the
1476  // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1477  // propagate the info through the new PHI.
1478  LLVMContext &C = BB->getContext();
1479  for (auto PHI : InsertedPHIs) {
1480    BasicBlock *Parent = PHI->getParent();
1481    // Avoid inserting an intrinsic into an EH block.
1482    if (Parent->getFirstNonPHI()->isEHPad())
1483      continue;
1484    auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1485    for (auto VI : PHI->operand_values()) {
1486      auto V = DbgValueMap.find(VI);
1487      if (V != DbgValueMap.end()) {
1488        auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1489        Instruction *NewDbgII = DbgII->clone();
1490        NewDbgII->setOperand(0, PhiMAV);
1491        auto InsertionPt = Parent->getFirstInsertionPt();
1492        assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1493        NewDbgII->insertBefore(&*InsertionPt);
1494      }
1495    }
1496  }
1497}
1498
1499/// Finds all intrinsics declaring local variables as living in the memory that
1500/// 'V' points to. This may include a mix of dbg.declare and
1501/// dbg.addr intrinsics.
1502TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1503  // This function is hot. Check whether the value has any metadata to avoid a
1504  // DenseMap lookup.
1505  if (!V->isUsedByMetadata())
1506    return {};
1507  auto *L = LocalAsMetadata::getIfExists(V);
1508  if (!L)
1509    return {};
1510  auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1511  if (!MDV)
1512    return {};
1513
1514  TinyPtrVector<DbgVariableIntrinsic *> Declares;
1515  for (User *U : MDV->users()) {
1516    if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1517      if (DII->isAddressOfVariable())
1518        Declares.push_back(DII);
1519  }
1520
1521  return Declares;
1522}
1523
1524void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1525  // This function is hot. Check whether the value has any metadata to avoid a
1526  // DenseMap lookup.
1527  if (!V->isUsedByMetadata())
1528    return;
1529  if (auto *L = LocalAsMetadata::getIfExists(V))
1530    if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1531      for (User *U : MDV->users())
1532        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1533          DbgValues.push_back(DVI);
1534}
1535
1536void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1537                        Value *V) {
1538  // This function is hot. Check whether the value has any metadata to avoid a
1539  // DenseMap lookup.
1540  if (!V->isUsedByMetadata())
1541    return;
1542  if (auto *L = LocalAsMetadata::getIfExists(V))
1543    if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1544      for (User *U : MDV->users())
1545        if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1546          DbgUsers.push_back(DII);
1547}
1548
1549bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1550                             Instruction *InsertBefore, DIBuilder &Builder,
1551                             uint8_t DIExprFlags, int Offset) {
1552  auto DbgAddrs = FindDbgAddrUses(Address);
1553  for (DbgVariableIntrinsic *DII : DbgAddrs) {
1554    DebugLoc Loc = DII->getDebugLoc();
1555    auto *DIVar = DII->getVariable();
1556    auto *DIExpr = DII->getExpression();
1557    assert(DIVar && "Missing variable");
1558    DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1559    // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1560    // llvm.dbg.declare.
1561    Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1562    if (DII == InsertBefore)
1563      InsertBefore = InsertBefore->getNextNode();
1564    DII->eraseFromParent();
1565  }
1566  return !DbgAddrs.empty();
1567}
1568
1569bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1570                                      DIBuilder &Builder, uint8_t DIExprFlags,
1571                                      int Offset) {
1572  return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1573                           DIExprFlags, Offset);
1574}
1575
1576static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1577                                        DIBuilder &Builder, int Offset) {
1578  DebugLoc Loc = DVI->getDebugLoc();
1579  auto *DIVar = DVI->getVariable();
1580  auto *DIExpr = DVI->getExpression();
1581  assert(DIVar && "Missing variable");
1582
1583  // This is an alloca-based llvm.dbg.value. The first thing it should do with
1584  // the alloca pointer is dereference it. Otherwise we don't know how to handle
1585  // it and give up.
1586  if (!DIExpr || DIExpr->getNumElements() < 1 ||
1587      DIExpr->getElement(0) != dwarf::DW_OP_deref)
1588    return;
1589
1590  // Insert the offset before the first deref.
1591  // We could just change the offset argument of dbg.value, but it's unsigned...
1592  if (Offset)
1593    DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1594
1595  Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1596  DVI->eraseFromParent();
1597}
1598
1599void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1600                                    DIBuilder &Builder, int Offset) {
1601  if (auto *L = LocalAsMetadata::getIfExists(AI))
1602    if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1603      for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1604        Use &U = *UI++;
1605        if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1606          replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1607      }
1608}
1609
1610/// Wrap \p V in a ValueAsMetadata instance.
1611static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1612  return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1613}
1614
1615bool llvm::salvageDebugInfo(Instruction &I) {
1616  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1617  findDbgUsers(DbgUsers, &I);
1618  if (DbgUsers.empty())
1619    return false;
1620
1621  return salvageDebugInfoForDbgValues(I, DbgUsers);
1622}
1623
1624void llvm::salvageDebugInfoOrMarkUndef(Instruction &I) {
1625  if (!salvageDebugInfo(I))
1626    replaceDbgUsesWithUndef(&I);
1627}
1628
1629bool llvm::salvageDebugInfoForDbgValues(
1630    Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1631  auto &Ctx = I.getContext();
1632  auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1633
1634  for (auto *DII : DbgUsers) {
1635    // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1636    // are implicitly pointing out the value as a DWARF memory location
1637    // description.
1638    bool StackValue = isa<DbgValueInst>(DII);
1639
1640    DIExpression *DIExpr =
1641        salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1642
1643    // salvageDebugInfoImpl should fail on examining the first element of
1644    // DbgUsers, or none of them.
1645    if (!DIExpr)
1646      return false;
1647
1648    DII->setOperand(0, wrapMD(I.getOperand(0)));
1649    DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1650    LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1651  }
1652
1653  return true;
1654}
1655
1656DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1657                                         DIExpression *SrcDIExpr,
1658                                         bool WithStackValue) {
1659  auto &M = *I.getModule();
1660  auto &DL = M.getDataLayout();
1661
1662  // Apply a vector of opcodes to the source DIExpression.
1663  auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1664    DIExpression *DIExpr = SrcDIExpr;
1665    if (!Ops.empty()) {
1666      DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1667    }
1668    return DIExpr;
1669  };
1670
1671  // Apply the given offset to the source DIExpression.
1672  auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1673    SmallVector<uint64_t, 8> Ops;
1674    DIExpression::appendOffset(Ops, Offset);
1675    return doSalvage(Ops);
1676  };
1677
1678  // initializer-list helper for applying operators to the source DIExpression.
1679  auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1680    SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1681    return doSalvage(Ops);
1682  };
1683
1684  if (auto *CI = dyn_cast<CastInst>(&I)) {
1685    // No-op casts and zexts are irrelevant for debug info.
1686    if (CI->isNoopCast(DL) || isa<ZExtInst>(&I))
1687      return SrcDIExpr;
1688
1689    Type *Type = CI->getType();
1690    // Casts other than Trunc or SExt to scalar types cannot be salvaged.
1691    if (Type->isVectorTy() || (!isa<TruncInst>(&I) && !isa<SExtInst>(&I)))
1692      return nullptr;
1693
1694    Value *FromValue = CI->getOperand(0);
1695    unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1696    unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1697
1698    return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1699                                            isa<SExtInst>(&I)));
1700  }
1701
1702  if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1703    unsigned BitWidth =
1704        M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1705    // Rewrite a constant GEP into a DIExpression.
1706    APInt Offset(BitWidth, 0);
1707    if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1708      return applyOffset(Offset.getSExtValue());
1709    } else {
1710      return nullptr;
1711    }
1712  } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1713    // Rewrite binary operations with constant integer operands.
1714    auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1715    if (!ConstInt || ConstInt->getBitWidth() > 64)
1716      return nullptr;
1717
1718    uint64_t Val = ConstInt->getSExtValue();
1719    switch (BI->getOpcode()) {
1720    case Instruction::Add:
1721      return applyOffset(Val);
1722    case Instruction::Sub:
1723      return applyOffset(-int64_t(Val));
1724    case Instruction::Mul:
1725      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1726    case Instruction::SDiv:
1727      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1728    case Instruction::SRem:
1729      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1730    case Instruction::Or:
1731      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1732    case Instruction::And:
1733      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1734    case Instruction::Xor:
1735      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1736    case Instruction::Shl:
1737      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1738    case Instruction::LShr:
1739      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1740    case Instruction::AShr:
1741      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1742    default:
1743      // TODO: Salvage constants from each kind of binop we know about.
1744      return nullptr;
1745    }
1746    // *Not* to do: we should not attempt to salvage load instructions,
1747    // because the validity and lifetime of a dbg.value containing
1748    // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1749  }
1750  return nullptr;
1751}
1752
1753/// A replacement for a dbg.value expression.
1754using DbgValReplacement = Optional<DIExpression *>;
1755
1756/// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1757/// possibly moving/undefing users to prevent use-before-def. Returns true if
1758/// changes are made.
1759static bool rewriteDebugUsers(
1760    Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1761    function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1762  // Find debug users of From.
1763  SmallVector<DbgVariableIntrinsic *, 1> Users;
1764  findDbgUsers(Users, &From);
1765  if (Users.empty())
1766    return false;
1767
1768  // Prevent use-before-def of To.
1769  bool Changed = false;
1770  SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1771  if (isa<Instruction>(&To)) {
1772    bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1773
1774    for (auto *DII : Users) {
1775      // It's common to see a debug user between From and DomPoint. Move it
1776      // after DomPoint to preserve the variable update without any reordering.
1777      if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1778        LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1779        DII->moveAfter(&DomPoint);
1780        Changed = true;
1781
1782      // Users which otherwise aren't dominated by the replacement value must
1783      // be salvaged or deleted.
1784      } else if (!DT.dominates(&DomPoint, DII)) {
1785        UndefOrSalvage.insert(DII);
1786      }
1787    }
1788  }
1789
1790  // Update debug users without use-before-def risk.
1791  for (auto *DII : Users) {
1792    if (UndefOrSalvage.count(DII))
1793      continue;
1794
1795    LLVMContext &Ctx = DII->getContext();
1796    DbgValReplacement DVR = RewriteExpr(*DII);
1797    if (!DVR)
1798      continue;
1799
1800    DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1801    DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1802    LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1803    Changed = true;
1804  }
1805
1806  if (!UndefOrSalvage.empty()) {
1807    // Try to salvage the remaining debug users.
1808    salvageDebugInfoOrMarkUndef(From);
1809    Changed = true;
1810  }
1811
1812  return Changed;
1813}
1814
1815/// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1816/// losslessly preserve the bits and semantics of the value. This predicate is
1817/// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1818///
1819/// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1820/// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1821/// and also does not allow lossless pointer <-> integer conversions.
1822static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1823                                         Type *ToTy) {
1824  // Trivially compatible types.
1825  if (FromTy == ToTy)
1826    return true;
1827
1828  // Handle compatible pointer <-> integer conversions.
1829  if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1830    bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1831    bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1832                              !DL.isNonIntegralPointerType(ToTy);
1833    return SameSize && LosslessConversion;
1834  }
1835
1836  // TODO: This is not exhaustive.
1837  return false;
1838}
1839
1840bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1841                                 Instruction &DomPoint, DominatorTree &DT) {
1842  // Exit early if From has no debug users.
1843  if (!From.isUsedByMetadata())
1844    return false;
1845
1846  assert(&From != &To && "Can't replace something with itself");
1847
1848  Type *FromTy = From.getType();
1849  Type *ToTy = To.getType();
1850
1851  auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1852    return DII.getExpression();
1853  };
1854
1855  // Handle no-op conversions.
1856  Module &M = *From.getModule();
1857  const DataLayout &DL = M.getDataLayout();
1858  if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1859    return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1860
1861  // Handle integer-to-integer widening and narrowing.
1862  // FIXME: Use DW_OP_convert when it's available everywhere.
1863  if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1864    uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1865    uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1866    assert(FromBits != ToBits && "Unexpected no-op conversion");
1867
1868    // When the width of the result grows, assume that a debugger will only
1869    // access the low `FromBits` bits when inspecting the source variable.
1870    if (FromBits < ToBits)
1871      return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1872
1873    // The width of the result has shrunk. Use sign/zero extension to describe
1874    // the source variable's high bits.
1875    auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1876      DILocalVariable *Var = DII.getVariable();
1877
1878      // Without knowing signedness, sign/zero extension isn't possible.
1879      auto Signedness = Var->getSignedness();
1880      if (!Signedness)
1881        return None;
1882
1883      bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1884      return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
1885                                     Signed);
1886    };
1887    return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1888  }
1889
1890  // TODO: Floating-point conversions, vectors.
1891  return false;
1892}
1893
1894unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1895  unsigned NumDeadInst = 0;
1896  // Delete the instructions backwards, as it has a reduced likelihood of
1897  // having to update as many def-use and use-def chains.
1898  Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1899  while (EndInst != &BB->front()) {
1900    // Delete the next to last instruction.
1901    Instruction *Inst = &*--EndInst->getIterator();
1902    if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1903      Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1904    if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1905      EndInst = Inst;
1906      continue;
1907    }
1908    if (!isa<DbgInfoIntrinsic>(Inst))
1909      ++NumDeadInst;
1910    Inst->eraseFromParent();
1911  }
1912  return NumDeadInst;
1913}
1914
1915unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1916                                   bool PreserveLCSSA, DomTreeUpdater *DTU,
1917                                   MemorySSAUpdater *MSSAU) {
1918  BasicBlock *BB = I->getParent();
1919  std::vector <DominatorTree::UpdateType> Updates;
1920
1921  if (MSSAU)
1922    MSSAU->changeToUnreachable(I);
1923
1924  // Loop over all of the successors, removing BB's entry from any PHI
1925  // nodes.
1926  if (DTU)
1927    Updates.reserve(BB->getTerminator()->getNumSuccessors());
1928  for (BasicBlock *Successor : successors(BB)) {
1929    Successor->removePredecessor(BB, PreserveLCSSA);
1930    if (DTU)
1931      Updates.push_back({DominatorTree::Delete, BB, Successor});
1932  }
1933  // Insert a call to llvm.trap right before this.  This turns the undefined
1934  // behavior into a hard fail instead of falling through into random code.
1935  if (UseLLVMTrap) {
1936    Function *TrapFn =
1937      Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1938    CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1939    CallTrap->setDebugLoc(I->getDebugLoc());
1940  }
1941  auto *UI = new UnreachableInst(I->getContext(), I);
1942  UI->setDebugLoc(I->getDebugLoc());
1943
1944  // All instructions after this are dead.
1945  unsigned NumInstrsRemoved = 0;
1946  BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1947  while (BBI != BBE) {
1948    if (!BBI->use_empty())
1949      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1950    BB->getInstList().erase(BBI++);
1951    ++NumInstrsRemoved;
1952  }
1953  if (DTU)
1954    DTU->applyUpdatesPermissive(Updates);
1955  return NumInstrsRemoved;
1956}
1957
1958CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
1959  SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end());
1960  SmallVector<OperandBundleDef, 1> OpBundles;
1961  II->getOperandBundlesAsDefs(OpBundles);
1962  CallInst *NewCall = CallInst::Create(II->getFunctionType(),
1963                                       II->getCalledValue(), Args, OpBundles);
1964  NewCall->setCallingConv(II->getCallingConv());
1965  NewCall->setAttributes(II->getAttributes());
1966  NewCall->setDebugLoc(II->getDebugLoc());
1967  NewCall->copyMetadata(*II);
1968  return NewCall;
1969}
1970
1971/// changeToCall - Convert the specified invoke into a normal call.
1972void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
1973  CallInst *NewCall = createCallMatchingInvoke(II);
1974  NewCall->takeName(II);
1975  NewCall->insertBefore(II);
1976  II->replaceAllUsesWith(NewCall);
1977
1978  // Follow the call by a branch to the normal destination.
1979  BasicBlock *NormalDestBB = II->getNormalDest();
1980  BranchInst::Create(NormalDestBB, II);
1981
1982  // Update PHI nodes in the unwind destination
1983  BasicBlock *BB = II->getParent();
1984  BasicBlock *UnwindDestBB = II->getUnwindDest();
1985  UnwindDestBB->removePredecessor(BB);
1986  II->eraseFromParent();
1987  if (DTU)
1988    DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}});
1989}
1990
1991BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1992                                                   BasicBlock *UnwindEdge) {
1993  BasicBlock *BB = CI->getParent();
1994
1995  // Convert this function call into an invoke instruction.  First, split the
1996  // basic block.
1997  BasicBlock *Split =
1998      BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1999
2000  // Delete the unconditional branch inserted by splitBasicBlock
2001  BB->getInstList().pop_back();
2002
2003  // Create the new invoke instruction.
2004  SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
2005  SmallVector<OperandBundleDef, 1> OpBundles;
2006
2007  CI->getOperandBundlesAsDefs(OpBundles);
2008
2009  // Note: we're round tripping operand bundles through memory here, and that
2010  // can potentially be avoided with a cleverer API design that we do not have
2011  // as of this time.
2012
2013  InvokeInst *II =
2014      InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split,
2015                         UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2016  II->setDebugLoc(CI->getDebugLoc());
2017  II->setCallingConv(CI->getCallingConv());
2018  II->setAttributes(CI->getAttributes());
2019
2020  // Make sure that anything using the call now uses the invoke!  This also
2021  // updates the CallGraph if present, because it uses a WeakTrackingVH.
2022  CI->replaceAllUsesWith(II);
2023
2024  // Delete the original call
2025  Split->getInstList().pop_front();
2026  return Split;
2027}
2028
2029static bool markAliveBlocks(Function &F,
2030                            SmallPtrSetImpl<BasicBlock *> &Reachable,
2031                            DomTreeUpdater *DTU = nullptr) {
2032  SmallVector<BasicBlock*, 128> Worklist;
2033  BasicBlock *BB = &F.front();
2034  Worklist.push_back(BB);
2035  Reachable.insert(BB);
2036  bool Changed = false;
2037  do {
2038    BB = Worklist.pop_back_val();
2039
2040    // Do a quick scan of the basic block, turning any obviously unreachable
2041    // instructions into LLVM unreachable insts.  The instruction combining pass
2042    // canonicalizes unreachable insts into stores to null or undef.
2043    for (Instruction &I : *BB) {
2044      if (auto *CI = dyn_cast<CallInst>(&I)) {
2045        Value *Callee = CI->getCalledValue();
2046        // Handle intrinsic calls.
2047        if (Function *F = dyn_cast<Function>(Callee)) {
2048          auto IntrinsicID = F->getIntrinsicID();
2049          // Assumptions that are known to be false are equivalent to
2050          // unreachable. Also, if the condition is undefined, then we make the
2051          // choice most beneficial to the optimizer, and choose that to also be
2052          // unreachable.
2053          if (IntrinsicID == Intrinsic::assume) {
2054            if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2055              // Don't insert a call to llvm.trap right before the unreachable.
2056              changeToUnreachable(CI, false, false, DTU);
2057              Changed = true;
2058              break;
2059            }
2060          } else if (IntrinsicID == Intrinsic::experimental_guard) {
2061            // A call to the guard intrinsic bails out of the current
2062            // compilation unit if the predicate passed to it is false. If the
2063            // predicate is a constant false, then we know the guard will bail
2064            // out of the current compile unconditionally, so all code following
2065            // it is dead.
2066            //
2067            // Note: unlike in llvm.assume, it is not "obviously profitable" for
2068            // guards to treat `undef` as `false` since a guard on `undef` can
2069            // still be useful for widening.
2070            if (match(CI->getArgOperand(0), m_Zero()))
2071              if (!isa<UnreachableInst>(CI->getNextNode())) {
2072                changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2073                                    false, DTU);
2074                Changed = true;
2075                break;
2076              }
2077          }
2078        } else if ((isa<ConstantPointerNull>(Callee) &&
2079                    !NullPointerIsDefined(CI->getFunction())) ||
2080                   isa<UndefValue>(Callee)) {
2081          changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2082          Changed = true;
2083          break;
2084        }
2085        if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2086          // If we found a call to a no-return function, insert an unreachable
2087          // instruction after it.  Make sure there isn't *already* one there
2088          // though.
2089          if (!isa<UnreachableInst>(CI->getNextNode())) {
2090            // Don't insert a call to llvm.trap right before the unreachable.
2091            changeToUnreachable(CI->getNextNode(), false, false, DTU);
2092            Changed = true;
2093          }
2094          break;
2095        }
2096      } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2097        // Store to undef and store to null are undefined and used to signal
2098        // that they should be changed to unreachable by passes that can't
2099        // modify the CFG.
2100
2101        // Don't touch volatile stores.
2102        if (SI->isVolatile()) continue;
2103
2104        Value *Ptr = SI->getOperand(1);
2105
2106        if (isa<UndefValue>(Ptr) ||
2107            (isa<ConstantPointerNull>(Ptr) &&
2108             !NullPointerIsDefined(SI->getFunction(),
2109                                   SI->getPointerAddressSpace()))) {
2110          changeToUnreachable(SI, true, false, DTU);
2111          Changed = true;
2112          break;
2113        }
2114      }
2115    }
2116
2117    Instruction *Terminator = BB->getTerminator();
2118    if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2119      // Turn invokes that call 'nounwind' functions into ordinary calls.
2120      Value *Callee = II->getCalledValue();
2121      if ((isa<ConstantPointerNull>(Callee) &&
2122           !NullPointerIsDefined(BB->getParent())) ||
2123          isa<UndefValue>(Callee)) {
2124        changeToUnreachable(II, true, false, DTU);
2125        Changed = true;
2126      } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2127        if (II->use_empty() && II->onlyReadsMemory()) {
2128          // jump to the normal destination branch.
2129          BasicBlock *NormalDestBB = II->getNormalDest();
2130          BasicBlock *UnwindDestBB = II->getUnwindDest();
2131          BranchInst::Create(NormalDestBB, II);
2132          UnwindDestBB->removePredecessor(II->getParent());
2133          II->eraseFromParent();
2134          if (DTU)
2135            DTU->applyUpdatesPermissive(
2136                {{DominatorTree::Delete, BB, UnwindDestBB}});
2137        } else
2138          changeToCall(II, DTU);
2139        Changed = true;
2140      }
2141    } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2142      // Remove catchpads which cannot be reached.
2143      struct CatchPadDenseMapInfo {
2144        static CatchPadInst *getEmptyKey() {
2145          return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2146        }
2147
2148        static CatchPadInst *getTombstoneKey() {
2149          return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2150        }
2151
2152        static unsigned getHashValue(CatchPadInst *CatchPad) {
2153          return static_cast<unsigned>(hash_combine_range(
2154              CatchPad->value_op_begin(), CatchPad->value_op_end()));
2155        }
2156
2157        static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2158          if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2159              RHS == getEmptyKey() || RHS == getTombstoneKey())
2160            return LHS == RHS;
2161          return LHS->isIdenticalTo(RHS);
2162        }
2163      };
2164
2165      // Set of unique CatchPads.
2166      SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2167                    CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2168          HandlerSet;
2169      detail::DenseSetEmpty Empty;
2170      for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2171                                             E = CatchSwitch->handler_end();
2172           I != E; ++I) {
2173        BasicBlock *HandlerBB = *I;
2174        auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2175        if (!HandlerSet.insert({CatchPad, Empty}).second) {
2176          CatchSwitch->removeHandler(I);
2177          --I;
2178          --E;
2179          Changed = true;
2180        }
2181      }
2182    }
2183
2184    Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2185    for (BasicBlock *Successor : successors(BB))
2186      if (Reachable.insert(Successor).second)
2187        Worklist.push_back(Successor);
2188  } while (!Worklist.empty());
2189  return Changed;
2190}
2191
2192void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2193  Instruction *TI = BB->getTerminator();
2194
2195  if (auto *II = dyn_cast<InvokeInst>(TI)) {
2196    changeToCall(II, DTU);
2197    return;
2198  }
2199
2200  Instruction *NewTI;
2201  BasicBlock *UnwindDest;
2202
2203  if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2204    NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2205    UnwindDest = CRI->getUnwindDest();
2206  } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2207    auto *NewCatchSwitch = CatchSwitchInst::Create(
2208        CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2209        CatchSwitch->getName(), CatchSwitch);
2210    for (BasicBlock *PadBB : CatchSwitch->handlers())
2211      NewCatchSwitch->addHandler(PadBB);
2212
2213    NewTI = NewCatchSwitch;
2214    UnwindDest = CatchSwitch->getUnwindDest();
2215  } else {
2216    llvm_unreachable("Could not find unwind successor");
2217  }
2218
2219  NewTI->takeName(TI);
2220  NewTI->setDebugLoc(TI->getDebugLoc());
2221  UnwindDest->removePredecessor(BB);
2222  TI->replaceAllUsesWith(NewTI);
2223  TI->eraseFromParent();
2224  if (DTU)
2225    DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}});
2226}
2227
2228/// removeUnreachableBlocks - Remove blocks that are not reachable, even
2229/// if they are in a dead cycle.  Return true if a change was made, false
2230/// otherwise.
2231bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2232                                   MemorySSAUpdater *MSSAU) {
2233  SmallPtrSet<BasicBlock *, 16> Reachable;
2234  bool Changed = markAliveBlocks(F, Reachable, DTU);
2235
2236  // If there are unreachable blocks in the CFG...
2237  if (Reachable.size() == F.size())
2238    return Changed;
2239
2240  assert(Reachable.size() < F.size());
2241  NumRemoved += F.size() - Reachable.size();
2242
2243  SmallSetVector<BasicBlock *, 8> DeadBlockSet;
2244  for (BasicBlock &BB : F) {
2245    // Skip reachable basic blocks
2246    if (Reachable.find(&BB) != Reachable.end())
2247      continue;
2248    DeadBlockSet.insert(&BB);
2249  }
2250
2251  if (MSSAU)
2252    MSSAU->removeBlocks(DeadBlockSet);
2253
2254  // Loop over all of the basic blocks that are not reachable, dropping all of
2255  // their internal references. Update DTU if available.
2256  std::vector<DominatorTree::UpdateType> Updates;
2257  for (auto *BB : DeadBlockSet) {
2258    for (BasicBlock *Successor : successors(BB)) {
2259      if (!DeadBlockSet.count(Successor))
2260        Successor->removePredecessor(BB);
2261      if (DTU)
2262        Updates.push_back({DominatorTree::Delete, BB, Successor});
2263    }
2264    BB->dropAllReferences();
2265    if (DTU) {
2266      Instruction *TI = BB->getTerminator();
2267      assert(TI && "Basic block should have a terminator");
2268      // Terminators like invoke can have users. We have to replace their users,
2269      // before removing them.
2270      if (!TI->use_empty())
2271        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2272      TI->eraseFromParent();
2273      new UnreachableInst(BB->getContext(), BB);
2274      assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2275                               "applying corresponding DTU updates.");
2276    }
2277  }
2278
2279  if (DTU) {
2280    DTU->applyUpdatesPermissive(Updates);
2281    bool Deleted = false;
2282    for (auto *BB : DeadBlockSet) {
2283      if (DTU->isBBPendingDeletion(BB))
2284        --NumRemoved;
2285      else
2286        Deleted = true;
2287      DTU->deleteBB(BB);
2288    }
2289    if (!Deleted)
2290      return false;
2291  } else {
2292    for (auto *BB : DeadBlockSet)
2293      BB->eraseFromParent();
2294  }
2295
2296  return true;
2297}
2298
2299void llvm::combineMetadata(Instruction *K, const Instruction *J,
2300                           ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2301  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2302  K->dropUnknownNonDebugMetadata(KnownIDs);
2303  K->getAllMetadataOtherThanDebugLoc(Metadata);
2304  for (const auto &MD : Metadata) {
2305    unsigned Kind = MD.first;
2306    MDNode *JMD = J->getMetadata(Kind);
2307    MDNode *KMD = MD.second;
2308
2309    switch (Kind) {
2310      default:
2311        K->setMetadata(Kind, nullptr); // Remove unknown metadata
2312        break;
2313      case LLVMContext::MD_dbg:
2314        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2315      case LLVMContext::MD_tbaa:
2316        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2317        break;
2318      case LLVMContext::MD_alias_scope:
2319        K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2320        break;
2321      case LLVMContext::MD_noalias:
2322      case LLVMContext::MD_mem_parallel_loop_access:
2323        K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2324        break;
2325      case LLVMContext::MD_access_group:
2326        K->setMetadata(LLVMContext::MD_access_group,
2327                       intersectAccessGroups(K, J));
2328        break;
2329      case LLVMContext::MD_range:
2330
2331        // If K does move, use most generic range. Otherwise keep the range of
2332        // K.
2333        if (DoesKMove)
2334          // FIXME: If K does move, we should drop the range info and nonnull.
2335          //        Currently this function is used with DoesKMove in passes
2336          //        doing hoisting/sinking and the current behavior of using the
2337          //        most generic range is correct in those cases.
2338          K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2339        break;
2340      case LLVMContext::MD_fpmath:
2341        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2342        break;
2343      case LLVMContext::MD_invariant_load:
2344        // Only set the !invariant.load if it is present in both instructions.
2345        K->setMetadata(Kind, JMD);
2346        break;
2347      case LLVMContext::MD_nonnull:
2348        // If K does move, keep nonull if it is present in both instructions.
2349        if (DoesKMove)
2350          K->setMetadata(Kind, JMD);
2351        break;
2352      case LLVMContext::MD_invariant_group:
2353        // Preserve !invariant.group in K.
2354        break;
2355      case LLVMContext::MD_align:
2356        K->setMetadata(Kind,
2357          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2358        break;
2359      case LLVMContext::MD_dereferenceable:
2360      case LLVMContext::MD_dereferenceable_or_null:
2361        K->setMetadata(Kind,
2362          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2363        break;
2364      case LLVMContext::MD_preserve_access_index:
2365        // Preserve !preserve.access.index in K.
2366        break;
2367    }
2368  }
2369  // Set !invariant.group from J if J has it. If both instructions have it
2370  // then we will just pick it from J - even when they are different.
2371  // Also make sure that K is load or store - f.e. combining bitcast with load
2372  // could produce bitcast with invariant.group metadata, which is invalid.
2373  // FIXME: we should try to preserve both invariant.group md if they are
2374  // different, but right now instruction can only have one invariant.group.
2375  if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2376    if (isa<LoadInst>(K) || isa<StoreInst>(K))
2377      K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2378}
2379
2380void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2381                                 bool KDominatesJ) {
2382  unsigned KnownIDs[] = {
2383      LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2384      LLVMContext::MD_noalias,         LLVMContext::MD_range,
2385      LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2386      LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2387      LLVMContext::MD_dereferenceable,
2388      LLVMContext::MD_dereferenceable_or_null,
2389      LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2390  combineMetadata(K, J, KnownIDs, KDominatesJ);
2391}
2392
2393void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2394  SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2395  Source.getAllMetadata(MD);
2396  MDBuilder MDB(Dest.getContext());
2397  Type *NewType = Dest.getType();
2398  const DataLayout &DL = Source.getModule()->getDataLayout();
2399  for (const auto &MDPair : MD) {
2400    unsigned ID = MDPair.first;
2401    MDNode *N = MDPair.second;
2402    // Note, essentially every kind of metadata should be preserved here! This
2403    // routine is supposed to clone a load instruction changing *only its type*.
2404    // The only metadata it makes sense to drop is metadata which is invalidated
2405    // when the pointer type changes. This should essentially never be the case
2406    // in LLVM, but we explicitly switch over only known metadata to be
2407    // conservatively correct. If you are adding metadata to LLVM which pertains
2408    // to loads, you almost certainly want to add it here.
2409    switch (ID) {
2410    case LLVMContext::MD_dbg:
2411    case LLVMContext::MD_tbaa:
2412    case LLVMContext::MD_prof:
2413    case LLVMContext::MD_fpmath:
2414    case LLVMContext::MD_tbaa_struct:
2415    case LLVMContext::MD_invariant_load:
2416    case LLVMContext::MD_alias_scope:
2417    case LLVMContext::MD_noalias:
2418    case LLVMContext::MD_nontemporal:
2419    case LLVMContext::MD_mem_parallel_loop_access:
2420    case LLVMContext::MD_access_group:
2421      // All of these directly apply.
2422      Dest.setMetadata(ID, N);
2423      break;
2424
2425    case LLVMContext::MD_nonnull:
2426      copyNonnullMetadata(Source, N, Dest);
2427      break;
2428
2429    case LLVMContext::MD_align:
2430    case LLVMContext::MD_dereferenceable:
2431    case LLVMContext::MD_dereferenceable_or_null:
2432      // These only directly apply if the new type is also a pointer.
2433      if (NewType->isPointerTy())
2434        Dest.setMetadata(ID, N);
2435      break;
2436
2437    case LLVMContext::MD_range:
2438      copyRangeMetadata(DL, Source, N, Dest);
2439      break;
2440    }
2441  }
2442}
2443
2444void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2445  auto *ReplInst = dyn_cast<Instruction>(Repl);
2446  if (!ReplInst)
2447    return;
2448
2449  // Patch the replacement so that it is not more restrictive than the value
2450  // being replaced.
2451  // Note that if 'I' is a load being replaced by some operation,
2452  // for example, by an arithmetic operation, then andIRFlags()
2453  // would just erase all math flags from the original arithmetic
2454  // operation, which is clearly not wanted and not needed.
2455  if (!isa<LoadInst>(I))
2456    ReplInst->andIRFlags(I);
2457
2458  // FIXME: If both the original and replacement value are part of the
2459  // same control-flow region (meaning that the execution of one
2460  // guarantees the execution of the other), then we can combine the
2461  // noalias scopes here and do better than the general conservative
2462  // answer used in combineMetadata().
2463
2464  // In general, GVN unifies expressions over different control-flow
2465  // regions, and so we need a conservative combination of the noalias
2466  // scopes.
2467  static const unsigned KnownIDs[] = {
2468      LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2469      LLVMContext::MD_noalias,         LLVMContext::MD_range,
2470      LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2471      LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2472      LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2473  combineMetadata(ReplInst, I, KnownIDs, false);
2474}
2475
2476template <typename RootType, typename DominatesFn>
2477static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2478                                         const RootType &Root,
2479                                         const DominatesFn &Dominates) {
2480  assert(From->getType() == To->getType());
2481
2482  unsigned Count = 0;
2483  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2484       UI != UE;) {
2485    Use &U = *UI++;
2486    if (!Dominates(Root, U))
2487      continue;
2488    U.set(To);
2489    LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2490                      << "' as " << *To << " in " << *U << "\n");
2491    ++Count;
2492  }
2493  return Count;
2494}
2495
2496unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2497   assert(From->getType() == To->getType());
2498   auto *BB = From->getParent();
2499   unsigned Count = 0;
2500
2501  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2502       UI != UE;) {
2503    Use &U = *UI++;
2504    auto *I = cast<Instruction>(U.getUser());
2505    if (I->getParent() == BB)
2506      continue;
2507    U.set(To);
2508    ++Count;
2509  }
2510  return Count;
2511}
2512
2513unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2514                                        DominatorTree &DT,
2515                                        const BasicBlockEdge &Root) {
2516  auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2517    return DT.dominates(Root, U);
2518  };
2519  return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2520}
2521
2522unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2523                                        DominatorTree &DT,
2524                                        const BasicBlock *BB) {
2525  auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2526    auto *I = cast<Instruction>(U.getUser())->getParent();
2527    return DT.properlyDominates(BB, I);
2528  };
2529  return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2530}
2531
2532bool llvm::callsGCLeafFunction(const CallBase *Call,
2533                               const TargetLibraryInfo &TLI) {
2534  // Check if the function is specifically marked as a gc leaf function.
2535  if (Call->hasFnAttr("gc-leaf-function"))
2536    return true;
2537  if (const Function *F = Call->getCalledFunction()) {
2538    if (F->hasFnAttribute("gc-leaf-function"))
2539      return true;
2540
2541    if (auto IID = F->getIntrinsicID())
2542      // Most LLVM intrinsics do not take safepoints.
2543      return IID != Intrinsic::experimental_gc_statepoint &&
2544             IID != Intrinsic::experimental_deoptimize;
2545  }
2546
2547  // Lib calls can be materialized by some passes, and won't be
2548  // marked as 'gc-leaf-function.' All available Libcalls are
2549  // GC-leaf.
2550  LibFunc LF;
2551  if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) {
2552    return TLI.has(LF);
2553  }
2554
2555  return false;
2556}
2557
2558void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2559                               LoadInst &NewLI) {
2560  auto *NewTy = NewLI.getType();
2561
2562  // This only directly applies if the new type is also a pointer.
2563  if (NewTy->isPointerTy()) {
2564    NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2565    return;
2566  }
2567
2568  // The only other translation we can do is to integral loads with !range
2569  // metadata.
2570  if (!NewTy->isIntegerTy())
2571    return;
2572
2573  MDBuilder MDB(NewLI.getContext());
2574  const Value *Ptr = OldLI.getPointerOperand();
2575  auto *ITy = cast<IntegerType>(NewTy);
2576  auto *NullInt = ConstantExpr::getPtrToInt(
2577      ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2578  auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2579  NewLI.setMetadata(LLVMContext::MD_range,
2580                    MDB.createRange(NonNullInt, NullInt));
2581}
2582
2583void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2584                             MDNode *N, LoadInst &NewLI) {
2585  auto *NewTy = NewLI.getType();
2586
2587  // Give up unless it is converted to a pointer where there is a single very
2588  // valuable mapping we can do reliably.
2589  // FIXME: It would be nice to propagate this in more ways, but the type
2590  // conversions make it hard.
2591  if (!NewTy->isPointerTy())
2592    return;
2593
2594  unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2595  if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2596    MDNode *NN = MDNode::get(OldLI.getContext(), None);
2597    NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2598  }
2599}
2600
2601void llvm::dropDebugUsers(Instruction &I) {
2602  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2603  findDbgUsers(DbgUsers, &I);
2604  for (auto *DII : DbgUsers)
2605    DII->eraseFromParent();
2606}
2607
2608void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2609                                    BasicBlock *BB) {
2610  // Since we are moving the instructions out of its basic block, we do not
2611  // retain their original debug locations (DILocations) and debug intrinsic
2612  // instructions.
2613  //
2614  // Doing so would degrade the debugging experience and adversely affect the
2615  // accuracy of profiling information.
2616  //
2617  // Currently, when hoisting the instructions, we take the following actions:
2618  // - Remove their debug intrinsic instructions.
2619  // - Set their debug locations to the values from the insertion point.
2620  //
2621  // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2622  // need to be deleted, is because there will not be any instructions with a
2623  // DILocation in either branch left after performing the transformation. We
2624  // can only insert a dbg.value after the two branches are joined again.
2625  //
2626  // See PR38762, PR39243 for more details.
2627  //
2628  // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2629  // encode predicated DIExpressions that yield different results on different
2630  // code paths.
2631  for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2632    Instruction *I = &*II;
2633    I->dropUnknownNonDebugMetadata();
2634    if (I->isUsedByMetadata())
2635      dropDebugUsers(*I);
2636    if (isa<DbgInfoIntrinsic>(I)) {
2637      // Remove DbgInfo Intrinsics.
2638      II = I->eraseFromParent();
2639      continue;
2640    }
2641    I->setDebugLoc(InsertPt->getDebugLoc());
2642    ++II;
2643  }
2644  DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2645                                 BB->begin(),
2646                                 BB->getTerminator()->getIterator());
2647}
2648
2649namespace {
2650
2651/// A potential constituent of a bitreverse or bswap expression. See
2652/// collectBitParts for a fuller explanation.
2653struct BitPart {
2654  BitPart(Value *P, unsigned BW) : Provider(P) {
2655    Provenance.resize(BW);
2656  }
2657
2658  /// The Value that this is a bitreverse/bswap of.
2659  Value *Provider;
2660
2661  /// The "provenance" of each bit. Provenance[A] = B means that bit A
2662  /// in Provider becomes bit B in the result of this expression.
2663  SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2664
2665  enum { Unset = -1 };
2666};
2667
2668} // end anonymous namespace
2669
2670/// Analyze the specified subexpression and see if it is capable of providing
2671/// pieces of a bswap or bitreverse. The subexpression provides a potential
2672/// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2673/// the output of the expression came from a corresponding bit in some other
2674/// value. This function is recursive, and the end result is a mapping of
2675/// bitnumber to bitnumber. It is the caller's responsibility to validate that
2676/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2677///
2678/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2679/// that the expression deposits the low byte of %X into the high byte of the
2680/// result and that all other bits are zero. This expression is accepted and a
2681/// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2682/// [0-7].
2683///
2684/// To avoid revisiting values, the BitPart results are memoized into the
2685/// provided map. To avoid unnecessary copying of BitParts, BitParts are
2686/// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2687/// store BitParts objects, not pointers. As we need the concept of a nullptr
2688/// BitParts (Value has been analyzed and the analysis failed), we an Optional
2689/// type instead to provide the same functionality.
2690///
2691/// Because we pass around references into \c BPS, we must use a container that
2692/// does not invalidate internal references (std::map instead of DenseMap).
2693static const Optional<BitPart> &
2694collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2695                std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2696  auto I = BPS.find(V);
2697  if (I != BPS.end())
2698    return I->second;
2699
2700  auto &Result = BPS[V] = None;
2701  auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2702
2703  // Prevent stack overflow by limiting the recursion depth
2704  if (Depth == BitPartRecursionMaxDepth) {
2705    LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2706    return Result;
2707  }
2708
2709  if (Instruction *I = dyn_cast<Instruction>(V)) {
2710    // If this is an or instruction, it may be an inner node of the bswap.
2711    if (I->getOpcode() == Instruction::Or) {
2712      auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2713                                MatchBitReversals, BPS, Depth + 1);
2714      auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2715                                MatchBitReversals, BPS, Depth + 1);
2716      if (!A || !B)
2717        return Result;
2718
2719      // Try and merge the two together.
2720      if (!A->Provider || A->Provider != B->Provider)
2721        return Result;
2722
2723      Result = BitPart(A->Provider, BitWidth);
2724      for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2725        if (A->Provenance[i] != BitPart::Unset &&
2726            B->Provenance[i] != BitPart::Unset &&
2727            A->Provenance[i] != B->Provenance[i])
2728          return Result = None;
2729
2730        if (A->Provenance[i] == BitPart::Unset)
2731          Result->Provenance[i] = B->Provenance[i];
2732        else
2733          Result->Provenance[i] = A->Provenance[i];
2734      }
2735
2736      return Result;
2737    }
2738
2739    // If this is a logical shift by a constant, recurse then shift the result.
2740    if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2741      unsigned BitShift =
2742          cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2743      // Ensure the shift amount is defined.
2744      if (BitShift > BitWidth)
2745        return Result;
2746
2747      auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2748                                  MatchBitReversals, BPS, Depth + 1);
2749      if (!Res)
2750        return Result;
2751      Result = Res;
2752
2753      // Perform the "shift" on BitProvenance.
2754      auto &P = Result->Provenance;
2755      if (I->getOpcode() == Instruction::Shl) {
2756        P.erase(std::prev(P.end(), BitShift), P.end());
2757        P.insert(P.begin(), BitShift, BitPart::Unset);
2758      } else {
2759        P.erase(P.begin(), std::next(P.begin(), BitShift));
2760        P.insert(P.end(), BitShift, BitPart::Unset);
2761      }
2762
2763      return Result;
2764    }
2765
2766    // If this is a logical 'and' with a mask that clears bits, recurse then
2767    // unset the appropriate bits.
2768    if (I->getOpcode() == Instruction::And &&
2769        isa<ConstantInt>(I->getOperand(1))) {
2770      APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2771      const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2772
2773      // Check that the mask allows a multiple of 8 bits for a bswap, for an
2774      // early exit.
2775      unsigned NumMaskedBits = AndMask.countPopulation();
2776      if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2777        return Result;
2778
2779      auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2780                                  MatchBitReversals, BPS, Depth + 1);
2781      if (!Res)
2782        return Result;
2783      Result = Res;
2784
2785      for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2786        // If the AndMask is zero for this bit, clear the bit.
2787        if ((AndMask & Bit) == 0)
2788          Result->Provenance[i] = BitPart::Unset;
2789      return Result;
2790    }
2791
2792    // If this is a zext instruction zero extend the result.
2793    if (I->getOpcode() == Instruction::ZExt) {
2794      auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2795                                  MatchBitReversals, BPS, Depth + 1);
2796      if (!Res)
2797        return Result;
2798
2799      Result = BitPart(Res->Provider, BitWidth);
2800      auto NarrowBitWidth =
2801          cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2802      for (unsigned i = 0; i < NarrowBitWidth; ++i)
2803        Result->Provenance[i] = Res->Provenance[i];
2804      for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2805        Result->Provenance[i] = BitPart::Unset;
2806      return Result;
2807    }
2808  }
2809
2810  // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2811  // the input value to the bswap/bitreverse.
2812  Result = BitPart(V, BitWidth);
2813  for (unsigned i = 0; i < BitWidth; ++i)
2814    Result->Provenance[i] = i;
2815  return Result;
2816}
2817
2818static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2819                                          unsigned BitWidth) {
2820  if (From % 8 != To % 8)
2821    return false;
2822  // Convert from bit indices to byte indices and check for a byte reversal.
2823  From >>= 3;
2824  To >>= 3;
2825  BitWidth >>= 3;
2826  return From == BitWidth - To - 1;
2827}
2828
2829static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2830                                               unsigned BitWidth) {
2831  return From == BitWidth - To - 1;
2832}
2833
2834bool llvm::recognizeBSwapOrBitReverseIdiom(
2835    Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2836    SmallVectorImpl<Instruction *> &InsertedInsts) {
2837  if (Operator::getOpcode(I) != Instruction::Or)
2838    return false;
2839  if (!MatchBSwaps && !MatchBitReversals)
2840    return false;
2841  IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2842  if (!ITy || ITy->getBitWidth() > 128)
2843    return false;   // Can't do vectors or integers > 128 bits.
2844  unsigned BW = ITy->getBitWidth();
2845
2846  unsigned DemandedBW = BW;
2847  IntegerType *DemandedTy = ITy;
2848  if (I->hasOneUse()) {
2849    if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2850      DemandedTy = cast<IntegerType>(Trunc->getType());
2851      DemandedBW = DemandedTy->getBitWidth();
2852    }
2853  }
2854
2855  // Try to find all the pieces corresponding to the bswap.
2856  std::map<Value *, Optional<BitPart>> BPS;
2857  auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
2858  if (!Res)
2859    return false;
2860  auto &BitProvenance = Res->Provenance;
2861
2862  // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2863  // only byteswap values with an even number of bytes.
2864  bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2865  for (unsigned i = 0; i < DemandedBW; ++i) {
2866    OKForBSwap &=
2867        bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2868    OKForBitReverse &=
2869        bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2870  }
2871
2872  Intrinsic::ID Intrin;
2873  if (OKForBSwap && MatchBSwaps)
2874    Intrin = Intrinsic::bswap;
2875  else if (OKForBitReverse && MatchBitReversals)
2876    Intrin = Intrinsic::bitreverse;
2877  else
2878    return false;
2879
2880  if (ITy != DemandedTy) {
2881    Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2882    Value *Provider = Res->Provider;
2883    IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2884    // We may need to truncate the provider.
2885    if (DemandedTy != ProviderTy) {
2886      auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2887                                     "trunc", I);
2888      InsertedInsts.push_back(Trunc);
2889      Provider = Trunc;
2890    }
2891    auto *CI = CallInst::Create(F, Provider, "rev", I);
2892    InsertedInsts.push_back(CI);
2893    auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2894    InsertedInsts.push_back(ExtInst);
2895    return true;
2896  }
2897
2898  Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2899  InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2900  return true;
2901}
2902
2903// CodeGen has special handling for some string functions that may replace
2904// them with target-specific intrinsics.  Since that'd skip our interceptors
2905// in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2906// we mark affected calls as NoBuiltin, which will disable optimization
2907// in CodeGen.
2908void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2909    CallInst *CI, const TargetLibraryInfo *TLI) {
2910  Function *F = CI->getCalledFunction();
2911  LibFunc Func;
2912  if (F && !F->hasLocalLinkage() && F->hasName() &&
2913      TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2914      !F->doesNotAccessMemory())
2915    CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2916}
2917
2918bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2919  // We can't have a PHI with a metadata type.
2920  if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2921    return false;
2922
2923  // Early exit.
2924  if (!isa<Constant>(I->getOperand(OpIdx)))
2925    return true;
2926
2927  switch (I->getOpcode()) {
2928  default:
2929    return true;
2930  case Instruction::Call:
2931  case Instruction::Invoke:
2932    // Can't handle inline asm. Skip it.
2933    if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2934      return false;
2935    // Many arithmetic intrinsics have no issue taking a
2936    // variable, however it's hard to distingish these from
2937    // specials such as @llvm.frameaddress that require a constant.
2938    if (isa<IntrinsicInst>(I))
2939      return false;
2940
2941    // Constant bundle operands may need to retain their constant-ness for
2942    // correctness.
2943    if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2944      return false;
2945    return true;
2946  case Instruction::ShuffleVector:
2947    // Shufflevector masks are constant.
2948    return OpIdx != 2;
2949  case Instruction::Switch:
2950  case Instruction::ExtractValue:
2951    // All operands apart from the first are constant.
2952    return OpIdx == 0;
2953  case Instruction::InsertValue:
2954    // All operands apart from the first and the second are constant.
2955    return OpIdx < 2;
2956  case Instruction::Alloca:
2957    // Static allocas (constant size in the entry block) are handled by
2958    // prologue/epilogue insertion so they're free anyway. We definitely don't
2959    // want to make them non-constant.
2960    return !cast<AllocaInst>(I)->isStaticAlloca();
2961  case Instruction::GetElementPtr:
2962    if (OpIdx == 0)
2963      return true;
2964    gep_type_iterator It = gep_type_begin(I);
2965    for (auto E = std::next(It, OpIdx); It != E; ++It)
2966      if (It.isStruct())
2967        return false;
2968    return true;
2969  }
2970}
2971
2972using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
2973AllocaInst *llvm::findAllocaForValue(Value *V,
2974                                     AllocaForValueMapTy &AllocaForValue) {
2975  if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
2976    return AI;
2977  // See if we've already calculated (or started to calculate) alloca for a
2978  // given value.
2979  AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
2980  if (I != AllocaForValue.end())
2981    return I->second;
2982  // Store 0 while we're calculating alloca for value V to avoid
2983  // infinite recursion if the value references itself.
2984  AllocaForValue[V] = nullptr;
2985  AllocaInst *Res = nullptr;
2986  if (CastInst *CI = dyn_cast<CastInst>(V))
2987    Res = findAllocaForValue(CI->getOperand(0), AllocaForValue);
2988  else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2989    for (Value *IncValue : PN->incoming_values()) {
2990      // Allow self-referencing phi-nodes.
2991      if (IncValue == PN)
2992        continue;
2993      AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue);
2994      // AI for incoming values should exist and should all be equal.
2995      if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
2996        return nullptr;
2997      Res = IncValueAI;
2998    }
2999  } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
3000    Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue);
3001  } else {
3002    LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
3003                      << *V << "\n");
3004  }
3005  if (Res)
3006    AllocaForValue[V] = Res;
3007  return Res;
3008}
3009