1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements inlining of a function into a call site, resolving
10// parameters and the return value as appropriate.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/None.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/AssumptionCache.h"
25#include "llvm/Analysis/BlockFrequencyInfo.h"
26#include "llvm/Analysis/CallGraph.h"
27#include "llvm/Analysis/CaptureTracking.h"
28#include "llvm/Analysis/EHPersonalities.h"
29#include "llvm/Analysis/InstructionSimplify.h"
30#include "llvm/Analysis/ProfileSummaryInfo.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include "llvm/Analysis/ValueTracking.h"
33#include "llvm/Analysis/VectorUtils.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/BasicBlock.h"
36#include "llvm/IR/CFG.h"
37#include "llvm/IR/CallSite.h"
38#include "llvm/IR/Constant.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DIBuilder.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugInfoMetadata.h"
43#include "llvm/IR/DebugLoc.h"
44#include "llvm/IR/DerivedTypes.h"
45#include "llvm/IR/Dominators.h"
46#include "llvm/IR/Function.h"
47#include "llvm/IR/IRBuilder.h"
48#include "llvm/IR/InstrTypes.h"
49#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Instructions.h"
51#include "llvm/IR/IntrinsicInst.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/MDBuilder.h"
55#include "llvm/IR/Metadata.h"
56#include "llvm/IR/Module.h"
57#include "llvm/IR/Type.h"
58#include "llvm/IR/User.h"
59#include "llvm/IR/Value.h"
60#include "llvm/Support/Casting.h"
61#include "llvm/Support/CommandLine.h"
62#include "llvm/Support/ErrorHandling.h"
63#include "llvm/Transforms/Utils/Cloning.h"
64#include "llvm/Transforms/Utils/ValueMapper.h"
65#include <algorithm>
66#include <cassert>
67#include <cstdint>
68#include <iterator>
69#include <limits>
70#include <string>
71#include <utility>
72#include <vector>
73
74using namespace llvm;
75using ProfileCount = Function::ProfileCount;
76
77static cl::opt<bool>
78EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
79  cl::Hidden,
80  cl::desc("Convert noalias attributes to metadata during inlining."));
81
82static cl::opt<bool>
83PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
84  cl::init(true), cl::Hidden,
85  cl::desc("Convert align attributes to assumptions during inlining."));
86
87llvm::InlineResult llvm::InlineFunction(CallBase *CB, InlineFunctionInfo &IFI,
88                                        AAResults *CalleeAAR,
89                                        bool InsertLifetime) {
90  return InlineFunction(CallSite(CB), IFI, CalleeAAR, InsertLifetime);
91}
92
93namespace {
94
95  /// A class for recording information about inlining a landing pad.
96  class LandingPadInliningInfo {
97    /// Destination of the invoke's unwind.
98    BasicBlock *OuterResumeDest;
99
100    /// Destination for the callee's resume.
101    BasicBlock *InnerResumeDest = nullptr;
102
103    /// LandingPadInst associated with the invoke.
104    LandingPadInst *CallerLPad = nullptr;
105
106    /// PHI for EH values from landingpad insts.
107    PHINode *InnerEHValuesPHI = nullptr;
108
109    SmallVector<Value*, 8> UnwindDestPHIValues;
110
111  public:
112    LandingPadInliningInfo(InvokeInst *II)
113        : OuterResumeDest(II->getUnwindDest()) {
114      // If there are PHI nodes in the unwind destination block, we need to keep
115      // track of which values came into them from the invoke before removing
116      // the edge from this block.
117      BasicBlock *InvokeBB = II->getParent();
118      BasicBlock::iterator I = OuterResumeDest->begin();
119      for (; isa<PHINode>(I); ++I) {
120        // Save the value to use for this edge.
121        PHINode *PHI = cast<PHINode>(I);
122        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
123      }
124
125      CallerLPad = cast<LandingPadInst>(I);
126    }
127
128    /// The outer unwind destination is the target of
129    /// unwind edges introduced for calls within the inlined function.
130    BasicBlock *getOuterResumeDest() const {
131      return OuterResumeDest;
132    }
133
134    BasicBlock *getInnerResumeDest();
135
136    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
137
138    /// Forward the 'resume' instruction to the caller's landing pad block.
139    /// When the landing pad block has only one predecessor, this is
140    /// a simple branch. When there is more than one predecessor, we need to
141    /// split the landing pad block after the landingpad instruction and jump
142    /// to there.
143    void forwardResume(ResumeInst *RI,
144                       SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
145
146    /// Add incoming-PHI values to the unwind destination block for the given
147    /// basic block, using the values for the original invoke's source block.
148    void addIncomingPHIValuesFor(BasicBlock *BB) const {
149      addIncomingPHIValuesForInto(BB, OuterResumeDest);
150    }
151
152    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
153      BasicBlock::iterator I = dest->begin();
154      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
155        PHINode *phi = cast<PHINode>(I);
156        phi->addIncoming(UnwindDestPHIValues[i], src);
157      }
158    }
159  };
160
161} // end anonymous namespace
162
163/// Get or create a target for the branch from ResumeInsts.
164BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
165  if (InnerResumeDest) return InnerResumeDest;
166
167  // Split the landing pad.
168  BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
169  InnerResumeDest =
170    OuterResumeDest->splitBasicBlock(SplitPoint,
171                                     OuterResumeDest->getName() + ".body");
172
173  // The number of incoming edges we expect to the inner landing pad.
174  const unsigned PHICapacity = 2;
175
176  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
177  Instruction *InsertPoint = &InnerResumeDest->front();
178  BasicBlock::iterator I = OuterResumeDest->begin();
179  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
180    PHINode *OuterPHI = cast<PHINode>(I);
181    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
182                                        OuterPHI->getName() + ".lpad-body",
183                                        InsertPoint);
184    OuterPHI->replaceAllUsesWith(InnerPHI);
185    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
186  }
187
188  // Create a PHI for the exception values.
189  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
190                                     "eh.lpad-body", InsertPoint);
191  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
192  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
193
194  // All done.
195  return InnerResumeDest;
196}
197
198/// Forward the 'resume' instruction to the caller's landing pad block.
199/// When the landing pad block has only one predecessor, this is a simple
200/// branch. When there is more than one predecessor, we need to split the
201/// landing pad block after the landingpad instruction and jump to there.
202void LandingPadInliningInfo::forwardResume(
203    ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
204  BasicBlock *Dest = getInnerResumeDest();
205  BasicBlock *Src = RI->getParent();
206
207  BranchInst::Create(Dest, Src);
208
209  // Update the PHIs in the destination. They were inserted in an order which
210  // makes this work.
211  addIncomingPHIValuesForInto(Src, Dest);
212
213  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
214  RI->eraseFromParent();
215}
216
217/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
218static Value *getParentPad(Value *EHPad) {
219  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
220    return FPI->getParentPad();
221  return cast<CatchSwitchInst>(EHPad)->getParentPad();
222}
223
224using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
225
226/// Helper for getUnwindDestToken that does the descendant-ward part of
227/// the search.
228static Value *getUnwindDestTokenHelper(Instruction *EHPad,
229                                       UnwindDestMemoTy &MemoMap) {
230  SmallVector<Instruction *, 8> Worklist(1, EHPad);
231
232  while (!Worklist.empty()) {
233    Instruction *CurrentPad = Worklist.pop_back_val();
234    // We only put pads on the worklist that aren't in the MemoMap.  When
235    // we find an unwind dest for a pad we may update its ancestors, but
236    // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
237    // so they should never get updated while queued on the worklist.
238    assert(!MemoMap.count(CurrentPad));
239    Value *UnwindDestToken = nullptr;
240    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
241      if (CatchSwitch->hasUnwindDest()) {
242        UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
243      } else {
244        // Catchswitch doesn't have a 'nounwind' variant, and one might be
245        // annotated as "unwinds to caller" when really it's nounwind (see
246        // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
247        // parent's unwind dest from this.  We can check its catchpads'
248        // descendants, since they might include a cleanuppad with an
249        // "unwinds to caller" cleanupret, which can be trusted.
250        for (auto HI = CatchSwitch->handler_begin(),
251                  HE = CatchSwitch->handler_end();
252             HI != HE && !UnwindDestToken; ++HI) {
253          BasicBlock *HandlerBlock = *HI;
254          auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
255          for (User *Child : CatchPad->users()) {
256            // Intentionally ignore invokes here -- since the catchswitch is
257            // marked "unwind to caller", it would be a verifier error if it
258            // contained an invoke which unwinds out of it, so any invoke we'd
259            // encounter must unwind to some child of the catch.
260            if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
261              continue;
262
263            Instruction *ChildPad = cast<Instruction>(Child);
264            auto Memo = MemoMap.find(ChildPad);
265            if (Memo == MemoMap.end()) {
266              // Haven't figured out this child pad yet; queue it.
267              Worklist.push_back(ChildPad);
268              continue;
269            }
270            // We've already checked this child, but might have found that
271            // it offers no proof either way.
272            Value *ChildUnwindDestToken = Memo->second;
273            if (!ChildUnwindDestToken)
274              continue;
275            // We already know the child's unwind dest, which can either
276            // be ConstantTokenNone to indicate unwind to caller, or can
277            // be another child of the catchpad.  Only the former indicates
278            // the unwind dest of the catchswitch.
279            if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
280              UnwindDestToken = ChildUnwindDestToken;
281              break;
282            }
283            assert(getParentPad(ChildUnwindDestToken) == CatchPad);
284          }
285        }
286      }
287    } else {
288      auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
289      for (User *U : CleanupPad->users()) {
290        if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
291          if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
292            UnwindDestToken = RetUnwindDest->getFirstNonPHI();
293          else
294            UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
295          break;
296        }
297        Value *ChildUnwindDestToken;
298        if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
299          ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
300        } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
301          Instruction *ChildPad = cast<Instruction>(U);
302          auto Memo = MemoMap.find(ChildPad);
303          if (Memo == MemoMap.end()) {
304            // Haven't resolved this child yet; queue it and keep searching.
305            Worklist.push_back(ChildPad);
306            continue;
307          }
308          // We've checked this child, but still need to ignore it if it
309          // had no proof either way.
310          ChildUnwindDestToken = Memo->second;
311          if (!ChildUnwindDestToken)
312            continue;
313        } else {
314          // Not a relevant user of the cleanuppad
315          continue;
316        }
317        // In a well-formed program, the child/invoke must either unwind to
318        // an(other) child of the cleanup, or exit the cleanup.  In the
319        // first case, continue searching.
320        if (isa<Instruction>(ChildUnwindDestToken) &&
321            getParentPad(ChildUnwindDestToken) == CleanupPad)
322          continue;
323        UnwindDestToken = ChildUnwindDestToken;
324        break;
325      }
326    }
327    // If we haven't found an unwind dest for CurrentPad, we may have queued its
328    // children, so move on to the next in the worklist.
329    if (!UnwindDestToken)
330      continue;
331
332    // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
333    // any ancestors of CurrentPad up to but not including UnwindDestToken's
334    // parent pad.  Record this in the memo map, and check to see if the
335    // original EHPad being queried is one of the ones exited.
336    Value *UnwindParent;
337    if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
338      UnwindParent = getParentPad(UnwindPad);
339    else
340      UnwindParent = nullptr;
341    bool ExitedOriginalPad = false;
342    for (Instruction *ExitedPad = CurrentPad;
343         ExitedPad && ExitedPad != UnwindParent;
344         ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
345      // Skip over catchpads since they just follow their catchswitches.
346      if (isa<CatchPadInst>(ExitedPad))
347        continue;
348      MemoMap[ExitedPad] = UnwindDestToken;
349      ExitedOriginalPad |= (ExitedPad == EHPad);
350    }
351
352    if (ExitedOriginalPad)
353      return UnwindDestToken;
354
355    // Continue the search.
356  }
357
358  // No definitive information is contained within this funclet.
359  return nullptr;
360}
361
362/// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
363/// return that pad instruction.  If it unwinds to caller, return
364/// ConstantTokenNone.  If it does not have a definitive unwind destination,
365/// return nullptr.
366///
367/// This routine gets invoked for calls in funclets in inlinees when inlining
368/// an invoke.  Since many funclets don't have calls inside them, it's queried
369/// on-demand rather than building a map of pads to unwind dests up front.
370/// Determining a funclet's unwind dest may require recursively searching its
371/// descendants, and also ancestors and cousins if the descendants don't provide
372/// an answer.  Since most funclets will have their unwind dest immediately
373/// available as the unwind dest of a catchswitch or cleanupret, this routine
374/// searches top-down from the given pad and then up. To avoid worst-case
375/// quadratic run-time given that approach, it uses a memo map to avoid
376/// re-processing funclet trees.  The callers that rewrite the IR as they go
377/// take advantage of this, for correctness, by checking/forcing rewritten
378/// pads' entries to match the original callee view.
379static Value *getUnwindDestToken(Instruction *EHPad,
380                                 UnwindDestMemoTy &MemoMap) {
381  // Catchpads unwind to the same place as their catchswitch;
382  // redirct any queries on catchpads so the code below can
383  // deal with just catchswitches and cleanuppads.
384  if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
385    EHPad = CPI->getCatchSwitch();
386
387  // Check if we've already determined the unwind dest for this pad.
388  auto Memo = MemoMap.find(EHPad);
389  if (Memo != MemoMap.end())
390    return Memo->second;
391
392  // Search EHPad and, if necessary, its descendants.
393  Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
394  assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
395  if (UnwindDestToken)
396    return UnwindDestToken;
397
398  // No information is available for this EHPad from itself or any of its
399  // descendants.  An unwind all the way out to a pad in the caller would
400  // need also to agree with the unwind dest of the parent funclet, so
401  // search up the chain to try to find a funclet with information.  Put
402  // null entries in the memo map to avoid re-processing as we go up.
403  MemoMap[EHPad] = nullptr;
404#ifndef NDEBUG
405  SmallPtrSet<Instruction *, 4> TempMemos;
406  TempMemos.insert(EHPad);
407#endif
408  Instruction *LastUselessPad = EHPad;
409  Value *AncestorToken;
410  for (AncestorToken = getParentPad(EHPad);
411       auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
412       AncestorToken = getParentPad(AncestorToken)) {
413    // Skip over catchpads since they just follow their catchswitches.
414    if (isa<CatchPadInst>(AncestorPad))
415      continue;
416    // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
417    // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
418    // call to getUnwindDestToken, that would mean that AncestorPad had no
419    // information in itself, its descendants, or its ancestors.  If that
420    // were the case, then we should also have recorded the lack of information
421    // for the descendant that we're coming from.  So assert that we don't
422    // find a null entry in the MemoMap for AncestorPad.
423    assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
424    auto AncestorMemo = MemoMap.find(AncestorPad);
425    if (AncestorMemo == MemoMap.end()) {
426      UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
427    } else {
428      UnwindDestToken = AncestorMemo->second;
429    }
430    if (UnwindDestToken)
431      break;
432    LastUselessPad = AncestorPad;
433    MemoMap[LastUselessPad] = nullptr;
434#ifndef NDEBUG
435    TempMemos.insert(LastUselessPad);
436#endif
437  }
438
439  // We know that getUnwindDestTokenHelper was called on LastUselessPad and
440  // returned nullptr (and likewise for EHPad and any of its ancestors up to
441  // LastUselessPad), so LastUselessPad has no information from below.  Since
442  // getUnwindDestTokenHelper must investigate all downward paths through
443  // no-information nodes to prove that a node has no information like this,
444  // and since any time it finds information it records it in the MemoMap for
445  // not just the immediately-containing funclet but also any ancestors also
446  // exited, it must be the case that, walking downward from LastUselessPad,
447  // visiting just those nodes which have not been mapped to an unwind dest
448  // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
449  // they are just used to keep getUnwindDestTokenHelper from repeating work),
450  // any node visited must have been exhaustively searched with no information
451  // for it found.
452  SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
453  while (!Worklist.empty()) {
454    Instruction *UselessPad = Worklist.pop_back_val();
455    auto Memo = MemoMap.find(UselessPad);
456    if (Memo != MemoMap.end() && Memo->second) {
457      // Here the name 'UselessPad' is a bit of a misnomer, because we've found
458      // that it is a funclet that does have information about unwinding to
459      // a particular destination; its parent was a useless pad.
460      // Since its parent has no information, the unwind edge must not escape
461      // the parent, and must target a sibling of this pad.  This local unwind
462      // gives us no information about EHPad.  Leave it and the subtree rooted
463      // at it alone.
464      assert(getParentPad(Memo->second) == getParentPad(UselessPad));
465      continue;
466    }
467    // We know we don't have information for UselesPad.  If it has an entry in
468    // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
469    // added on this invocation of getUnwindDestToken; if a previous invocation
470    // recorded nullptr, it would have had to prove that the ancestors of
471    // UselessPad, which include LastUselessPad, had no information, and that
472    // in turn would have required proving that the descendants of
473    // LastUselesPad, which include EHPad, have no information about
474    // LastUselessPad, which would imply that EHPad was mapped to nullptr in
475    // the MemoMap on that invocation, which isn't the case if we got here.
476    assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
477    // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
478    // information that we'd be contradicting by making a map entry for it
479    // (which is something that getUnwindDestTokenHelper must have proved for
480    // us to get here).  Just assert on is direct users here; the checks in
481    // this downward walk at its descendants will verify that they don't have
482    // any unwind edges that exit 'UselessPad' either (i.e. they either have no
483    // unwind edges or unwind to a sibling).
484    MemoMap[UselessPad] = UnwindDestToken;
485    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
486      assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
487      for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
488        auto *CatchPad = HandlerBlock->getFirstNonPHI();
489        for (User *U : CatchPad->users()) {
490          assert(
491              (!isa<InvokeInst>(U) ||
492               (getParentPad(
493                    cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
494                CatchPad)) &&
495              "Expected useless pad");
496          if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
497            Worklist.push_back(cast<Instruction>(U));
498        }
499      }
500    } else {
501      assert(isa<CleanupPadInst>(UselessPad));
502      for (User *U : UselessPad->users()) {
503        assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
504        assert((!isa<InvokeInst>(U) ||
505                (getParentPad(
506                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
507                 UselessPad)) &&
508               "Expected useless pad");
509        if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
510          Worklist.push_back(cast<Instruction>(U));
511      }
512    }
513  }
514
515  return UnwindDestToken;
516}
517
518/// When we inline a basic block into an invoke,
519/// we have to turn all of the calls that can throw into invokes.
520/// This function analyze BB to see if there are any calls, and if so,
521/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
522/// nodes in that block with the values specified in InvokeDestPHIValues.
523static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
524    BasicBlock *BB, BasicBlock *UnwindEdge,
525    UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
526  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
527    Instruction *I = &*BBI++;
528
529    // We only need to check for function calls: inlined invoke
530    // instructions require no special handling.
531    CallInst *CI = dyn_cast<CallInst>(I);
532
533    if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
534      continue;
535
536    // We do not need to (and in fact, cannot) convert possibly throwing calls
537    // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
538    // invokes.  The caller's "segment" of the deoptimization continuation
539    // attached to the newly inlined @llvm.experimental_deoptimize
540    // (resp. @llvm.experimental.guard) call should contain the exception
541    // handling logic, if any.
542    if (auto *F = CI->getCalledFunction())
543      if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
544          F->getIntrinsicID() == Intrinsic::experimental_guard)
545        continue;
546
547    if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
548      // This call is nested inside a funclet.  If that funclet has an unwind
549      // destination within the inlinee, then unwinding out of this call would
550      // be UB.  Rewriting this call to an invoke which targets the inlined
551      // invoke's unwind dest would give the call's parent funclet multiple
552      // unwind destinations, which is something that subsequent EH table
553      // generation can't handle and that the veirifer rejects.  So when we
554      // see such a call, leave it as a call.
555      auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
556      Value *UnwindDestToken =
557          getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
558      if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
559        continue;
560#ifndef NDEBUG
561      Instruction *MemoKey;
562      if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
563        MemoKey = CatchPad->getCatchSwitch();
564      else
565        MemoKey = FuncletPad;
566      assert(FuncletUnwindMap->count(MemoKey) &&
567             (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
568             "must get memoized to avoid confusing later searches");
569#endif // NDEBUG
570    }
571
572    changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
573    return BB;
574  }
575  return nullptr;
576}
577
578/// If we inlined an invoke site, we need to convert calls
579/// in the body of the inlined function into invokes.
580///
581/// II is the invoke instruction being inlined.  FirstNewBlock is the first
582/// block of the inlined code (the last block is the end of the function),
583/// and InlineCodeInfo is information about the code that got inlined.
584static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
585                                    ClonedCodeInfo &InlinedCodeInfo) {
586  BasicBlock *InvokeDest = II->getUnwindDest();
587
588  Function *Caller = FirstNewBlock->getParent();
589
590  // The inlined code is currently at the end of the function, scan from the
591  // start of the inlined code to its end, checking for stuff we need to
592  // rewrite.
593  LandingPadInliningInfo Invoke(II);
594
595  // Get all of the inlined landing pad instructions.
596  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
597  for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
598       I != E; ++I)
599    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
600      InlinedLPads.insert(II->getLandingPadInst());
601
602  // Append the clauses from the outer landing pad instruction into the inlined
603  // landing pad instructions.
604  LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
605  for (LandingPadInst *InlinedLPad : InlinedLPads) {
606    unsigned OuterNum = OuterLPad->getNumClauses();
607    InlinedLPad->reserveClauses(OuterNum);
608    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
609      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
610    if (OuterLPad->isCleanup())
611      InlinedLPad->setCleanup(true);
612  }
613
614  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
615       BB != E; ++BB) {
616    if (InlinedCodeInfo.ContainsCalls)
617      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
618              &*BB, Invoke.getOuterResumeDest()))
619        // Update any PHI nodes in the exceptional block to indicate that there
620        // is now a new entry in them.
621        Invoke.addIncomingPHIValuesFor(NewBB);
622
623    // Forward any resumes that are remaining here.
624    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
625      Invoke.forwardResume(RI, InlinedLPads);
626  }
627
628  // Now that everything is happy, we have one final detail.  The PHI nodes in
629  // the exception destination block still have entries due to the original
630  // invoke instruction. Eliminate these entries (which might even delete the
631  // PHI node) now.
632  InvokeDest->removePredecessor(II->getParent());
633}
634
635/// If we inlined an invoke site, we need to convert calls
636/// in the body of the inlined function into invokes.
637///
638/// II is the invoke instruction being inlined.  FirstNewBlock is the first
639/// block of the inlined code (the last block is the end of the function),
640/// and InlineCodeInfo is information about the code that got inlined.
641static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
642                               ClonedCodeInfo &InlinedCodeInfo) {
643  BasicBlock *UnwindDest = II->getUnwindDest();
644  Function *Caller = FirstNewBlock->getParent();
645
646  assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
647
648  // If there are PHI nodes in the unwind destination block, we need to keep
649  // track of which values came into them from the invoke before removing the
650  // edge from this block.
651  SmallVector<Value *, 8> UnwindDestPHIValues;
652  BasicBlock *InvokeBB = II->getParent();
653  for (Instruction &I : *UnwindDest) {
654    // Save the value to use for this edge.
655    PHINode *PHI = dyn_cast<PHINode>(&I);
656    if (!PHI)
657      break;
658    UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
659  }
660
661  // Add incoming-PHI values to the unwind destination block for the given basic
662  // block, using the values for the original invoke's source block.
663  auto UpdatePHINodes = [&](BasicBlock *Src) {
664    BasicBlock::iterator I = UnwindDest->begin();
665    for (Value *V : UnwindDestPHIValues) {
666      PHINode *PHI = cast<PHINode>(I);
667      PHI->addIncoming(V, Src);
668      ++I;
669    }
670  };
671
672  // This connects all the instructions which 'unwind to caller' to the invoke
673  // destination.
674  UnwindDestMemoTy FuncletUnwindMap;
675  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
676       BB != E; ++BB) {
677    if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
678      if (CRI->unwindsToCaller()) {
679        auto *CleanupPad = CRI->getCleanupPad();
680        CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
681        CRI->eraseFromParent();
682        UpdatePHINodes(&*BB);
683        // Finding a cleanupret with an unwind destination would confuse
684        // subsequent calls to getUnwindDestToken, so map the cleanuppad
685        // to short-circuit any such calls and recognize this as an "unwind
686        // to caller" cleanup.
687        assert(!FuncletUnwindMap.count(CleanupPad) ||
688               isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
689        FuncletUnwindMap[CleanupPad] =
690            ConstantTokenNone::get(Caller->getContext());
691      }
692    }
693
694    Instruction *I = BB->getFirstNonPHI();
695    if (!I->isEHPad())
696      continue;
697
698    Instruction *Replacement = nullptr;
699    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
700      if (CatchSwitch->unwindsToCaller()) {
701        Value *UnwindDestToken;
702        if (auto *ParentPad =
703                dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
704          // This catchswitch is nested inside another funclet.  If that
705          // funclet has an unwind destination within the inlinee, then
706          // unwinding out of this catchswitch would be UB.  Rewriting this
707          // catchswitch to unwind to the inlined invoke's unwind dest would
708          // give the parent funclet multiple unwind destinations, which is
709          // something that subsequent EH table generation can't handle and
710          // that the veirifer rejects.  So when we see such a call, leave it
711          // as "unwind to caller".
712          UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
713          if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
714            continue;
715        } else {
716          // This catchswitch has no parent to inherit constraints from, and
717          // none of its descendants can have an unwind edge that exits it and
718          // targets another funclet in the inlinee.  It may or may not have a
719          // descendant that definitively has an unwind to caller.  In either
720          // case, we'll have to assume that any unwinds out of it may need to
721          // be routed to the caller, so treat it as though it has a definitive
722          // unwind to caller.
723          UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
724        }
725        auto *NewCatchSwitch = CatchSwitchInst::Create(
726            CatchSwitch->getParentPad(), UnwindDest,
727            CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
728            CatchSwitch);
729        for (BasicBlock *PadBB : CatchSwitch->handlers())
730          NewCatchSwitch->addHandler(PadBB);
731        // Propagate info for the old catchswitch over to the new one in
732        // the unwind map.  This also serves to short-circuit any subsequent
733        // checks for the unwind dest of this catchswitch, which would get
734        // confused if they found the outer handler in the callee.
735        FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
736        Replacement = NewCatchSwitch;
737      }
738    } else if (!isa<FuncletPadInst>(I)) {
739      llvm_unreachable("unexpected EHPad!");
740    }
741
742    if (Replacement) {
743      Replacement->takeName(I);
744      I->replaceAllUsesWith(Replacement);
745      I->eraseFromParent();
746      UpdatePHINodes(&*BB);
747    }
748  }
749
750  if (InlinedCodeInfo.ContainsCalls)
751    for (Function::iterator BB = FirstNewBlock->getIterator(),
752                            E = Caller->end();
753         BB != E; ++BB)
754      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
755              &*BB, UnwindDest, &FuncletUnwindMap))
756        // Update any PHI nodes in the exceptional block to indicate that there
757        // is now a new entry in them.
758        UpdatePHINodes(NewBB);
759
760  // Now that everything is happy, we have one final detail.  The PHI nodes in
761  // the exception destination block still have entries due to the original
762  // invoke instruction. Eliminate these entries (which might even delete the
763  // PHI node) now.
764  UnwindDest->removePredecessor(InvokeBB);
765}
766
767/// When inlining a call site that has !llvm.mem.parallel_loop_access or
768/// llvm.access.group metadata, that metadata should be propagated to all
769/// memory-accessing cloned instructions.
770static void PropagateParallelLoopAccessMetadata(CallSite CS,
771                                                ValueToValueMapTy &VMap) {
772  MDNode *M =
773    CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
774  MDNode *CallAccessGroup =
775      CS.getInstruction()->getMetadata(LLVMContext::MD_access_group);
776  if (!M && !CallAccessGroup)
777    return;
778
779  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
780       VMI != VMIE; ++VMI) {
781    if (!VMI->second)
782      continue;
783
784    Instruction *NI = dyn_cast<Instruction>(VMI->second);
785    if (!NI)
786      continue;
787
788    if (M) {
789      if (MDNode *PM =
790              NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
791        M = MDNode::concatenate(PM, M);
792      NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
793      } else if (NI->mayReadOrWriteMemory()) {
794        NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
795      }
796    }
797
798    if (NI->mayReadOrWriteMemory()) {
799      MDNode *UnitedAccGroups = uniteAccessGroups(
800          NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup);
801      NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups);
802    }
803  }
804}
805
806/// When inlining a function that contains noalias scope metadata,
807/// this metadata needs to be cloned so that the inlined blocks
808/// have different "unique scopes" at every call site. Were this not done, then
809/// aliasing scopes from a function inlined into a caller multiple times could
810/// not be differentiated (and this would lead to miscompiles because the
811/// non-aliasing property communicated by the metadata could have
812/// call-site-specific control dependencies).
813static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
814  const Function *CalledFunc = CS.getCalledFunction();
815  SetVector<const MDNode *> MD;
816
817  // Note: We could only clone the metadata if it is already used in the
818  // caller. I'm omitting that check here because it might confuse
819  // inter-procedural alias analysis passes. We can revisit this if it becomes
820  // an efficiency or overhead problem.
821
822  for (const BasicBlock &I : *CalledFunc)
823    for (const Instruction &J : I) {
824      if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
825        MD.insert(M);
826      if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
827        MD.insert(M);
828    }
829
830  if (MD.empty())
831    return;
832
833  // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
834  // the set.
835  SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
836  while (!Queue.empty()) {
837    const MDNode *M = cast<MDNode>(Queue.pop_back_val());
838    for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
839      if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
840        if (MD.insert(M1))
841          Queue.push_back(M1);
842  }
843
844  // Now we have a complete set of all metadata in the chains used to specify
845  // the noalias scopes and the lists of those scopes.
846  SmallVector<TempMDTuple, 16> DummyNodes;
847  DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
848  for (const MDNode *I : MD) {
849    DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
850    MDMap[I].reset(DummyNodes.back().get());
851  }
852
853  // Create new metadata nodes to replace the dummy nodes, replacing old
854  // metadata references with either a dummy node or an already-created new
855  // node.
856  for (const MDNode *I : MD) {
857    SmallVector<Metadata *, 4> NewOps;
858    for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
859      const Metadata *V = I->getOperand(i);
860      if (const MDNode *M = dyn_cast<MDNode>(V))
861        NewOps.push_back(MDMap[M]);
862      else
863        NewOps.push_back(const_cast<Metadata *>(V));
864    }
865
866    MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
867    MDTuple *TempM = cast<MDTuple>(MDMap[I]);
868    assert(TempM->isTemporary() && "Expected temporary node");
869
870    TempM->replaceAllUsesWith(NewM);
871  }
872
873  // Now replace the metadata in the new inlined instructions with the
874  // repacements from the map.
875  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
876       VMI != VMIE; ++VMI) {
877    if (!VMI->second)
878      continue;
879
880    Instruction *NI = dyn_cast<Instruction>(VMI->second);
881    if (!NI)
882      continue;
883
884    if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
885      MDNode *NewMD = MDMap[M];
886      // If the call site also had alias scope metadata (a list of scopes to
887      // which instructions inside it might belong), propagate those scopes to
888      // the inlined instructions.
889      if (MDNode *CSM =
890              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
891        NewMD = MDNode::concatenate(NewMD, CSM);
892      NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
893    } else if (NI->mayReadOrWriteMemory()) {
894      if (MDNode *M =
895              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
896        NI->setMetadata(LLVMContext::MD_alias_scope, M);
897    }
898
899    if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
900      MDNode *NewMD = MDMap[M];
901      // If the call site also had noalias metadata (a list of scopes with
902      // which instructions inside it don't alias), propagate those scopes to
903      // the inlined instructions.
904      if (MDNode *CSM =
905              CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
906        NewMD = MDNode::concatenate(NewMD, CSM);
907      NI->setMetadata(LLVMContext::MD_noalias, NewMD);
908    } else if (NI->mayReadOrWriteMemory()) {
909      if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
910        NI->setMetadata(LLVMContext::MD_noalias, M);
911    }
912  }
913}
914
915/// If the inlined function has noalias arguments,
916/// then add new alias scopes for each noalias argument, tag the mapped noalias
917/// parameters with noalias metadata specifying the new scope, and tag all
918/// non-derived loads, stores and memory intrinsics with the new alias scopes.
919static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
920                                  const DataLayout &DL, AAResults *CalleeAAR) {
921  if (!EnableNoAliasConversion)
922    return;
923
924  const Function *CalledFunc = CS.getCalledFunction();
925  SmallVector<const Argument *, 4> NoAliasArgs;
926
927  for (const Argument &Arg : CalledFunc->args())
928    if (Arg.hasNoAliasAttr() && !Arg.use_empty())
929      NoAliasArgs.push_back(&Arg);
930
931  if (NoAliasArgs.empty())
932    return;
933
934  // To do a good job, if a noalias variable is captured, we need to know if
935  // the capture point dominates the particular use we're considering.
936  DominatorTree DT;
937  DT.recalculate(const_cast<Function&>(*CalledFunc));
938
939  // noalias indicates that pointer values based on the argument do not alias
940  // pointer values which are not based on it. So we add a new "scope" for each
941  // noalias function argument. Accesses using pointers based on that argument
942  // become part of that alias scope, accesses using pointers not based on that
943  // argument are tagged as noalias with that scope.
944
945  DenseMap<const Argument *, MDNode *> NewScopes;
946  MDBuilder MDB(CalledFunc->getContext());
947
948  // Create a new scope domain for this function.
949  MDNode *NewDomain =
950    MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
951  for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
952    const Argument *A = NoAliasArgs[i];
953
954    std::string Name = CalledFunc->getName();
955    if (A->hasName()) {
956      Name += ": %";
957      Name += A->getName();
958    } else {
959      Name += ": argument ";
960      Name += utostr(i);
961    }
962
963    // Note: We always create a new anonymous root here. This is true regardless
964    // of the linkage of the callee because the aliasing "scope" is not just a
965    // property of the callee, but also all control dependencies in the caller.
966    MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
967    NewScopes.insert(std::make_pair(A, NewScope));
968  }
969
970  // Iterate over all new instructions in the map; for all memory-access
971  // instructions, add the alias scope metadata.
972  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
973       VMI != VMIE; ++VMI) {
974    if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
975      if (!VMI->second)
976        continue;
977
978      Instruction *NI = dyn_cast<Instruction>(VMI->second);
979      if (!NI)
980        continue;
981
982      bool IsArgMemOnlyCall = false, IsFuncCall = false;
983      SmallVector<const Value *, 2> PtrArgs;
984
985      if (const LoadInst *LI = dyn_cast<LoadInst>(I))
986        PtrArgs.push_back(LI->getPointerOperand());
987      else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
988        PtrArgs.push_back(SI->getPointerOperand());
989      else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
990        PtrArgs.push_back(VAAI->getPointerOperand());
991      else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
992        PtrArgs.push_back(CXI->getPointerOperand());
993      else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
994        PtrArgs.push_back(RMWI->getPointerOperand());
995      else if (const auto *Call = dyn_cast<CallBase>(I)) {
996        // If we know that the call does not access memory, then we'll still
997        // know that about the inlined clone of this call site, and we don't
998        // need to add metadata.
999        if (Call->doesNotAccessMemory())
1000          continue;
1001
1002        IsFuncCall = true;
1003        if (CalleeAAR) {
1004          FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1005          if (MRB == FMRB_OnlyAccessesArgumentPointees ||
1006              MRB == FMRB_OnlyReadsArgumentPointees)
1007            IsArgMemOnlyCall = true;
1008        }
1009
1010        for (Value *Arg : Call->args()) {
1011          // We need to check the underlying objects of all arguments, not just
1012          // the pointer arguments, because we might be passing pointers as
1013          // integers, etc.
1014          // However, if we know that the call only accesses pointer arguments,
1015          // then we only need to check the pointer arguments.
1016          if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1017            continue;
1018
1019          PtrArgs.push_back(Arg);
1020        }
1021      }
1022
1023      // If we found no pointers, then this instruction is not suitable for
1024      // pairing with an instruction to receive aliasing metadata.
1025      // However, if this is a call, this we might just alias with none of the
1026      // noalias arguments.
1027      if (PtrArgs.empty() && !IsFuncCall)
1028        continue;
1029
1030      // It is possible that there is only one underlying object, but you
1031      // need to go through several PHIs to see it, and thus could be
1032      // repeated in the Objects list.
1033      SmallPtrSet<const Value *, 4> ObjSet;
1034      SmallVector<Metadata *, 4> Scopes, NoAliases;
1035
1036      SmallSetVector<const Argument *, 4> NAPtrArgs;
1037      for (const Value *V : PtrArgs) {
1038        SmallVector<const Value *, 4> Objects;
1039        GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr);
1040
1041        for (const Value *O : Objects)
1042          ObjSet.insert(O);
1043      }
1044
1045      // Figure out if we're derived from anything that is not a noalias
1046      // argument.
1047      bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1048      for (const Value *V : ObjSet) {
1049        // Is this value a constant that cannot be derived from any pointer
1050        // value (we need to exclude constant expressions, for example, that
1051        // are formed from arithmetic on global symbols).
1052        bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1053                             isa<ConstantPointerNull>(V) ||
1054                             isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1055        if (IsNonPtrConst)
1056          continue;
1057
1058        // If this is anything other than a noalias argument, then we cannot
1059        // completely describe the aliasing properties using alias.scope
1060        // metadata (and, thus, won't add any).
1061        if (const Argument *A = dyn_cast<Argument>(V)) {
1062          if (!A->hasNoAliasAttr())
1063            UsesAliasingPtr = true;
1064        } else {
1065          UsesAliasingPtr = true;
1066        }
1067
1068        // If this is not some identified function-local object (which cannot
1069        // directly alias a noalias argument), or some other argument (which,
1070        // by definition, also cannot alias a noalias argument), then we could
1071        // alias a noalias argument that has been captured).
1072        if (!isa<Argument>(V) &&
1073            !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1074          CanDeriveViaCapture = true;
1075      }
1076
1077      // A function call can always get captured noalias pointers (via other
1078      // parameters, globals, etc.).
1079      if (IsFuncCall && !IsArgMemOnlyCall)
1080        CanDeriveViaCapture = true;
1081
1082      // First, we want to figure out all of the sets with which we definitely
1083      // don't alias. Iterate over all noalias set, and add those for which:
1084      //   1. The noalias argument is not in the set of objects from which we
1085      //      definitely derive.
1086      //   2. The noalias argument has not yet been captured.
1087      // An arbitrary function that might load pointers could see captured
1088      // noalias arguments via other noalias arguments or globals, and so we
1089      // must always check for prior capture.
1090      for (const Argument *A : NoAliasArgs) {
1091        if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1092                                 // It might be tempting to skip the
1093                                 // PointerMayBeCapturedBefore check if
1094                                 // A->hasNoCaptureAttr() is true, but this is
1095                                 // incorrect because nocapture only guarantees
1096                                 // that no copies outlive the function, not
1097                                 // that the value cannot be locally captured.
1098                                 !PointerMayBeCapturedBefore(A,
1099                                   /* ReturnCaptures */ false,
1100                                   /* StoreCaptures */ false, I, &DT)))
1101          NoAliases.push_back(NewScopes[A]);
1102      }
1103
1104      if (!NoAliases.empty())
1105        NI->setMetadata(LLVMContext::MD_noalias,
1106                        MDNode::concatenate(
1107                            NI->getMetadata(LLVMContext::MD_noalias),
1108                            MDNode::get(CalledFunc->getContext(), NoAliases)));
1109
1110      // Next, we want to figure out all of the sets to which we might belong.
1111      // We might belong to a set if the noalias argument is in the set of
1112      // underlying objects. If there is some non-noalias argument in our list
1113      // of underlying objects, then we cannot add a scope because the fact
1114      // that some access does not alias with any set of our noalias arguments
1115      // cannot itself guarantee that it does not alias with this access
1116      // (because there is some pointer of unknown origin involved and the
1117      // other access might also depend on this pointer). We also cannot add
1118      // scopes to arbitrary functions unless we know they don't access any
1119      // non-parameter pointer-values.
1120      bool CanAddScopes = !UsesAliasingPtr;
1121      if (CanAddScopes && IsFuncCall)
1122        CanAddScopes = IsArgMemOnlyCall;
1123
1124      if (CanAddScopes)
1125        for (const Argument *A : NoAliasArgs) {
1126          if (ObjSet.count(A))
1127            Scopes.push_back(NewScopes[A]);
1128        }
1129
1130      if (!Scopes.empty())
1131        NI->setMetadata(
1132            LLVMContext::MD_alias_scope,
1133            MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1134                                MDNode::get(CalledFunc->getContext(), Scopes)));
1135    }
1136  }
1137}
1138
1139/// If the inlined function has non-byval align arguments, then
1140/// add @llvm.assume-based alignment assumptions to preserve this information.
1141static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1142  if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1143    return;
1144
1145  AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller());
1146  auto &DL = CS.getCaller()->getParent()->getDataLayout();
1147
1148  // To avoid inserting redundant assumptions, we should check for assumptions
1149  // already in the caller. To do this, we might need a DT of the caller.
1150  DominatorTree DT;
1151  bool DTCalculated = false;
1152
1153  Function *CalledFunc = CS.getCalledFunction();
1154  for (Argument &Arg : CalledFunc->args()) {
1155    unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1156    if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) {
1157      if (!DTCalculated) {
1158        DT.recalculate(*CS.getCaller());
1159        DTCalculated = true;
1160      }
1161
1162      // If we can already prove the asserted alignment in the context of the
1163      // caller, then don't bother inserting the assumption.
1164      Value *ArgVal = CS.getArgument(Arg.getArgNo());
1165      if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align)
1166        continue;
1167
1168      CallInst *NewAsmp = IRBuilder<>(CS.getInstruction())
1169                              .CreateAlignmentAssumption(DL, ArgVal, Align);
1170      AC->registerAssumption(NewAsmp);
1171    }
1172  }
1173}
1174
1175/// Once we have cloned code over from a callee into the caller,
1176/// update the specified callgraph to reflect the changes we made.
1177/// Note that it's possible that not all code was copied over, so only
1178/// some edges of the callgraph may remain.
1179static void UpdateCallGraphAfterInlining(CallSite CS,
1180                                         Function::iterator FirstNewBlock,
1181                                         ValueToValueMapTy &VMap,
1182                                         InlineFunctionInfo &IFI) {
1183  CallGraph &CG = *IFI.CG;
1184  const Function *Caller = CS.getCaller();
1185  const Function *Callee = CS.getCalledFunction();
1186  CallGraphNode *CalleeNode = CG[Callee];
1187  CallGraphNode *CallerNode = CG[Caller];
1188
1189  // Since we inlined some uninlined call sites in the callee into the caller,
1190  // add edges from the caller to all of the callees of the callee.
1191  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1192
1193  // Consider the case where CalleeNode == CallerNode.
1194  CallGraphNode::CalledFunctionsVector CallCache;
1195  if (CalleeNode == CallerNode) {
1196    CallCache.assign(I, E);
1197    I = CallCache.begin();
1198    E = CallCache.end();
1199  }
1200
1201  for (; I != E; ++I) {
1202    const Value *OrigCall = I->first;
1203
1204    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1205    // Only copy the edge if the call was inlined!
1206    if (VMI == VMap.end() || VMI->second == nullptr)
1207      continue;
1208
1209    // If the call was inlined, but then constant folded, there is no edge to
1210    // add.  Check for this case.
1211    auto *NewCall = dyn_cast<CallBase>(VMI->second);
1212    if (!NewCall)
1213      continue;
1214
1215    // We do not treat intrinsic calls like real function calls because we
1216    // expect them to become inline code; do not add an edge for an intrinsic.
1217    if (NewCall->getCalledFunction() &&
1218        NewCall->getCalledFunction()->isIntrinsic())
1219      continue;
1220
1221    // Remember that this call site got inlined for the client of
1222    // InlineFunction.
1223    IFI.InlinedCalls.push_back(NewCall);
1224
1225    // It's possible that inlining the callsite will cause it to go from an
1226    // indirect to a direct call by resolving a function pointer.  If this
1227    // happens, set the callee of the new call site to a more precise
1228    // destination.  This can also happen if the call graph node of the caller
1229    // was just unnecessarily imprecise.
1230    if (!I->second->getFunction())
1231      if (Function *F = NewCall->getCalledFunction()) {
1232        // Indirect call site resolved to direct call.
1233        CallerNode->addCalledFunction(NewCall, CG[F]);
1234
1235        continue;
1236      }
1237
1238    CallerNode->addCalledFunction(NewCall, I->second);
1239  }
1240
1241  // Update the call graph by deleting the edge from Callee to Caller.  We must
1242  // do this after the loop above in case Caller and Callee are the same.
1243  CallerNode->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction()));
1244}
1245
1246static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1247                                    BasicBlock *InsertBlock,
1248                                    InlineFunctionInfo &IFI) {
1249  Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1250  IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1251
1252  Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1253
1254  // Always generate a memcpy of alignment 1 here because we don't know
1255  // the alignment of the src pointer.  Other optimizations can infer
1256  // better alignment.
1257  Builder.CreateMemCpy(Dst, /*DstAlign*/ Align::None(), Src,
1258                       /*SrcAlign*/ Align::None(), Size);
1259}
1260
1261/// When inlining a call site that has a byval argument,
1262/// we have to make the implicit memcpy explicit by adding it.
1263static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1264                                  const Function *CalledFunc,
1265                                  InlineFunctionInfo &IFI,
1266                                  unsigned ByValAlignment) {
1267  PointerType *ArgTy = cast<PointerType>(Arg->getType());
1268  Type *AggTy = ArgTy->getElementType();
1269
1270  Function *Caller = TheCall->getFunction();
1271  const DataLayout &DL = Caller->getParent()->getDataLayout();
1272
1273  // If the called function is readonly, then it could not mutate the caller's
1274  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1275  // temporary.
1276  if (CalledFunc->onlyReadsMemory()) {
1277    // If the byval argument has a specified alignment that is greater than the
1278    // passed in pointer, then we either have to round up the input pointer or
1279    // give up on this transformation.
1280    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1281      return Arg;
1282
1283    AssumptionCache *AC =
1284        IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
1285
1286    // If the pointer is already known to be sufficiently aligned, or if we can
1287    // round it up to a larger alignment, then we don't need a temporary.
1288    if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
1289        ByValAlignment)
1290      return Arg;
1291
1292    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1293    // for code quality, but rarely happens and is required for correctness.
1294  }
1295
1296  // Create the alloca.  If we have DataLayout, use nice alignment.
1297  Align Alignment(DL.getPrefTypeAlignment(AggTy));
1298
1299  // If the byval had an alignment specified, we *must* use at least that
1300  // alignment, as it is required by the byval argument (and uses of the
1301  // pointer inside the callee).
1302  Alignment = max(Alignment, MaybeAlign(ByValAlignment));
1303
1304  Value *NewAlloca =
1305      new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
1306                     Arg->getName(), &*Caller->begin()->begin());
1307  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1308
1309  // Uses of the argument in the function should use our new alloca
1310  // instead.
1311  return NewAlloca;
1312}
1313
1314// Check whether this Value is used by a lifetime intrinsic.
1315static bool isUsedByLifetimeMarker(Value *V) {
1316  for (User *U : V->users())
1317    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1318      if (II->isLifetimeStartOrEnd())
1319        return true;
1320  return false;
1321}
1322
1323// Check whether the given alloca already has
1324// lifetime.start or lifetime.end intrinsics.
1325static bool hasLifetimeMarkers(AllocaInst *AI) {
1326  Type *Ty = AI->getType();
1327  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1328                                       Ty->getPointerAddressSpace());
1329  if (Ty == Int8PtrTy)
1330    return isUsedByLifetimeMarker(AI);
1331
1332  // Do a scan to find all the casts to i8*.
1333  for (User *U : AI->users()) {
1334    if (U->getType() != Int8PtrTy) continue;
1335    if (U->stripPointerCasts() != AI) continue;
1336    if (isUsedByLifetimeMarker(U))
1337      return true;
1338  }
1339  return false;
1340}
1341
1342/// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1343/// block. Allocas used in inalloca calls and allocas of dynamic array size
1344/// cannot be static.
1345static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1346  return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1347}
1348
1349/// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1350/// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1351static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1352                               LLVMContext &Ctx,
1353                               DenseMap<const MDNode *, MDNode *> &IANodes) {
1354  auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1355  return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(),
1356                       IA);
1357}
1358
1359/// Returns the LoopID for a loop which has has been cloned from another
1360/// function for inlining with the new inlined-at start and end locs.
1361static MDNode *inlineLoopID(const MDNode *OrigLoopId, DILocation *InlinedAt,
1362                            LLVMContext &Ctx,
1363                            DenseMap<const MDNode *, MDNode *> &IANodes) {
1364  assert(OrigLoopId && OrigLoopId->getNumOperands() > 0 &&
1365         "Loop ID needs at least one operand");
1366  assert(OrigLoopId && OrigLoopId->getOperand(0).get() == OrigLoopId &&
1367         "Loop ID should refer to itself");
1368
1369  // Save space for the self-referential LoopID.
1370  SmallVector<Metadata *, 4> MDs = {nullptr};
1371
1372  for (unsigned i = 1; i < OrigLoopId->getNumOperands(); ++i) {
1373    Metadata *MD = OrigLoopId->getOperand(i);
1374    // Update the DILocations to encode the inlined-at metadata.
1375    if (DILocation *DL = dyn_cast<DILocation>(MD))
1376      MDs.push_back(inlineDebugLoc(DL, InlinedAt, Ctx, IANodes));
1377    else
1378      MDs.push_back(MD);
1379  }
1380
1381  MDNode *NewLoopID = MDNode::getDistinct(Ctx, MDs);
1382  // Insert the self-referential LoopID.
1383  NewLoopID->replaceOperandWith(0, NewLoopID);
1384  return NewLoopID;
1385}
1386
1387/// Update inlined instructions' line numbers to
1388/// to encode location where these instructions are inlined.
1389static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1390                             Instruction *TheCall, bool CalleeHasDebugInfo) {
1391  const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1392  if (!TheCallDL)
1393    return;
1394
1395  auto &Ctx = Fn->getContext();
1396  DILocation *InlinedAtNode = TheCallDL;
1397
1398  // Create a unique call site, not to be confused with any other call from the
1399  // same location.
1400  InlinedAtNode = DILocation::getDistinct(
1401      Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1402      InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1403
1404  // Cache the inlined-at nodes as they're built so they are reused, without
1405  // this every instruction's inlined-at chain would become distinct from each
1406  // other.
1407  DenseMap<const MDNode *, MDNode *> IANodes;
1408
1409  // Check if we are not generating inline line tables and want to use
1410  // the call site location instead.
1411  bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1412
1413  for (; FI != Fn->end(); ++FI) {
1414    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1415         BI != BE; ++BI) {
1416      // Loop metadata needs to be updated so that the start and end locs
1417      // reference inlined-at locations.
1418      if (MDNode *LoopID = BI->getMetadata(LLVMContext::MD_loop)) {
1419        MDNode *NewLoopID =
1420            inlineLoopID(LoopID, InlinedAtNode, BI->getContext(), IANodes);
1421        BI->setMetadata(LLVMContext::MD_loop, NewLoopID);
1422      }
1423
1424      if (!NoInlineLineTables)
1425        if (DebugLoc DL = BI->getDebugLoc()) {
1426          DebugLoc IDL =
1427              inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1428          BI->setDebugLoc(IDL);
1429          continue;
1430        }
1431
1432      if (CalleeHasDebugInfo && !NoInlineLineTables)
1433        continue;
1434
1435      // If the inlined instruction has no line number, or if inline info
1436      // is not being generated, make it look as if it originates from the call
1437      // location. This is important for ((__always_inline, __nodebug__))
1438      // functions which must use caller location for all instructions in their
1439      // function body.
1440
1441      // Don't update static allocas, as they may get moved later.
1442      if (auto *AI = dyn_cast<AllocaInst>(BI))
1443        if (allocaWouldBeStaticInEntry(AI))
1444          continue;
1445
1446      BI->setDebugLoc(TheCallDL);
1447    }
1448
1449    // Remove debug info intrinsics if we're not keeping inline info.
1450    if (NoInlineLineTables) {
1451      BasicBlock::iterator BI = FI->begin();
1452      while (BI != FI->end()) {
1453        if (isa<DbgInfoIntrinsic>(BI)) {
1454          BI = BI->eraseFromParent();
1455          continue;
1456        }
1457        ++BI;
1458      }
1459    }
1460
1461  }
1462}
1463
1464/// Update the block frequencies of the caller after a callee has been inlined.
1465///
1466/// Each block cloned into the caller has its block frequency scaled by the
1467/// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1468/// callee's entry block gets the same frequency as the callsite block and the
1469/// relative frequencies of all cloned blocks remain the same after cloning.
1470static void updateCallerBFI(BasicBlock *CallSiteBlock,
1471                            const ValueToValueMapTy &VMap,
1472                            BlockFrequencyInfo *CallerBFI,
1473                            BlockFrequencyInfo *CalleeBFI,
1474                            const BasicBlock &CalleeEntryBlock) {
1475  SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1476  for (auto Entry : VMap) {
1477    if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1478      continue;
1479    auto *OrigBB = cast<BasicBlock>(Entry.first);
1480    auto *ClonedBB = cast<BasicBlock>(Entry.second);
1481    uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1482    if (!ClonedBBs.insert(ClonedBB).second) {
1483      // Multiple blocks in the callee might get mapped to one cloned block in
1484      // the caller since we prune the callee as we clone it. When that happens,
1485      // we want to use the maximum among the original blocks' frequencies.
1486      uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1487      if (NewFreq > Freq)
1488        Freq = NewFreq;
1489    }
1490    CallerBFI->setBlockFreq(ClonedBB, Freq);
1491  }
1492  BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1493  CallerBFI->setBlockFreqAndScale(
1494      EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1495      ClonedBBs);
1496}
1497
1498/// Update the branch metadata for cloned call instructions.
1499static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1500                              const ProfileCount &CalleeEntryCount,
1501                              const Instruction *TheCall,
1502                              ProfileSummaryInfo *PSI,
1503                              BlockFrequencyInfo *CallerBFI) {
1504  if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1505      CalleeEntryCount.getCount() < 1)
1506    return;
1507  auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1508  int64_t CallCount =
1509      std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
1510               CalleeEntryCount.getCount());
1511  updateProfileCallee(Callee, -CallCount, &VMap);
1512}
1513
1514void llvm::updateProfileCallee(
1515    Function *Callee, int64_t entryDelta,
1516    const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1517  auto CalleeCount = Callee->getEntryCount();
1518  if (!CalleeCount.hasValue())
1519    return;
1520
1521  uint64_t priorEntryCount = CalleeCount.getCount();
1522  uint64_t newEntryCount;
1523
1524  // Since CallSiteCount is an estimate, it could exceed the original callee
1525  // count and has to be set to 0 so guard against underflow.
1526  if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
1527    newEntryCount = 0;
1528  else
1529    newEntryCount = priorEntryCount + entryDelta;
1530
1531  // During inlining ?
1532  if (VMap) {
1533    uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
1534    for (auto Entry : *VMap)
1535      if (isa<CallInst>(Entry.first))
1536        if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1537          CI->updateProfWeight(cloneEntryCount, priorEntryCount);
1538  }
1539
1540  if (entryDelta) {
1541    Callee->setEntryCount(newEntryCount);
1542
1543    for (BasicBlock &BB : *Callee)
1544      // No need to update the callsite if it is pruned during inlining.
1545      if (!VMap || VMap->count(&BB))
1546        for (Instruction &I : BB)
1547          if (CallInst *CI = dyn_cast<CallInst>(&I))
1548            CI->updateProfWeight(newEntryCount, priorEntryCount);
1549  }
1550}
1551
1552/// This function inlines the called function into the basic block of the
1553/// caller. This returns false if it is not possible to inline this call.
1554/// The program is still in a well defined state if this occurs though.
1555///
1556/// Note that this only does one level of inlining.  For example, if the
1557/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1558/// exists in the instruction stream.  Similarly this will inline a recursive
1559/// function by one level.
1560llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1561                                        AAResults *CalleeAAR,
1562                                        bool InsertLifetime,
1563                                        Function *ForwardVarArgsTo) {
1564  Instruction *TheCall = CS.getInstruction();
1565  assert(TheCall->getParent() && TheCall->getFunction()
1566         && "Instruction not in function!");
1567
1568  // FIXME: we don't inline callbr yet.
1569  if (isa<CallBrInst>(TheCall))
1570    return false;
1571
1572  // If IFI has any state in it, zap it before we fill it in.
1573  IFI.reset();
1574
1575  Function *CalledFunc = CS.getCalledFunction();
1576  if (!CalledFunc ||               // Can't inline external function or indirect
1577      CalledFunc->isDeclaration()) // call!
1578    return "external or indirect";
1579
1580  // The inliner does not know how to inline through calls with operand bundles
1581  // in general ...
1582  if (CS.hasOperandBundles()) {
1583    for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1584      uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1585      // ... but it knows how to inline through "deopt" operand bundles ...
1586      if (Tag == LLVMContext::OB_deopt)
1587        continue;
1588      // ... and "funclet" operand bundles.
1589      if (Tag == LLVMContext::OB_funclet)
1590        continue;
1591
1592      return "unsupported operand bundle";
1593    }
1594  }
1595
1596  // If the call to the callee cannot throw, set the 'nounwind' flag on any
1597  // calls that we inline.
1598  bool MarkNoUnwind = CS.doesNotThrow();
1599
1600  BasicBlock *OrigBB = TheCall->getParent();
1601  Function *Caller = OrigBB->getParent();
1602
1603  // GC poses two hazards to inlining, which only occur when the callee has GC:
1604  //  1. If the caller has no GC, then the callee's GC must be propagated to the
1605  //     caller.
1606  //  2. If the caller has a differing GC, it is invalid to inline.
1607  if (CalledFunc->hasGC()) {
1608    if (!Caller->hasGC())
1609      Caller->setGC(CalledFunc->getGC());
1610    else if (CalledFunc->getGC() != Caller->getGC())
1611      return "incompatible GC";
1612  }
1613
1614  // Get the personality function from the callee if it contains a landing pad.
1615  Constant *CalledPersonality =
1616      CalledFunc->hasPersonalityFn()
1617          ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1618          : nullptr;
1619
1620  // Find the personality function used by the landing pads of the caller. If it
1621  // exists, then check to see that it matches the personality function used in
1622  // the callee.
1623  Constant *CallerPersonality =
1624      Caller->hasPersonalityFn()
1625          ? Caller->getPersonalityFn()->stripPointerCasts()
1626          : nullptr;
1627  if (CalledPersonality) {
1628    if (!CallerPersonality)
1629      Caller->setPersonalityFn(CalledPersonality);
1630    // If the personality functions match, then we can perform the
1631    // inlining. Otherwise, we can't inline.
1632    // TODO: This isn't 100% true. Some personality functions are proper
1633    //       supersets of others and can be used in place of the other.
1634    else if (CalledPersonality != CallerPersonality)
1635      return "incompatible personality";
1636  }
1637
1638  // We need to figure out which funclet the callsite was in so that we may
1639  // properly nest the callee.
1640  Instruction *CallSiteEHPad = nullptr;
1641  if (CallerPersonality) {
1642    EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1643    if (isScopedEHPersonality(Personality)) {
1644      Optional<OperandBundleUse> ParentFunclet =
1645          CS.getOperandBundle(LLVMContext::OB_funclet);
1646      if (ParentFunclet)
1647        CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1648
1649      // OK, the inlining site is legal.  What about the target function?
1650
1651      if (CallSiteEHPad) {
1652        if (Personality == EHPersonality::MSVC_CXX) {
1653          // The MSVC personality cannot tolerate catches getting inlined into
1654          // cleanup funclets.
1655          if (isa<CleanupPadInst>(CallSiteEHPad)) {
1656            // Ok, the call site is within a cleanuppad.  Let's check the callee
1657            // for catchpads.
1658            for (const BasicBlock &CalledBB : *CalledFunc) {
1659              if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1660                return "catch in cleanup funclet";
1661            }
1662          }
1663        } else if (isAsynchronousEHPersonality(Personality)) {
1664          // SEH is even less tolerant, there may not be any sort of exceptional
1665          // funclet in the callee.
1666          for (const BasicBlock &CalledBB : *CalledFunc) {
1667            if (CalledBB.isEHPad())
1668              return "SEH in cleanup funclet";
1669          }
1670        }
1671      }
1672    }
1673  }
1674
1675  // Determine if we are dealing with a call in an EHPad which does not unwind
1676  // to caller.
1677  bool EHPadForCallUnwindsLocally = false;
1678  if (CallSiteEHPad && CS.isCall()) {
1679    UnwindDestMemoTy FuncletUnwindMap;
1680    Value *CallSiteUnwindDestToken =
1681        getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1682
1683    EHPadForCallUnwindsLocally =
1684        CallSiteUnwindDestToken &&
1685        !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1686  }
1687
1688  // Get an iterator to the last basic block in the function, which will have
1689  // the new function inlined after it.
1690  Function::iterator LastBlock = --Caller->end();
1691
1692  // Make sure to capture all of the return instructions from the cloned
1693  // function.
1694  SmallVector<ReturnInst*, 8> Returns;
1695  ClonedCodeInfo InlinedFunctionInfo;
1696  Function::iterator FirstNewBlock;
1697
1698  { // Scope to destroy VMap after cloning.
1699    ValueToValueMapTy VMap;
1700    // Keep a list of pair (dst, src) to emit byval initializations.
1701    SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1702
1703    auto &DL = Caller->getParent()->getDataLayout();
1704
1705    // Calculate the vector of arguments to pass into the function cloner, which
1706    // matches up the formal to the actual argument values.
1707    CallSite::arg_iterator AI = CS.arg_begin();
1708    unsigned ArgNo = 0;
1709    for (Function::arg_iterator I = CalledFunc->arg_begin(),
1710         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1711      Value *ActualArg = *AI;
1712
1713      // When byval arguments actually inlined, we need to make the copy implied
1714      // by them explicit.  However, we don't do this if the callee is readonly
1715      // or readnone, because the copy would be unneeded: the callee doesn't
1716      // modify the struct.
1717      if (CS.isByValArgument(ArgNo)) {
1718        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1719                                        CalledFunc->getParamAlignment(ArgNo));
1720        if (ActualArg != *AI)
1721          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1722      }
1723
1724      VMap[&*I] = ActualArg;
1725    }
1726
1727    // Add alignment assumptions if necessary. We do this before the inlined
1728    // instructions are actually cloned into the caller so that we can easily
1729    // check what will be known at the start of the inlined code.
1730    AddAlignmentAssumptions(CS, IFI);
1731
1732    // We want the inliner to prune the code as it copies.  We would LOVE to
1733    // have no dead or constant instructions leftover after inlining occurs
1734    // (which can happen, e.g., because an argument was constant), but we'll be
1735    // happy with whatever the cloner can do.
1736    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1737                              /*ModuleLevelChanges=*/false, Returns, ".i",
1738                              &InlinedFunctionInfo, TheCall);
1739    // Remember the first block that is newly cloned over.
1740    FirstNewBlock = LastBlock; ++FirstNewBlock;
1741
1742    if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1743      // Update the BFI of blocks cloned into the caller.
1744      updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1745                      CalledFunc->front());
1746
1747    updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall,
1748                      IFI.PSI, IFI.CallerBFI);
1749
1750    // Inject byval arguments initialization.
1751    for (std::pair<Value*, Value*> &Init : ByValInit)
1752      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1753                              &*FirstNewBlock, IFI);
1754
1755    Optional<OperandBundleUse> ParentDeopt =
1756        CS.getOperandBundle(LLVMContext::OB_deopt);
1757    if (ParentDeopt) {
1758      SmallVector<OperandBundleDef, 2> OpDefs;
1759
1760      for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1761        Instruction *I = dyn_cast_or_null<Instruction>(VH);
1762        if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef
1763
1764        OpDefs.clear();
1765
1766        CallSite ICS(I);
1767        OpDefs.reserve(ICS.getNumOperandBundles());
1768
1769        for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1770          auto ChildOB = ICS.getOperandBundleAt(i);
1771          if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1772            // If the inlined call has other operand bundles, let them be
1773            OpDefs.emplace_back(ChildOB);
1774            continue;
1775          }
1776
1777          // It may be useful to separate this logic (of handling operand
1778          // bundles) out to a separate "policy" component if this gets crowded.
1779          // Prepend the parent's deoptimization continuation to the newly
1780          // inlined call's deoptimization continuation.
1781          std::vector<Value *> MergedDeoptArgs;
1782          MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1783                                  ChildOB.Inputs.size());
1784
1785          MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1786                                 ParentDeopt->Inputs.begin(),
1787                                 ParentDeopt->Inputs.end());
1788          MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1789                                 ChildOB.Inputs.end());
1790
1791          OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1792        }
1793
1794        Instruction *NewI = nullptr;
1795        if (isa<CallInst>(I))
1796          NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1797        else if (isa<CallBrInst>(I))
1798          NewI = CallBrInst::Create(cast<CallBrInst>(I), OpDefs, I);
1799        else
1800          NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1801
1802        // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1803        // this even if the call returns void.
1804        I->replaceAllUsesWith(NewI);
1805
1806        VH = nullptr;
1807        I->eraseFromParent();
1808      }
1809    }
1810
1811    // Update the callgraph if requested.
1812    if (IFI.CG)
1813      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1814
1815    // For 'nodebug' functions, the associated DISubprogram is always null.
1816    // Conservatively avoid propagating the callsite debug location to
1817    // instructions inlined from a function whose DISubprogram is not null.
1818    fixupLineNumbers(Caller, FirstNewBlock, TheCall,
1819                     CalledFunc->getSubprogram() != nullptr);
1820
1821    // Clone existing noalias metadata if necessary.
1822    CloneAliasScopeMetadata(CS, VMap);
1823
1824    // Add noalias metadata if necessary.
1825    AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1826
1827    // Propagate llvm.mem.parallel_loop_access if necessary.
1828    PropagateParallelLoopAccessMetadata(CS, VMap);
1829
1830    // Register any cloned assumptions.
1831    if (IFI.GetAssumptionCache)
1832      for (BasicBlock &NewBlock :
1833           make_range(FirstNewBlock->getIterator(), Caller->end()))
1834        for (Instruction &I : NewBlock) {
1835          if (auto *II = dyn_cast<IntrinsicInst>(&I))
1836            if (II->getIntrinsicID() == Intrinsic::assume)
1837              (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
1838        }
1839  }
1840
1841  // If there are any alloca instructions in the block that used to be the entry
1842  // block for the callee, move them to the entry block of the caller.  First
1843  // calculate which instruction they should be inserted before.  We insert the
1844  // instructions at the end of the current alloca list.
1845  {
1846    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1847    for (BasicBlock::iterator I = FirstNewBlock->begin(),
1848         E = FirstNewBlock->end(); I != E; ) {
1849      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1850      if (!AI) continue;
1851
1852      // If the alloca is now dead, remove it.  This often occurs due to code
1853      // specialization.
1854      if (AI->use_empty()) {
1855        AI->eraseFromParent();
1856        continue;
1857      }
1858
1859      if (!allocaWouldBeStaticInEntry(AI))
1860        continue;
1861
1862      // Keep track of the static allocas that we inline into the caller.
1863      IFI.StaticAllocas.push_back(AI);
1864
1865      // Scan for the block of allocas that we can move over, and move them
1866      // all at once.
1867      while (isa<AllocaInst>(I) &&
1868             !cast<AllocaInst>(I)->use_empty() &&
1869             allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
1870        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1871        ++I;
1872      }
1873
1874      // Transfer all of the allocas over in a block.  Using splice means
1875      // that the instructions aren't removed from the symbol table, then
1876      // reinserted.
1877      Caller->getEntryBlock().getInstList().splice(
1878          InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1879    }
1880    // Move any dbg.declares describing the allocas into the entry basic block.
1881    DIBuilder DIB(*Caller->getParent());
1882    for (auto &AI : IFI.StaticAllocas)
1883      replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::ApplyOffset, 0);
1884  }
1885
1886  SmallVector<Value*,4> VarArgsToForward;
1887  SmallVector<AttributeSet, 4> VarArgsAttrs;
1888  for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
1889       i < CS.getNumArgOperands(); i++) {
1890    VarArgsToForward.push_back(CS.getArgOperand(i));
1891    VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i));
1892  }
1893
1894  bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1895  if (InlinedFunctionInfo.ContainsCalls) {
1896    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1897    if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1898      CallSiteTailKind = CI->getTailCallKind();
1899
1900    // For inlining purposes, the "notail" marker is the same as no marker.
1901    if (CallSiteTailKind == CallInst::TCK_NoTail)
1902      CallSiteTailKind = CallInst::TCK_None;
1903
1904    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1905         ++BB) {
1906      for (auto II = BB->begin(); II != BB->end();) {
1907        Instruction &I = *II++;
1908        CallInst *CI = dyn_cast<CallInst>(&I);
1909        if (!CI)
1910          continue;
1911
1912        // Forward varargs from inlined call site to calls to the
1913        // ForwardVarArgsTo function, if requested, and to musttail calls.
1914        if (!VarArgsToForward.empty() &&
1915            ((ForwardVarArgsTo &&
1916              CI->getCalledFunction() == ForwardVarArgsTo) ||
1917             CI->isMustTailCall())) {
1918          // Collect attributes for non-vararg parameters.
1919          AttributeList Attrs = CI->getAttributes();
1920          SmallVector<AttributeSet, 8> ArgAttrs;
1921          if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
1922            for (unsigned ArgNo = 0;
1923                 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
1924              ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
1925          }
1926
1927          // Add VarArg attributes.
1928          ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
1929          Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
1930                                     Attrs.getRetAttributes(), ArgAttrs);
1931          // Add VarArgs to existing parameters.
1932          SmallVector<Value *, 6> Params(CI->arg_operands());
1933          Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
1934          CallInst *NewCI = CallInst::Create(
1935              CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
1936          NewCI->setDebugLoc(CI->getDebugLoc());
1937          NewCI->setAttributes(Attrs);
1938          NewCI->setCallingConv(CI->getCallingConv());
1939          CI->replaceAllUsesWith(NewCI);
1940          CI->eraseFromParent();
1941          CI = NewCI;
1942        }
1943
1944        if (Function *F = CI->getCalledFunction())
1945          InlinedDeoptimizeCalls |=
1946              F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
1947
1948        // We need to reduce the strength of any inlined tail calls.  For
1949        // musttail, we have to avoid introducing potential unbounded stack
1950        // growth.  For example, if functions 'f' and 'g' are mutually recursive
1951        // with musttail, we can inline 'g' into 'f' so long as we preserve
1952        // musttail on the cloned call to 'f'.  If either the inlined call site
1953        // or the cloned call site is *not* musttail, the program already has
1954        // one frame of stack growth, so it's safe to remove musttail.  Here is
1955        // a table of example transformations:
1956        //
1957        //    f -> musttail g -> musttail f  ==>  f -> musttail f
1958        //    f -> musttail g ->     tail f  ==>  f ->     tail f
1959        //    f ->          g -> musttail f  ==>  f ->          f
1960        //    f ->          g ->     tail f  ==>  f ->          f
1961        //
1962        // Inlined notail calls should remain notail calls.
1963        CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1964        if (ChildTCK != CallInst::TCK_NoTail)
1965          ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1966        CI->setTailCallKind(ChildTCK);
1967        InlinedMustTailCalls |= CI->isMustTailCall();
1968
1969        // Calls inlined through a 'nounwind' call site should be marked
1970        // 'nounwind'.
1971        if (MarkNoUnwind)
1972          CI->setDoesNotThrow();
1973      }
1974    }
1975  }
1976
1977  // Leave lifetime markers for the static alloca's, scoping them to the
1978  // function we just inlined.
1979  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1980    IRBuilder<> builder(&FirstNewBlock->front());
1981    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1982      AllocaInst *AI = IFI.StaticAllocas[ai];
1983      // Don't mark swifterror allocas. They can't have bitcast uses.
1984      if (AI->isSwiftError())
1985        continue;
1986
1987      // If the alloca is already scoped to something smaller than the whole
1988      // function then there's no need to add redundant, less accurate markers.
1989      if (hasLifetimeMarkers(AI))
1990        continue;
1991
1992      // Try to determine the size of the allocation.
1993      ConstantInt *AllocaSize = nullptr;
1994      if (ConstantInt *AIArraySize =
1995          dyn_cast<ConstantInt>(AI->getArraySize())) {
1996        auto &DL = Caller->getParent()->getDataLayout();
1997        Type *AllocaType = AI->getAllocatedType();
1998        uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1999        uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2000
2001        // Don't add markers for zero-sized allocas.
2002        if (AllocaArraySize == 0)
2003          continue;
2004
2005        // Check that array size doesn't saturate uint64_t and doesn't
2006        // overflow when it's multiplied by type size.
2007        if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2008            std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2009                AllocaTypeSize) {
2010          AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2011                                        AllocaArraySize * AllocaTypeSize);
2012        }
2013      }
2014
2015      builder.CreateLifetimeStart(AI, AllocaSize);
2016      for (ReturnInst *RI : Returns) {
2017        // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2018        // call and a return.  The return kills all local allocas.
2019        if (InlinedMustTailCalls &&
2020            RI->getParent()->getTerminatingMustTailCall())
2021          continue;
2022        if (InlinedDeoptimizeCalls &&
2023            RI->getParent()->getTerminatingDeoptimizeCall())
2024          continue;
2025        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2026      }
2027    }
2028  }
2029
2030  // If the inlined code contained dynamic alloca instructions, wrap the inlined
2031  // code with llvm.stacksave/llvm.stackrestore intrinsics.
2032  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2033    Module *M = Caller->getParent();
2034    // Get the two intrinsics we care about.
2035    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2036    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2037
2038    // Insert the llvm.stacksave.
2039    CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2040                             .CreateCall(StackSave, {}, "savedstack");
2041
2042    // Insert a call to llvm.stackrestore before any return instructions in the
2043    // inlined function.
2044    for (ReturnInst *RI : Returns) {
2045      // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2046      // call and a return.  The return will restore the stack pointer.
2047      if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2048        continue;
2049      if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2050        continue;
2051      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2052    }
2053  }
2054
2055  // If we are inlining for an invoke instruction, we must make sure to rewrite
2056  // any call instructions into invoke instructions.  This is sensitive to which
2057  // funclet pads were top-level in the inlinee, so must be done before
2058  // rewriting the "parent pad" links.
2059  if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
2060    BasicBlock *UnwindDest = II->getUnwindDest();
2061    Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2062    if (isa<LandingPadInst>(FirstNonPHI)) {
2063      HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2064    } else {
2065      HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2066    }
2067  }
2068
2069  // Update the lexical scopes of the new funclets and callsites.
2070  // Anything that had 'none' as its parent is now nested inside the callsite's
2071  // EHPad.
2072
2073  if (CallSiteEHPad) {
2074    for (Function::iterator BB = FirstNewBlock->getIterator(),
2075                            E = Caller->end();
2076         BB != E; ++BB) {
2077      // Add bundle operands to any top-level call sites.
2078      SmallVector<OperandBundleDef, 1> OpBundles;
2079      for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2080        Instruction *I = &*BBI++;
2081        CallSite CS(I);
2082        if (!CS)
2083          continue;
2084
2085        // Skip call sites which are nounwind intrinsics.
2086        auto *CalledFn =
2087            dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2088        if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
2089          continue;
2090
2091        // Skip call sites which already have a "funclet" bundle.
2092        if (CS.getOperandBundle(LLVMContext::OB_funclet))
2093          continue;
2094
2095        CS.getOperandBundlesAsDefs(OpBundles);
2096        OpBundles.emplace_back("funclet", CallSiteEHPad);
2097
2098        Instruction *NewInst;
2099        if (CS.isCall())
2100          NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
2101        else if (CS.isCallBr())
2102          NewInst = CallBrInst::Create(cast<CallBrInst>(I), OpBundles, I);
2103        else
2104          NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
2105        NewInst->takeName(I);
2106        I->replaceAllUsesWith(NewInst);
2107        I->eraseFromParent();
2108
2109        OpBundles.clear();
2110      }
2111
2112      // It is problematic if the inlinee has a cleanupret which unwinds to
2113      // caller and we inline it into a call site which doesn't unwind but into
2114      // an EH pad that does.  Such an edge must be dynamically unreachable.
2115      // As such, we replace the cleanupret with unreachable.
2116      if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2117        if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2118          changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
2119
2120      Instruction *I = BB->getFirstNonPHI();
2121      if (!I->isEHPad())
2122        continue;
2123
2124      if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2125        if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2126          CatchSwitch->setParentPad(CallSiteEHPad);
2127      } else {
2128        auto *FPI = cast<FuncletPadInst>(I);
2129        if (isa<ConstantTokenNone>(FPI->getParentPad()))
2130          FPI->setParentPad(CallSiteEHPad);
2131      }
2132    }
2133  }
2134
2135  if (InlinedDeoptimizeCalls) {
2136    // We need to at least remove the deoptimizing returns from the Return set,
2137    // so that the control flow from those returns does not get merged into the
2138    // caller (but terminate it instead).  If the caller's return type does not
2139    // match the callee's return type, we also need to change the return type of
2140    // the intrinsic.
2141    if (Caller->getReturnType() == TheCall->getType()) {
2142      auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
2143        return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2144      });
2145      Returns.erase(NewEnd, Returns.end());
2146    } else {
2147      SmallVector<ReturnInst *, 8> NormalReturns;
2148      Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2149          Caller->getParent(), Intrinsic::experimental_deoptimize,
2150          {Caller->getReturnType()});
2151
2152      for (ReturnInst *RI : Returns) {
2153        CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2154        if (!DeoptCall) {
2155          NormalReturns.push_back(RI);
2156          continue;
2157        }
2158
2159        // The calling convention on the deoptimize call itself may be bogus,
2160        // since the code we're inlining may have undefined behavior (and may
2161        // never actually execute at runtime); but all
2162        // @llvm.experimental.deoptimize declarations have to have the same
2163        // calling convention in a well-formed module.
2164        auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2165        NewDeoptIntrinsic->setCallingConv(CallingConv);
2166        auto *CurBB = RI->getParent();
2167        RI->eraseFromParent();
2168
2169        SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
2170                                         DeoptCall->arg_end());
2171
2172        SmallVector<OperandBundleDef, 1> OpBundles;
2173        DeoptCall->getOperandBundlesAsDefs(OpBundles);
2174        DeoptCall->eraseFromParent();
2175        assert(!OpBundles.empty() &&
2176               "Expected at least the deopt operand bundle");
2177
2178        IRBuilder<> Builder(CurBB);
2179        CallInst *NewDeoptCall =
2180            Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2181        NewDeoptCall->setCallingConv(CallingConv);
2182        if (NewDeoptCall->getType()->isVoidTy())
2183          Builder.CreateRetVoid();
2184        else
2185          Builder.CreateRet(NewDeoptCall);
2186      }
2187
2188      // Leave behind the normal returns so we can merge control flow.
2189      std::swap(Returns, NormalReturns);
2190    }
2191  }
2192
2193  // Handle any inlined musttail call sites.  In order for a new call site to be
2194  // musttail, the source of the clone and the inlined call site must have been
2195  // musttail.  Therefore it's safe to return without merging control into the
2196  // phi below.
2197  if (InlinedMustTailCalls) {
2198    // Check if we need to bitcast the result of any musttail calls.
2199    Type *NewRetTy = Caller->getReturnType();
2200    bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
2201
2202    // Handle the returns preceded by musttail calls separately.
2203    SmallVector<ReturnInst *, 8> NormalReturns;
2204    for (ReturnInst *RI : Returns) {
2205      CallInst *ReturnedMustTail =
2206          RI->getParent()->getTerminatingMustTailCall();
2207      if (!ReturnedMustTail) {
2208        NormalReturns.push_back(RI);
2209        continue;
2210      }
2211      if (!NeedBitCast)
2212        continue;
2213
2214      // Delete the old return and any preceding bitcast.
2215      BasicBlock *CurBB = RI->getParent();
2216      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2217      RI->eraseFromParent();
2218      if (OldCast)
2219        OldCast->eraseFromParent();
2220
2221      // Insert a new bitcast and return with the right type.
2222      IRBuilder<> Builder(CurBB);
2223      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2224    }
2225
2226    // Leave behind the normal returns so we can merge control flow.
2227    std::swap(Returns, NormalReturns);
2228  }
2229
2230  // Now that all of the transforms on the inlined code have taken place but
2231  // before we splice the inlined code into the CFG and lose track of which
2232  // blocks were actually inlined, collect the call sites. We only do this if
2233  // call graph updates weren't requested, as those provide value handle based
2234  // tracking of inlined call sites instead.
2235  if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2236    // Otherwise just collect the raw call sites that were inlined.
2237    for (BasicBlock &NewBB :
2238         make_range(FirstNewBlock->getIterator(), Caller->end()))
2239      for (Instruction &I : NewBB)
2240        if (auto CS = CallSite(&I))
2241          IFI.InlinedCallSites.push_back(CS);
2242  }
2243
2244  // If we cloned in _exactly one_ basic block, and if that block ends in a
2245  // return instruction, we splice the body of the inlined callee directly into
2246  // the calling basic block.
2247  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2248    // Move all of the instructions right before the call.
2249    OrigBB->getInstList().splice(TheCall->getIterator(),
2250                                 FirstNewBlock->getInstList(),
2251                                 FirstNewBlock->begin(), FirstNewBlock->end());
2252    // Remove the cloned basic block.
2253    Caller->getBasicBlockList().pop_back();
2254
2255    // If the call site was an invoke instruction, add a branch to the normal
2256    // destination.
2257    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2258      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
2259      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2260    }
2261
2262    // If the return instruction returned a value, replace uses of the call with
2263    // uses of the returned value.
2264    if (!TheCall->use_empty()) {
2265      ReturnInst *R = Returns[0];
2266      if (TheCall == R->getReturnValue())
2267        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2268      else
2269        TheCall->replaceAllUsesWith(R->getReturnValue());
2270    }
2271    // Since we are now done with the Call/Invoke, we can delete it.
2272    TheCall->eraseFromParent();
2273
2274    // Since we are now done with the return instruction, delete it also.
2275    Returns[0]->eraseFromParent();
2276
2277    // We are now done with the inlining.
2278    return true;
2279  }
2280
2281  // Otherwise, we have the normal case, of more than one block to inline or
2282  // multiple return sites.
2283
2284  // We want to clone the entire callee function into the hole between the
2285  // "starter" and "ender" blocks.  How we accomplish this depends on whether
2286  // this is an invoke instruction or a call instruction.
2287  BasicBlock *AfterCallBB;
2288  BranchInst *CreatedBranchToNormalDest = nullptr;
2289  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2290
2291    // Add an unconditional branch to make this look like the CallInst case...
2292    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
2293
2294    // Split the basic block.  This guarantees that no PHI nodes will have to be
2295    // updated due to new incoming edges, and make the invoke case more
2296    // symmetric to the call case.
2297    AfterCallBB =
2298        OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2299                                CalledFunc->getName() + ".exit");
2300
2301  } else {  // It's a call
2302    // If this is a call instruction, we need to split the basic block that
2303    // the call lives in.
2304    //
2305    AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
2306                                          CalledFunc->getName() + ".exit");
2307  }
2308
2309  if (IFI.CallerBFI) {
2310    // Copy original BB's block frequency to AfterCallBB
2311    IFI.CallerBFI->setBlockFreq(
2312        AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2313  }
2314
2315  // Change the branch that used to go to AfterCallBB to branch to the first
2316  // basic block of the inlined function.
2317  //
2318  Instruction *Br = OrigBB->getTerminator();
2319  assert(Br && Br->getOpcode() == Instruction::Br &&
2320         "splitBasicBlock broken!");
2321  Br->setOperand(0, &*FirstNewBlock);
2322
2323  // Now that the function is correct, make it a little bit nicer.  In
2324  // particular, move the basic blocks inserted from the end of the function
2325  // into the space made by splitting the source basic block.
2326  Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2327                                     Caller->getBasicBlockList(), FirstNewBlock,
2328                                     Caller->end());
2329
2330  // Handle all of the return instructions that we just cloned in, and eliminate
2331  // any users of the original call/invoke instruction.
2332  Type *RTy = CalledFunc->getReturnType();
2333
2334  PHINode *PHI = nullptr;
2335  if (Returns.size() > 1) {
2336    // The PHI node should go at the front of the new basic block to merge all
2337    // possible incoming values.
2338    if (!TheCall->use_empty()) {
2339      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
2340                            &AfterCallBB->front());
2341      // Anything that used the result of the function call should now use the
2342      // PHI node as their operand.
2343      TheCall->replaceAllUsesWith(PHI);
2344    }
2345
2346    // Loop over all of the return instructions adding entries to the PHI node
2347    // as appropriate.
2348    if (PHI) {
2349      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2350        ReturnInst *RI = Returns[i];
2351        assert(RI->getReturnValue()->getType() == PHI->getType() &&
2352               "Ret value not consistent in function!");
2353        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2354      }
2355    }
2356
2357    // Add a branch to the merge points and remove return instructions.
2358    DebugLoc Loc;
2359    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2360      ReturnInst *RI = Returns[i];
2361      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2362      Loc = RI->getDebugLoc();
2363      BI->setDebugLoc(Loc);
2364      RI->eraseFromParent();
2365    }
2366    // We need to set the debug location to *somewhere* inside the
2367    // inlined function. The line number may be nonsensical, but the
2368    // instruction will at least be associated with the right
2369    // function.
2370    if (CreatedBranchToNormalDest)
2371      CreatedBranchToNormalDest->setDebugLoc(Loc);
2372  } else if (!Returns.empty()) {
2373    // Otherwise, if there is exactly one return value, just replace anything
2374    // using the return value of the call with the computed value.
2375    if (!TheCall->use_empty()) {
2376      if (TheCall == Returns[0]->getReturnValue())
2377        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2378      else
2379        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
2380    }
2381
2382    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2383    BasicBlock *ReturnBB = Returns[0]->getParent();
2384    ReturnBB->replaceAllUsesWith(AfterCallBB);
2385
2386    // Splice the code from the return block into the block that it will return
2387    // to, which contains the code that was after the call.
2388    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2389                                      ReturnBB->getInstList());
2390
2391    if (CreatedBranchToNormalDest)
2392      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2393
2394    // Delete the return instruction now and empty ReturnBB now.
2395    Returns[0]->eraseFromParent();
2396    ReturnBB->eraseFromParent();
2397  } else if (!TheCall->use_empty()) {
2398    // No returns, but something is using the return value of the call.  Just
2399    // nuke the result.
2400    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2401  }
2402
2403  // Since we are now done with the Call/Invoke, we can delete it.
2404  TheCall->eraseFromParent();
2405
2406  // If we inlined any musttail calls and the original return is now
2407  // unreachable, delete it.  It can only contain a bitcast and ret.
2408  if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2409    AfterCallBB->eraseFromParent();
2410
2411  // We should always be able to fold the entry block of the function into the
2412  // single predecessor of the block...
2413  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2414  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2415
2416  // Splice the code entry block into calling block, right before the
2417  // unconditional branch.
2418  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2419  OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2420
2421  // Remove the unconditional branch.
2422  OrigBB->getInstList().erase(Br);
2423
2424  // Now we can remove the CalleeEntry block, which is now empty.
2425  Caller->getBasicBlockList().erase(CalleeEntry);
2426
2427  // If we inserted a phi node, check to see if it has a single value (e.g. all
2428  // the entries are the same or undef).  If so, remove the PHI so it doesn't
2429  // block other optimizations.
2430  if (PHI) {
2431    AssumptionCache *AC =
2432        IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
2433    auto &DL = Caller->getParent()->getDataLayout();
2434    if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2435      PHI->replaceAllUsesWith(V);
2436      PHI->eraseFromParent();
2437    }
2438  }
2439
2440  return true;
2441}
2442