CodeExtractor.cpp revision 218893
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interface to tear out a code region, such as an
11// individual loop or a parallel section, into a new function, replacing it with
12// a call to the new function.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/FunctionUtils.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/Module.h"
23#include "llvm/Pass.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/Verifier.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <set>
36using namespace llvm;
37
38// Provide a command-line option to aggregate function arguments into a struct
39// for functions produced by the code extractor. This is useful when converting
40// extracted functions to pthread-based code, as only one argument (void*) can
41// be passed in to pthread_create().
42static cl::opt<bool>
43AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
44                 cl::desc("Aggregate arguments to code-extracted functions"));
45
46namespace {
47  class CodeExtractor {
48    typedef SetVector<Value*> Values;
49    SetVector<BasicBlock*> BlocksToExtract;
50    DominatorTree* DT;
51    bool AggregateArgs;
52    unsigned NumExitBlocks;
53    const Type *RetTy;
54  public:
55    CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
56      : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
57
58    Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
59
60    bool isEligible(const std::vector<BasicBlock*> &code);
61
62  private:
63    /// definedInRegion - Return true if the specified value is defined in the
64    /// extracted region.
65    bool definedInRegion(Value *V) const {
66      if (Instruction *I = dyn_cast<Instruction>(V))
67        if (BlocksToExtract.count(I->getParent()))
68          return true;
69      return false;
70    }
71
72    /// definedInCaller - Return true if the specified value is defined in the
73    /// function being code extracted, but not in the region being extracted.
74    /// These values must be passed in as live-ins to the function.
75    bool definedInCaller(Value *V) const {
76      if (isa<Argument>(V)) return true;
77      if (Instruction *I = dyn_cast<Instruction>(V))
78        if (!BlocksToExtract.count(I->getParent()))
79          return true;
80      return false;
81    }
82
83    void severSplitPHINodes(BasicBlock *&Header);
84    void splitReturnBlocks();
85    void findInputsOutputs(Values &inputs, Values &outputs);
86
87    Function *constructFunction(const Values &inputs,
88                                const Values &outputs,
89                                BasicBlock *header,
90                                BasicBlock *newRootNode, BasicBlock *newHeader,
91                                Function *oldFunction, Module *M);
92
93    void moveCodeToFunction(Function *newFunction);
94
95    void emitCallAndSwitchStatement(Function *newFunction,
96                                    BasicBlock *newHeader,
97                                    Values &inputs,
98                                    Values &outputs);
99
100  };
101}
102
103/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
104/// region, we need to split the entry block of the region so that the PHI node
105/// is easier to deal with.
106void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
107  bool HasPredsFromRegion = false;
108  unsigned NumPredsOutsideRegion = 0;
109
110  if (Header != &Header->getParent()->getEntryBlock()) {
111    PHINode *PN = dyn_cast<PHINode>(Header->begin());
112    if (!PN) return;  // No PHI nodes.
113
114    // If the header node contains any PHI nodes, check to see if there is more
115    // than one entry from outside the region.  If so, we need to sever the
116    // header block into two.
117    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
118      if (BlocksToExtract.count(PN->getIncomingBlock(i)))
119        HasPredsFromRegion = true;
120      else
121        ++NumPredsOutsideRegion;
122
123    // If there is one (or fewer) predecessor from outside the region, we don't
124    // need to do anything special.
125    if (NumPredsOutsideRegion <= 1) return;
126  }
127
128  // Otherwise, we need to split the header block into two pieces: one
129  // containing PHI nodes merging values from outside of the region, and a
130  // second that contains all of the code for the block and merges back any
131  // incoming values from inside of the region.
132  BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
133  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
134                                              Header->getName()+".ce");
135
136  // We only want to code extract the second block now, and it becomes the new
137  // header of the region.
138  BasicBlock *OldPred = Header;
139  BlocksToExtract.remove(OldPred);
140  BlocksToExtract.insert(NewBB);
141  Header = NewBB;
142
143  // Okay, update dominator sets. The blocks that dominate the new one are the
144  // blocks that dominate TIBB plus the new block itself.
145  if (DT)
146    DT->splitBlock(NewBB);
147
148  // Okay, now we need to adjust the PHI nodes and any branches from within the
149  // region to go to the new header block instead of the old header block.
150  if (HasPredsFromRegion) {
151    PHINode *PN = cast<PHINode>(OldPred->begin());
152    // Loop over all of the predecessors of OldPred that are in the region,
153    // changing them to branch to NewBB instead.
154    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
155      if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
156        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
157        TI->replaceUsesOfWith(OldPred, NewBB);
158      }
159
160    // Okay, everthing within the region is now branching to the right block, we
161    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
162    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
163      PHINode *PN = cast<PHINode>(AfterPHIs);
164      // Create a new PHI node in the new region, which has an incoming value
165      // from OldPred of PN.
166      PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce",
167                                       NewBB->begin());
168      NewPN->addIncoming(PN, OldPred);
169
170      // Loop over all of the incoming value in PN, moving them to NewPN if they
171      // are from the extracted region.
172      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
173        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
174          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
175          PN->removeIncomingValue(i);
176          --i;
177        }
178      }
179    }
180  }
181}
182
183void CodeExtractor::splitReturnBlocks() {
184  for (SetVector<BasicBlock*>::iterator I = BlocksToExtract.begin(),
185         E = BlocksToExtract.end(); I != E; ++I)
186    if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
187      BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
188      if (DT) {
189        // Old dominates New. New node dominates all other nodes dominated
190        // by Old.
191        DomTreeNode *OldNode = DT->getNode(*I);
192        SmallVector<DomTreeNode*, 8> Children;
193        for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
194             DI != DE; ++DI)
195          Children.push_back(*DI);
196
197        DomTreeNode *NewNode = DT->addNewBlock(New, *I);
198
199        for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
200               E = Children.end(); I != E; ++I)
201          DT->changeImmediateDominator(*I, NewNode);
202      }
203    }
204}
205
206// findInputsOutputs - Find inputs to, outputs from the code region.
207//
208void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
209  std::set<BasicBlock*> ExitBlocks;
210  for (SetVector<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
211       ce = BlocksToExtract.end(); ci != ce; ++ci) {
212    BasicBlock *BB = *ci;
213
214    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
215      // If a used value is defined outside the region, it's an input.  If an
216      // instruction is used outside the region, it's an output.
217      for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
218        if (definedInCaller(*O))
219          inputs.insert(*O);
220
221      // Consider uses of this instruction (outputs).
222      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
223           UI != E; ++UI)
224        if (!definedInRegion(*UI)) {
225          outputs.insert(I);
226          break;
227        }
228    } // for: insts
229
230    // Keep track of the exit blocks from the region.
231    TerminatorInst *TI = BB->getTerminator();
232    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
233      if (!BlocksToExtract.count(TI->getSuccessor(i)))
234        ExitBlocks.insert(TI->getSuccessor(i));
235  } // for: basic blocks
236
237  NumExitBlocks = ExitBlocks.size();
238}
239
240/// constructFunction - make a function based on inputs and outputs, as follows:
241/// f(in0, ..., inN, out0, ..., outN)
242///
243Function *CodeExtractor::constructFunction(const Values &inputs,
244                                           const Values &outputs,
245                                           BasicBlock *header,
246                                           BasicBlock *newRootNode,
247                                           BasicBlock *newHeader,
248                                           Function *oldFunction,
249                                           Module *M) {
250  DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
251  DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
252
253  // This function returns unsigned, outputs will go back by reference.
254  switch (NumExitBlocks) {
255  case 0:
256  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
257  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
258  default: RetTy = Type::getInt16Ty(header->getContext()); break;
259  }
260
261  std::vector<const Type*> paramTy;
262
263  // Add the types of the input values to the function's argument list
264  for (Values::const_iterator i = inputs.begin(),
265         e = inputs.end(); i != e; ++i) {
266    const Value *value = *i;
267    DEBUG(dbgs() << "value used in func: " << *value << "\n");
268    paramTy.push_back(value->getType());
269  }
270
271  // Add the types of the output values to the function's argument list.
272  for (Values::const_iterator I = outputs.begin(), E = outputs.end();
273       I != E; ++I) {
274    DEBUG(dbgs() << "instr used in func: " << **I << "\n");
275    if (AggregateArgs)
276      paramTy.push_back((*I)->getType());
277    else
278      paramTy.push_back(PointerType::getUnqual((*I)->getType()));
279  }
280
281  DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
282  for (std::vector<const Type*>::iterator i = paramTy.begin(),
283         e = paramTy.end(); i != e; ++i)
284    DEBUG(dbgs() << **i << ", ");
285  DEBUG(dbgs() << ")\n");
286
287  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
288    PointerType *StructPtr =
289           PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
290    paramTy.clear();
291    paramTy.push_back(StructPtr);
292  }
293  const FunctionType *funcType =
294                  FunctionType::get(RetTy, paramTy, false);
295
296  // Create the new function
297  Function *newFunction = Function::Create(funcType,
298                                           GlobalValue::InternalLinkage,
299                                           oldFunction->getName() + "_" +
300                                           header->getName(), M);
301  // If the old function is no-throw, so is the new one.
302  if (oldFunction->doesNotThrow())
303    newFunction->setDoesNotThrow(true);
304
305  newFunction->getBasicBlockList().push_back(newRootNode);
306
307  // Create an iterator to name all of the arguments we inserted.
308  Function::arg_iterator AI = newFunction->arg_begin();
309
310  // Rewrite all users of the inputs in the extracted region to use the
311  // arguments (or appropriate addressing into struct) instead.
312  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
313    Value *RewriteVal;
314    if (AggregateArgs) {
315      Value *Idx[2];
316      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
317      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
318      TerminatorInst *TI = newFunction->begin()->getTerminator();
319      GetElementPtrInst *GEP =
320        GetElementPtrInst::Create(AI, Idx, Idx+2,
321                                  "gep_" + inputs[i]->getName(), TI);
322      RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
323    } else
324      RewriteVal = AI++;
325
326    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
327    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
328         use != useE; ++use)
329      if (Instruction* inst = dyn_cast<Instruction>(*use))
330        if (BlocksToExtract.count(inst->getParent()))
331          inst->replaceUsesOfWith(inputs[i], RewriteVal);
332  }
333
334  // Set names for input and output arguments.
335  if (!AggregateArgs) {
336    AI = newFunction->arg_begin();
337    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
338      AI->setName(inputs[i]->getName());
339    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
340      AI->setName(outputs[i]->getName()+".out");
341  }
342
343  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
344  // within the new function. This must be done before we lose track of which
345  // blocks were originally in the code region.
346  std::vector<User*> Users(header->use_begin(), header->use_end());
347  for (unsigned i = 0, e = Users.size(); i != e; ++i)
348    // The BasicBlock which contains the branch is not in the region
349    // modify the branch target to a new block
350    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
351      if (!BlocksToExtract.count(TI->getParent()) &&
352          TI->getParent()->getParent() == oldFunction)
353        TI->replaceUsesOfWith(header, newHeader);
354
355  return newFunction;
356}
357
358/// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
359/// that uses the value within the basic block, and return the predecessor
360/// block associated with that use, or return 0 if none is found.
361static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
362  for (Value::use_iterator UI = Used->use_begin(),
363       UE = Used->use_end(); UI != UE; ++UI) {
364     PHINode *P = dyn_cast<PHINode>(*UI);
365     if (P && P->getParent() == BB)
366       return P->getIncomingBlock(UI);
367  }
368
369  return 0;
370}
371
372/// emitCallAndSwitchStatement - This method sets up the caller side by adding
373/// the call instruction, splitting any PHI nodes in the header block as
374/// necessary.
375void CodeExtractor::
376emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
377                           Values &inputs, Values &outputs) {
378  // Emit a call to the new function, passing in: *pointer to struct (if
379  // aggregating parameters), or plan inputs and allocated memory for outputs
380  std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
381
382  LLVMContext &Context = newFunction->getContext();
383
384  // Add inputs as params, or to be filled into the struct
385  for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
386    if (AggregateArgs)
387      StructValues.push_back(*i);
388    else
389      params.push_back(*i);
390
391  // Create allocas for the outputs
392  for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
393    if (AggregateArgs) {
394      StructValues.push_back(*i);
395    } else {
396      AllocaInst *alloca =
397        new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
398                       codeReplacer->getParent()->begin()->begin());
399      ReloadOutputs.push_back(alloca);
400      params.push_back(alloca);
401    }
402  }
403
404  AllocaInst *Struct = 0;
405  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
406    std::vector<const Type*> ArgTypes;
407    for (Values::iterator v = StructValues.begin(),
408           ve = StructValues.end(); v != ve; ++v)
409      ArgTypes.push_back((*v)->getType());
410
411    // Allocate a struct at the beginning of this function
412    Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
413    Struct =
414      new AllocaInst(StructArgTy, 0, "structArg",
415                     codeReplacer->getParent()->begin()->begin());
416    params.push_back(Struct);
417
418    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
419      Value *Idx[2];
420      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
421      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
422      GetElementPtrInst *GEP =
423        GetElementPtrInst::Create(Struct, Idx, Idx + 2,
424                                  "gep_" + StructValues[i]->getName());
425      codeReplacer->getInstList().push_back(GEP);
426      StoreInst *SI = new StoreInst(StructValues[i], GEP);
427      codeReplacer->getInstList().push_back(SI);
428    }
429  }
430
431  // Emit the call to the function
432  CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(),
433                                    NumExitBlocks > 1 ? "targetBlock" : "");
434  codeReplacer->getInstList().push_back(call);
435
436  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
437  unsigned FirstOut = inputs.size();
438  if (!AggregateArgs)
439    std::advance(OutputArgBegin, inputs.size());
440
441  // Reload the outputs passed in by reference
442  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
443    Value *Output = 0;
444    if (AggregateArgs) {
445      Value *Idx[2];
446      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
447      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
448      GetElementPtrInst *GEP
449        = GetElementPtrInst::Create(Struct, Idx, Idx + 2,
450                                    "gep_reload_" + outputs[i]->getName());
451      codeReplacer->getInstList().push_back(GEP);
452      Output = GEP;
453    } else {
454      Output = ReloadOutputs[i];
455    }
456    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
457    Reloads.push_back(load);
458    codeReplacer->getInstList().push_back(load);
459    std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
460    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
461      Instruction *inst = cast<Instruction>(Users[u]);
462      if (!BlocksToExtract.count(inst->getParent()))
463        inst->replaceUsesOfWith(outputs[i], load);
464    }
465  }
466
467  // Now we can emit a switch statement using the call as a value.
468  SwitchInst *TheSwitch =
469      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
470                         codeReplacer, 0, codeReplacer);
471
472  // Since there may be multiple exits from the original region, make the new
473  // function return an unsigned, switch on that number.  This loop iterates
474  // over all of the blocks in the extracted region, updating any terminator
475  // instructions in the to-be-extracted region that branch to blocks that are
476  // not in the region to be extracted.
477  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
478
479  unsigned switchVal = 0;
480  for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
481         e = BlocksToExtract.end(); i != e; ++i) {
482    TerminatorInst *TI = (*i)->getTerminator();
483    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
484      if (!BlocksToExtract.count(TI->getSuccessor(i))) {
485        BasicBlock *OldTarget = TI->getSuccessor(i);
486        // add a new basic block which returns the appropriate value
487        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
488        if (!NewTarget) {
489          // If we don't already have an exit stub for this non-extracted
490          // destination, create one now!
491          NewTarget = BasicBlock::Create(Context,
492                                         OldTarget->getName() + ".exitStub",
493                                         newFunction);
494          unsigned SuccNum = switchVal++;
495
496          Value *brVal = 0;
497          switch (NumExitBlocks) {
498          case 0:
499          case 1: break;  // No value needed.
500          case 2:         // Conditional branch, return a bool
501            brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
502            break;
503          default:
504            brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
505            break;
506          }
507
508          ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
509
510          // Update the switch instruction.
511          TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
512                                              SuccNum),
513                             OldTarget);
514
515          // Restore values just before we exit
516          Function::arg_iterator OAI = OutputArgBegin;
517          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
518            // For an invoke, the normal destination is the only one that is
519            // dominated by the result of the invocation
520            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
521
522            bool DominatesDef = true;
523
524            if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
525              DefBlock = Invoke->getNormalDest();
526
527              // Make sure we are looking at the original successor block, not
528              // at a newly inserted exit block, which won't be in the dominator
529              // info.
530              for (std::map<BasicBlock*, BasicBlock*>::iterator I =
531                     ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
532                if (DefBlock == I->second) {
533                  DefBlock = I->first;
534                  break;
535                }
536
537              // In the extract block case, if the block we are extracting ends
538              // with an invoke instruction, make sure that we don't emit a
539              // store of the invoke value for the unwind block.
540              if (!DT && DefBlock != OldTarget)
541                DominatesDef = false;
542            }
543
544            if (DT) {
545              DominatesDef = DT->dominates(DefBlock, OldTarget);
546
547              // If the output value is used by a phi in the target block,
548              // then we need to test for dominance of the phi's predecessor
549              // instead.  Unfortunately, this a little complicated since we
550              // have already rewritten uses of the value to uses of the reload.
551              BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
552                                                          OldTarget);
553              if (pred && DT && DT->dominates(DefBlock, pred))
554                DominatesDef = true;
555            }
556
557            if (DominatesDef) {
558              if (AggregateArgs) {
559                Value *Idx[2];
560                Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
561                Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
562                                          FirstOut+out);
563                GetElementPtrInst *GEP =
564                  GetElementPtrInst::Create(OAI, Idx, Idx + 2,
565                                            "gep_" + outputs[out]->getName(),
566                                            NTRet);
567                new StoreInst(outputs[out], GEP, NTRet);
568              } else {
569                new StoreInst(outputs[out], OAI, NTRet);
570              }
571            }
572            // Advance output iterator even if we don't emit a store
573            if (!AggregateArgs) ++OAI;
574          }
575        }
576
577        // rewrite the original branch instruction with this new target
578        TI->setSuccessor(i, NewTarget);
579      }
580  }
581
582  // Now that we've done the deed, simplify the switch instruction.
583  const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
584  switch (NumExitBlocks) {
585  case 0:
586    // There are no successors (the block containing the switch itself), which
587    // means that previously this was the last part of the function, and hence
588    // this should be rewritten as a `ret'
589
590    // Check if the function should return a value
591    if (OldFnRetTy->isVoidTy()) {
592      ReturnInst::Create(Context, 0, TheSwitch);  // Return void
593    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
594      // return what we have
595      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
596    } else {
597      // Otherwise we must have code extracted an unwind or something, just
598      // return whatever we want.
599      ReturnInst::Create(Context,
600                         Constant::getNullValue(OldFnRetTy), TheSwitch);
601    }
602
603    TheSwitch->eraseFromParent();
604    break;
605  case 1:
606    // Only a single destination, change the switch into an unconditional
607    // branch.
608    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
609    TheSwitch->eraseFromParent();
610    break;
611  case 2:
612    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
613                       call, TheSwitch);
614    TheSwitch->eraseFromParent();
615    break;
616  default:
617    // Otherwise, make the default destination of the switch instruction be one
618    // of the other successors.
619    TheSwitch->setOperand(0, call);
620    TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
621    TheSwitch->removeCase(NumExitBlocks);  // Remove redundant case
622    break;
623  }
624}
625
626void CodeExtractor::moveCodeToFunction(Function *newFunction) {
627  Function *oldFunc = (*BlocksToExtract.begin())->getParent();
628  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
629  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
630
631  for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
632         e = BlocksToExtract.end(); i != e; ++i) {
633    // Delete the basic block from the old function, and the list of blocks
634    oldBlocks.remove(*i);
635
636    // Insert this basic block into the new function
637    newBlocks.push_back(*i);
638  }
639}
640
641/// ExtractRegion - Removes a loop from a function, replaces it with a call to
642/// new function. Returns pointer to the new function.
643///
644/// algorithm:
645///
646/// find inputs and outputs for the region
647///
648/// for inputs: add to function as args, map input instr* to arg#
649/// for outputs: add allocas for scalars,
650///             add to func as args, map output instr* to arg#
651///
652/// rewrite func to use argument #s instead of instr*
653///
654/// for each scalar output in the function: at every exit, store intermediate
655/// computed result back into memory.
656///
657Function *CodeExtractor::
658ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
659  if (!isEligible(code))
660    return 0;
661
662  // 1) Find inputs, outputs
663  // 2) Construct new function
664  //  * Add allocas for defs, pass as args by reference
665  //  * Pass in uses as args
666  // 3) Move code region, add call instr to func
667  //
668  BlocksToExtract.insert(code.begin(), code.end());
669
670  Values inputs, outputs;
671
672  // Assumption: this is a single-entry code region, and the header is the first
673  // block in the region.
674  BasicBlock *header = code[0];
675
676  for (unsigned i = 1, e = code.size(); i != e; ++i)
677    for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
678         PI != E; ++PI)
679      assert(BlocksToExtract.count(*PI) &&
680             "No blocks in this region may have entries from outside the region"
681             " except for the first block!");
682
683  // If we have to split PHI nodes or the entry block, do so now.
684  severSplitPHINodes(header);
685
686  // If we have any return instructions in the region, split those blocks so
687  // that the return is not in the region.
688  splitReturnBlocks();
689
690  Function *oldFunction = header->getParent();
691
692  // This takes place of the original loop
693  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
694                                                "codeRepl", oldFunction,
695                                                header);
696
697  // The new function needs a root node because other nodes can branch to the
698  // head of the region, but the entry node of a function cannot have preds.
699  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
700                                               "newFuncRoot");
701  newFuncRoot->getInstList().push_back(BranchInst::Create(header));
702
703  // Find inputs to, outputs from the code region.
704  findInputsOutputs(inputs, outputs);
705
706  // Construct new function based on inputs/outputs & add allocas for all defs.
707  Function *newFunction = constructFunction(inputs, outputs, header,
708                                            newFuncRoot,
709                                            codeReplacer, oldFunction,
710                                            oldFunction->getParent());
711
712  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
713
714  moveCodeToFunction(newFunction);
715
716  // Loop over all of the PHI nodes in the header block, and change any
717  // references to the old incoming edge to be the new incoming edge.
718  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
719    PHINode *PN = cast<PHINode>(I);
720    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
721      if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
722        PN->setIncomingBlock(i, newFuncRoot);
723  }
724
725  // Look at all successors of the codeReplacer block.  If any of these blocks
726  // had PHI nodes in them, we need to update the "from" block to be the code
727  // replacer, not the original block in the extracted region.
728  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
729                                 succ_end(codeReplacer));
730  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
731    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
732      PHINode *PN = cast<PHINode>(I);
733      std::set<BasicBlock*> ProcessedPreds;
734      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
735        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
736          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
737            PN->setIncomingBlock(i, codeReplacer);
738          else {
739            // There were multiple entries in the PHI for this block, now there
740            // is only one, so remove the duplicated entries.
741            PN->removeIncomingValue(i, false);
742            --i; --e;
743          }
744        }
745    }
746
747  //cerr << "NEW FUNCTION: " << *newFunction;
748  //  verifyFunction(*newFunction);
749
750  //  cerr << "OLD FUNCTION: " << *oldFunction;
751  //  verifyFunction(*oldFunction);
752
753  DEBUG(if (verifyFunction(*newFunction))
754        report_fatal_error("verifyFunction failed!"));
755  return newFunction;
756}
757
758bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
759  // Deny code region if it contains allocas or vastarts.
760  for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
761       BB != e; ++BB)
762    for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
763         I != Ie; ++I)
764      if (isa<AllocaInst>(*I))
765        return false;
766      else if (const CallInst *CI = dyn_cast<CallInst>(I))
767        if (const Function *F = CI->getCalledFunction())
768          if (F->getIntrinsicID() == Intrinsic::vastart)
769            return false;
770  return true;
771}
772
773
774/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
775/// function
776///
777Function* llvm::ExtractCodeRegion(DominatorTree &DT,
778                                  const std::vector<BasicBlock*> &code,
779                                  bool AggregateArgs) {
780  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
781}
782
783/// ExtractBasicBlock - slurp a natural loop into a brand new function
784///
785Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
786  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
787}
788
789/// ExtractBasicBlock - slurp a basic block into a brand new function
790///
791Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
792  std::vector<BasicBlock*> Blocks;
793  Blocks.push_back(BB);
794  return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);
795}
796