1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the interface to tear out a code region, such as an
10// individual loop or a parallel section, into a new function, replacing it with
11// a call to the new function.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/CodeExtractor.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/Analysis/AssumptionCache.h"
24#include "llvm/Analysis/BlockFrequencyInfo.h"
25#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26#include "llvm/Analysis/BranchProbabilityInfo.h"
27#include "llvm/Analysis/LoopInfo.h"
28#include "llvm/IR/Argument.h"
29#include "llvm/IR/Attributes.h"
30#include "llvm/IR/BasicBlock.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Dominators.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalValue.h"
39#include "llvm/IR/InstrTypes.h"
40#include "llvm/IR/Instruction.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/IR/IntrinsicInst.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/LLVMContext.h"
45#include "llvm/IR/MDBuilder.h"
46#include "llvm/IR/Module.h"
47#include "llvm/IR/PatternMatch.h"
48#include "llvm/IR/Type.h"
49#include "llvm/IR/User.h"
50#include "llvm/IR/Value.h"
51#include "llvm/IR/Verifier.h"
52#include "llvm/Pass.h"
53#include "llvm/Support/BlockFrequency.h"
54#include "llvm/Support/BranchProbability.h"
55#include "llvm/Support/Casting.h"
56#include "llvm/Support/CommandLine.h"
57#include "llvm/Support/Debug.h"
58#include "llvm/Support/ErrorHandling.h"
59#include "llvm/Support/raw_ostream.h"
60#include "llvm/Transforms/Utils/BasicBlockUtils.h"
61#include "llvm/Transforms/Utils/Local.h"
62#include <cassert>
63#include <cstdint>
64#include <iterator>
65#include <map>
66#include <set>
67#include <utility>
68#include <vector>
69
70using namespace llvm;
71using namespace llvm::PatternMatch;
72using ProfileCount = Function::ProfileCount;
73
74#define DEBUG_TYPE "code-extractor"
75
76// Provide a command-line option to aggregate function arguments into a struct
77// for functions produced by the code extractor. This is useful when converting
78// extracted functions to pthread-based code, as only one argument (void*) can
79// be passed in to pthread_create().
80static cl::opt<bool>
81AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82                 cl::desc("Aggregate arguments to code-extracted functions"));
83
84/// Test whether a block is valid for extraction.
85static bool isBlockValidForExtraction(const BasicBlock &BB,
86                                      const SetVector<BasicBlock *> &Result,
87                                      bool AllowVarArgs, bool AllowAlloca) {
88  // taking the address of a basic block moved to another function is illegal
89  if (BB.hasAddressTaken())
90    return false;
91
92  // don't hoist code that uses another basicblock address, as it's likely to
93  // lead to unexpected behavior, like cross-function jumps
94  SmallPtrSet<User const *, 16> Visited;
95  SmallVector<User const *, 16> ToVisit;
96
97  for (Instruction const &Inst : BB)
98    ToVisit.push_back(&Inst);
99
100  while (!ToVisit.empty()) {
101    User const *Curr = ToVisit.pop_back_val();
102    if (!Visited.insert(Curr).second)
103      continue;
104    if (isa<BlockAddress const>(Curr))
105      return false; // even a reference to self is likely to be not compatible
106
107    if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108      continue;
109
110    for (auto const &U : Curr->operands()) {
111      if (auto *UU = dyn_cast<User>(U))
112        ToVisit.push_back(UU);
113    }
114  }
115
116  // If explicitly requested, allow vastart and alloca. For invoke instructions
117  // verify that extraction is valid.
118  for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119    if (isa<AllocaInst>(I)) {
120       if (!AllowAlloca)
121         return false;
122       continue;
123    }
124
125    if (const auto *II = dyn_cast<InvokeInst>(I)) {
126      // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127      // must be a part of the subgraph which is being extracted.
128      if (auto *UBB = II->getUnwindDest())
129        if (!Result.count(UBB))
130          return false;
131      continue;
132    }
133
134    // All catch handlers of a catchswitch instruction as well as the unwind
135    // destination must be in the subgraph.
136    if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137      if (auto *UBB = CSI->getUnwindDest())
138        if (!Result.count(UBB))
139          return false;
140      for (auto *HBB : CSI->handlers())
141        if (!Result.count(const_cast<BasicBlock*>(HBB)))
142          return false;
143      continue;
144    }
145
146    // Make sure that entire catch handler is within subgraph. It is sufficient
147    // to check that catch return's block is in the list.
148    if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149      for (const auto *U : CPI->users())
150        if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151          if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152            return false;
153      continue;
154    }
155
156    // And do similar checks for cleanup handler - the entire handler must be
157    // in subgraph which is going to be extracted. For cleanup return should
158    // additionally check that the unwind destination is also in the subgraph.
159    if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160      for (const auto *U : CPI->users())
161        if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162          if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163            return false;
164      continue;
165    }
166    if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167      if (auto *UBB = CRI->getUnwindDest())
168        if (!Result.count(UBB))
169          return false;
170      continue;
171    }
172
173    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174      if (const Function *F = CI->getCalledFunction()) {
175        auto IID = F->getIntrinsicID();
176        if (IID == Intrinsic::vastart) {
177          if (AllowVarArgs)
178            continue;
179          else
180            return false;
181        }
182
183        // Currently, we miscompile outlined copies of eh_typid_for. There are
184        // proposals for fixing this in llvm.org/PR39545.
185        if (IID == Intrinsic::eh_typeid_for)
186          return false;
187      }
188    }
189  }
190
191  return true;
192}
193
194/// Build a set of blocks to extract if the input blocks are viable.
195static SetVector<BasicBlock *>
196buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197                        bool AllowVarArgs, bool AllowAlloca) {
198  assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199  SetVector<BasicBlock *> Result;
200
201  // Loop over the blocks, adding them to our set-vector, and aborting with an
202  // empty set if we encounter invalid blocks.
203  for (BasicBlock *BB : BBs) {
204    // If this block is dead, don't process it.
205    if (DT && !DT->isReachableFromEntry(BB))
206      continue;
207
208    if (!Result.insert(BB))
209      llvm_unreachable("Repeated basic blocks in extraction input");
210  }
211
212  LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213                    << '\n');
214
215  for (auto *BB : Result) {
216    if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217      return {};
218
219    // Make sure that the first block is not a landing pad.
220    if (BB == Result.front()) {
221      if (BB->isEHPad()) {
222        LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223        return {};
224      }
225      continue;
226    }
227
228    // All blocks other than the first must not have predecessors outside of
229    // the subgraph which is being extracted.
230    for (auto *PBB : predecessors(BB))
231      if (!Result.count(PBB)) {
232        LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233                             "outside the region except for the first block!\n"
234                          << "Problematic source BB: " << BB->getName() << "\n"
235                          << "Problematic destination BB: " << PBB->getName()
236                          << "\n");
237        return {};
238      }
239  }
240
241  return Result;
242}
243
244CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245                             bool AggregateArgs, BlockFrequencyInfo *BFI,
246                             BranchProbabilityInfo *BPI, AssumptionCache *AC,
247                             bool AllowVarArgs, bool AllowAlloca,
248                             std::string Suffix)
249    : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250      BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
251      Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
252      Suffix(Suffix) {}
253
254CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
255                             BlockFrequencyInfo *BFI,
256                             BranchProbabilityInfo *BPI, AssumptionCache *AC,
257                             std::string Suffix)
258    : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
259      BPI(BPI), AC(AC), AllowVarArgs(false),
260      Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
261                                     /* AllowVarArgs */ false,
262                                     /* AllowAlloca */ false)),
263      Suffix(Suffix) {}
264
265/// definedInRegion - Return true if the specified value is defined in the
266/// extracted region.
267static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
268  if (Instruction *I = dyn_cast<Instruction>(V))
269    if (Blocks.count(I->getParent()))
270      return true;
271  return false;
272}
273
274/// definedInCaller - Return true if the specified value is defined in the
275/// function being code extracted, but not in the region being extracted.
276/// These values must be passed in as live-ins to the function.
277static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
278  if (isa<Argument>(V)) return true;
279  if (Instruction *I = dyn_cast<Instruction>(V))
280    if (!Blocks.count(I->getParent()))
281      return true;
282  return false;
283}
284
285static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
286  BasicBlock *CommonExitBlock = nullptr;
287  auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
288    for (auto *Succ : successors(Block)) {
289      // Internal edges, ok.
290      if (Blocks.count(Succ))
291        continue;
292      if (!CommonExitBlock) {
293        CommonExitBlock = Succ;
294        continue;
295      }
296      if (CommonExitBlock != Succ)
297        return true;
298    }
299    return false;
300  };
301
302  if (any_of(Blocks, hasNonCommonExitSucc))
303    return nullptr;
304
305  return CommonExitBlock;
306}
307
308CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
309  for (BasicBlock &BB : F) {
310    for (Instruction &II : BB.instructionsWithoutDebug())
311      if (auto *AI = dyn_cast<AllocaInst>(&II))
312        Allocas.push_back(AI);
313
314    findSideEffectInfoForBlock(BB);
315  }
316}
317
318void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
319  for (Instruction &II : BB.instructionsWithoutDebug()) {
320    unsigned Opcode = II.getOpcode();
321    Value *MemAddr = nullptr;
322    switch (Opcode) {
323    case Instruction::Store:
324    case Instruction::Load: {
325      if (Opcode == Instruction::Store) {
326        StoreInst *SI = cast<StoreInst>(&II);
327        MemAddr = SI->getPointerOperand();
328      } else {
329        LoadInst *LI = cast<LoadInst>(&II);
330        MemAddr = LI->getPointerOperand();
331      }
332      // Global variable can not be aliased with locals.
333      if (dyn_cast<Constant>(MemAddr))
334        break;
335      Value *Base = MemAddr->stripInBoundsConstantOffsets();
336      if (!isa<AllocaInst>(Base)) {
337        SideEffectingBlocks.insert(&BB);
338        return;
339      }
340      BaseMemAddrs[&BB].insert(Base);
341      break;
342    }
343    default: {
344      IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
345      if (IntrInst) {
346        if (IntrInst->isLifetimeStartOrEnd())
347          break;
348        SideEffectingBlocks.insert(&BB);
349        return;
350      }
351      // Treat all the other cases conservatively if it has side effects.
352      if (II.mayHaveSideEffects()) {
353        SideEffectingBlocks.insert(&BB);
354        return;
355      }
356    }
357    }
358  }
359}
360
361bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
362    BasicBlock &BB, AllocaInst *Addr) const {
363  if (SideEffectingBlocks.count(&BB))
364    return true;
365  auto It = BaseMemAddrs.find(&BB);
366  if (It != BaseMemAddrs.end())
367    return It->second.count(Addr);
368  return false;
369}
370
371bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
372    const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
373  AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
374  Function *Func = (*Blocks.begin())->getParent();
375  for (BasicBlock &BB : *Func) {
376    if (Blocks.count(&BB))
377      continue;
378    if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
379      return false;
380  }
381  return true;
382}
383
384BasicBlock *
385CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
386  BasicBlock *SinglePredFromOutlineRegion = nullptr;
387  assert(!Blocks.count(CommonExitBlock) &&
388         "Expect a block outside the region!");
389  for (auto *Pred : predecessors(CommonExitBlock)) {
390    if (!Blocks.count(Pred))
391      continue;
392    if (!SinglePredFromOutlineRegion) {
393      SinglePredFromOutlineRegion = Pred;
394    } else if (SinglePredFromOutlineRegion != Pred) {
395      SinglePredFromOutlineRegion = nullptr;
396      break;
397    }
398  }
399
400  if (SinglePredFromOutlineRegion)
401    return SinglePredFromOutlineRegion;
402
403#ifndef NDEBUG
404  auto getFirstPHI = [](BasicBlock *BB) {
405    BasicBlock::iterator I = BB->begin();
406    PHINode *FirstPhi = nullptr;
407    while (I != BB->end()) {
408      PHINode *Phi = dyn_cast<PHINode>(I);
409      if (!Phi)
410        break;
411      if (!FirstPhi) {
412        FirstPhi = Phi;
413        break;
414      }
415    }
416    return FirstPhi;
417  };
418  // If there are any phi nodes, the single pred either exists or has already
419  // be created before code extraction.
420  assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
421#endif
422
423  BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
424      CommonExitBlock->getFirstNonPHI()->getIterator());
425
426  for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
427       PI != PE;) {
428    BasicBlock *Pred = *PI++;
429    if (Blocks.count(Pred))
430      continue;
431    Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
432  }
433  // Now add the old exit block to the outline region.
434  Blocks.insert(CommonExitBlock);
435  return CommonExitBlock;
436}
437
438// Find the pair of life time markers for address 'Addr' that are either
439// defined inside the outline region or can legally be shrinkwrapped into the
440// outline region. If there are not other untracked uses of the address, return
441// the pair of markers if found; otherwise return a pair of nullptr.
442CodeExtractor::LifetimeMarkerInfo
443CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
444                                  Instruction *Addr,
445                                  BasicBlock *ExitBlock) const {
446  LifetimeMarkerInfo Info;
447
448  for (User *U : Addr->users()) {
449    IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
450    if (IntrInst) {
451      if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
452        // Do not handle the case where Addr has multiple start markers.
453        if (Info.LifeStart)
454          return {};
455        Info.LifeStart = IntrInst;
456      }
457      if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
458        if (Info.LifeEnd)
459          return {};
460        Info.LifeEnd = IntrInst;
461      }
462      continue;
463    }
464    // Find untracked uses of the address, bail.
465    if (!definedInRegion(Blocks, U))
466      return {};
467  }
468
469  if (!Info.LifeStart || !Info.LifeEnd)
470    return {};
471
472  Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
473  Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
474  // Do legality check.
475  if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
476      !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
477    return {};
478
479  // Check to see if we have a place to do hoisting, if not, bail.
480  if (Info.HoistLifeEnd && !ExitBlock)
481    return {};
482
483  return Info;
484}
485
486void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
487                                ValueSet &SinkCands, ValueSet &HoistCands,
488                                BasicBlock *&ExitBlock) const {
489  Function *Func = (*Blocks.begin())->getParent();
490  ExitBlock = getCommonExitBlock(Blocks);
491
492  auto moveOrIgnoreLifetimeMarkers =
493      [&](const LifetimeMarkerInfo &LMI) -> bool {
494    if (!LMI.LifeStart)
495      return false;
496    if (LMI.SinkLifeStart) {
497      LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
498                        << "\n");
499      SinkCands.insert(LMI.LifeStart);
500    }
501    if (LMI.HoistLifeEnd) {
502      LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
503      HoistCands.insert(LMI.LifeEnd);
504    }
505    return true;
506  };
507
508  // Look up allocas in the original function in CodeExtractorAnalysisCache, as
509  // this is much faster than walking all the instructions.
510  for (AllocaInst *AI : CEAC.getAllocas()) {
511    BasicBlock *BB = AI->getParent();
512    if (Blocks.count(BB))
513      continue;
514
515    // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
516    // check whether it is actually still in the original function.
517    Function *AIFunc = BB->getParent();
518    if (AIFunc != Func)
519      continue;
520
521    LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
522    bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
523    if (Moved) {
524      LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
525      SinkCands.insert(AI);
526      continue;
527    }
528
529    // Follow any bitcasts.
530    SmallVector<Instruction *, 2> Bitcasts;
531    SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
532    for (User *U : AI->users()) {
533      if (U->stripInBoundsConstantOffsets() == AI) {
534        Instruction *Bitcast = cast<Instruction>(U);
535        LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
536        if (LMI.LifeStart) {
537          Bitcasts.push_back(Bitcast);
538          BitcastLifetimeInfo.push_back(LMI);
539          continue;
540        }
541      }
542
543      // Found unknown use of AI.
544      if (!definedInRegion(Blocks, U)) {
545        Bitcasts.clear();
546        break;
547      }
548    }
549
550    // Either no bitcasts reference the alloca or there are unknown uses.
551    if (Bitcasts.empty())
552      continue;
553
554    LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
555    SinkCands.insert(AI);
556    for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
557      Instruction *BitcastAddr = Bitcasts[I];
558      const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
559      assert(LMI.LifeStart &&
560             "Unsafe to sink bitcast without lifetime markers");
561      moveOrIgnoreLifetimeMarkers(LMI);
562      if (!definedInRegion(Blocks, BitcastAddr)) {
563        LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
564                          << "\n");
565        SinkCands.insert(BitcastAddr);
566      }
567    }
568  }
569}
570
571bool CodeExtractor::isEligible() const {
572  if (Blocks.empty())
573    return false;
574  BasicBlock *Header = *Blocks.begin();
575  Function *F = Header->getParent();
576
577  // For functions with varargs, check that varargs handling is only done in the
578  // outlined function, i.e vastart and vaend are only used in outlined blocks.
579  if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
580    auto containsVarArgIntrinsic = [](const Instruction &I) {
581      if (const CallInst *CI = dyn_cast<CallInst>(&I))
582        if (const Function *Callee = CI->getCalledFunction())
583          return Callee->getIntrinsicID() == Intrinsic::vastart ||
584                 Callee->getIntrinsicID() == Intrinsic::vaend;
585      return false;
586    };
587
588    for (auto &BB : *F) {
589      if (Blocks.count(&BB))
590        continue;
591      if (llvm::any_of(BB, containsVarArgIntrinsic))
592        return false;
593    }
594  }
595  return true;
596}
597
598void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
599                                      const ValueSet &SinkCands) const {
600  for (BasicBlock *BB : Blocks) {
601    // If a used value is defined outside the region, it's an input.  If an
602    // instruction is used outside the region, it's an output.
603    for (Instruction &II : *BB) {
604      for (auto &OI : II.operands()) {
605        Value *V = OI;
606        if (!SinkCands.count(V) && definedInCaller(Blocks, V))
607          Inputs.insert(V);
608      }
609
610      for (User *U : II.users())
611        if (!definedInRegion(Blocks, U)) {
612          Outputs.insert(&II);
613          break;
614        }
615    }
616  }
617}
618
619/// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
620/// of the region, we need to split the entry block of the region so that the
621/// PHI node is easier to deal with.
622void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
623  unsigned NumPredsFromRegion = 0;
624  unsigned NumPredsOutsideRegion = 0;
625
626  if (Header != &Header->getParent()->getEntryBlock()) {
627    PHINode *PN = dyn_cast<PHINode>(Header->begin());
628    if (!PN) return;  // No PHI nodes.
629
630    // If the header node contains any PHI nodes, check to see if there is more
631    // than one entry from outside the region.  If so, we need to sever the
632    // header block into two.
633    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
634      if (Blocks.count(PN->getIncomingBlock(i)))
635        ++NumPredsFromRegion;
636      else
637        ++NumPredsOutsideRegion;
638
639    // If there is one (or fewer) predecessor from outside the region, we don't
640    // need to do anything special.
641    if (NumPredsOutsideRegion <= 1) return;
642  }
643
644  // Otherwise, we need to split the header block into two pieces: one
645  // containing PHI nodes merging values from outside of the region, and a
646  // second that contains all of the code for the block and merges back any
647  // incoming values from inside of the region.
648  BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
649
650  // We only want to code extract the second block now, and it becomes the new
651  // header of the region.
652  BasicBlock *OldPred = Header;
653  Blocks.remove(OldPred);
654  Blocks.insert(NewBB);
655  Header = NewBB;
656
657  // Okay, now we need to adjust the PHI nodes and any branches from within the
658  // region to go to the new header block instead of the old header block.
659  if (NumPredsFromRegion) {
660    PHINode *PN = cast<PHINode>(OldPred->begin());
661    // Loop over all of the predecessors of OldPred that are in the region,
662    // changing them to branch to NewBB instead.
663    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
664      if (Blocks.count(PN->getIncomingBlock(i))) {
665        Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
666        TI->replaceUsesOfWith(OldPred, NewBB);
667      }
668
669    // Okay, everything within the region is now branching to the right block, we
670    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
671    BasicBlock::iterator AfterPHIs;
672    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
673      PHINode *PN = cast<PHINode>(AfterPHIs);
674      // Create a new PHI node in the new region, which has an incoming value
675      // from OldPred of PN.
676      PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
677                                       PN->getName() + ".ce", &NewBB->front());
678      PN->replaceAllUsesWith(NewPN);
679      NewPN->addIncoming(PN, OldPred);
680
681      // Loop over all of the incoming value in PN, moving them to NewPN if they
682      // are from the extracted region.
683      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
684        if (Blocks.count(PN->getIncomingBlock(i))) {
685          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
686          PN->removeIncomingValue(i);
687          --i;
688        }
689      }
690    }
691  }
692}
693
694/// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
695/// outlined region, we split these PHIs on two: one with inputs from region
696/// and other with remaining incoming blocks; then first PHIs are placed in
697/// outlined region.
698void CodeExtractor::severSplitPHINodesOfExits(
699    const SmallPtrSetImpl<BasicBlock *> &Exits) {
700  for (BasicBlock *ExitBB : Exits) {
701    BasicBlock *NewBB = nullptr;
702
703    for (PHINode &PN : ExitBB->phis()) {
704      // Find all incoming values from the outlining region.
705      SmallVector<unsigned, 2> IncomingVals;
706      for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
707        if (Blocks.count(PN.getIncomingBlock(i)))
708          IncomingVals.push_back(i);
709
710      // Do not process PHI if there is one (or fewer) predecessor from region.
711      // If PHI has exactly one predecessor from region, only this one incoming
712      // will be replaced on codeRepl block, so it should be safe to skip PHI.
713      if (IncomingVals.size() <= 1)
714        continue;
715
716      // Create block for new PHIs and add it to the list of outlined if it
717      // wasn't done before.
718      if (!NewBB) {
719        NewBB = BasicBlock::Create(ExitBB->getContext(),
720                                   ExitBB->getName() + ".split",
721                                   ExitBB->getParent(), ExitBB);
722        SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
723                                           pred_end(ExitBB));
724        for (BasicBlock *PredBB : Preds)
725          if (Blocks.count(PredBB))
726            PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
727        BranchInst::Create(ExitBB, NewBB);
728        Blocks.insert(NewBB);
729      }
730
731      // Split this PHI.
732      PHINode *NewPN =
733          PHINode::Create(PN.getType(), IncomingVals.size(),
734                          PN.getName() + ".ce", NewBB->getFirstNonPHI());
735      for (unsigned i : IncomingVals)
736        NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
737      for (unsigned i : reverse(IncomingVals))
738        PN.removeIncomingValue(i, false);
739      PN.addIncoming(NewPN, NewBB);
740    }
741  }
742}
743
744void CodeExtractor::splitReturnBlocks() {
745  for (BasicBlock *Block : Blocks)
746    if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
747      BasicBlock *New =
748          Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
749      if (DT) {
750        // Old dominates New. New node dominates all other nodes dominated
751        // by Old.
752        DomTreeNode *OldNode = DT->getNode(Block);
753        SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
754                                               OldNode->end());
755
756        DomTreeNode *NewNode = DT->addNewBlock(New, Block);
757
758        for (DomTreeNode *I : Children)
759          DT->changeImmediateDominator(I, NewNode);
760      }
761    }
762}
763
764/// constructFunction - make a function based on inputs and outputs, as follows:
765/// f(in0, ..., inN, out0, ..., outN)
766Function *CodeExtractor::constructFunction(const ValueSet &inputs,
767                                           const ValueSet &outputs,
768                                           BasicBlock *header,
769                                           BasicBlock *newRootNode,
770                                           BasicBlock *newHeader,
771                                           Function *oldFunction,
772                                           Module *M) {
773  LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
774  LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
775
776  // This function returns unsigned, outputs will go back by reference.
777  switch (NumExitBlocks) {
778  case 0:
779  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
780  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
781  default: RetTy = Type::getInt16Ty(header->getContext()); break;
782  }
783
784  std::vector<Type *> paramTy;
785
786  // Add the types of the input values to the function's argument list
787  for (Value *value : inputs) {
788    LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
789    paramTy.push_back(value->getType());
790  }
791
792  // Add the types of the output values to the function's argument list.
793  for (Value *output : outputs) {
794    LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
795    if (AggregateArgs)
796      paramTy.push_back(output->getType());
797    else
798      paramTy.push_back(PointerType::getUnqual(output->getType()));
799  }
800
801  LLVM_DEBUG({
802    dbgs() << "Function type: " << *RetTy << " f(";
803    for (Type *i : paramTy)
804      dbgs() << *i << ", ";
805    dbgs() << ")\n";
806  });
807
808  StructType *StructTy = nullptr;
809  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
810    StructTy = StructType::get(M->getContext(), paramTy);
811    paramTy.clear();
812    paramTy.push_back(PointerType::getUnqual(StructTy));
813  }
814  FunctionType *funcType =
815                  FunctionType::get(RetTy, paramTy,
816                                    AllowVarArgs && oldFunction->isVarArg());
817
818  std::string SuffixToUse =
819      Suffix.empty()
820          ? (header->getName().empty() ? "extracted" : header->getName().str())
821          : Suffix;
822  // Create the new function
823  Function *newFunction = Function::Create(
824      funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
825      oldFunction->getName() + "." + SuffixToUse, M);
826  // If the old function is no-throw, so is the new one.
827  if (oldFunction->doesNotThrow())
828    newFunction->setDoesNotThrow();
829
830  // Inherit the uwtable attribute if we need to.
831  if (oldFunction->hasUWTable())
832    newFunction->setHasUWTable();
833
834  // Inherit all of the target dependent attributes and white-listed
835  // target independent attributes.
836  //  (e.g. If the extracted region contains a call to an x86.sse
837  //  instruction we need to make sure that the extracted region has the
838  //  "target-features" attribute allowing it to be lowered.
839  // FIXME: This should be changed to check to see if a specific
840  //           attribute can not be inherited.
841  for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
842    if (Attr.isStringAttribute()) {
843      if (Attr.getKindAsString() == "thunk")
844        continue;
845    } else
846      switch (Attr.getKindAsEnum()) {
847      // Those attributes cannot be propagated safely. Explicitly list them
848      // here so we get a warning if new attributes are added. This list also
849      // includes non-function attributes.
850      case Attribute::Alignment:
851      case Attribute::AllocSize:
852      case Attribute::ArgMemOnly:
853      case Attribute::Builtin:
854      case Attribute::ByVal:
855      case Attribute::Convergent:
856      case Attribute::Dereferenceable:
857      case Attribute::DereferenceableOrNull:
858      case Attribute::InAlloca:
859      case Attribute::InReg:
860      case Attribute::InaccessibleMemOnly:
861      case Attribute::InaccessibleMemOrArgMemOnly:
862      case Attribute::JumpTable:
863      case Attribute::Naked:
864      case Attribute::Nest:
865      case Attribute::NoAlias:
866      case Attribute::NoBuiltin:
867      case Attribute::NoCapture:
868      case Attribute::NoReturn:
869      case Attribute::NoSync:
870      case Attribute::None:
871      case Attribute::NonNull:
872      case Attribute::ReadNone:
873      case Attribute::ReadOnly:
874      case Attribute::Returned:
875      case Attribute::ReturnsTwice:
876      case Attribute::SExt:
877      case Attribute::Speculatable:
878      case Attribute::StackAlignment:
879      case Attribute::StructRet:
880      case Attribute::SwiftError:
881      case Attribute::SwiftSelf:
882      case Attribute::WillReturn:
883      case Attribute::WriteOnly:
884      case Attribute::ZExt:
885      case Attribute::ImmArg:
886      case Attribute::EndAttrKinds:
887        continue;
888      // Those attributes should be safe to propagate to the extracted function.
889      case Attribute::AlwaysInline:
890      case Attribute::Cold:
891      case Attribute::NoRecurse:
892      case Attribute::InlineHint:
893      case Attribute::MinSize:
894      case Attribute::NoDuplicate:
895      case Attribute::NoFree:
896      case Attribute::NoImplicitFloat:
897      case Attribute::NoInline:
898      case Attribute::NonLazyBind:
899      case Attribute::NoRedZone:
900      case Attribute::NoUnwind:
901      case Attribute::OptForFuzzing:
902      case Attribute::OptimizeNone:
903      case Attribute::OptimizeForSize:
904      case Attribute::SafeStack:
905      case Attribute::ShadowCallStack:
906      case Attribute::SanitizeAddress:
907      case Attribute::SanitizeMemory:
908      case Attribute::SanitizeThread:
909      case Attribute::SanitizeHWAddress:
910      case Attribute::SanitizeMemTag:
911      case Attribute::SpeculativeLoadHardening:
912      case Attribute::StackProtect:
913      case Attribute::StackProtectReq:
914      case Attribute::StackProtectStrong:
915      case Attribute::StrictFP:
916      case Attribute::UWTable:
917      case Attribute::NoCfCheck:
918        break;
919      }
920
921    newFunction->addFnAttr(Attr);
922  }
923  newFunction->getBasicBlockList().push_back(newRootNode);
924
925  // Create an iterator to name all of the arguments we inserted.
926  Function::arg_iterator AI = newFunction->arg_begin();
927
928  // Rewrite all users of the inputs in the extracted region to use the
929  // arguments (or appropriate addressing into struct) instead.
930  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
931    Value *RewriteVal;
932    if (AggregateArgs) {
933      Value *Idx[2];
934      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
935      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
936      Instruction *TI = newFunction->begin()->getTerminator();
937      GetElementPtrInst *GEP = GetElementPtrInst::Create(
938          StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
939      RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
940                                "loadgep_" + inputs[i]->getName(), TI);
941    } else
942      RewriteVal = &*AI++;
943
944    std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
945    for (User *use : Users)
946      if (Instruction *inst = dyn_cast<Instruction>(use))
947        if (Blocks.count(inst->getParent()))
948          inst->replaceUsesOfWith(inputs[i], RewriteVal);
949  }
950
951  // Set names for input and output arguments.
952  if (!AggregateArgs) {
953    AI = newFunction->arg_begin();
954    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
955      AI->setName(inputs[i]->getName());
956    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
957      AI->setName(outputs[i]->getName()+".out");
958  }
959
960  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
961  // within the new function. This must be done before we lose track of which
962  // blocks were originally in the code region.
963  std::vector<User *> Users(header->user_begin(), header->user_end());
964  for (auto &U : Users)
965    // The BasicBlock which contains the branch is not in the region
966    // modify the branch target to a new block
967    if (Instruction *I = dyn_cast<Instruction>(U))
968      if (I->isTerminator() && I->getFunction() == oldFunction &&
969          !Blocks.count(I->getParent()))
970        I->replaceUsesOfWith(header, newHeader);
971
972  return newFunction;
973}
974
975/// Erase lifetime.start markers which reference inputs to the extraction
976/// region, and insert the referenced memory into \p LifetimesStart.
977///
978/// The extraction region is defined by a set of blocks (\p Blocks), and a set
979/// of allocas which will be moved from the caller function into the extracted
980/// function (\p SunkAllocas).
981static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
982                                         const SetVector<Value *> &SunkAllocas,
983                                         SetVector<Value *> &LifetimesStart) {
984  for (BasicBlock *BB : Blocks) {
985    for (auto It = BB->begin(), End = BB->end(); It != End;) {
986      auto *II = dyn_cast<IntrinsicInst>(&*It);
987      ++It;
988      if (!II || !II->isLifetimeStartOrEnd())
989        continue;
990
991      // Get the memory operand of the lifetime marker. If the underlying
992      // object is a sunk alloca, or is otherwise defined in the extraction
993      // region, the lifetime marker must not be erased.
994      Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
995      if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
996        continue;
997
998      if (II->getIntrinsicID() == Intrinsic::lifetime_start)
999        LifetimesStart.insert(Mem);
1000      II->eraseFromParent();
1001    }
1002  }
1003}
1004
1005/// Insert lifetime start/end markers surrounding the call to the new function
1006/// for objects defined in the caller.
1007static void insertLifetimeMarkersSurroundingCall(
1008    Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1009    CallInst *TheCall) {
1010  LLVMContext &Ctx = M->getContext();
1011  auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1012  auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1013  Instruction *Term = TheCall->getParent()->getTerminator();
1014
1015  // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1016  // needed to satisfy this requirement so they may be reused.
1017  DenseMap<Value *, Value *> Bitcasts;
1018
1019  // Emit lifetime markers for the pointers given in \p Objects. Insert the
1020  // markers before the call if \p InsertBefore, and after the call otherwise.
1021  auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1022                           bool InsertBefore) {
1023    for (Value *Mem : Objects) {
1024      assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1025                                            TheCall->getFunction()) &&
1026             "Input memory not defined in original function");
1027      Value *&MemAsI8Ptr = Bitcasts[Mem];
1028      if (!MemAsI8Ptr) {
1029        if (Mem->getType() == Int8PtrTy)
1030          MemAsI8Ptr = Mem;
1031        else
1032          MemAsI8Ptr =
1033              CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1034      }
1035
1036      auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1037      if (InsertBefore)
1038        Marker->insertBefore(TheCall);
1039      else
1040        Marker->insertBefore(Term);
1041    }
1042  };
1043
1044  if (!LifetimesStart.empty()) {
1045    auto StartFn = llvm::Intrinsic::getDeclaration(
1046        M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1047    insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1048  }
1049
1050  if (!LifetimesEnd.empty()) {
1051    auto EndFn = llvm::Intrinsic::getDeclaration(
1052        M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1053    insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1054  }
1055}
1056
1057/// emitCallAndSwitchStatement - This method sets up the caller side by adding
1058/// the call instruction, splitting any PHI nodes in the header block as
1059/// necessary.
1060CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1061                                                    BasicBlock *codeReplacer,
1062                                                    ValueSet &inputs,
1063                                                    ValueSet &outputs) {
1064  // Emit a call to the new function, passing in: *pointer to struct (if
1065  // aggregating parameters), or plan inputs and allocated memory for outputs
1066  std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
1067
1068  Module *M = newFunction->getParent();
1069  LLVMContext &Context = M->getContext();
1070  const DataLayout &DL = M->getDataLayout();
1071  CallInst *call = nullptr;
1072
1073  // Add inputs as params, or to be filled into the struct
1074  unsigned ArgNo = 0;
1075  SmallVector<unsigned, 1> SwiftErrorArgs;
1076  for (Value *input : inputs) {
1077    if (AggregateArgs)
1078      StructValues.push_back(input);
1079    else {
1080      params.push_back(input);
1081      if (input->isSwiftError())
1082        SwiftErrorArgs.push_back(ArgNo);
1083    }
1084    ++ArgNo;
1085  }
1086
1087  // Create allocas for the outputs
1088  for (Value *output : outputs) {
1089    if (AggregateArgs) {
1090      StructValues.push_back(output);
1091    } else {
1092      AllocaInst *alloca =
1093        new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1094                       nullptr, output->getName() + ".loc",
1095                       &codeReplacer->getParent()->front().front());
1096      ReloadOutputs.push_back(alloca);
1097      params.push_back(alloca);
1098    }
1099  }
1100
1101  StructType *StructArgTy = nullptr;
1102  AllocaInst *Struct = nullptr;
1103  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1104    std::vector<Type *> ArgTypes;
1105    for (ValueSet::iterator v = StructValues.begin(),
1106           ve = StructValues.end(); v != ve; ++v)
1107      ArgTypes.push_back((*v)->getType());
1108
1109    // Allocate a struct at the beginning of this function
1110    StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1111    Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1112                            "structArg",
1113                            &codeReplacer->getParent()->front().front());
1114    params.push_back(Struct);
1115
1116    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1117      Value *Idx[2];
1118      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1119      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1120      GetElementPtrInst *GEP = GetElementPtrInst::Create(
1121          StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1122      codeReplacer->getInstList().push_back(GEP);
1123      StoreInst *SI = new StoreInst(StructValues[i], GEP);
1124      codeReplacer->getInstList().push_back(SI);
1125    }
1126  }
1127
1128  // Emit the call to the function
1129  call = CallInst::Create(newFunction, params,
1130                          NumExitBlocks > 1 ? "targetBlock" : "");
1131  // Add debug location to the new call, if the original function has debug
1132  // info. In that case, the terminator of the entry block of the extracted
1133  // function contains the first debug location of the extracted function,
1134  // set in extractCodeRegion.
1135  if (codeReplacer->getParent()->getSubprogram()) {
1136    if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1137      call->setDebugLoc(DL);
1138  }
1139  codeReplacer->getInstList().push_back(call);
1140
1141  // Set swifterror parameter attributes.
1142  for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1143    call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1144    newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1145  }
1146
1147  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1148  unsigned FirstOut = inputs.size();
1149  if (!AggregateArgs)
1150    std::advance(OutputArgBegin, inputs.size());
1151
1152  // Reload the outputs passed in by reference.
1153  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1154    Value *Output = nullptr;
1155    if (AggregateArgs) {
1156      Value *Idx[2];
1157      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1158      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1159      GetElementPtrInst *GEP = GetElementPtrInst::Create(
1160          StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1161      codeReplacer->getInstList().push_back(GEP);
1162      Output = GEP;
1163    } else {
1164      Output = ReloadOutputs[i];
1165    }
1166    LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1167                                  outputs[i]->getName() + ".reload");
1168    Reloads.push_back(load);
1169    codeReplacer->getInstList().push_back(load);
1170    std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1171    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1172      Instruction *inst = cast<Instruction>(Users[u]);
1173      if (!Blocks.count(inst->getParent()))
1174        inst->replaceUsesOfWith(outputs[i], load);
1175    }
1176  }
1177
1178  // Now we can emit a switch statement using the call as a value.
1179  SwitchInst *TheSwitch =
1180      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1181                         codeReplacer, 0, codeReplacer);
1182
1183  // Since there may be multiple exits from the original region, make the new
1184  // function return an unsigned, switch on that number.  This loop iterates
1185  // over all of the blocks in the extracted region, updating any terminator
1186  // instructions in the to-be-extracted region that branch to blocks that are
1187  // not in the region to be extracted.
1188  std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1189
1190  unsigned switchVal = 0;
1191  for (BasicBlock *Block : Blocks) {
1192    Instruction *TI = Block->getTerminator();
1193    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1194      if (!Blocks.count(TI->getSuccessor(i))) {
1195        BasicBlock *OldTarget = TI->getSuccessor(i);
1196        // add a new basic block which returns the appropriate value
1197        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1198        if (!NewTarget) {
1199          // If we don't already have an exit stub for this non-extracted
1200          // destination, create one now!
1201          NewTarget = BasicBlock::Create(Context,
1202                                         OldTarget->getName() + ".exitStub",
1203                                         newFunction);
1204          unsigned SuccNum = switchVal++;
1205
1206          Value *brVal = nullptr;
1207          switch (NumExitBlocks) {
1208          case 0:
1209          case 1: break;  // No value needed.
1210          case 2:         // Conditional branch, return a bool
1211            brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1212            break;
1213          default:
1214            brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1215            break;
1216          }
1217
1218          ReturnInst::Create(Context, brVal, NewTarget);
1219
1220          // Update the switch instruction.
1221          TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1222                                              SuccNum),
1223                             OldTarget);
1224        }
1225
1226        // rewrite the original branch instruction with this new target
1227        TI->setSuccessor(i, NewTarget);
1228      }
1229  }
1230
1231  // Store the arguments right after the definition of output value.
1232  // This should be proceeded after creating exit stubs to be ensure that invoke
1233  // result restore will be placed in the outlined function.
1234  Function::arg_iterator OAI = OutputArgBegin;
1235  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1236    auto *OutI = dyn_cast<Instruction>(outputs[i]);
1237    if (!OutI)
1238      continue;
1239
1240    // Find proper insertion point.
1241    BasicBlock::iterator InsertPt;
1242    // In case OutI is an invoke, we insert the store at the beginning in the
1243    // 'normal destination' BB. Otherwise we insert the store right after OutI.
1244    if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1245      InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1246    else if (auto *Phi = dyn_cast<PHINode>(OutI))
1247      InsertPt = Phi->getParent()->getFirstInsertionPt();
1248    else
1249      InsertPt = std::next(OutI->getIterator());
1250
1251    Instruction *InsertBefore = &*InsertPt;
1252    assert((InsertBefore->getFunction() == newFunction ||
1253            Blocks.count(InsertBefore->getParent())) &&
1254           "InsertPt should be in new function");
1255    assert(OAI != newFunction->arg_end() &&
1256           "Number of output arguments should match "
1257           "the amount of defined values");
1258    if (AggregateArgs) {
1259      Value *Idx[2];
1260      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1261      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1262      GetElementPtrInst *GEP = GetElementPtrInst::Create(
1263          StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1264          InsertBefore);
1265      new StoreInst(outputs[i], GEP, InsertBefore);
1266      // Since there should be only one struct argument aggregating
1267      // all the output values, we shouldn't increment OAI, which always
1268      // points to the struct argument, in this case.
1269    } else {
1270      new StoreInst(outputs[i], &*OAI, InsertBefore);
1271      ++OAI;
1272    }
1273  }
1274
1275  // Now that we've done the deed, simplify the switch instruction.
1276  Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1277  switch (NumExitBlocks) {
1278  case 0:
1279    // There are no successors (the block containing the switch itself), which
1280    // means that previously this was the last part of the function, and hence
1281    // this should be rewritten as a `ret'
1282
1283    // Check if the function should return a value
1284    if (OldFnRetTy->isVoidTy()) {
1285      ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1286    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1287      // return what we have
1288      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1289    } else {
1290      // Otherwise we must have code extracted an unwind or something, just
1291      // return whatever we want.
1292      ReturnInst::Create(Context,
1293                         Constant::getNullValue(OldFnRetTy), TheSwitch);
1294    }
1295
1296    TheSwitch->eraseFromParent();
1297    break;
1298  case 1:
1299    // Only a single destination, change the switch into an unconditional
1300    // branch.
1301    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1302    TheSwitch->eraseFromParent();
1303    break;
1304  case 2:
1305    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1306                       call, TheSwitch);
1307    TheSwitch->eraseFromParent();
1308    break;
1309  default:
1310    // Otherwise, make the default destination of the switch instruction be one
1311    // of the other successors.
1312    TheSwitch->setCondition(call);
1313    TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1314    // Remove redundant case
1315    TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1316    break;
1317  }
1318
1319  // Insert lifetime markers around the reloads of any output values. The
1320  // allocas output values are stored in are only in-use in the codeRepl block.
1321  insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1322
1323  return call;
1324}
1325
1326void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1327  Function *oldFunc = (*Blocks.begin())->getParent();
1328  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1329  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1330
1331  for (BasicBlock *Block : Blocks) {
1332    // Delete the basic block from the old function, and the list of blocks
1333    oldBlocks.remove(Block);
1334
1335    // Insert this basic block into the new function
1336    newBlocks.push_back(Block);
1337  }
1338}
1339
1340void CodeExtractor::calculateNewCallTerminatorWeights(
1341    BasicBlock *CodeReplacer,
1342    DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1343    BranchProbabilityInfo *BPI) {
1344  using Distribution = BlockFrequencyInfoImplBase::Distribution;
1345  using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1346
1347  // Update the branch weights for the exit block.
1348  Instruction *TI = CodeReplacer->getTerminator();
1349  SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1350
1351  // Block Frequency distribution with dummy node.
1352  Distribution BranchDist;
1353
1354  // Add each of the frequencies of the successors.
1355  for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1356    BlockNode ExitNode(i);
1357    uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1358    if (ExitFreq != 0)
1359      BranchDist.addExit(ExitNode, ExitFreq);
1360    else
1361      BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1362  }
1363
1364  // Check for no total weight.
1365  if (BranchDist.Total == 0)
1366    return;
1367
1368  // Normalize the distribution so that they can fit in unsigned.
1369  BranchDist.normalize();
1370
1371  // Create normalized branch weights and set the metadata.
1372  for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1373    const auto &Weight = BranchDist.Weights[I];
1374
1375    // Get the weight and update the current BFI.
1376    BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1377    BranchProbability BP(Weight.Amount, BranchDist.Total);
1378    BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1379  }
1380  TI->setMetadata(
1381      LLVMContext::MD_prof,
1382      MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1383}
1384
1385Function *
1386CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1387  if (!isEligible())
1388    return nullptr;
1389
1390  // Assumption: this is a single-entry code region, and the header is the first
1391  // block in the region.
1392  BasicBlock *header = *Blocks.begin();
1393  Function *oldFunction = header->getParent();
1394
1395  // Calculate the entry frequency of the new function before we change the root
1396  //   block.
1397  BlockFrequency EntryFreq;
1398  if (BFI) {
1399    assert(BPI && "Both BPI and BFI are required to preserve profile info");
1400    for (BasicBlock *Pred : predecessors(header)) {
1401      if (Blocks.count(Pred))
1402        continue;
1403      EntryFreq +=
1404          BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1405    }
1406  }
1407
1408  if (AC) {
1409    // Remove @llvm.assume calls that were moved to the new function from the
1410    // old function's assumption cache.
1411    for (BasicBlock *Block : Blocks)
1412      for (auto &I : *Block)
1413        if (match(&I, m_Intrinsic<Intrinsic::assume>()))
1414          AC->unregisterAssumption(cast<CallInst>(&I));
1415  }
1416
1417  // If we have any return instructions in the region, split those blocks so
1418  // that the return is not in the region.
1419  splitReturnBlocks();
1420
1421  // Calculate the exit blocks for the extracted region and the total exit
1422  // weights for each of those blocks.
1423  DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1424  SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1425  for (BasicBlock *Block : Blocks) {
1426    for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1427         ++SI) {
1428      if (!Blocks.count(*SI)) {
1429        // Update the branch weight for this successor.
1430        if (BFI) {
1431          BlockFrequency &BF = ExitWeights[*SI];
1432          BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1433        }
1434        ExitBlocks.insert(*SI);
1435      }
1436    }
1437  }
1438  NumExitBlocks = ExitBlocks.size();
1439
1440  // If we have to split PHI nodes of the entry or exit blocks, do so now.
1441  severSplitPHINodesOfEntry(header);
1442  severSplitPHINodesOfExits(ExitBlocks);
1443
1444  // This takes place of the original loop
1445  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1446                                                "codeRepl", oldFunction,
1447                                                header);
1448
1449  // The new function needs a root node because other nodes can branch to the
1450  // head of the region, but the entry node of a function cannot have preds.
1451  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1452                                               "newFuncRoot");
1453  auto *BranchI = BranchInst::Create(header);
1454  // If the original function has debug info, we have to add a debug location
1455  // to the new branch instruction from the artificial entry block.
1456  // We use the debug location of the first instruction in the extracted
1457  // blocks, as there is no other equivalent line in the source code.
1458  if (oldFunction->getSubprogram()) {
1459    any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1460      return any_of(*BB, [&BranchI](const Instruction &I) {
1461        if (!I.getDebugLoc())
1462          return false;
1463        BranchI->setDebugLoc(I.getDebugLoc());
1464        return true;
1465      });
1466    });
1467  }
1468  newFuncRoot->getInstList().push_back(BranchI);
1469
1470  ValueSet inputs, outputs, SinkingCands, HoistingCands;
1471  BasicBlock *CommonExit = nullptr;
1472  findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1473  assert(HoistingCands.empty() || CommonExit);
1474
1475  // Find inputs to, outputs from the code region.
1476  findInputsOutputs(inputs, outputs, SinkingCands);
1477
1478  // Now sink all instructions which only have non-phi uses inside the region.
1479  // Group the allocas at the start of the block, so that any bitcast uses of
1480  // the allocas are well-defined.
1481  AllocaInst *FirstSunkAlloca = nullptr;
1482  for (auto *II : SinkingCands) {
1483    if (auto *AI = dyn_cast<AllocaInst>(II)) {
1484      AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1485      if (!FirstSunkAlloca)
1486        FirstSunkAlloca = AI;
1487    }
1488  }
1489  assert((SinkingCands.empty() || FirstSunkAlloca) &&
1490         "Did not expect a sink candidate without any allocas");
1491  for (auto *II : SinkingCands) {
1492    if (!isa<AllocaInst>(II)) {
1493      cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1494    }
1495  }
1496
1497  if (!HoistingCands.empty()) {
1498    auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1499    Instruction *TI = HoistToBlock->getTerminator();
1500    for (auto *II : HoistingCands)
1501      cast<Instruction>(II)->moveBefore(TI);
1502  }
1503
1504  // Collect objects which are inputs to the extraction region and also
1505  // referenced by lifetime start markers within it. The effects of these
1506  // markers must be replicated in the calling function to prevent the stack
1507  // coloring pass from merging slots which store input objects.
1508  ValueSet LifetimesStart;
1509  eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1510
1511  // Construct new function based on inputs/outputs & add allocas for all defs.
1512  Function *newFunction =
1513      constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1514                        oldFunction, oldFunction->getParent());
1515
1516  // Update the entry count of the function.
1517  if (BFI) {
1518    auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1519    if (Count.hasValue())
1520      newFunction->setEntryCount(
1521          ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1522    BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1523  }
1524
1525  CallInst *TheCall =
1526      emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1527
1528  moveCodeToFunction(newFunction);
1529
1530  // Replicate the effects of any lifetime start/end markers which referenced
1531  // input objects in the extraction region by placing markers around the call.
1532  insertLifetimeMarkersSurroundingCall(
1533      oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1534
1535  // Propagate personality info to the new function if there is one.
1536  if (oldFunction->hasPersonalityFn())
1537    newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1538
1539  // Update the branch weights for the exit block.
1540  if (BFI && NumExitBlocks > 1)
1541    calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1542
1543  // Loop over all of the PHI nodes in the header and exit blocks, and change
1544  // any references to the old incoming edge to be the new incoming edge.
1545  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1546    PHINode *PN = cast<PHINode>(I);
1547    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1548      if (!Blocks.count(PN->getIncomingBlock(i)))
1549        PN->setIncomingBlock(i, newFuncRoot);
1550  }
1551
1552  for (BasicBlock *ExitBB : ExitBlocks)
1553    for (PHINode &PN : ExitBB->phis()) {
1554      Value *IncomingCodeReplacerVal = nullptr;
1555      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1556        // Ignore incoming values from outside of the extracted region.
1557        if (!Blocks.count(PN.getIncomingBlock(i)))
1558          continue;
1559
1560        // Ensure that there is only one incoming value from codeReplacer.
1561        if (!IncomingCodeReplacerVal) {
1562          PN.setIncomingBlock(i, codeReplacer);
1563          IncomingCodeReplacerVal = PN.getIncomingValue(i);
1564        } else
1565          assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1566                 "PHI has two incompatbile incoming values from codeRepl");
1567      }
1568    }
1569
1570  // Erase debug info intrinsics. Variable updates within the new function are
1571  // invisible to debuggers. This could be improved by defining a DISubprogram
1572  // for the new function.
1573  for (BasicBlock &BB : *newFunction) {
1574    auto BlockIt = BB.begin();
1575    // Remove debug info intrinsics from the new function.
1576    while (BlockIt != BB.end()) {
1577      Instruction *Inst = &*BlockIt;
1578      ++BlockIt;
1579      if (isa<DbgInfoIntrinsic>(Inst))
1580        Inst->eraseFromParent();
1581    }
1582    // Remove debug info intrinsics which refer to values in the new function
1583    // from the old function.
1584    SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1585    for (Instruction &I : BB)
1586      findDbgUsers(DbgUsers, &I);
1587    for (DbgVariableIntrinsic *DVI : DbgUsers)
1588      DVI->eraseFromParent();
1589  }
1590
1591  // Mark the new function `noreturn` if applicable. Terminators which resume
1592  // exception propagation are treated as returning instructions. This is to
1593  // avoid inserting traps after calls to outlined functions which unwind.
1594  bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1595    const Instruction *Term = BB.getTerminator();
1596    return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1597  });
1598  if (doesNotReturn)
1599    newFunction->setDoesNotReturn();
1600
1601  LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1602    newFunction->dump();
1603    report_fatal_error("verification of newFunction failed!");
1604  });
1605  LLVM_DEBUG(if (verifyFunction(*oldFunction))
1606             report_fatal_error("verification of oldFunction failed!"));
1607  LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, AC))
1608             report_fatal_error("Stale Asumption cache for old Function!"));
1609  return newFunction;
1610}
1611
1612bool CodeExtractor::verifyAssumptionCache(const Function& F,
1613                                          AssumptionCache *AC) {
1614  for (auto AssumeVH : AC->assumptions()) {
1615    CallInst *I = cast<CallInst>(AssumeVH);
1616    if (I->getFunction() != &F)
1617      return true;
1618  }
1619  return false;
1620}
1621