CodeExtractor.cpp revision 321369
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interface to tear out a code region, such as an
11// individual loop or a parallel section, into a new function, replacing it with
12// a call to the new function.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/CodeExtractor.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/Analysis/BlockFrequencyInfo.h"
21#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
22#include "llvm/Analysis/BranchProbabilityInfo.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Analysis/RegionInfo.h"
25#include "llvm/Analysis/RegionIterator.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Dominators.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/MDBuilder.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/Verifier.h"
36#include "llvm/Pass.h"
37#include "llvm/Support/BlockFrequency.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include <algorithm>
44#include <set>
45using namespace llvm;
46
47#define DEBUG_TYPE "code-extractor"
48
49// Provide a command-line option to aggregate function arguments into a struct
50// for functions produced by the code extractor. This is useful when converting
51// extracted functions to pthread-based code, as only one argument (void*) can
52// be passed in to pthread_create().
53static cl::opt<bool>
54AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
55                 cl::desc("Aggregate arguments to code-extracted functions"));
56
57/// \brief Test whether a block is valid for extraction.
58bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB) {
59  // Landing pads must be in the function where they were inserted for cleanup.
60  if (BB.isEHPad())
61    return false;
62  // taking the address of a basic block moved to another function is illegal
63  if (BB.hasAddressTaken())
64    return false;
65
66  // don't hoist code that uses another basicblock address, as it's likely to
67  // lead to unexpected behavior, like cross-function jumps
68  SmallPtrSet<User const *, 16> Visited;
69  SmallVector<User const *, 16> ToVisit;
70
71  for (Instruction const &Inst : BB)
72    ToVisit.push_back(&Inst);
73
74  while (!ToVisit.empty()) {
75    User const *Curr = ToVisit.pop_back_val();
76    if (!Visited.insert(Curr).second)
77      continue;
78    if (isa<BlockAddress const>(Curr))
79      return false; // even a reference to self is likely to be not compatible
80
81    if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
82      continue;
83
84    for (auto const &U : Curr->operands()) {
85      if (auto *UU = dyn_cast<User>(U))
86        ToVisit.push_back(UU);
87    }
88  }
89
90  // Don't hoist code containing allocas, invokes, or vastarts.
91  for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
92    if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
93      return false;
94    if (const CallInst *CI = dyn_cast<CallInst>(I))
95      if (const Function *F = CI->getCalledFunction())
96        if (F->getIntrinsicID() == Intrinsic::vastart)
97          return false;
98  }
99
100  return true;
101}
102
103/// \brief Build a set of blocks to extract if the input blocks are viable.
104static SetVector<BasicBlock *>
105buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT) {
106  assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
107  SetVector<BasicBlock *> Result;
108
109  // Loop over the blocks, adding them to our set-vector, and aborting with an
110  // empty set if we encounter invalid blocks.
111  for (BasicBlock *BB : BBs) {
112
113    // If this block is dead, don't process it.
114    if (DT && !DT->isReachableFromEntry(BB))
115      continue;
116
117    if (!Result.insert(BB))
118      llvm_unreachable("Repeated basic blocks in extraction input");
119    if (!CodeExtractor::isBlockValidForExtraction(*BB)) {
120      Result.clear();
121      return Result;
122    }
123  }
124
125#ifndef NDEBUG
126  for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
127                                         E = Result.end();
128       I != E; ++I)
129    for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
130         PI != PE; ++PI)
131      assert(Result.count(*PI) &&
132             "No blocks in this region may have entries from outside the region"
133             " except for the first block!");
134#endif
135
136  return Result;
137}
138
139CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
140                             bool AggregateArgs, BlockFrequencyInfo *BFI,
141                             BranchProbabilityInfo *BPI)
142    : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
143      BPI(BPI), Blocks(buildExtractionBlockSet(BBs, DT)), NumExitBlocks(~0U) {}
144
145CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
146                             BlockFrequencyInfo *BFI,
147                             BranchProbabilityInfo *BPI)
148    : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
149      BPI(BPI), Blocks(buildExtractionBlockSet(L.getBlocks(), &DT)),
150      NumExitBlocks(~0U) {}
151
152/// definedInRegion - Return true if the specified value is defined in the
153/// extracted region.
154static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
155  if (Instruction *I = dyn_cast<Instruction>(V))
156    if (Blocks.count(I->getParent()))
157      return true;
158  return false;
159}
160
161/// definedInCaller - Return true if the specified value is defined in the
162/// function being code extracted, but not in the region being extracted.
163/// These values must be passed in as live-ins to the function.
164static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
165  if (isa<Argument>(V)) return true;
166  if (Instruction *I = dyn_cast<Instruction>(V))
167    if (!Blocks.count(I->getParent()))
168      return true;
169  return false;
170}
171
172static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
173  BasicBlock *CommonExitBlock = nullptr;
174  auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
175    for (auto *Succ : successors(Block)) {
176      // Internal edges, ok.
177      if (Blocks.count(Succ))
178        continue;
179      if (!CommonExitBlock) {
180        CommonExitBlock = Succ;
181        continue;
182      }
183      if (CommonExitBlock == Succ)
184        continue;
185
186      return true;
187    }
188    return false;
189  };
190
191  if (any_of(Blocks, hasNonCommonExitSucc))
192    return nullptr;
193
194  return CommonExitBlock;
195}
196
197bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
198    Instruction *Addr) const {
199  AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
200  Function *Func = (*Blocks.begin())->getParent();
201  for (BasicBlock &BB : *Func) {
202    if (Blocks.count(&BB))
203      continue;
204    for (Instruction &II : BB) {
205
206      if (isa<DbgInfoIntrinsic>(II))
207        continue;
208
209      unsigned Opcode = II.getOpcode();
210      Value *MemAddr = nullptr;
211      switch (Opcode) {
212      case Instruction::Store:
213      case Instruction::Load: {
214        if (Opcode == Instruction::Store) {
215          StoreInst *SI = cast<StoreInst>(&II);
216          MemAddr = SI->getPointerOperand();
217        } else {
218          LoadInst *LI = cast<LoadInst>(&II);
219          MemAddr = LI->getPointerOperand();
220        }
221        // Global variable can not be aliased with locals.
222        if (dyn_cast<Constant>(MemAddr))
223          break;
224        Value *Base = MemAddr->stripInBoundsConstantOffsets();
225        if (!dyn_cast<AllocaInst>(Base) || Base == AI)
226          return false;
227        break;
228      }
229      default: {
230        IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
231        if (IntrInst) {
232          if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start ||
233              IntrInst->getIntrinsicID() == Intrinsic::lifetime_end)
234            break;
235          return false;
236        }
237        // Treat all the other cases conservatively if it has side effects.
238        if (II.mayHaveSideEffects())
239          return false;
240      }
241      }
242    }
243  }
244
245  return true;
246}
247
248BasicBlock *
249CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
250  BasicBlock *SinglePredFromOutlineRegion = nullptr;
251  assert(!Blocks.count(CommonExitBlock) &&
252         "Expect a block outside the region!");
253  for (auto *Pred : predecessors(CommonExitBlock)) {
254    if (!Blocks.count(Pred))
255      continue;
256    if (!SinglePredFromOutlineRegion) {
257      SinglePredFromOutlineRegion = Pred;
258    } else if (SinglePredFromOutlineRegion != Pred) {
259      SinglePredFromOutlineRegion = nullptr;
260      break;
261    }
262  }
263
264  if (SinglePredFromOutlineRegion)
265    return SinglePredFromOutlineRegion;
266
267#ifndef NDEBUG
268  auto getFirstPHI = [](BasicBlock *BB) {
269    BasicBlock::iterator I = BB->begin();
270    PHINode *FirstPhi = nullptr;
271    while (I != BB->end()) {
272      PHINode *Phi = dyn_cast<PHINode>(I);
273      if (!Phi)
274        break;
275      if (!FirstPhi) {
276        FirstPhi = Phi;
277        break;
278      }
279    }
280    return FirstPhi;
281  };
282  // If there are any phi nodes, the single pred either exists or has already
283  // be created before code extraction.
284  assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
285#endif
286
287  BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
288      CommonExitBlock->getFirstNonPHI()->getIterator());
289
290  for (auto *Pred : predecessors(CommonExitBlock)) {
291    if (Blocks.count(Pred))
292      continue;
293    Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
294  }
295  // Now add the old exit block to the outline region.
296  Blocks.insert(CommonExitBlock);
297  return CommonExitBlock;
298}
299
300void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
301                                BasicBlock *&ExitBlock) const {
302  Function *Func = (*Blocks.begin())->getParent();
303  ExitBlock = getCommonExitBlock(Blocks);
304
305  for (BasicBlock &BB : *Func) {
306    if (Blocks.count(&BB))
307      continue;
308    for (Instruction &II : BB) {
309      auto *AI = dyn_cast<AllocaInst>(&II);
310      if (!AI)
311        continue;
312
313      // Find the pair of life time markers for address 'Addr' that are either
314      // defined inside the outline region or can legally be shrinkwrapped into
315      // the outline region. If there are not other untracked uses of the
316      // address, return the pair of markers if found; otherwise return a pair
317      // of nullptr.
318      auto GetLifeTimeMarkers =
319          [&](Instruction *Addr, bool &SinkLifeStart,
320              bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> {
321        Instruction *LifeStart = nullptr, *LifeEnd = nullptr;
322
323        for (User *U : Addr->users()) {
324          IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
325          if (IntrInst) {
326            if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
327              // Do not handle the case where AI has multiple start markers.
328              if (LifeStart)
329                return std::make_pair<Instruction *>(nullptr, nullptr);
330              LifeStart = IntrInst;
331            }
332            if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
333              if (LifeEnd)
334                return std::make_pair<Instruction *>(nullptr, nullptr);
335              LifeEnd = IntrInst;
336            }
337            continue;
338          }
339          // Find untracked uses of the address, bail.
340          if (!definedInRegion(Blocks, U))
341            return std::make_pair<Instruction *>(nullptr, nullptr);
342        }
343
344        if (!LifeStart || !LifeEnd)
345          return std::make_pair<Instruction *>(nullptr, nullptr);
346
347        SinkLifeStart = !definedInRegion(Blocks, LifeStart);
348        HoistLifeEnd = !definedInRegion(Blocks, LifeEnd);
349        // Do legality Check.
350        if ((SinkLifeStart || HoistLifeEnd) &&
351            !isLegalToShrinkwrapLifetimeMarkers(Addr))
352          return std::make_pair<Instruction *>(nullptr, nullptr);
353
354        // Check to see if we have a place to do hoisting, if not, bail.
355        if (HoistLifeEnd && !ExitBlock)
356          return std::make_pair<Instruction *>(nullptr, nullptr);
357
358        return std::make_pair(LifeStart, LifeEnd);
359      };
360
361      bool SinkLifeStart = false, HoistLifeEnd = false;
362      auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd);
363
364      if (Markers.first) {
365        if (SinkLifeStart)
366          SinkCands.insert(Markers.first);
367        SinkCands.insert(AI);
368        if (HoistLifeEnd)
369          HoistCands.insert(Markers.second);
370        continue;
371      }
372
373      // Follow the bitcast.
374      Instruction *MarkerAddr = nullptr;
375      for (User *U : AI->users()) {
376
377        if (U->stripInBoundsConstantOffsets() == AI) {
378          SinkLifeStart = false;
379          HoistLifeEnd = false;
380          Instruction *Bitcast = cast<Instruction>(U);
381          Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd);
382          if (Markers.first) {
383            MarkerAddr = Bitcast;
384            continue;
385          }
386        }
387
388        // Found unknown use of AI.
389        if (!definedInRegion(Blocks, U)) {
390          MarkerAddr = nullptr;
391          break;
392        }
393      }
394
395      if (MarkerAddr) {
396        if (SinkLifeStart)
397          SinkCands.insert(Markers.first);
398        if (!definedInRegion(Blocks, MarkerAddr))
399          SinkCands.insert(MarkerAddr);
400        SinkCands.insert(AI);
401        if (HoistLifeEnd)
402          HoistCands.insert(Markers.second);
403      }
404    }
405  }
406}
407
408void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
409                                      const ValueSet &SinkCands) const {
410
411  for (BasicBlock *BB : Blocks) {
412    // If a used value is defined outside the region, it's an input.  If an
413    // instruction is used outside the region, it's an output.
414    for (Instruction &II : *BB) {
415      for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
416           ++OI) {
417        Value *V = *OI;
418        if (!SinkCands.count(V) && definedInCaller(Blocks, V))
419          Inputs.insert(V);
420      }
421
422      for (User *U : II.users())
423        if (!definedInRegion(Blocks, U)) {
424          Outputs.insert(&II);
425          break;
426        }
427    }
428  }
429}
430
431/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
432/// region, we need to split the entry block of the region so that the PHI node
433/// is easier to deal with.
434void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
435  unsigned NumPredsFromRegion = 0;
436  unsigned NumPredsOutsideRegion = 0;
437
438  if (Header != &Header->getParent()->getEntryBlock()) {
439    PHINode *PN = dyn_cast<PHINode>(Header->begin());
440    if (!PN) return;  // No PHI nodes.
441
442    // If the header node contains any PHI nodes, check to see if there is more
443    // than one entry from outside the region.  If so, we need to sever the
444    // header block into two.
445    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
446      if (Blocks.count(PN->getIncomingBlock(i)))
447        ++NumPredsFromRegion;
448      else
449        ++NumPredsOutsideRegion;
450
451    // If there is one (or fewer) predecessor from outside the region, we don't
452    // need to do anything special.
453    if (NumPredsOutsideRegion <= 1) return;
454  }
455
456  // Otherwise, we need to split the header block into two pieces: one
457  // containing PHI nodes merging values from outside of the region, and a
458  // second that contains all of the code for the block and merges back any
459  // incoming values from inside of the region.
460  BasicBlock *NewBB = llvm::SplitBlock(Header, Header->getFirstNonPHI(), DT);
461
462  // We only want to code extract the second block now, and it becomes the new
463  // header of the region.
464  BasicBlock *OldPred = Header;
465  Blocks.remove(OldPred);
466  Blocks.insert(NewBB);
467  Header = NewBB;
468
469  // Okay, now we need to adjust the PHI nodes and any branches from within the
470  // region to go to the new header block instead of the old header block.
471  if (NumPredsFromRegion) {
472    PHINode *PN = cast<PHINode>(OldPred->begin());
473    // Loop over all of the predecessors of OldPred that are in the region,
474    // changing them to branch to NewBB instead.
475    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
476      if (Blocks.count(PN->getIncomingBlock(i))) {
477        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
478        TI->replaceUsesOfWith(OldPred, NewBB);
479      }
480
481    // Okay, everything within the region is now branching to the right block, we
482    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
483    BasicBlock::iterator AfterPHIs;
484    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
485      PHINode *PN = cast<PHINode>(AfterPHIs);
486      // Create a new PHI node in the new region, which has an incoming value
487      // from OldPred of PN.
488      PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
489                                       PN->getName() + ".ce", &NewBB->front());
490      PN->replaceAllUsesWith(NewPN);
491      NewPN->addIncoming(PN, OldPred);
492
493      // Loop over all of the incoming value in PN, moving them to NewPN if they
494      // are from the extracted region.
495      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
496        if (Blocks.count(PN->getIncomingBlock(i))) {
497          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
498          PN->removeIncomingValue(i);
499          --i;
500        }
501      }
502    }
503  }
504}
505
506void CodeExtractor::splitReturnBlocks() {
507  for (BasicBlock *Block : Blocks)
508    if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
509      BasicBlock *New =
510          Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
511      if (DT) {
512        // Old dominates New. New node dominates all other nodes dominated
513        // by Old.
514        DomTreeNode *OldNode = DT->getNode(Block);
515        SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
516                                               OldNode->end());
517
518        DomTreeNode *NewNode = DT->addNewBlock(New, Block);
519
520        for (DomTreeNode *I : Children)
521          DT->changeImmediateDominator(I, NewNode);
522      }
523    }
524}
525
526/// constructFunction - make a function based on inputs and outputs, as follows:
527/// f(in0, ..., inN, out0, ..., outN)
528///
529Function *CodeExtractor::constructFunction(const ValueSet &inputs,
530                                           const ValueSet &outputs,
531                                           BasicBlock *header,
532                                           BasicBlock *newRootNode,
533                                           BasicBlock *newHeader,
534                                           Function *oldFunction,
535                                           Module *M) {
536  DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
537  DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
538
539  // This function returns unsigned, outputs will go back by reference.
540  switch (NumExitBlocks) {
541  case 0:
542  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
543  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
544  default: RetTy = Type::getInt16Ty(header->getContext()); break;
545  }
546
547  std::vector<Type*> paramTy;
548
549  // Add the types of the input values to the function's argument list
550  for (Value *value : inputs) {
551    DEBUG(dbgs() << "value used in func: " << *value << "\n");
552    paramTy.push_back(value->getType());
553  }
554
555  // Add the types of the output values to the function's argument list.
556  for (Value *output : outputs) {
557    DEBUG(dbgs() << "instr used in func: " << *output << "\n");
558    if (AggregateArgs)
559      paramTy.push_back(output->getType());
560    else
561      paramTy.push_back(PointerType::getUnqual(output->getType()));
562  }
563
564  DEBUG({
565    dbgs() << "Function type: " << *RetTy << " f(";
566    for (Type *i : paramTy)
567      dbgs() << *i << ", ";
568    dbgs() << ")\n";
569  });
570
571  StructType *StructTy;
572  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
573    StructTy = StructType::get(M->getContext(), paramTy);
574    paramTy.clear();
575    paramTy.push_back(PointerType::getUnqual(StructTy));
576  }
577  FunctionType *funcType =
578                  FunctionType::get(RetTy, paramTy, false);
579
580  // Create the new function
581  Function *newFunction = Function::Create(funcType,
582                                           GlobalValue::InternalLinkage,
583                                           oldFunction->getName() + "_" +
584                                           header->getName(), M);
585  // If the old function is no-throw, so is the new one.
586  if (oldFunction->doesNotThrow())
587    newFunction->setDoesNotThrow();
588
589  // Inherit the uwtable attribute if we need to.
590  if (oldFunction->hasUWTable())
591    newFunction->setHasUWTable();
592
593  // Inherit all of the target dependent attributes.
594  //  (e.g. If the extracted region contains a call to an x86.sse
595  //  instruction we need to make sure that the extracted region has the
596  //  "target-features" attribute allowing it to be lowered.
597  // FIXME: This should be changed to check to see if a specific
598  //           attribute can not be inherited.
599  AttrBuilder AB(oldFunction->getAttributes().getFnAttributes());
600  for (const auto &Attr : AB.td_attrs())
601    newFunction->addFnAttr(Attr.first, Attr.second);
602
603  newFunction->getBasicBlockList().push_back(newRootNode);
604
605  // Create an iterator to name all of the arguments we inserted.
606  Function::arg_iterator AI = newFunction->arg_begin();
607
608  // Rewrite all users of the inputs in the extracted region to use the
609  // arguments (or appropriate addressing into struct) instead.
610  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
611    Value *RewriteVal;
612    if (AggregateArgs) {
613      Value *Idx[2];
614      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
615      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
616      TerminatorInst *TI = newFunction->begin()->getTerminator();
617      GetElementPtrInst *GEP = GetElementPtrInst::Create(
618          StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
619      RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
620    } else
621      RewriteVal = &*AI++;
622
623    std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end());
624    for (User *use : Users)
625      if (Instruction *inst = dyn_cast<Instruction>(use))
626        if (Blocks.count(inst->getParent()))
627          inst->replaceUsesOfWith(inputs[i], RewriteVal);
628  }
629
630  // Set names for input and output arguments.
631  if (!AggregateArgs) {
632    AI = newFunction->arg_begin();
633    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
634      AI->setName(inputs[i]->getName());
635    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
636      AI->setName(outputs[i]->getName()+".out");
637  }
638
639  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
640  // within the new function. This must be done before we lose track of which
641  // blocks were originally in the code region.
642  std::vector<User*> Users(header->user_begin(), header->user_end());
643  for (unsigned i = 0, e = Users.size(); i != e; ++i)
644    // The BasicBlock which contains the branch is not in the region
645    // modify the branch target to a new block
646    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
647      if (!Blocks.count(TI->getParent()) &&
648          TI->getParent()->getParent() == oldFunction)
649        TI->replaceUsesOfWith(header, newHeader);
650
651  return newFunction;
652}
653
654/// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
655/// that uses the value within the basic block, and return the predecessor
656/// block associated with that use, or return 0 if none is found.
657static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
658  for (Use &U : Used->uses()) {
659     PHINode *P = dyn_cast<PHINode>(U.getUser());
660     if (P && P->getParent() == BB)
661       return P->getIncomingBlock(U);
662  }
663
664  return nullptr;
665}
666
667/// emitCallAndSwitchStatement - This method sets up the caller side by adding
668/// the call instruction, splitting any PHI nodes in the header block as
669/// necessary.
670void CodeExtractor::
671emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
672                           ValueSet &inputs, ValueSet &outputs) {
673  // Emit a call to the new function, passing in: *pointer to struct (if
674  // aggregating parameters), or plan inputs and allocated memory for outputs
675  std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
676
677  Module *M = newFunction->getParent();
678  LLVMContext &Context = M->getContext();
679  const DataLayout &DL = M->getDataLayout();
680
681  // Add inputs as params, or to be filled into the struct
682  for (Value *input : inputs)
683    if (AggregateArgs)
684      StructValues.push_back(input);
685    else
686      params.push_back(input);
687
688  // Create allocas for the outputs
689  for (Value *output : outputs) {
690    if (AggregateArgs) {
691      StructValues.push_back(output);
692    } else {
693      AllocaInst *alloca =
694        new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
695                       nullptr, output->getName() + ".loc",
696                       &codeReplacer->getParent()->front().front());
697      ReloadOutputs.push_back(alloca);
698      params.push_back(alloca);
699    }
700  }
701
702  StructType *StructArgTy = nullptr;
703  AllocaInst *Struct = nullptr;
704  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
705    std::vector<Type*> ArgTypes;
706    for (ValueSet::iterator v = StructValues.begin(),
707           ve = StructValues.end(); v != ve; ++v)
708      ArgTypes.push_back((*v)->getType());
709
710    // Allocate a struct at the beginning of this function
711    StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
712    Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
713                            "structArg",
714                            &codeReplacer->getParent()->front().front());
715    params.push_back(Struct);
716
717    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
718      Value *Idx[2];
719      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
720      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
721      GetElementPtrInst *GEP = GetElementPtrInst::Create(
722          StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
723      codeReplacer->getInstList().push_back(GEP);
724      StoreInst *SI = new StoreInst(StructValues[i], GEP);
725      codeReplacer->getInstList().push_back(SI);
726    }
727  }
728
729  // Emit the call to the function
730  CallInst *call = CallInst::Create(newFunction, params,
731                                    NumExitBlocks > 1 ? "targetBlock" : "");
732  codeReplacer->getInstList().push_back(call);
733
734  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
735  unsigned FirstOut = inputs.size();
736  if (!AggregateArgs)
737    std::advance(OutputArgBegin, inputs.size());
738
739  // Reload the outputs passed in by reference
740  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
741    Value *Output = nullptr;
742    if (AggregateArgs) {
743      Value *Idx[2];
744      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
745      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
746      GetElementPtrInst *GEP = GetElementPtrInst::Create(
747          StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
748      codeReplacer->getInstList().push_back(GEP);
749      Output = GEP;
750    } else {
751      Output = ReloadOutputs[i];
752    }
753    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
754    Reloads.push_back(load);
755    codeReplacer->getInstList().push_back(load);
756    std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end());
757    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
758      Instruction *inst = cast<Instruction>(Users[u]);
759      if (!Blocks.count(inst->getParent()))
760        inst->replaceUsesOfWith(outputs[i], load);
761    }
762  }
763
764  // Now we can emit a switch statement using the call as a value.
765  SwitchInst *TheSwitch =
766      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
767                         codeReplacer, 0, codeReplacer);
768
769  // Since there may be multiple exits from the original region, make the new
770  // function return an unsigned, switch on that number.  This loop iterates
771  // over all of the blocks in the extracted region, updating any terminator
772  // instructions in the to-be-extracted region that branch to blocks that are
773  // not in the region to be extracted.
774  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
775
776  unsigned switchVal = 0;
777  for (BasicBlock *Block : Blocks) {
778    TerminatorInst *TI = Block->getTerminator();
779    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
780      if (!Blocks.count(TI->getSuccessor(i))) {
781        BasicBlock *OldTarget = TI->getSuccessor(i);
782        // add a new basic block which returns the appropriate value
783        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
784        if (!NewTarget) {
785          // If we don't already have an exit stub for this non-extracted
786          // destination, create one now!
787          NewTarget = BasicBlock::Create(Context,
788                                         OldTarget->getName() + ".exitStub",
789                                         newFunction);
790          unsigned SuccNum = switchVal++;
791
792          Value *brVal = nullptr;
793          switch (NumExitBlocks) {
794          case 0:
795          case 1: break;  // No value needed.
796          case 2:         // Conditional branch, return a bool
797            brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
798            break;
799          default:
800            brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
801            break;
802          }
803
804          ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
805
806          // Update the switch instruction.
807          TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
808                                              SuccNum),
809                             OldTarget);
810
811          // Restore values just before we exit
812          Function::arg_iterator OAI = OutputArgBegin;
813          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
814            // For an invoke, the normal destination is the only one that is
815            // dominated by the result of the invocation
816            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
817
818            bool DominatesDef = true;
819
820            BasicBlock *NormalDest = nullptr;
821            if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out]))
822              NormalDest = Invoke->getNormalDest();
823
824            if (NormalDest) {
825              DefBlock = NormalDest;
826
827              // Make sure we are looking at the original successor block, not
828              // at a newly inserted exit block, which won't be in the dominator
829              // info.
830              for (const auto &I : ExitBlockMap)
831                if (DefBlock == I.second) {
832                  DefBlock = I.first;
833                  break;
834                }
835
836              // In the extract block case, if the block we are extracting ends
837              // with an invoke instruction, make sure that we don't emit a
838              // store of the invoke value for the unwind block.
839              if (!DT && DefBlock != OldTarget)
840                DominatesDef = false;
841            }
842
843            if (DT) {
844              DominatesDef = DT->dominates(DefBlock, OldTarget);
845
846              // If the output value is used by a phi in the target block,
847              // then we need to test for dominance of the phi's predecessor
848              // instead.  Unfortunately, this a little complicated since we
849              // have already rewritten uses of the value to uses of the reload.
850              BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
851                                                          OldTarget);
852              if (pred && DT && DT->dominates(DefBlock, pred))
853                DominatesDef = true;
854            }
855
856            if (DominatesDef) {
857              if (AggregateArgs) {
858                Value *Idx[2];
859                Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
860                Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
861                                          FirstOut+out);
862                GetElementPtrInst *GEP = GetElementPtrInst::Create(
863                    StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(),
864                    NTRet);
865                new StoreInst(outputs[out], GEP, NTRet);
866              } else {
867                new StoreInst(outputs[out], &*OAI, NTRet);
868              }
869            }
870            // Advance output iterator even if we don't emit a store
871            if (!AggregateArgs) ++OAI;
872          }
873        }
874
875        // rewrite the original branch instruction with this new target
876        TI->setSuccessor(i, NewTarget);
877      }
878  }
879
880  // Now that we've done the deed, simplify the switch instruction.
881  Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
882  switch (NumExitBlocks) {
883  case 0:
884    // There are no successors (the block containing the switch itself), which
885    // means that previously this was the last part of the function, and hence
886    // this should be rewritten as a `ret'
887
888    // Check if the function should return a value
889    if (OldFnRetTy->isVoidTy()) {
890      ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
891    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
892      // return what we have
893      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
894    } else {
895      // Otherwise we must have code extracted an unwind or something, just
896      // return whatever we want.
897      ReturnInst::Create(Context,
898                         Constant::getNullValue(OldFnRetTy), TheSwitch);
899    }
900
901    TheSwitch->eraseFromParent();
902    break;
903  case 1:
904    // Only a single destination, change the switch into an unconditional
905    // branch.
906    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
907    TheSwitch->eraseFromParent();
908    break;
909  case 2:
910    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
911                       call, TheSwitch);
912    TheSwitch->eraseFromParent();
913    break;
914  default:
915    // Otherwise, make the default destination of the switch instruction be one
916    // of the other successors.
917    TheSwitch->setCondition(call);
918    TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
919    // Remove redundant case
920    TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
921    break;
922  }
923}
924
925void CodeExtractor::moveCodeToFunction(Function *newFunction) {
926  Function *oldFunc = (*Blocks.begin())->getParent();
927  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
928  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
929
930  for (BasicBlock *Block : Blocks) {
931    // Delete the basic block from the old function, and the list of blocks
932    oldBlocks.remove(Block);
933
934    // Insert this basic block into the new function
935    newBlocks.push_back(Block);
936  }
937}
938
939void CodeExtractor::calculateNewCallTerminatorWeights(
940    BasicBlock *CodeReplacer,
941    DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
942    BranchProbabilityInfo *BPI) {
943  typedef BlockFrequencyInfoImplBase::Distribution Distribution;
944  typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
945
946  // Update the branch weights for the exit block.
947  TerminatorInst *TI = CodeReplacer->getTerminator();
948  SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
949
950  // Block Frequency distribution with dummy node.
951  Distribution BranchDist;
952
953  // Add each of the frequencies of the successors.
954  for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
955    BlockNode ExitNode(i);
956    uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
957    if (ExitFreq != 0)
958      BranchDist.addExit(ExitNode, ExitFreq);
959    else
960      BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
961  }
962
963  // Check for no total weight.
964  if (BranchDist.Total == 0)
965    return;
966
967  // Normalize the distribution so that they can fit in unsigned.
968  BranchDist.normalize();
969
970  // Create normalized branch weights and set the metadata.
971  for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
972    const auto &Weight = BranchDist.Weights[I];
973
974    // Get the weight and update the current BFI.
975    BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
976    BranchProbability BP(Weight.Amount, BranchDist.Total);
977    BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
978  }
979  TI->setMetadata(
980      LLVMContext::MD_prof,
981      MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
982}
983
984Function *CodeExtractor::extractCodeRegion() {
985  if (!isEligible())
986    return nullptr;
987
988  ValueSet inputs, outputs, SinkingCands, HoistingCands;
989  BasicBlock *CommonExit = nullptr;
990
991  // Assumption: this is a single-entry code region, and the header is the first
992  // block in the region.
993  BasicBlock *header = *Blocks.begin();
994
995  // Calculate the entry frequency of the new function before we change the root
996  //   block.
997  BlockFrequency EntryFreq;
998  if (BFI) {
999    assert(BPI && "Both BPI and BFI are required to preserve profile info");
1000    for (BasicBlock *Pred : predecessors(header)) {
1001      if (Blocks.count(Pred))
1002        continue;
1003      EntryFreq +=
1004          BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1005    }
1006  }
1007
1008  // If we have to split PHI nodes or the entry block, do so now.
1009  severSplitPHINodes(header);
1010
1011  // If we have any return instructions in the region, split those blocks so
1012  // that the return is not in the region.
1013  splitReturnBlocks();
1014
1015  Function *oldFunction = header->getParent();
1016
1017  // This takes place of the original loop
1018  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1019                                                "codeRepl", oldFunction,
1020                                                header);
1021
1022  // The new function needs a root node because other nodes can branch to the
1023  // head of the region, but the entry node of a function cannot have preds.
1024  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1025                                               "newFuncRoot");
1026  newFuncRoot->getInstList().push_back(BranchInst::Create(header));
1027
1028  findAllocas(SinkingCands, HoistingCands, CommonExit);
1029  assert(HoistingCands.empty() || CommonExit);
1030
1031  // Find inputs to, outputs from the code region.
1032  findInputsOutputs(inputs, outputs, SinkingCands);
1033
1034  // Now sink all instructions which only have non-phi uses inside the region
1035  for (auto *II : SinkingCands)
1036    cast<Instruction>(II)->moveBefore(*newFuncRoot,
1037                                      newFuncRoot->getFirstInsertionPt());
1038
1039  if (!HoistingCands.empty()) {
1040    auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1041    Instruction *TI = HoistToBlock->getTerminator();
1042    for (auto *II : HoistingCands)
1043      cast<Instruction>(II)->moveBefore(TI);
1044  }
1045
1046  // Calculate the exit blocks for the extracted region and the total exit
1047  //  weights for each of those blocks.
1048  DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1049  SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1050  for (BasicBlock *Block : Blocks) {
1051    for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1052         ++SI) {
1053      if (!Blocks.count(*SI)) {
1054        // Update the branch weight for this successor.
1055        if (BFI) {
1056          BlockFrequency &BF = ExitWeights[*SI];
1057          BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1058        }
1059        ExitBlocks.insert(*SI);
1060      }
1061    }
1062  }
1063  NumExitBlocks = ExitBlocks.size();
1064
1065  // Construct new function based on inputs/outputs & add allocas for all defs.
1066  Function *newFunction = constructFunction(inputs, outputs, header,
1067                                            newFuncRoot,
1068                                            codeReplacer, oldFunction,
1069                                            oldFunction->getParent());
1070
1071  // Update the entry count of the function.
1072  if (BFI) {
1073    Optional<uint64_t> EntryCount =
1074        BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1075    if (EntryCount.hasValue())
1076      newFunction->setEntryCount(EntryCount.getValue());
1077    BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1078  }
1079
1080  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1081
1082  moveCodeToFunction(newFunction);
1083
1084  // Update the branch weights for the exit block.
1085  if (BFI && NumExitBlocks > 1)
1086    calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1087
1088  // Loop over all of the PHI nodes in the header block, and change any
1089  // references to the old incoming edge to be the new incoming edge.
1090  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1091    PHINode *PN = cast<PHINode>(I);
1092    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1093      if (!Blocks.count(PN->getIncomingBlock(i)))
1094        PN->setIncomingBlock(i, newFuncRoot);
1095  }
1096
1097  // Look at all successors of the codeReplacer block.  If any of these blocks
1098  // had PHI nodes in them, we need to update the "from" block to be the code
1099  // replacer, not the original block in the extracted region.
1100  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
1101                                 succ_end(codeReplacer));
1102  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
1103    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
1104      PHINode *PN = cast<PHINode>(I);
1105      std::set<BasicBlock*> ProcessedPreds;
1106      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1107        if (Blocks.count(PN->getIncomingBlock(i))) {
1108          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
1109            PN->setIncomingBlock(i, codeReplacer);
1110          else {
1111            // There were multiple entries in the PHI for this block, now there
1112            // is only one, so remove the duplicated entries.
1113            PN->removeIncomingValue(i, false);
1114            --i; --e;
1115          }
1116        }
1117    }
1118
1119  DEBUG(if (verifyFunction(*newFunction))
1120        report_fatal_error("verifyFunction failed!"));
1121  return newFunction;
1122}
1123