CodeExtractor.cpp revision 314564
1169689Skan//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2169689Skan//
3169689Skan//                     The LLVM Compiler Infrastructure
4169689Skan//
5169689Skan// This file is distributed under the University of Illinois Open Source
6169689Skan// License. See LICENSE.TXT for details.
7169689Skan//
8169689Skan//===----------------------------------------------------------------------===//
9169689Skan//
10169689Skan// This file implements the interface to tear out a code region, such as an
11169689Skan// individual loop or a parallel section, into a new function, replacing it with
12169689Skan// a call to the new function.
13169689Skan//
14169689Skan//===----------------------------------------------------------------------===//
15169689Skan
16169689Skan#include "llvm/Transforms/Utils/CodeExtractor.h"
17169689Skan#include "llvm/ADT/STLExtras.h"
18169689Skan#include "llvm/ADT/SetVector.h"
19169689Skan#include "llvm/ADT/StringExtras.h"
20169689Skan#include "llvm/Analysis/BlockFrequencyInfo.h"
21169689Skan#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
22169689Skan#include "llvm/Analysis/BranchProbabilityInfo.h"
23169689Skan#include "llvm/Analysis/LoopInfo.h"
24169689Skan#include "llvm/Analysis/RegionInfo.h"
25169689Skan#include "llvm/Analysis/RegionIterator.h"
26169689Skan#include "llvm/IR/Constants.h"
27169689Skan#include "llvm/IR/DerivedTypes.h"
28169689Skan#include "llvm/IR/Dominators.h"
29169689Skan#include "llvm/IR/Instructions.h"
30169689Skan#include "llvm/IR/Intrinsics.h"
31169689Skan#include "llvm/IR/LLVMContext.h"
32169689Skan#include "llvm/IR/MDBuilder.h"
33169689Skan#include "llvm/IR/Module.h"
34169689Skan#include "llvm/IR/Verifier.h"
35169689Skan#include "llvm/Pass.h"
36169689Skan#include "llvm/Support/BlockFrequency.h"
37169689Skan#include "llvm/Support/CommandLine.h"
38169689Skan#include "llvm/Support/Debug.h"
39169689Skan#include "llvm/Support/ErrorHandling.h"
40169689Skan#include "llvm/Support/raw_ostream.h"
41169689Skan#include "llvm/Transforms/Utils/BasicBlockUtils.h"
42169689Skan#include <algorithm>
43169689Skan#include <set>
44169689Skanusing namespace llvm;
45169689Skan
46169689Skan#define DEBUG_TYPE "code-extractor"
47169689Skan
48169689Skan// Provide a command-line option to aggregate function arguments into a struct
49169689Skan// for functions produced by the code extractor. This is useful when converting
50169689Skan// extracted functions to pthread-based code, as only one argument (void*) can
51169689Skan// be passed in to pthread_create().
52169689Skanstatic cl::opt<bool>
53169689SkanAggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
54169689Skan                 cl::desc("Aggregate arguments to code-extracted functions"));
55169689Skan
56169689Skan/// \brief Test whether a block is valid for extraction.
57169689Skanbool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB) {
58169689Skan  // Landing pads must be in the function where they were inserted for cleanup.
59169689Skan  if (BB.isEHPad())
60169689Skan    return false;
61169689Skan
62169689Skan  // Don't hoist code containing allocas, invokes, or vastarts.
63169689Skan  for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
64169689Skan    if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
65169689Skan      return false;
66169689Skan    if (const CallInst *CI = dyn_cast<CallInst>(I))
67169689Skan      if (const Function *F = CI->getCalledFunction())
68169689Skan        if (F->getIntrinsicID() == Intrinsic::vastart)
69169689Skan          return false;
70169689Skan  }
71169689Skan
72169689Skan  return true;
73169689Skan}
74169689Skan
75169689Skan/// \brief Build a set of blocks to extract if the input blocks are viable.
76169689Skantemplate <typename IteratorT>
77169689Skanstatic SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
78169689Skan                                                       IteratorT BBEnd) {
79169689Skan  SetVector<BasicBlock *> Result;
80169689Skan
81169689Skan  assert(BBBegin != BBEnd);
82169689Skan
83169689Skan  // Loop over the blocks, adding them to our set-vector, and aborting with an
84169689Skan  // empty set if we encounter invalid blocks.
85169689Skan  do {
86169689Skan    if (!Result.insert(*BBBegin))
87169689Skan      llvm_unreachable("Repeated basic blocks in extraction input");
88169689Skan
89169689Skan    if (!CodeExtractor::isBlockValidForExtraction(**BBBegin)) {
90169689Skan      Result.clear();
91169689Skan      return Result;
92169689Skan    }
93169689Skan  } while (++BBBegin != BBEnd);
94169689Skan
95169689Skan#ifndef NDEBUG
96169689Skan  for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
97169689Skan                                         E = Result.end();
98169689Skan       I != E; ++I)
99169689Skan    for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
100169689Skan         PI != PE; ++PI)
101169689Skan      assert(Result.count(*PI) &&
102169689Skan             "No blocks in this region may have entries from outside the region"
103169689Skan             " except for the first block!");
104169689Skan#endif
105169689Skan
106169689Skan  return Result;
107169689Skan}
108169689Skan
109169689Skan/// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
110169689Skanstatic SetVector<BasicBlock *>
111169689SkanbuildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
112169689Skan  return buildExtractionBlockSet(BBs.begin(), BBs.end());
113169689Skan}
114169689Skan
115169689Skan/// \brief Helper to call buildExtractionBlockSet with a RegionNode.
116169689Skanstatic SetVector<BasicBlock *>
117169689SkanbuildExtractionBlockSet(const RegionNode &RN) {
118169689Skan  if (!RN.isSubRegion())
119169689Skan    // Just a single BasicBlock.
120169689Skan    return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
121169689Skan
122169689Skan  const Region &R = *RN.getNodeAs<Region>();
123169689Skan
124169689Skan  return buildExtractionBlockSet(R.block_begin(), R.block_end());
125169689Skan}
126169689Skan
127169689SkanCodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs,
128169689Skan                             BlockFrequencyInfo *BFI,
129169689Skan                             BranchProbabilityInfo *BPI)
130169689Skan    : DT(nullptr), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
131169689Skan      BPI(BPI), Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
132169689Skan
133169689SkanCodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
134169689Skan                             bool AggregateArgs, BlockFrequencyInfo *BFI,
135169689Skan                             BranchProbabilityInfo *BPI)
136169689Skan    : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
137169689Skan      BPI(BPI), Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
138169689Skan
139169689SkanCodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
140169689Skan                             BlockFrequencyInfo *BFI,
141169689Skan                             BranchProbabilityInfo *BPI)
142169689Skan    : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
143169689Skan      BPI(BPI), Blocks(buildExtractionBlockSet(L.getBlocks())),
144169689Skan      NumExitBlocks(~0U) {}
145169689Skan
146169689SkanCodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
147169689Skan                             bool AggregateArgs, BlockFrequencyInfo *BFI,
148169689Skan                             BranchProbabilityInfo *BPI)
149169689Skan    : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
150169689Skan      BPI(BPI), Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
151169689Skan
152169689Skan/// definedInRegion - Return true if the specified value is defined in the
153169689Skan/// extracted region.
154169689Skanstatic bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
155169689Skan  if (Instruction *I = dyn_cast<Instruction>(V))
156169689Skan    if (Blocks.count(I->getParent()))
157169689Skan      return true;
158169689Skan  return false;
159169689Skan}
160169689Skan
161169689Skan/// definedInCaller - Return true if the specified value is defined in the
162169689Skan/// function being code extracted, but not in the region being extracted.
163169689Skan/// These values must be passed in as live-ins to the function.
164169689Skanstatic bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
165169689Skan  if (isa<Argument>(V)) return true;
166169689Skan  if (Instruction *I = dyn_cast<Instruction>(V))
167169689Skan    if (!Blocks.count(I->getParent()))
168169689Skan      return true;
169169689Skan  return false;
170169689Skan}
171169689Skan
172169689Skanvoid CodeExtractor::findInputsOutputs(ValueSet &Inputs,
173169689Skan                                      ValueSet &Outputs) const {
174169689Skan  for (BasicBlock *BB : Blocks) {
175169689Skan    // If a used value is defined outside the region, it's an input.  If an
176169689Skan    // instruction is used outside the region, it's an output.
177169689Skan    for (Instruction &II : *BB) {
178169689Skan      for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
179169689Skan           ++OI)
180169689Skan        if (definedInCaller(Blocks, *OI))
181169689Skan          Inputs.insert(*OI);
182169689Skan
183169689Skan      for (User *U : II.users())
184169689Skan        if (!definedInRegion(Blocks, U)) {
185169689Skan          Outputs.insert(&II);
186169689Skan          break;
187169689Skan        }
188169689Skan    }
189169689Skan  }
190169689Skan}
191169689Skan
192169689Skan/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
193169689Skan/// region, we need to split the entry block of the region so that the PHI node
194169689Skan/// is easier to deal with.
195169689Skanvoid CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
196169689Skan  unsigned NumPredsFromRegion = 0;
197169689Skan  unsigned NumPredsOutsideRegion = 0;
198169689Skan
199169689Skan  if (Header != &Header->getParent()->getEntryBlock()) {
200169689Skan    PHINode *PN = dyn_cast<PHINode>(Header->begin());
201169689Skan    if (!PN) return;  // No PHI nodes.
202169689Skan
203169689Skan    // If the header node contains any PHI nodes, check to see if there is more
204169689Skan    // than one entry from outside the region.  If so, we need to sever the
205169689Skan    // header block into two.
206169689Skan    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
207169689Skan      if (Blocks.count(PN->getIncomingBlock(i)))
208169689Skan        ++NumPredsFromRegion;
209169689Skan      else
210169689Skan        ++NumPredsOutsideRegion;
211169689Skan
212169689Skan    // If there is one (or fewer) predecessor from outside the region, we don't
213169689Skan    // need to do anything special.
214169689Skan    if (NumPredsOutsideRegion <= 1) return;
215169689Skan  }
216169689Skan
217169689Skan  // Otherwise, we need to split the header block into two pieces: one
218169689Skan  // containing PHI nodes merging values from outside of the region, and a
219169689Skan  // second that contains all of the code for the block and merges back any
220169689Skan  // incoming values from inside of the region.
221169689Skan  BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI()->getIterator();
222169689Skan  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
223169689Skan                                              Header->getName()+".ce");
224169689Skan
225169689Skan  // We only want to code extract the second block now, and it becomes the new
226169689Skan  // header of the region.
227169689Skan  BasicBlock *OldPred = Header;
228169689Skan  Blocks.remove(OldPred);
229169689Skan  Blocks.insert(NewBB);
230169689Skan  Header = NewBB;
231169689Skan
232169689Skan  // Okay, update dominator sets. The blocks that dominate the new one are the
233169689Skan  // blocks that dominate TIBB plus the new block itself.
234169689Skan  if (DT)
235169689Skan    DT->splitBlock(NewBB);
236169689Skan
237169689Skan  // Okay, now we need to adjust the PHI nodes and any branches from within the
238169689Skan  // region to go to the new header block instead of the old header block.
239169689Skan  if (NumPredsFromRegion) {
240169689Skan    PHINode *PN = cast<PHINode>(OldPred->begin());
241169689Skan    // Loop over all of the predecessors of OldPred that are in the region,
242169689Skan    // changing them to branch to NewBB instead.
243169689Skan    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
244169689Skan      if (Blocks.count(PN->getIncomingBlock(i))) {
245169689Skan        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
246169689Skan        TI->replaceUsesOfWith(OldPred, NewBB);
247169689Skan      }
248169689Skan
249169689Skan    // Okay, everything within the region is now branching to the right block, we
250169689Skan    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
251169689Skan    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
252169689Skan      PHINode *PN = cast<PHINode>(AfterPHIs);
253169689Skan      // Create a new PHI node in the new region, which has an incoming value
254169689Skan      // from OldPred of PN.
255169689Skan      PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
256169689Skan                                       PN->getName() + ".ce", &NewBB->front());
257169689Skan      NewPN->addIncoming(PN, OldPred);
258169689Skan
259169689Skan      // Loop over all of the incoming value in PN, moving them to NewPN if they
260169689Skan      // are from the extracted region.
261169689Skan      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
262169689Skan        if (Blocks.count(PN->getIncomingBlock(i))) {
263169689Skan          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
264169689Skan          PN->removeIncomingValue(i);
265169689Skan          --i;
266169689Skan        }
267169689Skan      }
268169689Skan    }
269169689Skan  }
270169689Skan}
271169689Skan
272169689Skanvoid CodeExtractor::splitReturnBlocks() {
273169689Skan  for (BasicBlock *Block : Blocks)
274169689Skan    if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
275169689Skan      BasicBlock *New =
276169689Skan          Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
277169689Skan      if (DT) {
278169689Skan        // Old dominates New. New node dominates all other nodes dominated
279169689Skan        // by Old.
280169689Skan        DomTreeNode *OldNode = DT->getNode(Block);
281169689Skan        SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
282169689Skan                                               OldNode->end());
283169689Skan
284169689Skan        DomTreeNode *NewNode = DT->addNewBlock(New, Block);
285169689Skan
286169689Skan        for (DomTreeNode *I : Children)
287169689Skan          DT->changeImmediateDominator(I, NewNode);
288169689Skan      }
289169689Skan    }
290169689Skan}
291169689Skan
292169689Skan/// constructFunction - make a function based on inputs and outputs, as follows:
293169689Skan/// f(in0, ..., inN, out0, ..., outN)
294169689Skan///
295169689SkanFunction *CodeExtractor::constructFunction(const ValueSet &inputs,
296169689Skan                                           const ValueSet &outputs,
297169689Skan                                           BasicBlock *header,
298169689Skan                                           BasicBlock *newRootNode,
299169689Skan                                           BasicBlock *newHeader,
300169689Skan                                           Function *oldFunction,
301169689Skan                                           Module *M) {
302169689Skan  DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
303169689Skan  DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
304169689Skan
305169689Skan  // This function returns unsigned, outputs will go back by reference.
306169689Skan  switch (NumExitBlocks) {
307169689Skan  case 0:
308169689Skan  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
309169689Skan  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
310169689Skan  default: RetTy = Type::getInt16Ty(header->getContext()); break;
311169689Skan  }
312169689Skan
313169689Skan  std::vector<Type*> paramTy;
314169689Skan
315169689Skan  // Add the types of the input values to the function's argument list
316169689Skan  for (Value *value : inputs) {
317169689Skan    DEBUG(dbgs() << "value used in func: " << *value << "\n");
318169689Skan    paramTy.push_back(value->getType());
319169689Skan  }
320169689Skan
321169689Skan  // Add the types of the output values to the function's argument list.
322169689Skan  for (Value *output : outputs) {
323169689Skan    DEBUG(dbgs() << "instr used in func: " << *output << "\n");
324169689Skan    if (AggregateArgs)
325169689Skan      paramTy.push_back(output->getType());
326169689Skan    else
327169689Skan      paramTy.push_back(PointerType::getUnqual(output->getType()));
328169689Skan  }
329169689Skan
330169689Skan  DEBUG({
331169689Skan    dbgs() << "Function type: " << *RetTy << " f(";
332169689Skan    for (Type *i : paramTy)
333169689Skan      dbgs() << *i << ", ";
334169689Skan    dbgs() << ")\n";
335169689Skan  });
336169689Skan
337169689Skan  StructType *StructTy;
338169689Skan  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
339169689Skan    StructTy = StructType::get(M->getContext(), paramTy);
340169689Skan    paramTy.clear();
341169689Skan    paramTy.push_back(PointerType::getUnqual(StructTy));
342169689Skan  }
343169689Skan  FunctionType *funcType =
344169689Skan                  FunctionType::get(RetTy, paramTy, false);
345169689Skan
346169689Skan  // Create the new function
347169689Skan  Function *newFunction = Function::Create(funcType,
348169689Skan                                           GlobalValue::InternalLinkage,
349169689Skan                                           oldFunction->getName() + "_" +
350169689Skan                                           header->getName(), M);
351169689Skan  // If the old function is no-throw, so is the new one.
352169689Skan  if (oldFunction->doesNotThrow())
353169689Skan    newFunction->setDoesNotThrow();
354169689Skan
355169689Skan  // Inherit the uwtable attribute if we need to.
356169689Skan  if (oldFunction->hasUWTable())
357169689Skan    newFunction->setHasUWTable();
358169689Skan
359169689Skan  // Inherit all of the target dependent attributes.
360169689Skan  //  (e.g. If the extracted region contains a call to an x86.sse
361169689Skan  //  instruction we need to make sure that the extracted region has the
362169689Skan  //  "target-features" attribute allowing it to be lowered.
363169689Skan  // FIXME: This should be changed to check to see if a specific
364169689Skan  //           attribute can not be inherited.
365169689Skan  AttributeSet OldFnAttrs = oldFunction->getAttributes().getFnAttributes();
366169689Skan  AttrBuilder AB(OldFnAttrs, AttributeSet::FunctionIndex);
367169689Skan  for (auto Attr : AB.td_attrs())
368169689Skan    newFunction->addFnAttr(Attr.first, Attr.second);
369169689Skan
370169689Skan  newFunction->getBasicBlockList().push_back(newRootNode);
371169689Skan
372  // Create an iterator to name all of the arguments we inserted.
373  Function::arg_iterator AI = newFunction->arg_begin();
374
375  // Rewrite all users of the inputs in the extracted region to use the
376  // arguments (or appropriate addressing into struct) instead.
377  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
378    Value *RewriteVal;
379    if (AggregateArgs) {
380      Value *Idx[2];
381      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
382      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
383      TerminatorInst *TI = newFunction->begin()->getTerminator();
384      GetElementPtrInst *GEP = GetElementPtrInst::Create(
385          StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
386      RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
387    } else
388      RewriteVal = &*AI++;
389
390    std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end());
391    for (User *use : Users)
392      if (Instruction *inst = dyn_cast<Instruction>(use))
393        if (Blocks.count(inst->getParent()))
394          inst->replaceUsesOfWith(inputs[i], RewriteVal);
395  }
396
397  // Set names for input and output arguments.
398  if (!AggregateArgs) {
399    AI = newFunction->arg_begin();
400    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
401      AI->setName(inputs[i]->getName());
402    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
403      AI->setName(outputs[i]->getName()+".out");
404  }
405
406  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
407  // within the new function. This must be done before we lose track of which
408  // blocks were originally in the code region.
409  std::vector<User*> Users(header->user_begin(), header->user_end());
410  for (unsigned i = 0, e = Users.size(); i != e; ++i)
411    // The BasicBlock which contains the branch is not in the region
412    // modify the branch target to a new block
413    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
414      if (!Blocks.count(TI->getParent()) &&
415          TI->getParent()->getParent() == oldFunction)
416        TI->replaceUsesOfWith(header, newHeader);
417
418  return newFunction;
419}
420
421/// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
422/// that uses the value within the basic block, and return the predecessor
423/// block associated with that use, or return 0 if none is found.
424static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
425  for (Use &U : Used->uses()) {
426     PHINode *P = dyn_cast<PHINode>(U.getUser());
427     if (P && P->getParent() == BB)
428       return P->getIncomingBlock(U);
429  }
430
431  return nullptr;
432}
433
434/// emitCallAndSwitchStatement - This method sets up the caller side by adding
435/// the call instruction, splitting any PHI nodes in the header block as
436/// necessary.
437void CodeExtractor::
438emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
439                           ValueSet &inputs, ValueSet &outputs) {
440  // Emit a call to the new function, passing in: *pointer to struct (if
441  // aggregating parameters), or plan inputs and allocated memory for outputs
442  std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
443
444  LLVMContext &Context = newFunction->getContext();
445
446  // Add inputs as params, or to be filled into the struct
447  for (Value *input : inputs)
448    if (AggregateArgs)
449      StructValues.push_back(input);
450    else
451      params.push_back(input);
452
453  // Create allocas for the outputs
454  for (Value *output : outputs) {
455    if (AggregateArgs) {
456      StructValues.push_back(output);
457    } else {
458      AllocaInst *alloca =
459          new AllocaInst(output->getType(), nullptr, output->getName() + ".loc",
460                         &codeReplacer->getParent()->front().front());
461      ReloadOutputs.push_back(alloca);
462      params.push_back(alloca);
463    }
464  }
465
466  StructType *StructArgTy = nullptr;
467  AllocaInst *Struct = nullptr;
468  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
469    std::vector<Type*> ArgTypes;
470    for (ValueSet::iterator v = StructValues.begin(),
471           ve = StructValues.end(); v != ve; ++v)
472      ArgTypes.push_back((*v)->getType());
473
474    // Allocate a struct at the beginning of this function
475    StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
476    Struct = new AllocaInst(StructArgTy, nullptr, "structArg",
477                            &codeReplacer->getParent()->front().front());
478    params.push_back(Struct);
479
480    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
481      Value *Idx[2];
482      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
483      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
484      GetElementPtrInst *GEP = GetElementPtrInst::Create(
485          StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
486      codeReplacer->getInstList().push_back(GEP);
487      StoreInst *SI = new StoreInst(StructValues[i], GEP);
488      codeReplacer->getInstList().push_back(SI);
489    }
490  }
491
492  // Emit the call to the function
493  CallInst *call = CallInst::Create(newFunction, params,
494                                    NumExitBlocks > 1 ? "targetBlock" : "");
495  codeReplacer->getInstList().push_back(call);
496
497  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
498  unsigned FirstOut = inputs.size();
499  if (!AggregateArgs)
500    std::advance(OutputArgBegin, inputs.size());
501
502  // Reload the outputs passed in by reference
503  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
504    Value *Output = nullptr;
505    if (AggregateArgs) {
506      Value *Idx[2];
507      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
508      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
509      GetElementPtrInst *GEP = GetElementPtrInst::Create(
510          StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
511      codeReplacer->getInstList().push_back(GEP);
512      Output = GEP;
513    } else {
514      Output = ReloadOutputs[i];
515    }
516    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
517    Reloads.push_back(load);
518    codeReplacer->getInstList().push_back(load);
519    std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end());
520    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
521      Instruction *inst = cast<Instruction>(Users[u]);
522      if (!Blocks.count(inst->getParent()))
523        inst->replaceUsesOfWith(outputs[i], load);
524    }
525  }
526
527  // Now we can emit a switch statement using the call as a value.
528  SwitchInst *TheSwitch =
529      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
530                         codeReplacer, 0, codeReplacer);
531
532  // Since there may be multiple exits from the original region, make the new
533  // function return an unsigned, switch on that number.  This loop iterates
534  // over all of the blocks in the extracted region, updating any terminator
535  // instructions in the to-be-extracted region that branch to blocks that are
536  // not in the region to be extracted.
537  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
538
539  unsigned switchVal = 0;
540  for (BasicBlock *Block : Blocks) {
541    TerminatorInst *TI = Block->getTerminator();
542    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
543      if (!Blocks.count(TI->getSuccessor(i))) {
544        BasicBlock *OldTarget = TI->getSuccessor(i);
545        // add a new basic block which returns the appropriate value
546        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
547        if (!NewTarget) {
548          // If we don't already have an exit stub for this non-extracted
549          // destination, create one now!
550          NewTarget = BasicBlock::Create(Context,
551                                         OldTarget->getName() + ".exitStub",
552                                         newFunction);
553          unsigned SuccNum = switchVal++;
554
555          Value *brVal = nullptr;
556          switch (NumExitBlocks) {
557          case 0:
558          case 1: break;  // No value needed.
559          case 2:         // Conditional branch, return a bool
560            brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
561            break;
562          default:
563            brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
564            break;
565          }
566
567          ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
568
569          // Update the switch instruction.
570          TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
571                                              SuccNum),
572                             OldTarget);
573
574          // Restore values just before we exit
575          Function::arg_iterator OAI = OutputArgBegin;
576          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
577            // For an invoke, the normal destination is the only one that is
578            // dominated by the result of the invocation
579            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
580
581            bool DominatesDef = true;
582
583            BasicBlock *NormalDest = nullptr;
584            if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out]))
585              NormalDest = Invoke->getNormalDest();
586
587            if (NormalDest) {
588              DefBlock = NormalDest;
589
590              // Make sure we are looking at the original successor block, not
591              // at a newly inserted exit block, which won't be in the dominator
592              // info.
593              for (const auto &I : ExitBlockMap)
594                if (DefBlock == I.second) {
595                  DefBlock = I.first;
596                  break;
597                }
598
599              // In the extract block case, if the block we are extracting ends
600              // with an invoke instruction, make sure that we don't emit a
601              // store of the invoke value for the unwind block.
602              if (!DT && DefBlock != OldTarget)
603                DominatesDef = false;
604            }
605
606            if (DT) {
607              DominatesDef = DT->dominates(DefBlock, OldTarget);
608
609              // If the output value is used by a phi in the target block,
610              // then we need to test for dominance of the phi's predecessor
611              // instead.  Unfortunately, this a little complicated since we
612              // have already rewritten uses of the value to uses of the reload.
613              BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
614                                                          OldTarget);
615              if (pred && DT && DT->dominates(DefBlock, pred))
616                DominatesDef = true;
617            }
618
619            if (DominatesDef) {
620              if (AggregateArgs) {
621                Value *Idx[2];
622                Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
623                Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
624                                          FirstOut+out);
625                GetElementPtrInst *GEP = GetElementPtrInst::Create(
626                    StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(),
627                    NTRet);
628                new StoreInst(outputs[out], GEP, NTRet);
629              } else {
630                new StoreInst(outputs[out], &*OAI, NTRet);
631              }
632            }
633            // Advance output iterator even if we don't emit a store
634            if (!AggregateArgs) ++OAI;
635          }
636        }
637
638        // rewrite the original branch instruction with this new target
639        TI->setSuccessor(i, NewTarget);
640      }
641  }
642
643  // Now that we've done the deed, simplify the switch instruction.
644  Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
645  switch (NumExitBlocks) {
646  case 0:
647    // There are no successors (the block containing the switch itself), which
648    // means that previously this was the last part of the function, and hence
649    // this should be rewritten as a `ret'
650
651    // Check if the function should return a value
652    if (OldFnRetTy->isVoidTy()) {
653      ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
654    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
655      // return what we have
656      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
657    } else {
658      // Otherwise we must have code extracted an unwind or something, just
659      // return whatever we want.
660      ReturnInst::Create(Context,
661                         Constant::getNullValue(OldFnRetTy), TheSwitch);
662    }
663
664    TheSwitch->eraseFromParent();
665    break;
666  case 1:
667    // Only a single destination, change the switch into an unconditional
668    // branch.
669    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
670    TheSwitch->eraseFromParent();
671    break;
672  case 2:
673    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
674                       call, TheSwitch);
675    TheSwitch->eraseFromParent();
676    break;
677  default:
678    // Otherwise, make the default destination of the switch instruction be one
679    // of the other successors.
680    TheSwitch->setCondition(call);
681    TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
682    // Remove redundant case
683    TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
684    break;
685  }
686}
687
688void CodeExtractor::moveCodeToFunction(Function *newFunction) {
689  Function *oldFunc = (*Blocks.begin())->getParent();
690  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
691  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
692
693  for (BasicBlock *Block : Blocks) {
694    // Delete the basic block from the old function, and the list of blocks
695    oldBlocks.remove(Block);
696
697    // Insert this basic block into the new function
698    newBlocks.push_back(Block);
699  }
700}
701
702void CodeExtractor::calculateNewCallTerminatorWeights(
703    BasicBlock *CodeReplacer,
704    DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
705    BranchProbabilityInfo *BPI) {
706  typedef BlockFrequencyInfoImplBase::Distribution Distribution;
707  typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
708
709  // Update the branch weights for the exit block.
710  TerminatorInst *TI = CodeReplacer->getTerminator();
711  SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
712
713  // Block Frequency distribution with dummy node.
714  Distribution BranchDist;
715
716  // Add each of the frequencies of the successors.
717  for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
718    BlockNode ExitNode(i);
719    uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
720    if (ExitFreq != 0)
721      BranchDist.addExit(ExitNode, ExitFreq);
722    else
723      BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
724  }
725
726  // Check for no total weight.
727  if (BranchDist.Total == 0)
728    return;
729
730  // Normalize the distribution so that they can fit in unsigned.
731  BranchDist.normalize();
732
733  // Create normalized branch weights and set the metadata.
734  for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
735    const auto &Weight = BranchDist.Weights[I];
736
737    // Get the weight and update the current BFI.
738    BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
739    BranchProbability BP(Weight.Amount, BranchDist.Total);
740    BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
741  }
742  TI->setMetadata(
743      LLVMContext::MD_prof,
744      MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
745}
746
747Function *CodeExtractor::extractCodeRegion() {
748  if (!isEligible())
749    return nullptr;
750
751  ValueSet inputs, outputs;
752
753  // Assumption: this is a single-entry code region, and the header is the first
754  // block in the region.
755  BasicBlock *header = *Blocks.begin();
756
757  // Calculate the entry frequency of the new function before we change the root
758  //   block.
759  BlockFrequency EntryFreq;
760  if (BFI) {
761    assert(BPI && "Both BPI and BFI are required to preserve profile info");
762    for (BasicBlock *Pred : predecessors(header)) {
763      if (Blocks.count(Pred))
764        continue;
765      EntryFreq +=
766          BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
767    }
768  }
769
770  // If we have to split PHI nodes or the entry block, do so now.
771  severSplitPHINodes(header);
772
773  // If we have any return instructions in the region, split those blocks so
774  // that the return is not in the region.
775  splitReturnBlocks();
776
777  Function *oldFunction = header->getParent();
778
779  // This takes place of the original loop
780  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
781                                                "codeRepl", oldFunction,
782                                                header);
783
784  // The new function needs a root node because other nodes can branch to the
785  // head of the region, but the entry node of a function cannot have preds.
786  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
787                                               "newFuncRoot");
788  newFuncRoot->getInstList().push_back(BranchInst::Create(header));
789
790  // Find inputs to, outputs from the code region.
791  findInputsOutputs(inputs, outputs);
792
793  // Calculate the exit blocks for the extracted region and the total exit
794  //  weights for each of those blocks.
795  DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
796  SmallPtrSet<BasicBlock *, 1> ExitBlocks;
797  for (BasicBlock *Block : Blocks) {
798    for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
799         ++SI) {
800      if (!Blocks.count(*SI)) {
801        // Update the branch weight for this successor.
802        if (BFI) {
803          BlockFrequency &BF = ExitWeights[*SI];
804          BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
805        }
806        ExitBlocks.insert(*SI);
807      }
808    }
809  }
810  NumExitBlocks = ExitBlocks.size();
811
812  // Construct new function based on inputs/outputs & add allocas for all defs.
813  Function *newFunction = constructFunction(inputs, outputs, header,
814                                            newFuncRoot,
815                                            codeReplacer, oldFunction,
816                                            oldFunction->getParent());
817
818  // Update the entry count of the function.
819  if (BFI) {
820    Optional<uint64_t> EntryCount =
821        BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
822    if (EntryCount.hasValue())
823      newFunction->setEntryCount(EntryCount.getValue());
824    BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
825  }
826
827  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
828
829  moveCodeToFunction(newFunction);
830
831  // Update the branch weights for the exit block.
832  if (BFI && NumExitBlocks > 1)
833    calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
834
835  // Loop over all of the PHI nodes in the header block, and change any
836  // references to the old incoming edge to be the new incoming edge.
837  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
838    PHINode *PN = cast<PHINode>(I);
839    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
840      if (!Blocks.count(PN->getIncomingBlock(i)))
841        PN->setIncomingBlock(i, newFuncRoot);
842  }
843
844  // Look at all successors of the codeReplacer block.  If any of these blocks
845  // had PHI nodes in them, we need to update the "from" block to be the code
846  // replacer, not the original block in the extracted region.
847  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
848                                 succ_end(codeReplacer));
849  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
850    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
851      PHINode *PN = cast<PHINode>(I);
852      std::set<BasicBlock*> ProcessedPreds;
853      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
854        if (Blocks.count(PN->getIncomingBlock(i))) {
855          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
856            PN->setIncomingBlock(i, codeReplacer);
857          else {
858            // There were multiple entries in the PHI for this block, now there
859            // is only one, so remove the duplicated entries.
860            PN->removeIncomingValue(i, false);
861            --i; --e;
862          }
863        }
864    }
865
866  //cerr << "NEW FUNCTION: " << *newFunction;
867  //  verifyFunction(*newFunction);
868
869  //  cerr << "OLD FUNCTION: " << *oldFunction;
870  //  verifyFunction(*oldFunction);
871
872  DEBUG(if (verifyFunction(*newFunction))
873        report_fatal_error("verifyFunction failed!"));
874  return newFunction;
875}
876