CodeExtractor.cpp revision 234353
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interface to tear out a code region, such as an
11// individual loop or a parallel section, into a new function, replacing it with
12// a call to the new function.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/FunctionUtils.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/Module.h"
23#include "llvm/Pass.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/Verifier.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <set>
36using namespace llvm;
37
38// Provide a command-line option to aggregate function arguments into a struct
39// for functions produced by the code extractor. This is useful when converting
40// extracted functions to pthread-based code, as only one argument (void*) can
41// be passed in to pthread_create().
42static cl::opt<bool>
43AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
44                 cl::desc("Aggregate arguments to code-extracted functions"));
45
46namespace {
47  class CodeExtractor {
48    typedef SetVector<Value*> Values;
49    SetVector<BasicBlock*> BlocksToExtract;
50    DominatorTree* DT;
51    bool AggregateArgs;
52    unsigned NumExitBlocks;
53    Type *RetTy;
54  public:
55    CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
56      : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
57
58    Function *ExtractCodeRegion(ArrayRef<BasicBlock*> code);
59
60    bool isEligible(ArrayRef<BasicBlock*> code);
61
62  private:
63    /// definedInRegion - Return true if the specified value is defined in the
64    /// extracted region.
65    bool definedInRegion(Value *V) const {
66      if (Instruction *I = dyn_cast<Instruction>(V))
67        if (BlocksToExtract.count(I->getParent()))
68          return true;
69      return false;
70    }
71
72    /// definedInCaller - Return true if the specified value is defined in the
73    /// function being code extracted, but not in the region being extracted.
74    /// These values must be passed in as live-ins to the function.
75    bool definedInCaller(Value *V) const {
76      if (isa<Argument>(V)) return true;
77      if (Instruction *I = dyn_cast<Instruction>(V))
78        if (!BlocksToExtract.count(I->getParent()))
79          return true;
80      return false;
81    }
82
83    void severSplitPHINodes(BasicBlock *&Header);
84    void splitReturnBlocks();
85    void findInputsOutputs(Values &inputs, Values &outputs);
86
87    Function *constructFunction(const Values &inputs,
88                                const Values &outputs,
89                                BasicBlock *header,
90                                BasicBlock *newRootNode, BasicBlock *newHeader,
91                                Function *oldFunction, Module *M);
92
93    void moveCodeToFunction(Function *newFunction);
94
95    void emitCallAndSwitchStatement(Function *newFunction,
96                                    BasicBlock *newHeader,
97                                    Values &inputs,
98                                    Values &outputs);
99
100  };
101}
102
103/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
104/// region, we need to split the entry block of the region so that the PHI node
105/// is easier to deal with.
106void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
107  unsigned NumPredsFromRegion = 0;
108  unsigned NumPredsOutsideRegion = 0;
109
110  if (Header != &Header->getParent()->getEntryBlock()) {
111    PHINode *PN = dyn_cast<PHINode>(Header->begin());
112    if (!PN) return;  // No PHI nodes.
113
114    // If the header node contains any PHI nodes, check to see if there is more
115    // than one entry from outside the region.  If so, we need to sever the
116    // header block into two.
117    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
118      if (BlocksToExtract.count(PN->getIncomingBlock(i)))
119        ++NumPredsFromRegion;
120      else
121        ++NumPredsOutsideRegion;
122
123    // If there is one (or fewer) predecessor from outside the region, we don't
124    // need to do anything special.
125    if (NumPredsOutsideRegion <= 1) return;
126  }
127
128  // Otherwise, we need to split the header block into two pieces: one
129  // containing PHI nodes merging values from outside of the region, and a
130  // second that contains all of the code for the block and merges back any
131  // incoming values from inside of the region.
132  BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
133  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
134                                              Header->getName()+".ce");
135
136  // We only want to code extract the second block now, and it becomes the new
137  // header of the region.
138  BasicBlock *OldPred = Header;
139  BlocksToExtract.remove(OldPred);
140  BlocksToExtract.insert(NewBB);
141  Header = NewBB;
142
143  // Okay, update dominator sets. The blocks that dominate the new one are the
144  // blocks that dominate TIBB plus the new block itself.
145  if (DT)
146    DT->splitBlock(NewBB);
147
148  // Okay, now we need to adjust the PHI nodes and any branches from within the
149  // region to go to the new header block instead of the old header block.
150  if (NumPredsFromRegion) {
151    PHINode *PN = cast<PHINode>(OldPred->begin());
152    // Loop over all of the predecessors of OldPred that are in the region,
153    // changing them to branch to NewBB instead.
154    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
155      if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
156        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
157        TI->replaceUsesOfWith(OldPred, NewBB);
158      }
159
160    // Okay, everything within the region is now branching to the right block, we
161    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
162    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
163      PHINode *PN = cast<PHINode>(AfterPHIs);
164      // Create a new PHI node in the new region, which has an incoming value
165      // from OldPred of PN.
166      PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
167                                       PN->getName()+".ce", NewBB->begin());
168      NewPN->addIncoming(PN, OldPred);
169
170      // Loop over all of the incoming value in PN, moving them to NewPN if they
171      // are from the extracted region.
172      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
173        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
174          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
175          PN->removeIncomingValue(i);
176          --i;
177        }
178      }
179    }
180  }
181}
182
183void CodeExtractor::splitReturnBlocks() {
184  for (SetVector<BasicBlock*>::iterator I = BlocksToExtract.begin(),
185         E = BlocksToExtract.end(); I != E; ++I)
186    if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
187      BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
188      if (DT) {
189        // Old dominates New. New node dominates all other nodes dominated
190        // by Old.
191        DomTreeNode *OldNode = DT->getNode(*I);
192        SmallVector<DomTreeNode*, 8> Children;
193        for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
194             DI != DE; ++DI)
195          Children.push_back(*DI);
196
197        DomTreeNode *NewNode = DT->addNewBlock(New, *I);
198
199        for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
200               E = Children.end(); I != E; ++I)
201          DT->changeImmediateDominator(*I, NewNode);
202      }
203    }
204}
205
206// findInputsOutputs - Find inputs to, outputs from the code region.
207//
208void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
209  std::set<BasicBlock*> ExitBlocks;
210  for (SetVector<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
211       ce = BlocksToExtract.end(); ci != ce; ++ci) {
212    BasicBlock *BB = *ci;
213
214    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
215      // If a used value is defined outside the region, it's an input.  If an
216      // instruction is used outside the region, it's an output.
217      for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
218        if (definedInCaller(*O))
219          inputs.insert(*O);
220
221      // Consider uses of this instruction (outputs).
222      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
223           UI != E; ++UI)
224        if (!definedInRegion(*UI)) {
225          outputs.insert(I);
226          break;
227        }
228    } // for: insts
229
230    // Keep track of the exit blocks from the region.
231    TerminatorInst *TI = BB->getTerminator();
232    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
233      if (!BlocksToExtract.count(TI->getSuccessor(i)))
234        ExitBlocks.insert(TI->getSuccessor(i));
235  } // for: basic blocks
236
237  NumExitBlocks = ExitBlocks.size();
238}
239
240/// constructFunction - make a function based on inputs and outputs, as follows:
241/// f(in0, ..., inN, out0, ..., outN)
242///
243Function *CodeExtractor::constructFunction(const Values &inputs,
244                                           const Values &outputs,
245                                           BasicBlock *header,
246                                           BasicBlock *newRootNode,
247                                           BasicBlock *newHeader,
248                                           Function *oldFunction,
249                                           Module *M) {
250  DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
251  DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
252
253  // This function returns unsigned, outputs will go back by reference.
254  switch (NumExitBlocks) {
255  case 0:
256  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
257  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
258  default: RetTy = Type::getInt16Ty(header->getContext()); break;
259  }
260
261  std::vector<Type*> paramTy;
262
263  // Add the types of the input values to the function's argument list
264  for (Values::const_iterator i = inputs.begin(),
265         e = inputs.end(); i != e; ++i) {
266    const Value *value = *i;
267    DEBUG(dbgs() << "value used in func: " << *value << "\n");
268    paramTy.push_back(value->getType());
269  }
270
271  // Add the types of the output values to the function's argument list.
272  for (Values::const_iterator I = outputs.begin(), E = outputs.end();
273       I != E; ++I) {
274    DEBUG(dbgs() << "instr used in func: " << **I << "\n");
275    if (AggregateArgs)
276      paramTy.push_back((*I)->getType());
277    else
278      paramTy.push_back(PointerType::getUnqual((*I)->getType()));
279  }
280
281  DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
282  for (std::vector<Type*>::iterator i = paramTy.begin(),
283         e = paramTy.end(); i != e; ++i)
284    DEBUG(dbgs() << **i << ", ");
285  DEBUG(dbgs() << ")\n");
286
287  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
288    PointerType *StructPtr =
289           PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
290    paramTy.clear();
291    paramTy.push_back(StructPtr);
292  }
293  FunctionType *funcType =
294                  FunctionType::get(RetTy, paramTy, false);
295
296  // Create the new function
297  Function *newFunction = Function::Create(funcType,
298                                           GlobalValue::InternalLinkage,
299                                           oldFunction->getName() + "_" +
300                                           header->getName(), M);
301  // If the old function is no-throw, so is the new one.
302  if (oldFunction->doesNotThrow())
303    newFunction->setDoesNotThrow(true);
304
305  newFunction->getBasicBlockList().push_back(newRootNode);
306
307  // Create an iterator to name all of the arguments we inserted.
308  Function::arg_iterator AI = newFunction->arg_begin();
309
310  // Rewrite all users of the inputs in the extracted region to use the
311  // arguments (or appropriate addressing into struct) instead.
312  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
313    Value *RewriteVal;
314    if (AggregateArgs) {
315      Value *Idx[2];
316      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
317      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
318      TerminatorInst *TI = newFunction->begin()->getTerminator();
319      GetElementPtrInst *GEP =
320        GetElementPtrInst::Create(AI, Idx, "gep_" + inputs[i]->getName(), TI);
321      RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
322    } else
323      RewriteVal = AI++;
324
325    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
326    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
327         use != useE; ++use)
328      if (Instruction* inst = dyn_cast<Instruction>(*use))
329        if (BlocksToExtract.count(inst->getParent()))
330          inst->replaceUsesOfWith(inputs[i], RewriteVal);
331  }
332
333  // Set names for input and output arguments.
334  if (!AggregateArgs) {
335    AI = newFunction->arg_begin();
336    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
337      AI->setName(inputs[i]->getName());
338    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
339      AI->setName(outputs[i]->getName()+".out");
340  }
341
342  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
343  // within the new function. This must be done before we lose track of which
344  // blocks were originally in the code region.
345  std::vector<User*> Users(header->use_begin(), header->use_end());
346  for (unsigned i = 0, e = Users.size(); i != e; ++i)
347    // The BasicBlock which contains the branch is not in the region
348    // modify the branch target to a new block
349    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
350      if (!BlocksToExtract.count(TI->getParent()) &&
351          TI->getParent()->getParent() == oldFunction)
352        TI->replaceUsesOfWith(header, newHeader);
353
354  return newFunction;
355}
356
357/// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
358/// that uses the value within the basic block, and return the predecessor
359/// block associated with that use, or return 0 if none is found.
360static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
361  for (Value::use_iterator UI = Used->use_begin(),
362       UE = Used->use_end(); UI != UE; ++UI) {
363     PHINode *P = dyn_cast<PHINode>(*UI);
364     if (P && P->getParent() == BB)
365       return P->getIncomingBlock(UI);
366  }
367
368  return 0;
369}
370
371/// emitCallAndSwitchStatement - This method sets up the caller side by adding
372/// the call instruction, splitting any PHI nodes in the header block as
373/// necessary.
374void CodeExtractor::
375emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
376                           Values &inputs, Values &outputs) {
377  // Emit a call to the new function, passing in: *pointer to struct (if
378  // aggregating parameters), or plan inputs and allocated memory for outputs
379  std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
380
381  LLVMContext &Context = newFunction->getContext();
382
383  // Add inputs as params, or to be filled into the struct
384  for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
385    if (AggregateArgs)
386      StructValues.push_back(*i);
387    else
388      params.push_back(*i);
389
390  // Create allocas for the outputs
391  for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
392    if (AggregateArgs) {
393      StructValues.push_back(*i);
394    } else {
395      AllocaInst *alloca =
396        new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
397                       codeReplacer->getParent()->begin()->begin());
398      ReloadOutputs.push_back(alloca);
399      params.push_back(alloca);
400    }
401  }
402
403  AllocaInst *Struct = 0;
404  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
405    std::vector<Type*> ArgTypes;
406    for (Values::iterator v = StructValues.begin(),
407           ve = StructValues.end(); v != ve; ++v)
408      ArgTypes.push_back((*v)->getType());
409
410    // Allocate a struct at the beginning of this function
411    Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
412    Struct =
413      new AllocaInst(StructArgTy, 0, "structArg",
414                     codeReplacer->getParent()->begin()->begin());
415    params.push_back(Struct);
416
417    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
418      Value *Idx[2];
419      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
420      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
421      GetElementPtrInst *GEP =
422        GetElementPtrInst::Create(Struct, Idx,
423                                  "gep_" + StructValues[i]->getName());
424      codeReplacer->getInstList().push_back(GEP);
425      StoreInst *SI = new StoreInst(StructValues[i], GEP);
426      codeReplacer->getInstList().push_back(SI);
427    }
428  }
429
430  // Emit the call to the function
431  CallInst *call = CallInst::Create(newFunction, params,
432                                    NumExitBlocks > 1 ? "targetBlock" : "");
433  codeReplacer->getInstList().push_back(call);
434
435  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
436  unsigned FirstOut = inputs.size();
437  if (!AggregateArgs)
438    std::advance(OutputArgBegin, inputs.size());
439
440  // Reload the outputs passed in by reference
441  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
442    Value *Output = 0;
443    if (AggregateArgs) {
444      Value *Idx[2];
445      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
446      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
447      GetElementPtrInst *GEP
448        = GetElementPtrInst::Create(Struct, Idx,
449                                    "gep_reload_" + outputs[i]->getName());
450      codeReplacer->getInstList().push_back(GEP);
451      Output = GEP;
452    } else {
453      Output = ReloadOutputs[i];
454    }
455    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
456    Reloads.push_back(load);
457    codeReplacer->getInstList().push_back(load);
458    std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
459    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
460      Instruction *inst = cast<Instruction>(Users[u]);
461      if (!BlocksToExtract.count(inst->getParent()))
462        inst->replaceUsesOfWith(outputs[i], load);
463    }
464  }
465
466  // Now we can emit a switch statement using the call as a value.
467  SwitchInst *TheSwitch =
468      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
469                         codeReplacer, 0, codeReplacer);
470
471  // Since there may be multiple exits from the original region, make the new
472  // function return an unsigned, switch on that number.  This loop iterates
473  // over all of the blocks in the extracted region, updating any terminator
474  // instructions in the to-be-extracted region that branch to blocks that are
475  // not in the region to be extracted.
476  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
477
478  unsigned switchVal = 0;
479  for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
480         e = BlocksToExtract.end(); i != e; ++i) {
481    TerminatorInst *TI = (*i)->getTerminator();
482    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
483      if (!BlocksToExtract.count(TI->getSuccessor(i))) {
484        BasicBlock *OldTarget = TI->getSuccessor(i);
485        // add a new basic block which returns the appropriate value
486        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
487        if (!NewTarget) {
488          // If we don't already have an exit stub for this non-extracted
489          // destination, create one now!
490          NewTarget = BasicBlock::Create(Context,
491                                         OldTarget->getName() + ".exitStub",
492                                         newFunction);
493          unsigned SuccNum = switchVal++;
494
495          Value *brVal = 0;
496          switch (NumExitBlocks) {
497          case 0:
498          case 1: break;  // No value needed.
499          case 2:         // Conditional branch, return a bool
500            brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
501            break;
502          default:
503            brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
504            break;
505          }
506
507          ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
508
509          // Update the switch instruction.
510          TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
511                                              SuccNum),
512                             OldTarget);
513
514          // Restore values just before we exit
515          Function::arg_iterator OAI = OutputArgBegin;
516          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
517            // For an invoke, the normal destination is the only one that is
518            // dominated by the result of the invocation
519            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
520
521            bool DominatesDef = true;
522
523            if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
524              DefBlock = Invoke->getNormalDest();
525
526              // Make sure we are looking at the original successor block, not
527              // at a newly inserted exit block, which won't be in the dominator
528              // info.
529              for (std::map<BasicBlock*, BasicBlock*>::iterator I =
530                     ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
531                if (DefBlock == I->second) {
532                  DefBlock = I->first;
533                  break;
534                }
535
536              // In the extract block case, if the block we are extracting ends
537              // with an invoke instruction, make sure that we don't emit a
538              // store of the invoke value for the unwind block.
539              if (!DT && DefBlock != OldTarget)
540                DominatesDef = false;
541            }
542
543            if (DT) {
544              DominatesDef = DT->dominates(DefBlock, OldTarget);
545
546              // If the output value is used by a phi in the target block,
547              // then we need to test for dominance of the phi's predecessor
548              // instead.  Unfortunately, this a little complicated since we
549              // have already rewritten uses of the value to uses of the reload.
550              BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
551                                                          OldTarget);
552              if (pred && DT && DT->dominates(DefBlock, pred))
553                DominatesDef = true;
554            }
555
556            if (DominatesDef) {
557              if (AggregateArgs) {
558                Value *Idx[2];
559                Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
560                Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
561                                          FirstOut+out);
562                GetElementPtrInst *GEP =
563                  GetElementPtrInst::Create(OAI, Idx,
564                                            "gep_" + outputs[out]->getName(),
565                                            NTRet);
566                new StoreInst(outputs[out], GEP, NTRet);
567              } else {
568                new StoreInst(outputs[out], OAI, NTRet);
569              }
570            }
571            // Advance output iterator even if we don't emit a store
572            if (!AggregateArgs) ++OAI;
573          }
574        }
575
576        // rewrite the original branch instruction with this new target
577        TI->setSuccessor(i, NewTarget);
578      }
579  }
580
581  // Now that we've done the deed, simplify the switch instruction.
582  Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
583  switch (NumExitBlocks) {
584  case 0:
585    // There are no successors (the block containing the switch itself), which
586    // means that previously this was the last part of the function, and hence
587    // this should be rewritten as a `ret'
588
589    // Check if the function should return a value
590    if (OldFnRetTy->isVoidTy()) {
591      ReturnInst::Create(Context, 0, TheSwitch);  // Return void
592    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
593      // return what we have
594      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
595    } else {
596      // Otherwise we must have code extracted an unwind or something, just
597      // return whatever we want.
598      ReturnInst::Create(Context,
599                         Constant::getNullValue(OldFnRetTy), TheSwitch);
600    }
601
602    TheSwitch->eraseFromParent();
603    break;
604  case 1:
605    // Only a single destination, change the switch into an unconditional
606    // branch.
607    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
608    TheSwitch->eraseFromParent();
609    break;
610  case 2:
611    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
612                       call, TheSwitch);
613    TheSwitch->eraseFromParent();
614    break;
615  default:
616    // Otherwise, make the default destination of the switch instruction be one
617    // of the other successors.
618    TheSwitch->setCondition(call);
619    TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
620    // Remove redundant case
621    TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
622    break;
623  }
624}
625
626void CodeExtractor::moveCodeToFunction(Function *newFunction) {
627  Function *oldFunc = (*BlocksToExtract.begin())->getParent();
628  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
629  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
630
631  for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
632         e = BlocksToExtract.end(); i != e; ++i) {
633    // Delete the basic block from the old function, and the list of blocks
634    oldBlocks.remove(*i);
635
636    // Insert this basic block into the new function
637    newBlocks.push_back(*i);
638  }
639}
640
641/// ExtractRegion - Removes a loop from a function, replaces it with a call to
642/// new function. Returns pointer to the new function.
643///
644/// algorithm:
645///
646/// find inputs and outputs for the region
647///
648/// for inputs: add to function as args, map input instr* to arg#
649/// for outputs: add allocas for scalars,
650///             add to func as args, map output instr* to arg#
651///
652/// rewrite func to use argument #s instead of instr*
653///
654/// for each scalar output in the function: at every exit, store intermediate
655/// computed result back into memory.
656///
657Function *CodeExtractor::
658ExtractCodeRegion(ArrayRef<BasicBlock*> code) {
659  if (!isEligible(code))
660    return 0;
661
662  // 1) Find inputs, outputs
663  // 2) Construct new function
664  //  * Add allocas for defs, pass as args by reference
665  //  * Pass in uses as args
666  // 3) Move code region, add call instr to func
667  //
668  BlocksToExtract.insert(code.begin(), code.end());
669
670  Values inputs, outputs;
671
672  // Assumption: this is a single-entry code region, and the header is the first
673  // block in the region.
674  BasicBlock *header = code[0];
675
676  for (unsigned i = 1, e = code.size(); i != e; ++i)
677    for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
678         PI != E; ++PI)
679      assert(BlocksToExtract.count(*PI) &&
680             "No blocks in this region may have entries from outside the region"
681             " except for the first block!");
682
683  // If we have to split PHI nodes or the entry block, do so now.
684  severSplitPHINodes(header);
685
686  // If we have any return instructions in the region, split those blocks so
687  // that the return is not in the region.
688  splitReturnBlocks();
689
690  Function *oldFunction = header->getParent();
691
692  // This takes place of the original loop
693  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
694                                                "codeRepl", oldFunction,
695                                                header);
696
697  // The new function needs a root node because other nodes can branch to the
698  // head of the region, but the entry node of a function cannot have preds.
699  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
700                                               "newFuncRoot");
701  newFuncRoot->getInstList().push_back(BranchInst::Create(header));
702
703  // Find inputs to, outputs from the code region.
704  findInputsOutputs(inputs, outputs);
705
706  // Construct new function based on inputs/outputs & add allocas for all defs.
707  Function *newFunction = constructFunction(inputs, outputs, header,
708                                            newFuncRoot,
709                                            codeReplacer, oldFunction,
710                                            oldFunction->getParent());
711
712  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
713
714  moveCodeToFunction(newFunction);
715
716  // Loop over all of the PHI nodes in the header block, and change any
717  // references to the old incoming edge to be the new incoming edge.
718  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
719    PHINode *PN = cast<PHINode>(I);
720    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
721      if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
722        PN->setIncomingBlock(i, newFuncRoot);
723  }
724
725  // Look at all successors of the codeReplacer block.  If any of these blocks
726  // had PHI nodes in them, we need to update the "from" block to be the code
727  // replacer, not the original block in the extracted region.
728  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
729                                 succ_end(codeReplacer));
730  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
731    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
732      PHINode *PN = cast<PHINode>(I);
733      std::set<BasicBlock*> ProcessedPreds;
734      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
735        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
736          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
737            PN->setIncomingBlock(i, codeReplacer);
738          else {
739            // There were multiple entries in the PHI for this block, now there
740            // is only one, so remove the duplicated entries.
741            PN->removeIncomingValue(i, false);
742            --i; --e;
743          }
744        }
745    }
746
747  //cerr << "NEW FUNCTION: " << *newFunction;
748  //  verifyFunction(*newFunction);
749
750  //  cerr << "OLD FUNCTION: " << *oldFunction;
751  //  verifyFunction(*oldFunction);
752
753  DEBUG(if (verifyFunction(*newFunction))
754        report_fatal_error("verifyFunction failed!"));
755  return newFunction;
756}
757
758bool CodeExtractor::isEligible(ArrayRef<BasicBlock*> code) {
759  // Deny a single basic block that's a landing pad block.
760  if (code.size() == 1 && code[0]->isLandingPad())
761    return false;
762
763  // Deny code region if it contains allocas or vastarts.
764  for (ArrayRef<BasicBlock*>::iterator BB = code.begin(), e=code.end();
765       BB != e; ++BB)
766    for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
767         I != Ie; ++I)
768      if (isa<AllocaInst>(*I))
769        return false;
770      else if (const CallInst *CI = dyn_cast<CallInst>(I))
771        if (const Function *F = CI->getCalledFunction())
772          if (F->getIntrinsicID() == Intrinsic::vastart)
773            return false;
774  return true;
775}
776
777
778/// ExtractCodeRegion - Slurp a sequence of basic blocks into a brand new
779/// function.
780///
781Function* llvm::ExtractCodeRegion(DominatorTree &DT,
782                                  ArrayRef<BasicBlock*> code,
783                                  bool AggregateArgs) {
784  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
785}
786
787/// ExtractLoop - Slurp a natural loop into a brand new function.
788///
789Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
790  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
791}
792
793/// ExtractBasicBlock - Slurp a basic block into a brand new function.
794///
795Function* llvm::ExtractBasicBlock(ArrayRef<BasicBlock*> BBs, bool AggregateArgs){
796  return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(BBs);
797}
798