CodeExtractor.cpp revision 193323
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interface to tear out a code region, such as an
11// individual loop or a parallel section, into a new function, replacing it with
12// a call to the new function.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/FunctionUtils.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Module.h"
22#include "llvm/Pass.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/Verifier.h"
26#include "llvm/Transforms/Utils/BasicBlockUtils.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/ADT/StringExtras.h"
31#include <algorithm>
32#include <set>
33using namespace llvm;
34
35// Provide a command-line option to aggregate function arguments into a struct
36// for functions produced by the code extractor. This is useful when converting
37// extracted functions to pthread-based code, as only one argument (void*) can
38// be passed in to pthread_create().
39static cl::opt<bool>
40AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
41                 cl::desc("Aggregate arguments to code-extracted functions"));
42
43namespace {
44  class VISIBILITY_HIDDEN CodeExtractor {
45    typedef std::vector<Value*> Values;
46    std::set<BasicBlock*> BlocksToExtract;
47    DominatorTree* DT;
48    bool AggregateArgs;
49    unsigned NumExitBlocks;
50    const Type *RetTy;
51  public:
52    CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
53      : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
54
55    Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
56
57    bool isEligible(const std::vector<BasicBlock*> &code);
58
59  private:
60    /// definedInRegion - Return true if the specified value is defined in the
61    /// extracted region.
62    bool definedInRegion(Value *V) const {
63      if (Instruction *I = dyn_cast<Instruction>(V))
64        if (BlocksToExtract.count(I->getParent()))
65          return true;
66      return false;
67    }
68
69    /// definedInCaller - Return true if the specified value is defined in the
70    /// function being code extracted, but not in the region being extracted.
71    /// These values must be passed in as live-ins to the function.
72    bool definedInCaller(Value *V) const {
73      if (isa<Argument>(V)) return true;
74      if (Instruction *I = dyn_cast<Instruction>(V))
75        if (!BlocksToExtract.count(I->getParent()))
76          return true;
77      return false;
78    }
79
80    void severSplitPHINodes(BasicBlock *&Header);
81    void splitReturnBlocks();
82    void findInputsOutputs(Values &inputs, Values &outputs);
83
84    Function *constructFunction(const Values &inputs,
85                                const Values &outputs,
86                                BasicBlock *header,
87                                BasicBlock *newRootNode, BasicBlock *newHeader,
88                                Function *oldFunction, Module *M);
89
90    void moveCodeToFunction(Function *newFunction);
91
92    void emitCallAndSwitchStatement(Function *newFunction,
93                                    BasicBlock *newHeader,
94                                    Values &inputs,
95                                    Values &outputs);
96
97  };
98}
99
100/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
101/// region, we need to split the entry block of the region so that the PHI node
102/// is easier to deal with.
103void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
104  bool HasPredsFromRegion = false;
105  unsigned NumPredsOutsideRegion = 0;
106
107  if (Header != &Header->getParent()->getEntryBlock()) {
108    PHINode *PN = dyn_cast<PHINode>(Header->begin());
109    if (!PN) return;  // No PHI nodes.
110
111    // If the header node contains any PHI nodes, check to see if there is more
112    // than one entry from outside the region.  If so, we need to sever the
113    // header block into two.
114    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
115      if (BlocksToExtract.count(PN->getIncomingBlock(i)))
116        HasPredsFromRegion = true;
117      else
118        ++NumPredsOutsideRegion;
119
120    // If there is one (or fewer) predecessor from outside the region, we don't
121    // need to do anything special.
122    if (NumPredsOutsideRegion <= 1) return;
123  }
124
125  // Otherwise, we need to split the header block into two pieces: one
126  // containing PHI nodes merging values from outside of the region, and a
127  // second that contains all of the code for the block and merges back any
128  // incoming values from inside of the region.
129  BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
130  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
131                                              Header->getName()+".ce");
132
133  // We only want to code extract the second block now, and it becomes the new
134  // header of the region.
135  BasicBlock *OldPred = Header;
136  BlocksToExtract.erase(OldPred);
137  BlocksToExtract.insert(NewBB);
138  Header = NewBB;
139
140  // Okay, update dominator sets. The blocks that dominate the new one are the
141  // blocks that dominate TIBB plus the new block itself.
142  if (DT)
143    DT->splitBlock(NewBB);
144
145  // Okay, now we need to adjust the PHI nodes and any branches from within the
146  // region to go to the new header block instead of the old header block.
147  if (HasPredsFromRegion) {
148    PHINode *PN = cast<PHINode>(OldPred->begin());
149    // Loop over all of the predecessors of OldPred that are in the region,
150    // changing them to branch to NewBB instead.
151    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
152      if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
153        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
154        TI->replaceUsesOfWith(OldPred, NewBB);
155      }
156
157    // Okay, everthing within the region is now branching to the right block, we
158    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
159    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
160      PHINode *PN = cast<PHINode>(AfterPHIs);
161      // Create a new PHI node in the new region, which has an incoming value
162      // from OldPred of PN.
163      PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce",
164                                       NewBB->begin());
165      NewPN->addIncoming(PN, OldPred);
166
167      // Loop over all of the incoming value in PN, moving them to NewPN if they
168      // are from the extracted region.
169      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
170        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
171          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
172          PN->removeIncomingValue(i);
173          --i;
174        }
175      }
176    }
177  }
178}
179
180void CodeExtractor::splitReturnBlocks() {
181  for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(),
182         E = BlocksToExtract.end(); I != E; ++I)
183    if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
184      (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
185}
186
187// findInputsOutputs - Find inputs to, outputs from the code region.
188//
189void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
190  std::set<BasicBlock*> ExitBlocks;
191  for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
192       ce = BlocksToExtract.end(); ci != ce; ++ci) {
193    BasicBlock *BB = *ci;
194
195    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
196      // If a used value is defined outside the region, it's an input.  If an
197      // instruction is used outside the region, it's an output.
198      for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
199        if (definedInCaller(*O))
200          inputs.push_back(*O);
201
202      // Consider uses of this instruction (outputs).
203      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
204           UI != E; ++UI)
205        if (!definedInRegion(*UI)) {
206          outputs.push_back(I);
207          break;
208        }
209    } // for: insts
210
211    // Keep track of the exit blocks from the region.
212    TerminatorInst *TI = BB->getTerminator();
213    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
214      if (!BlocksToExtract.count(TI->getSuccessor(i)))
215        ExitBlocks.insert(TI->getSuccessor(i));
216  } // for: basic blocks
217
218  NumExitBlocks = ExitBlocks.size();
219
220  // Eliminate duplicates.
221  std::sort(inputs.begin(), inputs.end());
222  inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end());
223  std::sort(outputs.begin(), outputs.end());
224  outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end());
225}
226
227/// constructFunction - make a function based on inputs and outputs, as follows:
228/// f(in0, ..., inN, out0, ..., outN)
229///
230Function *CodeExtractor::constructFunction(const Values &inputs,
231                                           const Values &outputs,
232                                           BasicBlock *header,
233                                           BasicBlock *newRootNode,
234                                           BasicBlock *newHeader,
235                                           Function *oldFunction,
236                                           Module *M) {
237  DOUT << "inputs: " << inputs.size() << "\n";
238  DOUT << "outputs: " << outputs.size() << "\n";
239
240  // This function returns unsigned, outputs will go back by reference.
241  switch (NumExitBlocks) {
242  case 0:
243  case 1: RetTy = Type::VoidTy; break;
244  case 2: RetTy = Type::Int1Ty; break;
245  default: RetTy = Type::Int16Ty; break;
246  }
247
248  std::vector<const Type*> paramTy;
249
250  // Add the types of the input values to the function's argument list
251  for (Values::const_iterator i = inputs.begin(),
252         e = inputs.end(); i != e; ++i) {
253    const Value *value = *i;
254    DOUT << "value used in func: " << *value << "\n";
255    paramTy.push_back(value->getType());
256  }
257
258  // Add the types of the output values to the function's argument list.
259  for (Values::const_iterator I = outputs.begin(), E = outputs.end();
260       I != E; ++I) {
261    DOUT << "instr used in func: " << **I << "\n";
262    if (AggregateArgs)
263      paramTy.push_back((*I)->getType());
264    else
265      paramTy.push_back(PointerType::getUnqual((*I)->getType()));
266  }
267
268  DOUT << "Function type: " << *RetTy << " f(";
269  for (std::vector<const Type*>::iterator i = paramTy.begin(),
270         e = paramTy.end(); i != e; ++i)
271    DOUT << **i << ", ";
272  DOUT << ")\n";
273
274  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
275    PointerType *StructPtr = PointerType::getUnqual(StructType::get(paramTy));
276    paramTy.clear();
277    paramTy.push_back(StructPtr);
278  }
279  const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false);
280
281  // Create the new function
282  Function *newFunction = Function::Create(funcType,
283                                           GlobalValue::InternalLinkage,
284                                           oldFunction->getName() + "_" +
285                                           header->getName(), M);
286  // If the old function is no-throw, so is the new one.
287  if (oldFunction->doesNotThrow())
288    newFunction->setDoesNotThrow(true);
289
290  newFunction->getBasicBlockList().push_back(newRootNode);
291
292  // Create an iterator to name all of the arguments we inserted.
293  Function::arg_iterator AI = newFunction->arg_begin();
294
295  // Rewrite all users of the inputs in the extracted region to use the
296  // arguments (or appropriate addressing into struct) instead.
297  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
298    Value *RewriteVal;
299    if (AggregateArgs) {
300      Value *Idx[2];
301      Idx[0] = Constant::getNullValue(Type::Int32Ty);
302      Idx[1] = ConstantInt::get(Type::Int32Ty, i);
303      std::string GEPname = "gep_" + inputs[i]->getName();
304      TerminatorInst *TI = newFunction->begin()->getTerminator();
305      GetElementPtrInst *GEP = GetElementPtrInst::Create(AI, Idx, Idx+2,
306                                                         GEPname, TI);
307      RewriteVal = new LoadInst(GEP, "load" + GEPname, TI);
308    } else
309      RewriteVal = AI++;
310
311    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
312    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
313         use != useE; ++use)
314      if (Instruction* inst = dyn_cast<Instruction>(*use))
315        if (BlocksToExtract.count(inst->getParent()))
316          inst->replaceUsesOfWith(inputs[i], RewriteVal);
317  }
318
319  // Set names for input and output arguments.
320  if (!AggregateArgs) {
321    AI = newFunction->arg_begin();
322    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
323      AI->setName(inputs[i]->getName());
324    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
325      AI->setName(outputs[i]->getName()+".out");
326  }
327
328  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
329  // within the new function. This must be done before we lose track of which
330  // blocks were originally in the code region.
331  std::vector<User*> Users(header->use_begin(), header->use_end());
332  for (unsigned i = 0, e = Users.size(); i != e; ++i)
333    // The BasicBlock which contains the branch is not in the region
334    // modify the branch target to a new block
335    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
336      if (!BlocksToExtract.count(TI->getParent()) &&
337          TI->getParent()->getParent() == oldFunction)
338        TI->replaceUsesOfWith(header, newHeader);
339
340  return newFunction;
341}
342
343/// emitCallAndSwitchStatement - This method sets up the caller side by adding
344/// the call instruction, splitting any PHI nodes in the header block as
345/// necessary.
346void CodeExtractor::
347emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
348                           Values &inputs, Values &outputs) {
349  // Emit a call to the new function, passing in: *pointer to struct (if
350  // aggregating parameters), or plan inputs and allocated memory for outputs
351  std::vector<Value*> params, StructValues, ReloadOutputs;
352
353  // Add inputs as params, or to be filled into the struct
354  for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
355    if (AggregateArgs)
356      StructValues.push_back(*i);
357    else
358      params.push_back(*i);
359
360  // Create allocas for the outputs
361  for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
362    if (AggregateArgs) {
363      StructValues.push_back(*i);
364    } else {
365      AllocaInst *alloca =
366        new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
367                       codeReplacer->getParent()->begin()->begin());
368      ReloadOutputs.push_back(alloca);
369      params.push_back(alloca);
370    }
371  }
372
373  AllocaInst *Struct = 0;
374  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
375    std::vector<const Type*> ArgTypes;
376    for (Values::iterator v = StructValues.begin(),
377           ve = StructValues.end(); v != ve; ++v)
378      ArgTypes.push_back((*v)->getType());
379
380    // Allocate a struct at the beginning of this function
381    Type *StructArgTy = StructType::get(ArgTypes);
382    Struct =
383      new AllocaInst(StructArgTy, 0, "structArg",
384                     codeReplacer->getParent()->begin()->begin());
385    params.push_back(Struct);
386
387    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
388      Value *Idx[2];
389      Idx[0] = Constant::getNullValue(Type::Int32Ty);
390      Idx[1] = ConstantInt::get(Type::Int32Ty, i);
391      GetElementPtrInst *GEP =
392        GetElementPtrInst::Create(Struct, Idx, Idx + 2,
393                                  "gep_" + StructValues[i]->getName());
394      codeReplacer->getInstList().push_back(GEP);
395      StoreInst *SI = new StoreInst(StructValues[i], GEP);
396      codeReplacer->getInstList().push_back(SI);
397    }
398  }
399
400  // Emit the call to the function
401  CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(),
402                                    NumExitBlocks > 1 ? "targetBlock" : "");
403  codeReplacer->getInstList().push_back(call);
404
405  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
406  unsigned FirstOut = inputs.size();
407  if (!AggregateArgs)
408    std::advance(OutputArgBegin, inputs.size());
409
410  // Reload the outputs passed in by reference
411  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
412    Value *Output = 0;
413    if (AggregateArgs) {
414      Value *Idx[2];
415      Idx[0] = Constant::getNullValue(Type::Int32Ty);
416      Idx[1] = ConstantInt::get(Type::Int32Ty, FirstOut + i);
417      GetElementPtrInst *GEP
418        = GetElementPtrInst::Create(Struct, Idx, Idx + 2,
419                                    "gep_reload_" + outputs[i]->getName());
420      codeReplacer->getInstList().push_back(GEP);
421      Output = GEP;
422    } else {
423      Output = ReloadOutputs[i];
424    }
425    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
426    codeReplacer->getInstList().push_back(load);
427    std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
428    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
429      Instruction *inst = cast<Instruction>(Users[u]);
430      if (!BlocksToExtract.count(inst->getParent()))
431        inst->replaceUsesOfWith(outputs[i], load);
432    }
433  }
434
435  // Now we can emit a switch statement using the call as a value.
436  SwitchInst *TheSwitch =
437      SwitchInst::Create(ConstantInt::getNullValue(Type::Int16Ty),
438                         codeReplacer, 0, codeReplacer);
439
440  // Since there may be multiple exits from the original region, make the new
441  // function return an unsigned, switch on that number.  This loop iterates
442  // over all of the blocks in the extracted region, updating any terminator
443  // instructions in the to-be-extracted region that branch to blocks that are
444  // not in the region to be extracted.
445  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
446
447  unsigned switchVal = 0;
448  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
449         e = BlocksToExtract.end(); i != e; ++i) {
450    TerminatorInst *TI = (*i)->getTerminator();
451    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
452      if (!BlocksToExtract.count(TI->getSuccessor(i))) {
453        BasicBlock *OldTarget = TI->getSuccessor(i);
454        // add a new basic block which returns the appropriate value
455        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
456        if (!NewTarget) {
457          // If we don't already have an exit stub for this non-extracted
458          // destination, create one now!
459          NewTarget = BasicBlock::Create(OldTarget->getName() + ".exitStub",
460                                         newFunction);
461          unsigned SuccNum = switchVal++;
462
463          Value *brVal = 0;
464          switch (NumExitBlocks) {
465          case 0:
466          case 1: break;  // No value needed.
467          case 2:         // Conditional branch, return a bool
468            brVal = ConstantInt::get(Type::Int1Ty, !SuccNum);
469            break;
470          default:
471            brVal = ConstantInt::get(Type::Int16Ty, SuccNum);
472            break;
473          }
474
475          ReturnInst *NTRet = ReturnInst::Create(brVal, NewTarget);
476
477          // Update the switch instruction.
478          TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum),
479                             OldTarget);
480
481          // Restore values just before we exit
482          Function::arg_iterator OAI = OutputArgBegin;
483          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
484            // For an invoke, the normal destination is the only one that is
485            // dominated by the result of the invocation
486            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
487
488            bool DominatesDef = true;
489
490            if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
491              DefBlock = Invoke->getNormalDest();
492
493              // Make sure we are looking at the original successor block, not
494              // at a newly inserted exit block, which won't be in the dominator
495              // info.
496              for (std::map<BasicBlock*, BasicBlock*>::iterator I =
497                     ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
498                if (DefBlock == I->second) {
499                  DefBlock = I->first;
500                  break;
501                }
502
503              // In the extract block case, if the block we are extracting ends
504              // with an invoke instruction, make sure that we don't emit a
505              // store of the invoke value for the unwind block.
506              if (!DT && DefBlock != OldTarget)
507                DominatesDef = false;
508            }
509
510            if (DT)
511              DominatesDef = DT->dominates(DefBlock, OldTarget);
512
513            if (DominatesDef) {
514              if (AggregateArgs) {
515                Value *Idx[2];
516                Idx[0] = Constant::getNullValue(Type::Int32Ty);
517                Idx[1] = ConstantInt::get(Type::Int32Ty,FirstOut+out);
518                GetElementPtrInst *GEP =
519                  GetElementPtrInst::Create(OAI, Idx, Idx + 2,
520                                            "gep_" + outputs[out]->getName(),
521                                            NTRet);
522                new StoreInst(outputs[out], GEP, NTRet);
523              } else {
524                new StoreInst(outputs[out], OAI, NTRet);
525              }
526            }
527            // Advance output iterator even if we don't emit a store
528            if (!AggregateArgs) ++OAI;
529          }
530        }
531
532        // rewrite the original branch instruction with this new target
533        TI->setSuccessor(i, NewTarget);
534      }
535  }
536
537  // Now that we've done the deed, simplify the switch instruction.
538  const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
539  switch (NumExitBlocks) {
540  case 0:
541    // There are no successors (the block containing the switch itself), which
542    // means that previously this was the last part of the function, and hence
543    // this should be rewritten as a `ret'
544
545    // Check if the function should return a value
546    if (OldFnRetTy == Type::VoidTy) {
547      ReturnInst::Create(0, TheSwitch);  // Return void
548    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
549      // return what we have
550      ReturnInst::Create(TheSwitch->getCondition(), TheSwitch);
551    } else {
552      // Otherwise we must have code extracted an unwind or something, just
553      // return whatever we want.
554      ReturnInst::Create(Constant::getNullValue(OldFnRetTy), TheSwitch);
555    }
556
557    TheSwitch->eraseFromParent();
558    break;
559  case 1:
560    // Only a single destination, change the switch into an unconditional
561    // branch.
562    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
563    TheSwitch->eraseFromParent();
564    break;
565  case 2:
566    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
567                       call, TheSwitch);
568    TheSwitch->eraseFromParent();
569    break;
570  default:
571    // Otherwise, make the default destination of the switch instruction be one
572    // of the other successors.
573    TheSwitch->setOperand(0, call);
574    TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
575    TheSwitch->removeCase(NumExitBlocks);  // Remove redundant case
576    break;
577  }
578}
579
580void CodeExtractor::moveCodeToFunction(Function *newFunction) {
581  Function *oldFunc = (*BlocksToExtract.begin())->getParent();
582  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
583  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
584
585  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
586         e = BlocksToExtract.end(); i != e; ++i) {
587    // Delete the basic block from the old function, and the list of blocks
588    oldBlocks.remove(*i);
589
590    // Insert this basic block into the new function
591    newBlocks.push_back(*i);
592  }
593}
594
595/// ExtractRegion - Removes a loop from a function, replaces it with a call to
596/// new function. Returns pointer to the new function.
597///
598/// algorithm:
599///
600/// find inputs and outputs for the region
601///
602/// for inputs: add to function as args, map input instr* to arg#
603/// for outputs: add allocas for scalars,
604///             add to func as args, map output instr* to arg#
605///
606/// rewrite func to use argument #s instead of instr*
607///
608/// for each scalar output in the function: at every exit, store intermediate
609/// computed result back into memory.
610///
611Function *CodeExtractor::
612ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
613  if (!isEligible(code))
614    return 0;
615
616  // 1) Find inputs, outputs
617  // 2) Construct new function
618  //  * Add allocas for defs, pass as args by reference
619  //  * Pass in uses as args
620  // 3) Move code region, add call instr to func
621  //
622  BlocksToExtract.insert(code.begin(), code.end());
623
624  Values inputs, outputs;
625
626  // Assumption: this is a single-entry code region, and the header is the first
627  // block in the region.
628  BasicBlock *header = code[0];
629
630  for (unsigned i = 1, e = code.size(); i != e; ++i)
631    for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
632         PI != E; ++PI)
633      assert(BlocksToExtract.count(*PI) &&
634             "No blocks in this region may have entries from outside the region"
635             " except for the first block!");
636
637  // If we have to split PHI nodes or the entry block, do so now.
638  severSplitPHINodes(header);
639
640  // If we have any return instructions in the region, split those blocks so
641  // that the return is not in the region.
642  splitReturnBlocks();
643
644  Function *oldFunction = header->getParent();
645
646  // This takes place of the original loop
647  BasicBlock *codeReplacer = BasicBlock::Create("codeRepl", oldFunction,
648                                                header);
649
650  // The new function needs a root node because other nodes can branch to the
651  // head of the region, but the entry node of a function cannot have preds.
652  BasicBlock *newFuncRoot = BasicBlock::Create("newFuncRoot");
653  newFuncRoot->getInstList().push_back(BranchInst::Create(header));
654
655  // Find inputs to, outputs from the code region.
656  findInputsOutputs(inputs, outputs);
657
658  // Construct new function based on inputs/outputs & add allocas for all defs.
659  Function *newFunction = constructFunction(inputs, outputs, header,
660                                            newFuncRoot,
661                                            codeReplacer, oldFunction,
662                                            oldFunction->getParent());
663
664  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
665
666  moveCodeToFunction(newFunction);
667
668  // Loop over all of the PHI nodes in the header block, and change any
669  // references to the old incoming edge to be the new incoming edge.
670  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
671    PHINode *PN = cast<PHINode>(I);
672    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
673      if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
674        PN->setIncomingBlock(i, newFuncRoot);
675  }
676
677  // Look at all successors of the codeReplacer block.  If any of these blocks
678  // had PHI nodes in them, we need to update the "from" block to be the code
679  // replacer, not the original block in the extracted region.
680  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
681                                 succ_end(codeReplacer));
682  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
683    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
684      PHINode *PN = cast<PHINode>(I);
685      std::set<BasicBlock*> ProcessedPreds;
686      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
687        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
688          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
689            PN->setIncomingBlock(i, codeReplacer);
690          else {
691            // There were multiple entries in the PHI for this block, now there
692            // is only one, so remove the duplicated entries.
693            PN->removeIncomingValue(i, false);
694            --i; --e;
695          }
696        }
697    }
698
699  //cerr << "NEW FUNCTION: " << *newFunction;
700  //  verifyFunction(*newFunction);
701
702  //  cerr << "OLD FUNCTION: " << *oldFunction;
703  //  verifyFunction(*oldFunction);
704
705  DEBUG(if (verifyFunction(*newFunction)) abort());
706  return newFunction;
707}
708
709bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
710  // Deny code region if it contains allocas or vastarts.
711  for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
712       BB != e; ++BB)
713    for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
714         I != Ie; ++I)
715      if (isa<AllocaInst>(*I))
716        return false;
717      else if (const CallInst *CI = dyn_cast<CallInst>(I))
718        if (const Function *F = CI->getCalledFunction())
719          if (F->getIntrinsicID() == Intrinsic::vastart)
720            return false;
721  return true;
722}
723
724
725/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
726/// function
727///
728Function* llvm::ExtractCodeRegion(DominatorTree &DT,
729                                  const std::vector<BasicBlock*> &code,
730                                  bool AggregateArgs) {
731  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
732}
733
734/// ExtractBasicBlock - slurp a natural loop into a brand new function
735///
736Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
737  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
738}
739
740/// ExtractBasicBlock - slurp a basic block into a brand new function
741///
742Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
743  std::vector<BasicBlock*> Blocks;
744  Blocks.push_back(BB);
745  return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);
746}
747