1//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This family of functions perform manipulations on basic blocks, and
10// instructions contained within basic blocks.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/BasicBlockUtils.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/Analysis/CFG.h"
20#include "llvm/Analysis/DomTreeUpdater.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/Analysis/MemoryDependenceAnalysis.h"
23#include "llvm/Analysis/MemorySSAUpdater.h"
24#include "llvm/Analysis/PostDominators.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/CFG.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DebugInfoMetadata.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/Instruction.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Type.h"
37#include "llvm/IR/User.h"
38#include "llvm/IR/Value.h"
39#include "llvm/IR/ValueHandle.h"
40#include "llvm/Support/Casting.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Transforms/Utils/Local.h"
44#include <cassert>
45#include <cstdint>
46#include <string>
47#include <utility>
48#include <vector>
49
50using namespace llvm;
51
52#define DEBUG_TYPE "basicblock-utils"
53
54void llvm::DetatchDeadBlocks(
55    ArrayRef<BasicBlock *> BBs,
56    SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57    bool KeepOneInputPHIs) {
58  for (auto *BB : BBs) {
59    // Loop through all of our successors and make sure they know that one
60    // of their predecessors is going away.
61    SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62    for (BasicBlock *Succ : successors(BB)) {
63      Succ->removePredecessor(BB, KeepOneInputPHIs);
64      if (Updates && UniqueSuccessors.insert(Succ).second)
65        Updates->push_back({DominatorTree::Delete, BB, Succ});
66    }
67
68    // Zap all the instructions in the block.
69    while (!BB->empty()) {
70      Instruction &I = BB->back();
71      // If this instruction is used, replace uses with an arbitrary value.
72      // Because control flow can't get here, we don't care what we replace the
73      // value with.  Note that since this block is unreachable, and all values
74      // contained within it must dominate their uses, that all uses will
75      // eventually be removed (they are themselves dead).
76      if (!I.use_empty())
77        I.replaceAllUsesWith(UndefValue::get(I.getType()));
78      BB->getInstList().pop_back();
79    }
80    new UnreachableInst(BB->getContext(), BB);
81    assert(BB->getInstList().size() == 1 &&
82           isa<UnreachableInst>(BB->getTerminator()) &&
83           "The successor list of BB isn't empty before "
84           "applying corresponding DTU updates.");
85  }
86}
87
88void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                           bool KeepOneInputPHIs) {
90  DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91}
92
93void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                            bool KeepOneInputPHIs) {
95#ifndef NDEBUG
96  // Make sure that all predecessors of each dead block is also dead.
97  SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98  assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99  for (auto *BB : Dead)
100    for (BasicBlock *Pred : predecessors(BB))
101      assert(Dead.count(Pred) && "All predecessors must be dead!");
102#endif
103
104  SmallVector<DominatorTree::UpdateType, 4> Updates;
105  DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106
107  if (DTU)
108    DTU->applyUpdatesPermissive(Updates);
109
110  for (BasicBlock *BB : BBs)
111    if (DTU)
112      DTU->deleteBB(BB);
113    else
114      BB->eraseFromParent();
115}
116
117bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                      bool KeepOneInputPHIs) {
119  df_iterator_default_set<BasicBlock*> Reachable;
120
121  // Mark all reachable blocks.
122  for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123    (void)BB/* Mark all reachable blocks */;
124
125  // Collect all dead blocks.
126  std::vector<BasicBlock*> DeadBlocks;
127  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128    if (!Reachable.count(&*I)) {
129      BasicBlock *BB = &*I;
130      DeadBlocks.push_back(BB);
131    }
132
133  // Delete the dead blocks.
134  DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135
136  return !DeadBlocks.empty();
137}
138
139void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                   MemoryDependenceResults *MemDep) {
141  if (!isa<PHINode>(BB->begin())) return;
142
143  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144    if (PN->getIncomingValue(0) != PN)
145      PN->replaceAllUsesWith(PN->getIncomingValue(0));
146    else
147      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148
149    if (MemDep)
150      MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151
152    PN->eraseFromParent();
153  }
154}
155
156bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
157  // Recursively deleting a PHI may cause multiple PHIs to be deleted
158  // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
159  SmallVector<WeakTrackingVH, 8> PHIs;
160  for (PHINode &PN : BB->phis())
161    PHIs.push_back(&PN);
162
163  bool Changed = false;
164  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
165    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
166      Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
167
168  return Changed;
169}
170
171bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
172                                     LoopInfo *LI, MemorySSAUpdater *MSSAU,
173                                     MemoryDependenceResults *MemDep,
174                                     bool PredecessorWithTwoSuccessors) {
175  if (BB->hasAddressTaken())
176    return false;
177
178  // Can't merge if there are multiple predecessors, or no predecessors.
179  BasicBlock *PredBB = BB->getUniquePredecessor();
180  if (!PredBB) return false;
181
182  // Don't break self-loops.
183  if (PredBB == BB) return false;
184  // Don't break unwinding instructions.
185  if (PredBB->getTerminator()->isExceptionalTerminator())
186    return false;
187
188  // Can't merge if there are multiple distinct successors.
189  if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
190    return false;
191
192  // Currently only allow PredBB to have two predecessors, one being BB.
193  // Update BI to branch to BB's only successor instead of BB.
194  BranchInst *PredBB_BI;
195  BasicBlock *NewSucc = nullptr;
196  unsigned FallThruPath;
197  if (PredecessorWithTwoSuccessors) {
198    if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
199      return false;
200    BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
201    if (!BB_JmpI || !BB_JmpI->isUnconditional())
202      return false;
203    NewSucc = BB_JmpI->getSuccessor(0);
204    FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
205  }
206
207  // Can't merge if there is PHI loop.
208  for (PHINode &PN : BB->phis())
209    for (Value *IncValue : PN.incoming_values())
210      if (IncValue == &PN)
211        return false;
212
213  LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
214                    << PredBB->getName() << "\n");
215
216  // Begin by getting rid of unneeded PHIs.
217  SmallVector<AssertingVH<Value>, 4> IncomingValues;
218  if (isa<PHINode>(BB->front())) {
219    for (PHINode &PN : BB->phis())
220      if (!isa<PHINode>(PN.getIncomingValue(0)) ||
221          cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
222        IncomingValues.push_back(PN.getIncomingValue(0));
223    FoldSingleEntryPHINodes(BB, MemDep);
224  }
225
226  // DTU update: Collect all the edges that exit BB.
227  // These dominator edges will be redirected from Pred.
228  std::vector<DominatorTree::UpdateType> Updates;
229  if (DTU) {
230    Updates.reserve(1 + (2 * succ_size(BB)));
231    // Add insert edges first. Experimentally, for the particular case of two
232    // blocks that can be merged, with a single successor and single predecessor
233    // respectively, it is beneficial to have all insert updates first. Deleting
234    // edges first may lead to unreachable blocks, followed by inserting edges
235    // making the blocks reachable again. Such DT updates lead to high compile
236    // times. We add inserts before deletes here to reduce compile time.
237    for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
238      // This successor of BB may already have PredBB as a predecessor.
239      if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
240        Updates.push_back({DominatorTree::Insert, PredBB, *I});
241    for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
242      Updates.push_back({DominatorTree::Delete, BB, *I});
243    Updates.push_back({DominatorTree::Delete, PredBB, BB});
244  }
245
246  Instruction *PTI = PredBB->getTerminator();
247  Instruction *STI = BB->getTerminator();
248  Instruction *Start = &*BB->begin();
249  // If there's nothing to move, mark the starting instruction as the last
250  // instruction in the block. Terminator instruction is handled separately.
251  if (Start == STI)
252    Start = PTI;
253
254  // Move all definitions in the successor to the predecessor...
255  PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
256                               BB->begin(), STI->getIterator());
257
258  if (MSSAU)
259    MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
260
261  // Make all PHI nodes that referred to BB now refer to Pred as their
262  // source...
263  BB->replaceAllUsesWith(PredBB);
264
265  if (PredecessorWithTwoSuccessors) {
266    // Delete the unconditional branch from BB.
267    BB->getInstList().pop_back();
268
269    // Update branch in the predecessor.
270    PredBB_BI->setSuccessor(FallThruPath, NewSucc);
271  } else {
272    // Delete the unconditional branch from the predecessor.
273    PredBB->getInstList().pop_back();
274
275    // Move terminator instruction.
276    PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
277
278    // Terminator may be a memory accessing instruction too.
279    if (MSSAU)
280      if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
281              MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
282        MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
283  }
284  // Add unreachable to now empty BB.
285  new UnreachableInst(BB->getContext(), BB);
286
287  // Eliminate duplicate/redundant dbg.values. This seems to be a good place to
288  // do that since we might end up with redundant dbg.values describing the
289  // entry PHI node post-splice.
290  RemoveRedundantDbgInstrs(PredBB);
291
292  // Inherit predecessors name if it exists.
293  if (!PredBB->hasName())
294    PredBB->takeName(BB);
295
296  if (LI)
297    LI->removeBlock(BB);
298
299  if (MemDep)
300    MemDep->invalidateCachedPredecessors();
301
302  // Finally, erase the old block and update dominator info.
303  if (DTU) {
304    assert(BB->getInstList().size() == 1 &&
305           isa<UnreachableInst>(BB->getTerminator()) &&
306           "The successor list of BB isn't empty before "
307           "applying corresponding DTU updates.");
308    DTU->applyUpdatesPermissive(Updates);
309    DTU->deleteBB(BB);
310  } else {
311    BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
312  }
313
314  return true;
315}
316
317/// Remove redundant instructions within sequences of consecutive dbg.value
318/// instructions. This is done using a backward scan to keep the last dbg.value
319/// describing a specific variable/fragment.
320///
321/// BackwardScan strategy:
322/// ----------------------
323/// Given a sequence of consecutive DbgValueInst like this
324///
325///   dbg.value ..., "x", FragmentX1  (*)
326///   dbg.value ..., "y", FragmentY1
327///   dbg.value ..., "x", FragmentX2
328///   dbg.value ..., "x", FragmentX1  (**)
329///
330/// then the instruction marked with (*) can be removed (it is guaranteed to be
331/// obsoleted by the instruction marked with (**) as the latter instruction is
332/// describing the same variable using the same fragment info).
333///
334/// Possible improvements:
335/// - Check fully overlapping fragments and not only identical fragments.
336/// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
337///   instructions being part of the sequence of consecutive instructions.
338static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
339  SmallVector<DbgValueInst *, 8> ToBeRemoved;
340  SmallDenseSet<DebugVariable> VariableSet;
341  for (auto &I : reverse(*BB)) {
342    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
343      DebugVariable Key(DVI->getVariable(),
344                        DVI->getExpression(),
345                        DVI->getDebugLoc()->getInlinedAt());
346      auto R = VariableSet.insert(Key);
347      // If the same variable fragment is described more than once it is enough
348      // to keep the last one (i.e. the first found since we for reverse
349      // iteration).
350      if (!R.second)
351        ToBeRemoved.push_back(DVI);
352      continue;
353    }
354    // Sequence with consecutive dbg.value instrs ended. Clear the map to
355    // restart identifying redundant instructions if case we find another
356    // dbg.value sequence.
357    VariableSet.clear();
358  }
359
360  for (auto &Instr : ToBeRemoved)
361    Instr->eraseFromParent();
362
363  return !ToBeRemoved.empty();
364}
365
366/// Remove redundant dbg.value instructions using a forward scan. This can
367/// remove a dbg.value instruction that is redundant due to indicating that a
368/// variable has the same value as already being indicated by an earlier
369/// dbg.value.
370///
371/// ForwardScan strategy:
372/// ---------------------
373/// Given two identical dbg.value instructions, separated by a block of
374/// instructions that isn't describing the same variable, like this
375///
376///   dbg.value X1, "x", FragmentX1  (**)
377///   <block of instructions, none being "dbg.value ..., "x", ...">
378///   dbg.value X1, "x", FragmentX1  (*)
379///
380/// then the instruction marked with (*) can be removed. Variable "x" is already
381/// described as being mapped to the SSA value X1.
382///
383/// Possible improvements:
384/// - Keep track of non-overlapping fragments.
385static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
386  SmallVector<DbgValueInst *, 8> ToBeRemoved;
387  DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
388  for (auto &I : *BB) {
389    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
390      DebugVariable Key(DVI->getVariable(),
391                        NoneType(),
392                        DVI->getDebugLoc()->getInlinedAt());
393      auto VMI = VariableMap.find(Key);
394      // Update the map if we found a new value/expression describing the
395      // variable, or if the variable wasn't mapped already.
396      if (VMI == VariableMap.end() ||
397          VMI->second.first != DVI->getValue() ||
398          VMI->second.second != DVI->getExpression()) {
399        VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
400        continue;
401      }
402      // Found an identical mapping. Remember the instruction for later removal.
403      ToBeRemoved.push_back(DVI);
404    }
405  }
406
407  for (auto &Instr : ToBeRemoved)
408    Instr->eraseFromParent();
409
410  return !ToBeRemoved.empty();
411}
412
413bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
414  bool MadeChanges = false;
415  // By using the "backward scan" strategy before the "forward scan" strategy we
416  // can remove both dbg.value (2) and (3) in a situation like this:
417  //
418  //   (1) dbg.value V1, "x", DIExpression()
419  //       ...
420  //   (2) dbg.value V2, "x", DIExpression()
421  //   (3) dbg.value V1, "x", DIExpression()
422  //
423  // The backward scan will remove (2), it is made obsolete by (3). After
424  // getting (2) out of the way, the foward scan will remove (3) since "x"
425  // already is described as having the value V1 at (1).
426  MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
427  MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
428
429  if (MadeChanges)
430    LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
431                      << BB->getName() << "\n");
432  return MadeChanges;
433}
434
435void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
436                                BasicBlock::iterator &BI, Value *V) {
437  Instruction &I = *BI;
438  // Replaces all of the uses of the instruction with uses of the value
439  I.replaceAllUsesWith(V);
440
441  // Make sure to propagate a name if there is one already.
442  if (I.hasName() && !V->hasName())
443    V->takeName(&I);
444
445  // Delete the unnecessary instruction now...
446  BI = BIL.erase(BI);
447}
448
449void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
450                               BasicBlock::iterator &BI, Instruction *I) {
451  assert(I->getParent() == nullptr &&
452         "ReplaceInstWithInst: Instruction already inserted into basic block!");
453
454  // Copy debug location to newly added instruction, if it wasn't already set
455  // by the caller.
456  if (!I->getDebugLoc())
457    I->setDebugLoc(BI->getDebugLoc());
458
459  // Insert the new instruction into the basic block...
460  BasicBlock::iterator New = BIL.insert(BI, I);
461
462  // Replace all uses of the old instruction, and delete it.
463  ReplaceInstWithValue(BIL, BI, I);
464
465  // Move BI back to point to the newly inserted instruction
466  BI = New;
467}
468
469void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
470  BasicBlock::iterator BI(From);
471  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
472}
473
474BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
475                            LoopInfo *LI, MemorySSAUpdater *MSSAU) {
476  unsigned SuccNum = GetSuccessorNumber(BB, Succ);
477
478  // If this is a critical edge, let SplitCriticalEdge do it.
479  Instruction *LatchTerm = BB->getTerminator();
480  if (SplitCriticalEdge(
481          LatchTerm, SuccNum,
482          CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
483    return LatchTerm->getSuccessor(SuccNum);
484
485  // If the edge isn't critical, then BB has a single successor or Succ has a
486  // single pred.  Split the block.
487  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
488    // If the successor only has a single pred, split the top of the successor
489    // block.
490    assert(SP == BB && "CFG broken");
491    SP = nullptr;
492    return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
493  }
494
495  // Otherwise, if BB has a single successor, split it at the bottom of the
496  // block.
497  assert(BB->getTerminator()->getNumSuccessors() == 1 &&
498         "Should have a single succ!");
499  return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
500}
501
502unsigned
503llvm::SplitAllCriticalEdges(Function &F,
504                            const CriticalEdgeSplittingOptions &Options) {
505  unsigned NumBroken = 0;
506  for (BasicBlock &BB : F) {
507    Instruction *TI = BB.getTerminator();
508    if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
509        !isa<CallBrInst>(TI))
510      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
511        if (SplitCriticalEdge(TI, i, Options))
512          ++NumBroken;
513  }
514  return NumBroken;
515}
516
517BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
518                             DominatorTree *DT, LoopInfo *LI,
519                             MemorySSAUpdater *MSSAU, const Twine &BBName) {
520  BasicBlock::iterator SplitIt = SplitPt->getIterator();
521  while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
522    ++SplitIt;
523  std::string Name = BBName.str();
524  BasicBlock *New = Old->splitBasicBlock(
525      SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
526
527  // The new block lives in whichever loop the old one did. This preserves
528  // LCSSA as well, because we force the split point to be after any PHI nodes.
529  if (LI)
530    if (Loop *L = LI->getLoopFor(Old))
531      L->addBasicBlockToLoop(New, *LI);
532
533  if (DT)
534    // Old dominates New. New node dominates all other nodes dominated by Old.
535    if (DomTreeNode *OldNode = DT->getNode(Old)) {
536      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
537
538      DomTreeNode *NewNode = DT->addNewBlock(New, Old);
539      for (DomTreeNode *I : Children)
540        DT->changeImmediateDominator(I, NewNode);
541    }
542
543  // Move MemoryAccesses still tracked in Old, but part of New now.
544  // Update accesses in successor blocks accordingly.
545  if (MSSAU)
546    MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
547
548  return New;
549}
550
551/// Update DominatorTree, LoopInfo, and LCCSA analysis information.
552static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
553                                      ArrayRef<BasicBlock *> Preds,
554                                      DominatorTree *DT, LoopInfo *LI,
555                                      MemorySSAUpdater *MSSAU,
556                                      bool PreserveLCSSA, bool &HasLoopExit) {
557  // Update dominator tree if available.
558  if (DT) {
559    if (OldBB == DT->getRootNode()->getBlock()) {
560      assert(NewBB == &NewBB->getParent()->getEntryBlock());
561      DT->setNewRoot(NewBB);
562    } else {
563      // Split block expects NewBB to have a non-empty set of predecessors.
564      DT->splitBlock(NewBB);
565    }
566  }
567
568  // Update MemoryPhis after split if MemorySSA is available
569  if (MSSAU)
570    MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
571
572  // The rest of the logic is only relevant for updating the loop structures.
573  if (!LI)
574    return;
575
576  assert(DT && "DT should be available to update LoopInfo!");
577  Loop *L = LI->getLoopFor(OldBB);
578
579  // If we need to preserve loop analyses, collect some information about how
580  // this split will affect loops.
581  bool IsLoopEntry = !!L;
582  bool SplitMakesNewLoopHeader = false;
583  for (BasicBlock *Pred : Preds) {
584    // Preds that are not reachable from entry should not be used to identify if
585    // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
586    // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
587    // as true and make the NewBB the header of some loop. This breaks LI.
588    if (!DT->isReachableFromEntry(Pred))
589      continue;
590    // If we need to preserve LCSSA, determine if any of the preds is a loop
591    // exit.
592    if (PreserveLCSSA)
593      if (Loop *PL = LI->getLoopFor(Pred))
594        if (!PL->contains(OldBB))
595          HasLoopExit = true;
596
597    // If we need to preserve LoopInfo, note whether any of the preds crosses
598    // an interesting loop boundary.
599    if (!L)
600      continue;
601    if (L->contains(Pred))
602      IsLoopEntry = false;
603    else
604      SplitMakesNewLoopHeader = true;
605  }
606
607  // Unless we have a loop for OldBB, nothing else to do here.
608  if (!L)
609    return;
610
611  if (IsLoopEntry) {
612    // Add the new block to the nearest enclosing loop (and not an adjacent
613    // loop). To find this, examine each of the predecessors and determine which
614    // loops enclose them, and select the most-nested loop which contains the
615    // loop containing the block being split.
616    Loop *InnermostPredLoop = nullptr;
617    for (BasicBlock *Pred : Preds) {
618      if (Loop *PredLoop = LI->getLoopFor(Pred)) {
619        // Seek a loop which actually contains the block being split (to avoid
620        // adjacent loops).
621        while (PredLoop && !PredLoop->contains(OldBB))
622          PredLoop = PredLoop->getParentLoop();
623
624        // Select the most-nested of these loops which contains the block.
625        if (PredLoop && PredLoop->contains(OldBB) &&
626            (!InnermostPredLoop ||
627             InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
628          InnermostPredLoop = PredLoop;
629      }
630    }
631
632    if (InnermostPredLoop)
633      InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
634  } else {
635    L->addBasicBlockToLoop(NewBB, *LI);
636    if (SplitMakesNewLoopHeader)
637      L->moveToHeader(NewBB);
638  }
639}
640
641/// Update the PHI nodes in OrigBB to include the values coming from NewBB.
642/// This also updates AliasAnalysis, if available.
643static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
644                           ArrayRef<BasicBlock *> Preds, BranchInst *BI,
645                           bool HasLoopExit) {
646  // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
647  SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
648  for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
649    PHINode *PN = cast<PHINode>(I++);
650
651    // Check to see if all of the values coming in are the same.  If so, we
652    // don't need to create a new PHI node, unless it's needed for LCSSA.
653    Value *InVal = nullptr;
654    if (!HasLoopExit) {
655      InVal = PN->getIncomingValueForBlock(Preds[0]);
656      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
657        if (!PredSet.count(PN->getIncomingBlock(i)))
658          continue;
659        if (!InVal)
660          InVal = PN->getIncomingValue(i);
661        else if (InVal != PN->getIncomingValue(i)) {
662          InVal = nullptr;
663          break;
664        }
665      }
666    }
667
668    if (InVal) {
669      // If all incoming values for the new PHI would be the same, just don't
670      // make a new PHI.  Instead, just remove the incoming values from the old
671      // PHI.
672
673      // NOTE! This loop walks backwards for a reason! First off, this minimizes
674      // the cost of removal if we end up removing a large number of values, and
675      // second off, this ensures that the indices for the incoming values
676      // aren't invalidated when we remove one.
677      for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
678        if (PredSet.count(PN->getIncomingBlock(i)))
679          PN->removeIncomingValue(i, false);
680
681      // Add an incoming value to the PHI node in the loop for the preheader
682      // edge.
683      PN->addIncoming(InVal, NewBB);
684      continue;
685    }
686
687    // If the values coming into the block are not the same, we need a new
688    // PHI.
689    // Create the new PHI node, insert it into NewBB at the end of the block
690    PHINode *NewPHI =
691        PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
692
693    // NOTE! This loop walks backwards for a reason! First off, this minimizes
694    // the cost of removal if we end up removing a large number of values, and
695    // second off, this ensures that the indices for the incoming values aren't
696    // invalidated when we remove one.
697    for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
698      BasicBlock *IncomingBB = PN->getIncomingBlock(i);
699      if (PredSet.count(IncomingBB)) {
700        Value *V = PN->removeIncomingValue(i, false);
701        NewPHI->addIncoming(V, IncomingBB);
702      }
703    }
704
705    PN->addIncoming(NewPHI, NewBB);
706  }
707}
708
709BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
710                                         ArrayRef<BasicBlock *> Preds,
711                                         const char *Suffix, DominatorTree *DT,
712                                         LoopInfo *LI, MemorySSAUpdater *MSSAU,
713                                         bool PreserveLCSSA) {
714  // Do not attempt to split that which cannot be split.
715  if (!BB->canSplitPredecessors())
716    return nullptr;
717
718  // For the landingpads we need to act a bit differently.
719  // Delegate this work to the SplitLandingPadPredecessors.
720  if (BB->isLandingPad()) {
721    SmallVector<BasicBlock*, 2> NewBBs;
722    std::string NewName = std::string(Suffix) + ".split-lp";
723
724    SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
725                                LI, MSSAU, PreserveLCSSA);
726    return NewBBs[0];
727  }
728
729  // Create new basic block, insert right before the original block.
730  BasicBlock *NewBB = BasicBlock::Create(
731      BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
732
733  // The new block unconditionally branches to the old block.
734  BranchInst *BI = BranchInst::Create(BB, NewBB);
735  // Splitting the predecessors of a loop header creates a preheader block.
736  if (LI && LI->isLoopHeader(BB))
737    // Using the loop start line number prevents debuggers stepping into the
738    // loop body for this instruction.
739    BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
740  else
741    BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
742
743  // Move the edges from Preds to point to NewBB instead of BB.
744  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
745    // This is slightly more strict than necessary; the minimum requirement
746    // is that there be no more than one indirectbr branching to BB. And
747    // all BlockAddress uses would need to be updated.
748    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
749           "Cannot split an edge from an IndirectBrInst");
750    assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
751           "Cannot split an edge from a CallBrInst");
752    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
753  }
754
755  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
756  // node becomes an incoming value for BB's phi node.  However, if the Preds
757  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
758  // account for the newly created predecessor.
759  if (Preds.empty()) {
760    // Insert dummy values as the incoming value.
761    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
762      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
763  }
764
765  // Update DominatorTree, LoopInfo, and LCCSA analysis information.
766  bool HasLoopExit = false;
767  UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
768                            HasLoopExit);
769
770  if (!Preds.empty()) {
771    // Update the PHI nodes in BB with the values coming from NewBB.
772    UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
773  }
774
775  return NewBB;
776}
777
778void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
779                                       ArrayRef<BasicBlock *> Preds,
780                                       const char *Suffix1, const char *Suffix2,
781                                       SmallVectorImpl<BasicBlock *> &NewBBs,
782                                       DominatorTree *DT, LoopInfo *LI,
783                                       MemorySSAUpdater *MSSAU,
784                                       bool PreserveLCSSA) {
785  assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
786
787  // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
788  // it right before the original block.
789  BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
790                                          OrigBB->getName() + Suffix1,
791                                          OrigBB->getParent(), OrigBB);
792  NewBBs.push_back(NewBB1);
793
794  // The new block unconditionally branches to the old block.
795  BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
796  BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
797
798  // Move the edges from Preds to point to NewBB1 instead of OrigBB.
799  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
800    // This is slightly more strict than necessary; the minimum requirement
801    // is that there be no more than one indirectbr branching to BB. And
802    // all BlockAddress uses would need to be updated.
803    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
804           "Cannot split an edge from an IndirectBrInst");
805    Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
806  }
807
808  bool HasLoopExit = false;
809  UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
810                            HasLoopExit);
811
812  // Update the PHI nodes in OrigBB with the values coming from NewBB1.
813  UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
814
815  // Move the remaining edges from OrigBB to point to NewBB2.
816  SmallVector<BasicBlock*, 8> NewBB2Preds;
817  for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
818       i != e; ) {
819    BasicBlock *Pred = *i++;
820    if (Pred == NewBB1) continue;
821    assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
822           "Cannot split an edge from an IndirectBrInst");
823    NewBB2Preds.push_back(Pred);
824    e = pred_end(OrigBB);
825  }
826
827  BasicBlock *NewBB2 = nullptr;
828  if (!NewBB2Preds.empty()) {
829    // Create another basic block for the rest of OrigBB's predecessors.
830    NewBB2 = BasicBlock::Create(OrigBB->getContext(),
831                                OrigBB->getName() + Suffix2,
832                                OrigBB->getParent(), OrigBB);
833    NewBBs.push_back(NewBB2);
834
835    // The new block unconditionally branches to the old block.
836    BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
837    BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
838
839    // Move the remaining edges from OrigBB to point to NewBB2.
840    for (BasicBlock *NewBB2Pred : NewBB2Preds)
841      NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
842
843    // Update DominatorTree, LoopInfo, and LCCSA analysis information.
844    HasLoopExit = false;
845    UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
846                              PreserveLCSSA, HasLoopExit);
847
848    // Update the PHI nodes in OrigBB with the values coming from NewBB2.
849    UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
850  }
851
852  LandingPadInst *LPad = OrigBB->getLandingPadInst();
853  Instruction *Clone1 = LPad->clone();
854  Clone1->setName(Twine("lpad") + Suffix1);
855  NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
856
857  if (NewBB2) {
858    Instruction *Clone2 = LPad->clone();
859    Clone2->setName(Twine("lpad") + Suffix2);
860    NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
861
862    // Create a PHI node for the two cloned landingpad instructions only
863    // if the original landingpad instruction has some uses.
864    if (!LPad->use_empty()) {
865      assert(!LPad->getType()->isTokenTy() &&
866             "Split cannot be applied if LPad is token type. Otherwise an "
867             "invalid PHINode of token type would be created.");
868      PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
869      PN->addIncoming(Clone1, NewBB1);
870      PN->addIncoming(Clone2, NewBB2);
871      LPad->replaceAllUsesWith(PN);
872    }
873    LPad->eraseFromParent();
874  } else {
875    // There is no second clone. Just replace the landing pad with the first
876    // clone.
877    LPad->replaceAllUsesWith(Clone1);
878    LPad->eraseFromParent();
879  }
880}
881
882ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
883                                             BasicBlock *Pred,
884                                             DomTreeUpdater *DTU) {
885  Instruction *UncondBranch = Pred->getTerminator();
886  // Clone the return and add it to the end of the predecessor.
887  Instruction *NewRet = RI->clone();
888  Pred->getInstList().push_back(NewRet);
889
890  // If the return instruction returns a value, and if the value was a
891  // PHI node in "BB", propagate the right value into the return.
892  for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
893       i != e; ++i) {
894    Value *V = *i;
895    Instruction *NewBC = nullptr;
896    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
897      // Return value might be bitcasted. Clone and insert it before the
898      // return instruction.
899      V = BCI->getOperand(0);
900      NewBC = BCI->clone();
901      Pred->getInstList().insert(NewRet->getIterator(), NewBC);
902      *i = NewBC;
903    }
904    if (PHINode *PN = dyn_cast<PHINode>(V)) {
905      if (PN->getParent() == BB) {
906        if (NewBC)
907          NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
908        else
909          *i = PN->getIncomingValueForBlock(Pred);
910      }
911    }
912  }
913
914  // Update any PHI nodes in the returning block to realize that we no
915  // longer branch to them.
916  BB->removePredecessor(Pred);
917  UncondBranch->eraseFromParent();
918
919  if (DTU)
920    DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
921
922  return cast<ReturnInst>(NewRet);
923}
924
925Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
926                                             Instruction *SplitBefore,
927                                             bool Unreachable,
928                                             MDNode *BranchWeights,
929                                             DominatorTree *DT, LoopInfo *LI,
930                                             BasicBlock *ThenBlock) {
931  BasicBlock *Head = SplitBefore->getParent();
932  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
933  Instruction *HeadOldTerm = Head->getTerminator();
934  LLVMContext &C = Head->getContext();
935  Instruction *CheckTerm;
936  bool CreateThenBlock = (ThenBlock == nullptr);
937  if (CreateThenBlock) {
938    ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
939    if (Unreachable)
940      CheckTerm = new UnreachableInst(C, ThenBlock);
941    else
942      CheckTerm = BranchInst::Create(Tail, ThenBlock);
943    CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
944  } else
945    CheckTerm = ThenBlock->getTerminator();
946  BranchInst *HeadNewTerm =
947    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
948  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
949  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
950
951  if (DT) {
952    if (DomTreeNode *OldNode = DT->getNode(Head)) {
953      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
954
955      DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
956      for (DomTreeNode *Child : Children)
957        DT->changeImmediateDominator(Child, NewNode);
958
959      // Head dominates ThenBlock.
960      if (CreateThenBlock)
961        DT->addNewBlock(ThenBlock, Head);
962      else
963        DT->changeImmediateDominator(ThenBlock, Head);
964    }
965  }
966
967  if (LI) {
968    if (Loop *L = LI->getLoopFor(Head)) {
969      L->addBasicBlockToLoop(ThenBlock, *LI);
970      L->addBasicBlockToLoop(Tail, *LI);
971    }
972  }
973
974  return CheckTerm;
975}
976
977void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
978                                         Instruction **ThenTerm,
979                                         Instruction **ElseTerm,
980                                         MDNode *BranchWeights) {
981  BasicBlock *Head = SplitBefore->getParent();
982  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
983  Instruction *HeadOldTerm = Head->getTerminator();
984  LLVMContext &C = Head->getContext();
985  BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
986  BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
987  *ThenTerm = BranchInst::Create(Tail, ThenBlock);
988  (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
989  *ElseTerm = BranchInst::Create(Tail, ElseBlock);
990  (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
991  BranchInst *HeadNewTerm =
992    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
993  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
994  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
995}
996
997Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
998                             BasicBlock *&IfFalse) {
999  PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1000  BasicBlock *Pred1 = nullptr;
1001  BasicBlock *Pred2 = nullptr;
1002
1003  if (SomePHI) {
1004    if (SomePHI->getNumIncomingValues() != 2)
1005      return nullptr;
1006    Pred1 = SomePHI->getIncomingBlock(0);
1007    Pred2 = SomePHI->getIncomingBlock(1);
1008  } else {
1009    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1010    if (PI == PE) // No predecessor
1011      return nullptr;
1012    Pred1 = *PI++;
1013    if (PI == PE) // Only one predecessor
1014      return nullptr;
1015    Pred2 = *PI++;
1016    if (PI != PE) // More than two predecessors
1017      return nullptr;
1018  }
1019
1020  // We can only handle branches.  Other control flow will be lowered to
1021  // branches if possible anyway.
1022  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1023  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1024  if (!Pred1Br || !Pred2Br)
1025    return nullptr;
1026
1027  // Eliminate code duplication by ensuring that Pred1Br is conditional if
1028  // either are.
1029  if (Pred2Br->isConditional()) {
1030    // If both branches are conditional, we don't have an "if statement".  In
1031    // reality, we could transform this case, but since the condition will be
1032    // required anyway, we stand no chance of eliminating it, so the xform is
1033    // probably not profitable.
1034    if (Pred1Br->isConditional())
1035      return nullptr;
1036
1037    std::swap(Pred1, Pred2);
1038    std::swap(Pred1Br, Pred2Br);
1039  }
1040
1041  if (Pred1Br->isConditional()) {
1042    // The only thing we have to watch out for here is to make sure that Pred2
1043    // doesn't have incoming edges from other blocks.  If it does, the condition
1044    // doesn't dominate BB.
1045    if (!Pred2->getSinglePredecessor())
1046      return nullptr;
1047
1048    // If we found a conditional branch predecessor, make sure that it branches
1049    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1050    if (Pred1Br->getSuccessor(0) == BB &&
1051        Pred1Br->getSuccessor(1) == Pred2) {
1052      IfTrue = Pred1;
1053      IfFalse = Pred2;
1054    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1055               Pred1Br->getSuccessor(1) == BB) {
1056      IfTrue = Pred2;
1057      IfFalse = Pred1;
1058    } else {
1059      // We know that one arm of the conditional goes to BB, so the other must
1060      // go somewhere unrelated, and this must not be an "if statement".
1061      return nullptr;
1062    }
1063
1064    return Pred1Br->getCondition();
1065  }
1066
1067  // Ok, if we got here, both predecessors end with an unconditional branch to
1068  // BB.  Don't panic!  If both blocks only have a single (identical)
1069  // predecessor, and THAT is a conditional branch, then we're all ok!
1070  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1071  if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1072    return nullptr;
1073
1074  // Otherwise, if this is a conditional branch, then we can use it!
1075  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1076  if (!BI) return nullptr;
1077
1078  assert(BI->isConditional() && "Two successors but not conditional?");
1079  if (BI->getSuccessor(0) == Pred1) {
1080    IfTrue = Pred1;
1081    IfFalse = Pred2;
1082  } else {
1083    IfTrue = Pred2;
1084    IfFalse = Pred1;
1085  }
1086  return BI->getCondition();
1087}
1088