1//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements an idiom recognizer that transforms simple loops into a
10// non-loop form.  In cases that this kicks in, it can be a significant
11// performance win.
12//
13// If compiling for code size we avoid idiom recognition if the resulting
14// code could be larger than the code for the original loop. One way this could
15// happen is if the loop is not removable after idiom recognition due to the
16// presence of non-idiom instructions. The initial implementation of the
17// heuristics applies to idioms in multi-block loops.
18//
19//===----------------------------------------------------------------------===//
20//
21// TODO List:
22//
23// Future loop memory idioms to recognize:
24//   memcmp, memmove, strlen, etc.
25// Future floating point idioms to recognize in -ffast-math mode:
26//   fpowi
27// Future integer operation idioms to recognize:
28//   ctpop
29//
30// Beware that isel's default lowering for ctpop is highly inefficient for
31// i64 and larger types when i64 is legal and the value has few bits set.  It
32// would be good to enhance isel to emit a loop for ctpop in this case.
33//
34// This could recognize common matrix multiplies and dot product idioms and
35// replace them with calls to BLAS (if linked in??).
36//
37//===----------------------------------------------------------------------===//
38
39#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40#include "llvm/ADT/APInt.h"
41#include "llvm/ADT/ArrayRef.h"
42#include "llvm/ADT/DenseMap.h"
43#include "llvm/ADT/MapVector.h"
44#include "llvm/ADT/SetVector.h"
45#include "llvm/ADT/SmallPtrSet.h"
46#include "llvm/ADT/SmallVector.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/ADT/StringRef.h"
49#include "llvm/Analysis/AliasAnalysis.h"
50#include "llvm/Analysis/LoopAccessAnalysis.h"
51#include "llvm/Analysis/LoopInfo.h"
52#include "llvm/Analysis/LoopPass.h"
53#include "llvm/Analysis/MemoryLocation.h"
54#include "llvm/Analysis/OptimizationRemarkEmitter.h"
55#include "llvm/Analysis/ScalarEvolution.h"
56#include "llvm/Analysis/ScalarEvolutionExpander.h"
57#include "llvm/Analysis/ScalarEvolutionExpressions.h"
58#include "llvm/Analysis/TargetLibraryInfo.h"
59#include "llvm/Analysis/TargetTransformInfo.h"
60#include "llvm/Analysis/ValueTracking.h"
61#include "llvm/IR/Attributes.h"
62#include "llvm/IR/BasicBlock.h"
63#include "llvm/IR/Constant.h"
64#include "llvm/IR/Constants.h"
65#include "llvm/IR/DataLayout.h"
66#include "llvm/IR/DebugLoc.h"
67#include "llvm/IR/DerivedTypes.h"
68#include "llvm/IR/Dominators.h"
69#include "llvm/IR/GlobalValue.h"
70#include "llvm/IR/GlobalVariable.h"
71#include "llvm/IR/IRBuilder.h"
72#include "llvm/IR/InstrTypes.h"
73#include "llvm/IR/Instruction.h"
74#include "llvm/IR/Instructions.h"
75#include "llvm/IR/IntrinsicInst.h"
76#include "llvm/IR/Intrinsics.h"
77#include "llvm/IR/LLVMContext.h"
78#include "llvm/IR/Module.h"
79#include "llvm/IR/PassManager.h"
80#include "llvm/IR/Type.h"
81#include "llvm/IR/User.h"
82#include "llvm/IR/Value.h"
83#include "llvm/IR/ValueHandle.h"
84#include "llvm/InitializePasses.h"
85#include "llvm/Pass.h"
86#include "llvm/Support/Casting.h"
87#include "llvm/Support/CommandLine.h"
88#include "llvm/Support/Debug.h"
89#include "llvm/Support/raw_ostream.h"
90#include "llvm/Transforms/Scalar.h"
91#include "llvm/Transforms/Utils/BuildLibCalls.h"
92#include "llvm/Transforms/Utils/Local.h"
93#include "llvm/Transforms/Utils/LoopUtils.h"
94#include <algorithm>
95#include <cassert>
96#include <cstdint>
97#include <utility>
98#include <vector>
99
100using namespace llvm;
101
102#define DEBUG_TYPE "loop-idiom"
103
104STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
105STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
106
107static cl::opt<bool> UseLIRCodeSizeHeurs(
108    "use-lir-code-size-heurs",
109    cl::desc("Use loop idiom recognition code size heuristics when compiling"
110             "with -Os/-Oz"),
111    cl::init(true), cl::Hidden);
112
113namespace {
114
115class LoopIdiomRecognize {
116  Loop *CurLoop = nullptr;
117  AliasAnalysis *AA;
118  DominatorTree *DT;
119  LoopInfo *LI;
120  ScalarEvolution *SE;
121  TargetLibraryInfo *TLI;
122  const TargetTransformInfo *TTI;
123  const DataLayout *DL;
124  OptimizationRemarkEmitter &ORE;
125  bool ApplyCodeSizeHeuristics;
126
127public:
128  explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
129                              LoopInfo *LI, ScalarEvolution *SE,
130                              TargetLibraryInfo *TLI,
131                              const TargetTransformInfo *TTI,
132                              const DataLayout *DL,
133                              OptimizationRemarkEmitter &ORE)
134      : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {}
135
136  bool runOnLoop(Loop *L);
137
138private:
139  using StoreList = SmallVector<StoreInst *, 8>;
140  using StoreListMap = MapVector<Value *, StoreList>;
141
142  StoreListMap StoreRefsForMemset;
143  StoreListMap StoreRefsForMemsetPattern;
144  StoreList StoreRefsForMemcpy;
145  bool HasMemset;
146  bool HasMemsetPattern;
147  bool HasMemcpy;
148
149  /// Return code for isLegalStore()
150  enum LegalStoreKind {
151    None = 0,
152    Memset,
153    MemsetPattern,
154    Memcpy,
155    UnorderedAtomicMemcpy,
156    DontUse // Dummy retval never to be used. Allows catching errors in retval
157            // handling.
158  };
159
160  /// \name Countable Loop Idiom Handling
161  /// @{
162
163  bool runOnCountableLoop();
164  bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
165                      SmallVectorImpl<BasicBlock *> &ExitBlocks);
166
167  void collectStores(BasicBlock *BB);
168  LegalStoreKind isLegalStore(StoreInst *SI);
169  enum class ForMemset { No, Yes };
170  bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
171                         ForMemset For);
172  bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
173
174  bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
175                               MaybeAlign StoreAlignment, Value *StoredVal,
176                               Instruction *TheStore,
177                               SmallPtrSetImpl<Instruction *> &Stores,
178                               const SCEVAddRecExpr *Ev, const SCEV *BECount,
179                               bool NegStride, bool IsLoopMemset = false);
180  bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
181  bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
182                                 bool IsLoopMemset = false);
183
184  /// @}
185  /// \name Noncountable Loop Idiom Handling
186  /// @{
187
188  bool runOnNoncountableLoop();
189
190  bool recognizePopcount();
191  void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
192                               PHINode *CntPhi, Value *Var);
193  bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
194  void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
195                                Instruction *CntInst, PHINode *CntPhi,
196                                Value *Var, Instruction *DefX,
197                                const DebugLoc &DL, bool ZeroCheck,
198                                bool IsCntPhiUsedOutsideLoop);
199
200  /// @}
201};
202
203class LoopIdiomRecognizeLegacyPass : public LoopPass {
204public:
205  static char ID;
206
207  explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
208    initializeLoopIdiomRecognizeLegacyPassPass(
209        *PassRegistry::getPassRegistry());
210  }
211
212  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
213    if (skipLoop(L))
214      return false;
215
216    AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
217    DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
218    LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
219    ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
220    TargetLibraryInfo *TLI =
221        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
222            *L->getHeader()->getParent());
223    const TargetTransformInfo *TTI =
224        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
225            *L->getHeader()->getParent());
226    const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
227
228    // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
229    // pass.  Function analyses need to be preserved across loop transformations
230    // but ORE cannot be preserved (see comment before the pass definition).
231    OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
232
233    LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, ORE);
234    return LIR.runOnLoop(L);
235  }
236
237  /// This transformation requires natural loop information & requires that
238  /// loop preheaders be inserted into the CFG.
239  void getAnalysisUsage(AnalysisUsage &AU) const override {
240    AU.addRequired<TargetLibraryInfoWrapperPass>();
241    AU.addRequired<TargetTransformInfoWrapperPass>();
242    getLoopAnalysisUsage(AU);
243  }
244};
245
246} // end anonymous namespace
247
248char LoopIdiomRecognizeLegacyPass::ID = 0;
249
250PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
251                                              LoopStandardAnalysisResults &AR,
252                                              LPMUpdater &) {
253  const auto *DL = &L.getHeader()->getModule()->getDataLayout();
254
255  const auto &FAM =
256      AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
257  Function *F = L.getHeader()->getParent();
258
259  auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
260  // FIXME: This should probably be optional rather than required.
261  if (!ORE)
262    report_fatal_error(
263        "LoopIdiomRecognizePass: OptimizationRemarkEmitterAnalysis not cached "
264        "at a higher level");
265
266  LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL,
267                         *ORE);
268  if (!LIR.runOnLoop(&L))
269    return PreservedAnalyses::all();
270
271  return getLoopPassPreservedAnalyses();
272}
273
274INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
275                      "Recognize loop idioms", false, false)
276INITIALIZE_PASS_DEPENDENCY(LoopPass)
277INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
278INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
279INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
280                    "Recognize loop idioms", false, false)
281
282Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
283
284static void deleteDeadInstruction(Instruction *I) {
285  I->replaceAllUsesWith(UndefValue::get(I->getType()));
286  I->eraseFromParent();
287}
288
289//===----------------------------------------------------------------------===//
290//
291//          Implementation of LoopIdiomRecognize
292//
293//===----------------------------------------------------------------------===//
294
295bool LoopIdiomRecognize::runOnLoop(Loop *L) {
296  CurLoop = L;
297  // If the loop could not be converted to canonical form, it must have an
298  // indirectbr in it, just give up.
299  if (!L->getLoopPreheader())
300    return false;
301
302  // Disable loop idiom recognition if the function's name is a common idiom.
303  StringRef Name = L->getHeader()->getParent()->getName();
304  if (Name == "memset" || Name == "memcpy")
305    return false;
306
307  // Determine if code size heuristics need to be applied.
308  ApplyCodeSizeHeuristics =
309      L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
310
311  HasMemset = TLI->has(LibFunc_memset);
312  HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
313  HasMemcpy = TLI->has(LibFunc_memcpy);
314
315  if (HasMemset || HasMemsetPattern || HasMemcpy)
316    if (SE->hasLoopInvariantBackedgeTakenCount(L))
317      return runOnCountableLoop();
318
319  return runOnNoncountableLoop();
320}
321
322bool LoopIdiomRecognize::runOnCountableLoop() {
323  const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
324  assert(!isa<SCEVCouldNotCompute>(BECount) &&
325         "runOnCountableLoop() called on a loop without a predictable"
326         "backedge-taken count");
327
328  // If this loop executes exactly one time, then it should be peeled, not
329  // optimized by this pass.
330  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
331    if (BECst->getAPInt() == 0)
332      return false;
333
334  SmallVector<BasicBlock *, 8> ExitBlocks;
335  CurLoop->getUniqueExitBlocks(ExitBlocks);
336
337  LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
338                    << CurLoop->getHeader()->getParent()->getName()
339                    << "] Countable Loop %" << CurLoop->getHeader()->getName()
340                    << "\n");
341
342  bool MadeChange = false;
343
344  // The following transforms hoist stores/memsets into the loop pre-header.
345  // Give up if the loop has instructions may throw.
346  SimpleLoopSafetyInfo SafetyInfo;
347  SafetyInfo.computeLoopSafetyInfo(CurLoop);
348  if (SafetyInfo.anyBlockMayThrow())
349    return MadeChange;
350
351  // Scan all the blocks in the loop that are not in subloops.
352  for (auto *BB : CurLoop->getBlocks()) {
353    // Ignore blocks in subloops.
354    if (LI->getLoopFor(BB) != CurLoop)
355      continue;
356
357    MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
358  }
359  return MadeChange;
360}
361
362static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
363  const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
364  return ConstStride->getAPInt();
365}
366
367/// getMemSetPatternValue - If a strided store of the specified value is safe to
368/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
369/// be passed in.  Otherwise, return null.
370///
371/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
372/// just replicate their input array and then pass on to memset_pattern16.
373static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
374  // FIXME: This could check for UndefValue because it can be merged into any
375  // other valid pattern.
376
377  // If the value isn't a constant, we can't promote it to being in a constant
378  // array.  We could theoretically do a store to an alloca or something, but
379  // that doesn't seem worthwhile.
380  Constant *C = dyn_cast<Constant>(V);
381  if (!C)
382    return nullptr;
383
384  // Only handle simple values that are a power of two bytes in size.
385  uint64_t Size = DL->getTypeSizeInBits(V->getType());
386  if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
387    return nullptr;
388
389  // Don't care enough about darwin/ppc to implement this.
390  if (DL->isBigEndian())
391    return nullptr;
392
393  // Convert to size in bytes.
394  Size /= 8;
395
396  // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
397  // if the top and bottom are the same (e.g. for vectors and large integers).
398  if (Size > 16)
399    return nullptr;
400
401  // If the constant is exactly 16 bytes, just use it.
402  if (Size == 16)
403    return C;
404
405  // Otherwise, we'll use an array of the constants.
406  unsigned ArraySize = 16 / Size;
407  ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
408  return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
409}
410
411LoopIdiomRecognize::LegalStoreKind
412LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
413  // Don't touch volatile stores.
414  if (SI->isVolatile())
415    return LegalStoreKind::None;
416  // We only want simple or unordered-atomic stores.
417  if (!SI->isUnordered())
418    return LegalStoreKind::None;
419
420  // Don't convert stores of non-integral pointer types to memsets (which stores
421  // integers).
422  if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
423    return LegalStoreKind::None;
424
425  // Avoid merging nontemporal stores.
426  if (SI->getMetadata(LLVMContext::MD_nontemporal))
427    return LegalStoreKind::None;
428
429  Value *StoredVal = SI->getValueOperand();
430  Value *StorePtr = SI->getPointerOperand();
431
432  // Reject stores that are so large that they overflow an unsigned.
433  uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
434  if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
435    return LegalStoreKind::None;
436
437  // See if the pointer expression is an AddRec like {base,+,1} on the current
438  // loop, which indicates a strided store.  If we have something else, it's a
439  // random store we can't handle.
440  const SCEVAddRecExpr *StoreEv =
441      dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
442  if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
443    return LegalStoreKind::None;
444
445  // Check to see if we have a constant stride.
446  if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
447    return LegalStoreKind::None;
448
449  // See if the store can be turned into a memset.
450
451  // If the stored value is a byte-wise value (like i32 -1), then it may be
452  // turned into a memset of i8 -1, assuming that all the consecutive bytes
453  // are stored.  A store of i32 0x01020304 can never be turned into a memset,
454  // but it can be turned into memset_pattern if the target supports it.
455  Value *SplatValue = isBytewiseValue(StoredVal, *DL);
456  Constant *PatternValue = nullptr;
457
458  // Note: memset and memset_pattern on unordered-atomic is yet not supported
459  bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
460
461  // If we're allowed to form a memset, and the stored value would be
462  // acceptable for memset, use it.
463  if (!UnorderedAtomic && HasMemset && SplatValue &&
464      // Verify that the stored value is loop invariant.  If not, we can't
465      // promote the memset.
466      CurLoop->isLoopInvariant(SplatValue)) {
467    // It looks like we can use SplatValue.
468    return LegalStoreKind::Memset;
469  } else if (!UnorderedAtomic && HasMemsetPattern &&
470             // Don't create memset_pattern16s with address spaces.
471             StorePtr->getType()->getPointerAddressSpace() == 0 &&
472             (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
473    // It looks like we can use PatternValue!
474    return LegalStoreKind::MemsetPattern;
475  }
476
477  // Otherwise, see if the store can be turned into a memcpy.
478  if (HasMemcpy) {
479    // Check to see if the stride matches the size of the store.  If so, then we
480    // know that every byte is touched in the loop.
481    APInt Stride = getStoreStride(StoreEv);
482    unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
483    if (StoreSize != Stride && StoreSize != -Stride)
484      return LegalStoreKind::None;
485
486    // The store must be feeding a non-volatile load.
487    LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
488
489    // Only allow non-volatile loads
490    if (!LI || LI->isVolatile())
491      return LegalStoreKind::None;
492    // Only allow simple or unordered-atomic loads
493    if (!LI->isUnordered())
494      return LegalStoreKind::None;
495
496    // See if the pointer expression is an AddRec like {base,+,1} on the current
497    // loop, which indicates a strided load.  If we have something else, it's a
498    // random load we can't handle.
499    const SCEVAddRecExpr *LoadEv =
500        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
501    if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
502      return LegalStoreKind::None;
503
504    // The store and load must share the same stride.
505    if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
506      return LegalStoreKind::None;
507
508    // Success.  This store can be converted into a memcpy.
509    UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
510    return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
511                           : LegalStoreKind::Memcpy;
512  }
513  // This store can't be transformed into a memset/memcpy.
514  return LegalStoreKind::None;
515}
516
517void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
518  StoreRefsForMemset.clear();
519  StoreRefsForMemsetPattern.clear();
520  StoreRefsForMemcpy.clear();
521  for (Instruction &I : *BB) {
522    StoreInst *SI = dyn_cast<StoreInst>(&I);
523    if (!SI)
524      continue;
525
526    // Make sure this is a strided store with a constant stride.
527    switch (isLegalStore(SI)) {
528    case LegalStoreKind::None:
529      // Nothing to do
530      break;
531    case LegalStoreKind::Memset: {
532      // Find the base pointer.
533      Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
534      StoreRefsForMemset[Ptr].push_back(SI);
535    } break;
536    case LegalStoreKind::MemsetPattern: {
537      // Find the base pointer.
538      Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
539      StoreRefsForMemsetPattern[Ptr].push_back(SI);
540    } break;
541    case LegalStoreKind::Memcpy:
542    case LegalStoreKind::UnorderedAtomicMemcpy:
543      StoreRefsForMemcpy.push_back(SI);
544      break;
545    default:
546      assert(false && "unhandled return value");
547      break;
548    }
549  }
550}
551
552/// runOnLoopBlock - Process the specified block, which lives in a counted loop
553/// with the specified backedge count.  This block is known to be in the current
554/// loop and not in any subloops.
555bool LoopIdiomRecognize::runOnLoopBlock(
556    BasicBlock *BB, const SCEV *BECount,
557    SmallVectorImpl<BasicBlock *> &ExitBlocks) {
558  // We can only promote stores in this block if they are unconditionally
559  // executed in the loop.  For a block to be unconditionally executed, it has
560  // to dominate all the exit blocks of the loop.  Verify this now.
561  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
562    if (!DT->dominates(BB, ExitBlocks[i]))
563      return false;
564
565  bool MadeChange = false;
566  // Look for store instructions, which may be optimized to memset/memcpy.
567  collectStores(BB);
568
569  // Look for a single store or sets of stores with a common base, which can be
570  // optimized into a memset (memset_pattern).  The latter most commonly happens
571  // with structs and handunrolled loops.
572  for (auto &SL : StoreRefsForMemset)
573    MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
574
575  for (auto &SL : StoreRefsForMemsetPattern)
576    MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
577
578  // Optimize the store into a memcpy, if it feeds an similarly strided load.
579  for (auto &SI : StoreRefsForMemcpy)
580    MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
581
582  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
583    Instruction *Inst = &*I++;
584    // Look for memset instructions, which may be optimized to a larger memset.
585    if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
586      WeakTrackingVH InstPtr(&*I);
587      if (!processLoopMemSet(MSI, BECount))
588        continue;
589      MadeChange = true;
590
591      // If processing the memset invalidated our iterator, start over from the
592      // top of the block.
593      if (!InstPtr)
594        I = BB->begin();
595      continue;
596    }
597  }
598
599  return MadeChange;
600}
601
602/// See if this store(s) can be promoted to a memset.
603bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
604                                           const SCEV *BECount, ForMemset For) {
605  // Try to find consecutive stores that can be transformed into memsets.
606  SetVector<StoreInst *> Heads, Tails;
607  SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
608
609  // Do a quadratic search on all of the given stores and find
610  // all of the pairs of stores that follow each other.
611  SmallVector<unsigned, 16> IndexQueue;
612  for (unsigned i = 0, e = SL.size(); i < e; ++i) {
613    assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
614
615    Value *FirstStoredVal = SL[i]->getValueOperand();
616    Value *FirstStorePtr = SL[i]->getPointerOperand();
617    const SCEVAddRecExpr *FirstStoreEv =
618        cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
619    APInt FirstStride = getStoreStride(FirstStoreEv);
620    unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
621
622    // See if we can optimize just this store in isolation.
623    if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
624      Heads.insert(SL[i]);
625      continue;
626    }
627
628    Value *FirstSplatValue = nullptr;
629    Constant *FirstPatternValue = nullptr;
630
631    if (For == ForMemset::Yes)
632      FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
633    else
634      FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
635
636    assert((FirstSplatValue || FirstPatternValue) &&
637           "Expected either splat value or pattern value.");
638
639    IndexQueue.clear();
640    // If a store has multiple consecutive store candidates, search Stores
641    // array according to the sequence: from i+1 to e, then from i-1 to 0.
642    // This is because usually pairing with immediate succeeding or preceding
643    // candidate create the best chance to find memset opportunity.
644    unsigned j = 0;
645    for (j = i + 1; j < e; ++j)
646      IndexQueue.push_back(j);
647    for (j = i; j > 0; --j)
648      IndexQueue.push_back(j - 1);
649
650    for (auto &k : IndexQueue) {
651      assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
652      Value *SecondStorePtr = SL[k]->getPointerOperand();
653      const SCEVAddRecExpr *SecondStoreEv =
654          cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
655      APInt SecondStride = getStoreStride(SecondStoreEv);
656
657      if (FirstStride != SecondStride)
658        continue;
659
660      Value *SecondStoredVal = SL[k]->getValueOperand();
661      Value *SecondSplatValue = nullptr;
662      Constant *SecondPatternValue = nullptr;
663
664      if (For == ForMemset::Yes)
665        SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
666      else
667        SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
668
669      assert((SecondSplatValue || SecondPatternValue) &&
670             "Expected either splat value or pattern value.");
671
672      if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
673        if (For == ForMemset::Yes) {
674          if (isa<UndefValue>(FirstSplatValue))
675            FirstSplatValue = SecondSplatValue;
676          if (FirstSplatValue != SecondSplatValue)
677            continue;
678        } else {
679          if (isa<UndefValue>(FirstPatternValue))
680            FirstPatternValue = SecondPatternValue;
681          if (FirstPatternValue != SecondPatternValue)
682            continue;
683        }
684        Tails.insert(SL[k]);
685        Heads.insert(SL[i]);
686        ConsecutiveChain[SL[i]] = SL[k];
687        break;
688      }
689    }
690  }
691
692  // We may run into multiple chains that merge into a single chain. We mark the
693  // stores that we transformed so that we don't visit the same store twice.
694  SmallPtrSet<Value *, 16> TransformedStores;
695  bool Changed = false;
696
697  // For stores that start but don't end a link in the chain:
698  for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
699       it != e; ++it) {
700    if (Tails.count(*it))
701      continue;
702
703    // We found a store instr that starts a chain. Now follow the chain and try
704    // to transform it.
705    SmallPtrSet<Instruction *, 8> AdjacentStores;
706    StoreInst *I = *it;
707
708    StoreInst *HeadStore = I;
709    unsigned StoreSize = 0;
710
711    // Collect the chain into a list.
712    while (Tails.count(I) || Heads.count(I)) {
713      if (TransformedStores.count(I))
714        break;
715      AdjacentStores.insert(I);
716
717      StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
718      // Move to the next value in the chain.
719      I = ConsecutiveChain[I];
720    }
721
722    Value *StoredVal = HeadStore->getValueOperand();
723    Value *StorePtr = HeadStore->getPointerOperand();
724    const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
725    APInt Stride = getStoreStride(StoreEv);
726
727    // Check to see if the stride matches the size of the stores.  If so, then
728    // we know that every byte is touched in the loop.
729    if (StoreSize != Stride && StoreSize != -Stride)
730      continue;
731
732    bool NegStride = StoreSize == -Stride;
733
734    if (processLoopStridedStore(StorePtr, StoreSize,
735                                MaybeAlign(HeadStore->getAlignment()),
736                                StoredVal, HeadStore, AdjacentStores, StoreEv,
737                                BECount, NegStride)) {
738      TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
739      Changed = true;
740    }
741  }
742
743  return Changed;
744}
745
746/// processLoopMemSet - See if this memset can be promoted to a large memset.
747bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
748                                           const SCEV *BECount) {
749  // We can only handle non-volatile memsets with a constant size.
750  if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
751    return false;
752
753  // If we're not allowed to hack on memset, we fail.
754  if (!HasMemset)
755    return false;
756
757  Value *Pointer = MSI->getDest();
758
759  // See if the pointer expression is an AddRec like {base,+,1} on the current
760  // loop, which indicates a strided store.  If we have something else, it's a
761  // random store we can't handle.
762  const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
763  if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
764    return false;
765
766  // Reject memsets that are so large that they overflow an unsigned.
767  uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
768  if ((SizeInBytes >> 32) != 0)
769    return false;
770
771  // Check to see if the stride matches the size of the memset.  If so, then we
772  // know that every byte is touched in the loop.
773  const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
774  if (!ConstStride)
775    return false;
776
777  APInt Stride = ConstStride->getAPInt();
778  if (SizeInBytes != Stride && SizeInBytes != -Stride)
779    return false;
780
781  // Verify that the memset value is loop invariant.  If not, we can't promote
782  // the memset.
783  Value *SplatValue = MSI->getValue();
784  if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
785    return false;
786
787  SmallPtrSet<Instruction *, 1> MSIs;
788  MSIs.insert(MSI);
789  bool NegStride = SizeInBytes == -Stride;
790  return processLoopStridedStore(
791      Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()),
792      SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true);
793}
794
795/// mayLoopAccessLocation - Return true if the specified loop might access the
796/// specified pointer location, which is a loop-strided access.  The 'Access'
797/// argument specifies what the verboten forms of access are (read or write).
798static bool
799mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
800                      const SCEV *BECount, unsigned StoreSize,
801                      AliasAnalysis &AA,
802                      SmallPtrSetImpl<Instruction *> &IgnoredStores) {
803  // Get the location that may be stored across the loop.  Since the access is
804  // strided positively through memory, we say that the modified location starts
805  // at the pointer and has infinite size.
806  LocationSize AccessSize = LocationSize::unknown();
807
808  // If the loop iterates a fixed number of times, we can refine the access size
809  // to be exactly the size of the memset, which is (BECount+1)*StoreSize
810  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
811    AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
812                                       StoreSize);
813
814  // TODO: For this to be really effective, we have to dive into the pointer
815  // operand in the store.  Store to &A[i] of 100 will always return may alias
816  // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
817  // which will then no-alias a store to &A[100].
818  MemoryLocation StoreLoc(Ptr, AccessSize);
819
820  for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
821       ++BI)
822    for (Instruction &I : **BI)
823      if (IgnoredStores.count(&I) == 0 &&
824          isModOrRefSet(
825              intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
826        return true;
827
828  return false;
829}
830
831// If we have a negative stride, Start refers to the end of the memory location
832// we're trying to memset.  Therefore, we need to recompute the base pointer,
833// which is just Start - BECount*Size.
834static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
835                                        Type *IntPtr, unsigned StoreSize,
836                                        ScalarEvolution *SE) {
837  const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
838  if (StoreSize != 1)
839    Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
840                           SCEV::FlagNUW);
841  return SE->getMinusSCEV(Start, Index);
842}
843
844/// Compute the number of bytes as a SCEV from the backedge taken count.
845///
846/// This also maps the SCEV into the provided type and tries to handle the
847/// computation in a way that will fold cleanly.
848static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
849                               unsigned StoreSize, Loop *CurLoop,
850                               const DataLayout *DL, ScalarEvolution *SE) {
851  const SCEV *NumBytesS;
852  // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
853  // pointer size if it isn't already.
854  //
855  // If we're going to need to zero extend the BE count, check if we can add
856  // one to it prior to zero extending without overflow. Provided this is safe,
857  // it allows better simplification of the +1.
858  if (DL->getTypeSizeInBits(BECount->getType()) <
859          DL->getTypeSizeInBits(IntPtr) &&
860      SE->isLoopEntryGuardedByCond(
861          CurLoop, ICmpInst::ICMP_NE, BECount,
862          SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
863    NumBytesS = SE->getZeroExtendExpr(
864        SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
865        IntPtr);
866  } else {
867    NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
868                               SE->getOne(IntPtr), SCEV::FlagNUW);
869  }
870
871  // And scale it based on the store size.
872  if (StoreSize != 1) {
873    NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
874                               SCEV::FlagNUW);
875  }
876  return NumBytesS;
877}
878
879/// processLoopStridedStore - We see a strided store of some value.  If we can
880/// transform this into a memset or memset_pattern in the loop preheader, do so.
881bool LoopIdiomRecognize::processLoopStridedStore(
882    Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment,
883    Value *StoredVal, Instruction *TheStore,
884    SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
885    const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
886  Value *SplatValue = isBytewiseValue(StoredVal, *DL);
887  Constant *PatternValue = nullptr;
888
889  if (!SplatValue)
890    PatternValue = getMemSetPatternValue(StoredVal, DL);
891
892  assert((SplatValue || PatternValue) &&
893         "Expected either splat value or pattern value.");
894
895  // The trip count of the loop and the base pointer of the addrec SCEV is
896  // guaranteed to be loop invariant, which means that it should dominate the
897  // header.  This allows us to insert code for it in the preheader.
898  unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
899  BasicBlock *Preheader = CurLoop->getLoopPreheader();
900  IRBuilder<> Builder(Preheader->getTerminator());
901  SCEVExpander Expander(*SE, *DL, "loop-idiom");
902
903  Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
904  Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
905
906  const SCEV *Start = Ev->getStart();
907  // Handle negative strided loops.
908  if (NegStride)
909    Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE);
910
911  // TODO: ideally we should still be able to generate memset if SCEV expander
912  // is taught to generate the dependencies at the latest point.
913  if (!isSafeToExpand(Start, *SE))
914    return false;
915
916  // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
917  // this into a memset in the loop preheader now if we want.  However, this
918  // would be unsafe to do if there is anything else in the loop that may read
919  // or write to the aliased location.  Check for any overlap by generating the
920  // base pointer and checking the region.
921  Value *BasePtr =
922      Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
923  if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
924                            StoreSize, *AA, Stores)) {
925    Expander.clear();
926    // If we generated new code for the base pointer, clean up.
927    RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
928    return false;
929  }
930
931  if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
932    return false;
933
934  // Okay, everything looks good, insert the memset.
935
936  const SCEV *NumBytesS =
937      getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
938
939  // TODO: ideally we should still be able to generate memset if SCEV expander
940  // is taught to generate the dependencies at the latest point.
941  if (!isSafeToExpand(NumBytesS, *SE))
942    return false;
943
944  Value *NumBytes =
945      Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
946
947  CallInst *NewCall;
948  if (SplatValue) {
949    NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
950                                   MaybeAlign(StoreAlignment));
951  } else {
952    // Everything is emitted in default address space
953    Type *Int8PtrTy = DestInt8PtrTy;
954
955    Module *M = TheStore->getModule();
956    StringRef FuncName = "memset_pattern16";
957    FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
958                                                Int8PtrTy, Int8PtrTy, IntIdxTy);
959    inferLibFuncAttributes(M, FuncName, *TLI);
960
961    // Otherwise we should form a memset_pattern16.  PatternValue is known to be
962    // an constant array of 16-bytes.  Plop the value into a mergable global.
963    GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
964                                            GlobalValue::PrivateLinkage,
965                                            PatternValue, ".memset_pattern");
966    GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
967    GV->setAlignment(Align(16));
968    Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
969    NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
970  }
971
972  LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
973                    << "    from store to: " << *Ev << " at: " << *TheStore
974                    << "\n");
975  NewCall->setDebugLoc(TheStore->getDebugLoc());
976
977  ORE.emit([&]() {
978    return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
979                              NewCall->getDebugLoc(), Preheader)
980           << "Transformed loop-strided store into a call to "
981           << ore::NV("NewFunction", NewCall->getCalledFunction())
982           << "() function";
983  });
984
985  // Okay, the memset has been formed.  Zap the original store and anything that
986  // feeds into it.
987  for (auto *I : Stores)
988    deleteDeadInstruction(I);
989  ++NumMemSet;
990  return true;
991}
992
993/// If the stored value is a strided load in the same loop with the same stride
994/// this may be transformable into a memcpy.  This kicks in for stuff like
995/// for (i) A[i] = B[i];
996bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
997                                                    const SCEV *BECount) {
998  assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
999
1000  Value *StorePtr = SI->getPointerOperand();
1001  const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1002  APInt Stride = getStoreStride(StoreEv);
1003  unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1004  bool NegStride = StoreSize == -Stride;
1005
1006  // The store must be feeding a non-volatile load.
1007  LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1008  assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1009
1010  // See if the pointer expression is an AddRec like {base,+,1} on the current
1011  // loop, which indicates a strided load.  If we have something else, it's a
1012  // random load we can't handle.
1013  const SCEVAddRecExpr *LoadEv =
1014      cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1015
1016  // The trip count of the loop and the base pointer of the addrec SCEV is
1017  // guaranteed to be loop invariant, which means that it should dominate the
1018  // header.  This allows us to insert code for it in the preheader.
1019  BasicBlock *Preheader = CurLoop->getLoopPreheader();
1020  IRBuilder<> Builder(Preheader->getTerminator());
1021  SCEVExpander Expander(*SE, *DL, "loop-idiom");
1022
1023  const SCEV *StrStart = StoreEv->getStart();
1024  unsigned StrAS = SI->getPointerAddressSpace();
1025  Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1026
1027  // Handle negative strided loops.
1028  if (NegStride)
1029    StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE);
1030
1031  // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1032  // this into a memcpy in the loop preheader now if we want.  However, this
1033  // would be unsafe to do if there is anything else in the loop that may read
1034  // or write the memory region we're storing to.  This includes the load that
1035  // feeds the stores.  Check for an alias by generating the base address and
1036  // checking everything.
1037  Value *StoreBasePtr = Expander.expandCodeFor(
1038      StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1039
1040  SmallPtrSet<Instruction *, 1> Stores;
1041  Stores.insert(SI);
1042  if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1043                            StoreSize, *AA, Stores)) {
1044    Expander.clear();
1045    // If we generated new code for the base pointer, clean up.
1046    RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1047    return false;
1048  }
1049
1050  const SCEV *LdStart = LoadEv->getStart();
1051  unsigned LdAS = LI->getPointerAddressSpace();
1052
1053  // Handle negative strided loops.
1054  if (NegStride)
1055    LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE);
1056
1057  // For a memcpy, we have to make sure that the input array is not being
1058  // mutated by the loop.
1059  Value *LoadBasePtr = Expander.expandCodeFor(
1060      LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1061
1062  if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1063                            StoreSize, *AA, Stores)) {
1064    Expander.clear();
1065    // If we generated new code for the base pointer, clean up.
1066    RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
1067    RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1068    return false;
1069  }
1070
1071  if (avoidLIRForMultiBlockLoop())
1072    return false;
1073
1074  // Okay, everything is safe, we can transform this!
1075
1076  const SCEV *NumBytesS =
1077      getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
1078
1079  Value *NumBytes =
1080      Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1081
1082  CallInst *NewCall = nullptr;
1083  // Check whether to generate an unordered atomic memcpy:
1084  //  If the load or store are atomic, then they must necessarily be unordered
1085  //  by previous checks.
1086  if (!SI->isAtomic() && !LI->isAtomic())
1087    NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr,
1088                                   LI->getAlign(), NumBytes);
1089  else {
1090    // We cannot allow unaligned ops for unordered load/store, so reject
1091    // anything where the alignment isn't at least the element size.
1092    unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
1093    if (Align < StoreSize)
1094      return false;
1095
1096    // If the element.atomic memcpy is not lowered into explicit
1097    // loads/stores later, then it will be lowered into an element-size
1098    // specific lib call. If the lib call doesn't exist for our store size, then
1099    // we shouldn't generate the memcpy.
1100    if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1101      return false;
1102
1103    // Create the call.
1104    // Note that unordered atomic loads/stores are *required* by the spec to
1105    // have an alignment but non-atomic loads/stores may not.
1106    NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1107        StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(),
1108        NumBytes, StoreSize);
1109  }
1110  NewCall->setDebugLoc(SI->getDebugLoc());
1111
1112  LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1113                    << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1114                    << "    from store ptr=" << *StoreEv << " at: " << *SI
1115                    << "\n");
1116
1117  ORE.emit([&]() {
1118    return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1119                              NewCall->getDebugLoc(), Preheader)
1120           << "Formed a call to "
1121           << ore::NV("NewFunction", NewCall->getCalledFunction())
1122           << "() function";
1123  });
1124
1125  // Okay, the memcpy has been formed.  Zap the original store and anything that
1126  // feeds into it.
1127  deleteDeadInstruction(SI);
1128  ++NumMemCpy;
1129  return true;
1130}
1131
1132// When compiling for codesize we avoid idiom recognition for a multi-block loop
1133// unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1134//
1135bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1136                                                   bool IsLoopMemset) {
1137  if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1138    if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
1139      LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1140                        << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1141                        << " avoided: multi-block top-level loop\n");
1142      return true;
1143    }
1144  }
1145
1146  return false;
1147}
1148
1149bool LoopIdiomRecognize::runOnNoncountableLoop() {
1150  LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1151                    << CurLoop->getHeader()->getParent()->getName()
1152                    << "] Noncountable Loop %"
1153                    << CurLoop->getHeader()->getName() << "\n");
1154
1155  return recognizePopcount() || recognizeAndInsertFFS();
1156}
1157
1158/// Check if the given conditional branch is based on the comparison between
1159/// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1160/// true), the control yields to the loop entry. If the branch matches the
1161/// behavior, the variable involved in the comparison is returned. This function
1162/// will be called to see if the precondition and postcondition of the loop are
1163/// in desirable form.
1164static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1165                             bool JmpOnZero = false) {
1166  if (!BI || !BI->isConditional())
1167    return nullptr;
1168
1169  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1170  if (!Cond)
1171    return nullptr;
1172
1173  ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1174  if (!CmpZero || !CmpZero->isZero())
1175    return nullptr;
1176
1177  BasicBlock *TrueSucc = BI->getSuccessor(0);
1178  BasicBlock *FalseSucc = BI->getSuccessor(1);
1179  if (JmpOnZero)
1180    std::swap(TrueSucc, FalseSucc);
1181
1182  ICmpInst::Predicate Pred = Cond->getPredicate();
1183  if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1184      (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1185    return Cond->getOperand(0);
1186
1187  return nullptr;
1188}
1189
1190// Check if the recurrence variable `VarX` is in the right form to create
1191// the idiom. Returns the value coerced to a PHINode if so.
1192static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1193                                 BasicBlock *LoopEntry) {
1194  auto *PhiX = dyn_cast<PHINode>(VarX);
1195  if (PhiX && PhiX->getParent() == LoopEntry &&
1196      (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1197    return PhiX;
1198  return nullptr;
1199}
1200
1201/// Return true iff the idiom is detected in the loop.
1202///
1203/// Additionally:
1204/// 1) \p CntInst is set to the instruction counting the population bit.
1205/// 2) \p CntPhi is set to the corresponding phi node.
1206/// 3) \p Var is set to the value whose population bits are being counted.
1207///
1208/// The core idiom we are trying to detect is:
1209/// \code
1210///    if (x0 != 0)
1211///      goto loop-exit // the precondition of the loop
1212///    cnt0 = init-val;
1213///    do {
1214///       x1 = phi (x0, x2);
1215///       cnt1 = phi(cnt0, cnt2);
1216///
1217///       cnt2 = cnt1 + 1;
1218///        ...
1219///       x2 = x1 & (x1 - 1);
1220///        ...
1221///    } while(x != 0);
1222///
1223/// loop-exit:
1224/// \endcode
1225static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1226                                Instruction *&CntInst, PHINode *&CntPhi,
1227                                Value *&Var) {
1228  // step 1: Check to see if the look-back branch match this pattern:
1229  //    "if (a!=0) goto loop-entry".
1230  BasicBlock *LoopEntry;
1231  Instruction *DefX2, *CountInst;
1232  Value *VarX1, *VarX0;
1233  PHINode *PhiX, *CountPhi;
1234
1235  DefX2 = CountInst = nullptr;
1236  VarX1 = VarX0 = nullptr;
1237  PhiX = CountPhi = nullptr;
1238  LoopEntry = *(CurLoop->block_begin());
1239
1240  // step 1: Check if the loop-back branch is in desirable form.
1241  {
1242    if (Value *T = matchCondition(
1243            dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1244      DefX2 = dyn_cast<Instruction>(T);
1245    else
1246      return false;
1247  }
1248
1249  // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1250  {
1251    if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1252      return false;
1253
1254    BinaryOperator *SubOneOp;
1255
1256    if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1257      VarX1 = DefX2->getOperand(1);
1258    else {
1259      VarX1 = DefX2->getOperand(0);
1260      SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1261    }
1262    if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1263      return false;
1264
1265    ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1266    if (!Dec ||
1267        !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1268          (SubOneOp->getOpcode() == Instruction::Add &&
1269           Dec->isMinusOne()))) {
1270      return false;
1271    }
1272  }
1273
1274  // step 3: Check the recurrence of variable X
1275  PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1276  if (!PhiX)
1277    return false;
1278
1279  // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1280  {
1281    CountInst = nullptr;
1282    for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1283                              IterE = LoopEntry->end();
1284         Iter != IterE; Iter++) {
1285      Instruction *Inst = &*Iter;
1286      if (Inst->getOpcode() != Instruction::Add)
1287        continue;
1288
1289      ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1290      if (!Inc || !Inc->isOne())
1291        continue;
1292
1293      PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1294      if (!Phi)
1295        continue;
1296
1297      // Check if the result of the instruction is live of the loop.
1298      bool LiveOutLoop = false;
1299      for (User *U : Inst->users()) {
1300        if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1301          LiveOutLoop = true;
1302          break;
1303        }
1304      }
1305
1306      if (LiveOutLoop) {
1307        CountInst = Inst;
1308        CountPhi = Phi;
1309        break;
1310      }
1311    }
1312
1313    if (!CountInst)
1314      return false;
1315  }
1316
1317  // step 5: check if the precondition is in this form:
1318  //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1319  {
1320    auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1321    Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1322    if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1323      return false;
1324
1325    CntInst = CountInst;
1326    CntPhi = CountPhi;
1327    Var = T;
1328  }
1329
1330  return true;
1331}
1332
1333/// Return true if the idiom is detected in the loop.
1334///
1335/// Additionally:
1336/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1337///       or nullptr if there is no such.
1338/// 2) \p CntPhi is set to the corresponding phi node
1339///       or nullptr if there is no such.
1340/// 3) \p Var is set to the value whose CTLZ could be used.
1341/// 4) \p DefX is set to the instruction calculating Loop exit condition.
1342///
1343/// The core idiom we are trying to detect is:
1344/// \code
1345///    if (x0 == 0)
1346///      goto loop-exit // the precondition of the loop
1347///    cnt0 = init-val;
1348///    do {
1349///       x = phi (x0, x.next);   //PhiX
1350///       cnt = phi(cnt0, cnt.next);
1351///
1352///       cnt.next = cnt + 1;
1353///        ...
1354///       x.next = x >> 1;   // DefX
1355///        ...
1356///    } while(x.next != 0);
1357///
1358/// loop-exit:
1359/// \endcode
1360static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1361                                      Intrinsic::ID &IntrinID, Value *&InitX,
1362                                      Instruction *&CntInst, PHINode *&CntPhi,
1363                                      Instruction *&DefX) {
1364  BasicBlock *LoopEntry;
1365  Value *VarX = nullptr;
1366
1367  DefX = nullptr;
1368  CntInst = nullptr;
1369  CntPhi = nullptr;
1370  LoopEntry = *(CurLoop->block_begin());
1371
1372  // step 1: Check if the loop-back branch is in desirable form.
1373  if (Value *T = matchCondition(
1374          dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1375    DefX = dyn_cast<Instruction>(T);
1376  else
1377    return false;
1378
1379  // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1380  if (!DefX || !DefX->isShift())
1381    return false;
1382  IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1383                                                     Intrinsic::ctlz;
1384  ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1385  if (!Shft || !Shft->isOne())
1386    return false;
1387  VarX = DefX->getOperand(0);
1388
1389  // step 3: Check the recurrence of variable X
1390  PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1391  if (!PhiX)
1392    return false;
1393
1394  InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1395
1396  // Make sure the initial value can't be negative otherwise the ashr in the
1397  // loop might never reach zero which would make the loop infinite.
1398  if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1399    return false;
1400
1401  // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1402  // TODO: We can skip the step. If loop trip count is known (CTLZ),
1403  //       then all uses of "cnt.next" could be optimized to the trip count
1404  //       plus "cnt0". Currently it is not optimized.
1405  //       This step could be used to detect POPCNT instruction:
1406  //       cnt.next = cnt + (x.next & 1)
1407  for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1408                            IterE = LoopEntry->end();
1409       Iter != IterE; Iter++) {
1410    Instruction *Inst = &*Iter;
1411    if (Inst->getOpcode() != Instruction::Add)
1412      continue;
1413
1414    ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1415    if (!Inc || !Inc->isOne())
1416      continue;
1417
1418    PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1419    if (!Phi)
1420      continue;
1421
1422    CntInst = Inst;
1423    CntPhi = Phi;
1424    break;
1425  }
1426  if (!CntInst)
1427    return false;
1428
1429  return true;
1430}
1431
1432/// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1433/// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1434/// trip count returns true; otherwise, returns false.
1435bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1436  // Give up if the loop has multiple blocks or multiple backedges.
1437  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1438    return false;
1439
1440  Intrinsic::ID IntrinID;
1441  Value *InitX;
1442  Instruction *DefX = nullptr;
1443  PHINode *CntPhi = nullptr;
1444  Instruction *CntInst = nullptr;
1445  // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1446  // this is always 6.
1447  size_t IdiomCanonicalSize = 6;
1448
1449  if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1450                                 CntInst, CntPhi, DefX))
1451    return false;
1452
1453  bool IsCntPhiUsedOutsideLoop = false;
1454  for (User *U : CntPhi->users())
1455    if (!CurLoop->contains(cast<Instruction>(U))) {
1456      IsCntPhiUsedOutsideLoop = true;
1457      break;
1458    }
1459  bool IsCntInstUsedOutsideLoop = false;
1460  for (User *U : CntInst->users())
1461    if (!CurLoop->contains(cast<Instruction>(U))) {
1462      IsCntInstUsedOutsideLoop = true;
1463      break;
1464    }
1465  // If both CntInst and CntPhi are used outside the loop the profitability
1466  // is questionable.
1467  if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1468    return false;
1469
1470  // For some CPUs result of CTLZ(X) intrinsic is undefined
1471  // when X is 0. If we can not guarantee X != 0, we need to check this
1472  // when expand.
1473  bool ZeroCheck = false;
1474  // It is safe to assume Preheader exist as it was checked in
1475  // parent function RunOnLoop.
1476  BasicBlock *PH = CurLoop->getLoopPreheader();
1477
1478  // If we are using the count instruction outside the loop, make sure we
1479  // have a zero check as a precondition. Without the check the loop would run
1480  // one iteration for before any check of the input value. This means 0 and 1
1481  // would have identical behavior in the original loop and thus
1482  if (!IsCntPhiUsedOutsideLoop) {
1483    auto *PreCondBB = PH->getSinglePredecessor();
1484    if (!PreCondBB)
1485      return false;
1486    auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1487    if (!PreCondBI)
1488      return false;
1489    if (matchCondition(PreCondBI, PH) != InitX)
1490      return false;
1491    ZeroCheck = true;
1492  }
1493
1494  // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1495  // profitable if we delete the loop.
1496
1497  // the loop has only 6 instructions:
1498  //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1499  //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1500  //  %shr = ashr %n.addr.0, 1
1501  //  %tobool = icmp eq %shr, 0
1502  //  %inc = add nsw %i.0, 1
1503  //  br i1 %tobool
1504
1505  const Value *Args[] =
1506      {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
1507                        : ConstantInt::getFalse(InitX->getContext())};
1508
1509  // @llvm.dbg doesn't count as they have no semantic effect.
1510  auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1511  uint32_t HeaderSize =
1512      std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1513
1514  if (HeaderSize != IdiomCanonicalSize &&
1515      TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) >
1516          TargetTransformInfo::TCC_Basic)
1517    return false;
1518
1519  transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1520                           DefX->getDebugLoc(), ZeroCheck,
1521                           IsCntPhiUsedOutsideLoop);
1522  return true;
1523}
1524
1525/// Recognizes a population count idiom in a non-countable loop.
1526///
1527/// If detected, transforms the relevant code to issue the popcount intrinsic
1528/// function call, and returns true; otherwise, returns false.
1529bool LoopIdiomRecognize::recognizePopcount() {
1530  if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1531    return false;
1532
1533  // Counting population are usually conducted by few arithmetic instructions.
1534  // Such instructions can be easily "absorbed" by vacant slots in a
1535  // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1536  // in a compact loop.
1537
1538  // Give up if the loop has multiple blocks or multiple backedges.
1539  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1540    return false;
1541
1542  BasicBlock *LoopBody = *(CurLoop->block_begin());
1543  if (LoopBody->size() >= 20) {
1544    // The loop is too big, bail out.
1545    return false;
1546  }
1547
1548  // It should have a preheader containing nothing but an unconditional branch.
1549  BasicBlock *PH = CurLoop->getLoopPreheader();
1550  if (!PH || &PH->front() != PH->getTerminator())
1551    return false;
1552  auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1553  if (!EntryBI || EntryBI->isConditional())
1554    return false;
1555
1556  // It should have a precondition block where the generated popcount intrinsic
1557  // function can be inserted.
1558  auto *PreCondBB = PH->getSinglePredecessor();
1559  if (!PreCondBB)
1560    return false;
1561  auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1562  if (!PreCondBI || PreCondBI->isUnconditional())
1563    return false;
1564
1565  Instruction *CntInst;
1566  PHINode *CntPhi;
1567  Value *Val;
1568  if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1569    return false;
1570
1571  transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1572  return true;
1573}
1574
1575static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1576                                       const DebugLoc &DL) {
1577  Value *Ops[] = {Val};
1578  Type *Tys[] = {Val->getType()};
1579
1580  Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1581  Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1582  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1583  CI->setDebugLoc(DL);
1584
1585  return CI;
1586}
1587
1588static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1589                                    const DebugLoc &DL, bool ZeroCheck,
1590                                    Intrinsic::ID IID) {
1591  Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
1592  Type *Tys[] = {Val->getType()};
1593
1594  Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1595  Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1596  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1597  CI->setDebugLoc(DL);
1598
1599  return CI;
1600}
1601
1602/// Transform the following loop (Using CTLZ, CTTZ is similar):
1603/// loop:
1604///   CntPhi = PHI [Cnt0, CntInst]
1605///   PhiX = PHI [InitX, DefX]
1606///   CntInst = CntPhi + 1
1607///   DefX = PhiX >> 1
1608///   LOOP_BODY
1609///   Br: loop if (DefX != 0)
1610/// Use(CntPhi) or Use(CntInst)
1611///
1612/// Into:
1613/// If CntPhi used outside the loop:
1614///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1615///   Count = CountPrev + 1
1616/// else
1617///   Count = BitWidth(InitX) - CTLZ(InitX)
1618/// loop:
1619///   CntPhi = PHI [Cnt0, CntInst]
1620///   PhiX = PHI [InitX, DefX]
1621///   PhiCount = PHI [Count, Dec]
1622///   CntInst = CntPhi + 1
1623///   DefX = PhiX >> 1
1624///   Dec = PhiCount - 1
1625///   LOOP_BODY
1626///   Br: loop if (Dec != 0)
1627/// Use(CountPrev + Cnt0) // Use(CntPhi)
1628/// or
1629/// Use(Count + Cnt0) // Use(CntInst)
1630///
1631/// If LOOP_BODY is empty the loop will be deleted.
1632/// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1633void LoopIdiomRecognize::transformLoopToCountable(
1634    Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1635    PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1636    bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1637  BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1638
1639  // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1640  IRBuilder<> Builder(PreheaderBr);
1641  Builder.SetCurrentDebugLocation(DL);
1642  Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;
1643
1644  //   Count = BitWidth - CTLZ(InitX);
1645  // If there are uses of CntPhi create:
1646  //   CountPrev = BitWidth - CTLZ(InitX >> 1);
1647  if (IsCntPhiUsedOutsideLoop) {
1648    if (DefX->getOpcode() == Instruction::AShr)
1649      InitXNext =
1650          Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
1651    else if (DefX->getOpcode() == Instruction::LShr)
1652      InitXNext =
1653          Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
1654    else if (DefX->getOpcode() == Instruction::Shl) // cttz
1655      InitXNext =
1656          Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
1657    else
1658      llvm_unreachable("Unexpected opcode!");
1659  } else
1660    InitXNext = InitX;
1661  FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1662  Count = Builder.CreateSub(
1663      ConstantInt::get(FFS->getType(),
1664                       FFS->getType()->getIntegerBitWidth()),
1665      FFS);
1666  if (IsCntPhiUsedOutsideLoop) {
1667    CountPrev = Count;
1668    Count = Builder.CreateAdd(
1669        CountPrev,
1670        ConstantInt::get(CountPrev->getType(), 1));
1671  }
1672
1673  NewCount = Builder.CreateZExtOrTrunc(
1674                      IsCntPhiUsedOutsideLoop ? CountPrev : Count,
1675                      cast<IntegerType>(CntInst->getType()));
1676
1677  // If the counter's initial value is not zero, insert Add Inst.
1678  Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1679  ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1680  if (!InitConst || !InitConst->isZero())
1681    NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1682
1683  // Step 2: Insert new IV and loop condition:
1684  // loop:
1685  //   ...
1686  //   PhiCount = PHI [Count, Dec]
1687  //   ...
1688  //   Dec = PhiCount - 1
1689  //   ...
1690  //   Br: loop if (Dec != 0)
1691  BasicBlock *Body = *(CurLoop->block_begin());
1692  auto *LbBr = cast<BranchInst>(Body->getTerminator());
1693  ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1694  Type *Ty = Count->getType();
1695
1696  PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1697
1698  Builder.SetInsertPoint(LbCond);
1699  Instruction *TcDec = cast<Instruction>(
1700      Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1701                        "tcdec", false, true));
1702
1703  TcPhi->addIncoming(Count, Preheader);
1704  TcPhi->addIncoming(TcDec, Body);
1705
1706  CmpInst::Predicate Pred =
1707      (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1708  LbCond->setPredicate(Pred);
1709  LbCond->setOperand(0, TcDec);
1710  LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1711
1712  // Step 3: All the references to the original counter outside
1713  //  the loop are replaced with the NewCount
1714  if (IsCntPhiUsedOutsideLoop)
1715    CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1716  else
1717    CntInst->replaceUsesOutsideBlock(NewCount, Body);
1718
1719  // step 4: Forget the "non-computable" trip-count SCEV associated with the
1720  //   loop. The loop would otherwise not be deleted even if it becomes empty.
1721  SE->forgetLoop(CurLoop);
1722}
1723
1724void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1725                                                 Instruction *CntInst,
1726                                                 PHINode *CntPhi, Value *Var) {
1727  BasicBlock *PreHead = CurLoop->getLoopPreheader();
1728  auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1729  const DebugLoc &DL = CntInst->getDebugLoc();
1730
1731  // Assuming before transformation, the loop is following:
1732  //  if (x) // the precondition
1733  //     do { cnt++; x &= x - 1; } while(x);
1734
1735  // Step 1: Insert the ctpop instruction at the end of the precondition block
1736  IRBuilder<> Builder(PreCondBr);
1737  Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1738  {
1739    PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1740    NewCount = PopCntZext =
1741        Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1742
1743    if (NewCount != PopCnt)
1744      (cast<Instruction>(NewCount))->setDebugLoc(DL);
1745
1746    // TripCnt is exactly the number of iterations the loop has
1747    TripCnt = NewCount;
1748
1749    // If the population counter's initial value is not zero, insert Add Inst.
1750    Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1751    ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1752    if (!InitConst || !InitConst->isZero()) {
1753      NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1754      (cast<Instruction>(NewCount))->setDebugLoc(DL);
1755    }
1756  }
1757
1758  // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1759  //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1760  //   function would be partial dead code, and downstream passes will drag
1761  //   it back from the precondition block to the preheader.
1762  {
1763    ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1764
1765    Value *Opnd0 = PopCntZext;
1766    Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1767    if (PreCond->getOperand(0) != Var)
1768      std::swap(Opnd0, Opnd1);
1769
1770    ICmpInst *NewPreCond = cast<ICmpInst>(
1771        Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1772    PreCondBr->setCondition(NewPreCond);
1773
1774    RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1775  }
1776
1777  // Step 3: Note that the population count is exactly the trip count of the
1778  // loop in question, which enable us to convert the loop from noncountable
1779  // loop into a countable one. The benefit is twofold:
1780  //
1781  //  - If the loop only counts population, the entire loop becomes dead after
1782  //    the transformation. It is a lot easier to prove a countable loop dead
1783  //    than to prove a noncountable one. (In some C dialects, an infinite loop
1784  //    isn't dead even if it computes nothing useful. In general, DCE needs
1785  //    to prove a noncountable loop finite before safely delete it.)
1786  //
1787  //  - If the loop also performs something else, it remains alive.
1788  //    Since it is transformed to countable form, it can be aggressively
1789  //    optimized by some optimizations which are in general not applicable
1790  //    to a noncountable loop.
1791  //
1792  // After this step, this loop (conceptually) would look like following:
1793  //   newcnt = __builtin_ctpop(x);
1794  //   t = newcnt;
1795  //   if (x)
1796  //     do { cnt++; x &= x-1; t--) } while (t > 0);
1797  BasicBlock *Body = *(CurLoop->block_begin());
1798  {
1799    auto *LbBr = cast<BranchInst>(Body->getTerminator());
1800    ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1801    Type *Ty = TripCnt->getType();
1802
1803    PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1804
1805    Builder.SetInsertPoint(LbCond);
1806    Instruction *TcDec = cast<Instruction>(
1807        Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1808                          "tcdec", false, true));
1809
1810    TcPhi->addIncoming(TripCnt, PreHead);
1811    TcPhi->addIncoming(TcDec, Body);
1812
1813    CmpInst::Predicate Pred =
1814        (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1815    LbCond->setPredicate(Pred);
1816    LbCond->setOperand(0, TcDec);
1817    LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1818  }
1819
1820  // Step 4: All the references to the original population counter outside
1821  //  the loop are replaced with the NewCount -- the value returned from
1822  //  __builtin_ctpop().
1823  CntInst->replaceUsesOutsideBlock(NewCount, Body);
1824
1825  // step 5: Forget the "non-computable" trip-count SCEV associated with the
1826  //   loop. The loop would otherwise not be deleted even if it becomes empty.
1827  SE->forgetLoop(CurLoop);
1828}
1829