1//===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file defines ObjC ARC optimizations. ARC stands for Automatic
11/// Reference Counting and is a system for managing reference counts for objects
12/// in Objective C.
13///
14/// The optimizations performed include elimination of redundant, partially
15/// redundant, and inconsequential reference count operations, elimination of
16/// redundant weak pointer operations, and numerous minor simplifications.
17///
18/// WARNING: This file knows about certain library functions. It recognizes them
19/// by name, and hardwires knowledge of their semantics.
20///
21/// WARNING: This file knows about how certain Objective-C library functions are
22/// used. Naive LLVM IR transformations which would otherwise be
23/// behavior-preserving may break these assumptions.
24//
25//===----------------------------------------------------------------------===//
26
27#include "ARCRuntimeEntryPoints.h"
28#include "BlotMapVector.h"
29#include "DependencyAnalysis.h"
30#include "ObjCARC.h"
31#include "ProvenanceAnalysis.h"
32#include "PtrState.h"
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/None.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/Analysis/AliasAnalysis.h"
40#include "llvm/Analysis/EHPersonalities.h"
41#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
42#include "llvm/Analysis/ObjCARCAnalysisUtils.h"
43#include "llvm/Analysis/ObjCARCInstKind.h"
44#include "llvm/IR/BasicBlock.h"
45#include "llvm/IR/CFG.h"
46#include "llvm/IR/CallSite.h"
47#include "llvm/IR/Constant.h"
48#include "llvm/IR/Constants.h"
49#include "llvm/IR/DerivedTypes.h"
50#include "llvm/IR/Function.h"
51#include "llvm/IR/GlobalVariable.h"
52#include "llvm/IR/InstIterator.h"
53#include "llvm/IR/InstrTypes.h"
54#include "llvm/IR/Instruction.h"
55#include "llvm/IR/Instructions.h"
56#include "llvm/IR/LLVMContext.h"
57#include "llvm/IR/Metadata.h"
58#include "llvm/IR/Type.h"
59#include "llvm/IR/User.h"
60#include "llvm/IR/Value.h"
61#include "llvm/InitializePasses.h"
62#include "llvm/Pass.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/Debug.h"
67#include "llvm/Support/ErrorHandling.h"
68#include "llvm/Support/raw_ostream.h"
69#include <cassert>
70#include <iterator>
71#include <utility>
72
73using namespace llvm;
74using namespace llvm::objcarc;
75
76#define DEBUG_TYPE "objc-arc-opts"
77
78static cl::opt<unsigned> MaxPtrStates("arc-opt-max-ptr-states",
79    cl::Hidden,
80    cl::desc("Maximum number of ptr states the optimizer keeps track of"),
81    cl::init(4095));
82
83/// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
84/// @{
85
86/// This is similar to GetRCIdentityRoot but it stops as soon
87/// as it finds a value with multiple uses.
88static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
89  // ConstantData (like ConstantPointerNull and UndefValue) is used across
90  // modules.  It's never a single-use value.
91  if (isa<ConstantData>(Arg))
92    return nullptr;
93
94  if (Arg->hasOneUse()) {
95    if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
96      return FindSingleUseIdentifiedObject(BC->getOperand(0));
97    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
98      if (GEP->hasAllZeroIndices())
99        return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
100    if (IsForwarding(GetBasicARCInstKind(Arg)))
101      return FindSingleUseIdentifiedObject(
102               cast<CallInst>(Arg)->getArgOperand(0));
103    if (!IsObjCIdentifiedObject(Arg))
104      return nullptr;
105    return Arg;
106  }
107
108  // If we found an identifiable object but it has multiple uses, but they are
109  // trivial uses, we can still consider this to be a single-use value.
110  if (IsObjCIdentifiedObject(Arg)) {
111    for (const User *U : Arg->users())
112      if (!U->use_empty() || GetRCIdentityRoot(U) != Arg)
113         return nullptr;
114
115    return Arg;
116  }
117
118  return nullptr;
119}
120
121/// @}
122///
123/// \defgroup ARCOpt ARC Optimization.
124/// @{
125
126// TODO: On code like this:
127//
128// objc_retain(%x)
129// stuff_that_cannot_release()
130// objc_autorelease(%x)
131// stuff_that_cannot_release()
132// objc_retain(%x)
133// stuff_that_cannot_release()
134// objc_autorelease(%x)
135//
136// The second retain and autorelease can be deleted.
137
138// TODO: It should be possible to delete
139// objc_autoreleasePoolPush and objc_autoreleasePoolPop
140// pairs if nothing is actually autoreleased between them. Also, autorelease
141// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
142// after inlining) can be turned into plain release calls.
143
144// TODO: Critical-edge splitting. If the optimial insertion point is
145// a critical edge, the current algorithm has to fail, because it doesn't
146// know how to split edges. It should be possible to make the optimizer
147// think in terms of edges, rather than blocks, and then split critical
148// edges on demand.
149
150// TODO: OptimizeSequences could generalized to be Interprocedural.
151
152// TODO: Recognize that a bunch of other objc runtime calls have
153// non-escaping arguments and non-releasing arguments, and may be
154// non-autoreleasing.
155
156// TODO: Sink autorelease calls as far as possible. Unfortunately we
157// usually can't sink them past other calls, which would be the main
158// case where it would be useful.
159
160// TODO: The pointer returned from objc_loadWeakRetained is retained.
161
162// TODO: Delete release+retain pairs (rare).
163
164STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
165STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
166STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
167STATISTIC(NumRets,        "Number of return value forwarding "
168                          "retain+autoreleases eliminated");
169STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
170STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
171#ifndef NDEBUG
172STATISTIC(NumRetainsBeforeOpt,
173          "Number of retains before optimization");
174STATISTIC(NumReleasesBeforeOpt,
175          "Number of releases before optimization");
176STATISTIC(NumRetainsAfterOpt,
177          "Number of retains after optimization");
178STATISTIC(NumReleasesAfterOpt,
179          "Number of releases after optimization");
180#endif
181
182namespace {
183
184  /// Per-BasicBlock state.
185  class BBState {
186    /// The number of unique control paths from the entry which can reach this
187    /// block.
188    unsigned TopDownPathCount = 0;
189
190    /// The number of unique control paths to exits from this block.
191    unsigned BottomUpPathCount = 0;
192
193    /// The top-down traversal uses this to record information known about a
194    /// pointer at the bottom of each block.
195    BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown;
196
197    /// The bottom-up traversal uses this to record information known about a
198    /// pointer at the top of each block.
199    BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp;
200
201    /// Effective predecessors of the current block ignoring ignorable edges and
202    /// ignored backedges.
203    SmallVector<BasicBlock *, 2> Preds;
204
205    /// Effective successors of the current block ignoring ignorable edges and
206    /// ignored backedges.
207    SmallVector<BasicBlock *, 2> Succs;
208
209  public:
210    static const unsigned OverflowOccurredValue;
211
212    BBState() = default;
213
214    using top_down_ptr_iterator = decltype(PerPtrTopDown)::iterator;
215    using const_top_down_ptr_iterator = decltype(PerPtrTopDown)::const_iterator;
216
217    top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
218    top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
219    const_top_down_ptr_iterator top_down_ptr_begin() const {
220      return PerPtrTopDown.begin();
221    }
222    const_top_down_ptr_iterator top_down_ptr_end() const {
223      return PerPtrTopDown.end();
224    }
225    bool hasTopDownPtrs() const {
226      return !PerPtrTopDown.empty();
227    }
228
229    unsigned top_down_ptr_list_size() const {
230      return std::distance(top_down_ptr_begin(), top_down_ptr_end());
231    }
232
233    using bottom_up_ptr_iterator = decltype(PerPtrBottomUp)::iterator;
234    using const_bottom_up_ptr_iterator =
235        decltype(PerPtrBottomUp)::const_iterator;
236
237    bottom_up_ptr_iterator bottom_up_ptr_begin() {
238      return PerPtrBottomUp.begin();
239    }
240    bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
241    const_bottom_up_ptr_iterator bottom_up_ptr_begin() const {
242      return PerPtrBottomUp.begin();
243    }
244    const_bottom_up_ptr_iterator bottom_up_ptr_end() const {
245      return PerPtrBottomUp.end();
246    }
247    bool hasBottomUpPtrs() const {
248      return !PerPtrBottomUp.empty();
249    }
250
251    unsigned bottom_up_ptr_list_size() const {
252      return std::distance(bottom_up_ptr_begin(), bottom_up_ptr_end());
253    }
254
255    /// Mark this block as being an entry block, which has one path from the
256    /// entry by definition.
257    void SetAsEntry() { TopDownPathCount = 1; }
258
259    /// Mark this block as being an exit block, which has one path to an exit by
260    /// definition.
261    void SetAsExit()  { BottomUpPathCount = 1; }
262
263    /// Attempt to find the PtrState object describing the top down state for
264    /// pointer Arg. Return a new initialized PtrState describing the top down
265    /// state for Arg if we do not find one.
266    TopDownPtrState &getPtrTopDownState(const Value *Arg) {
267      return PerPtrTopDown[Arg];
268    }
269
270    /// Attempt to find the PtrState object describing the bottom up state for
271    /// pointer Arg. Return a new initialized PtrState describing the bottom up
272    /// state for Arg if we do not find one.
273    BottomUpPtrState &getPtrBottomUpState(const Value *Arg) {
274      return PerPtrBottomUp[Arg];
275    }
276
277    /// Attempt to find the PtrState object describing the bottom up state for
278    /// pointer Arg.
279    bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) {
280      return PerPtrBottomUp.find(Arg);
281    }
282
283    void clearBottomUpPointers() {
284      PerPtrBottomUp.clear();
285    }
286
287    void clearTopDownPointers() {
288      PerPtrTopDown.clear();
289    }
290
291    void InitFromPred(const BBState &Other);
292    void InitFromSucc(const BBState &Other);
293    void MergePred(const BBState &Other);
294    void MergeSucc(const BBState &Other);
295
296    /// Compute the number of possible unique paths from an entry to an exit
297    /// which pass through this block. This is only valid after both the
298    /// top-down and bottom-up traversals are complete.
299    ///
300    /// Returns true if overflow occurred. Returns false if overflow did not
301    /// occur.
302    bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
303      if (TopDownPathCount == OverflowOccurredValue ||
304          BottomUpPathCount == OverflowOccurredValue)
305        return true;
306      unsigned long long Product =
307        (unsigned long long)TopDownPathCount*BottomUpPathCount;
308      // Overflow occurred if any of the upper bits of Product are set or if all
309      // the lower bits of Product are all set.
310      return (Product >> 32) ||
311             ((PathCount = Product) == OverflowOccurredValue);
312    }
313
314    // Specialized CFG utilities.
315    using edge_iterator = SmallVectorImpl<BasicBlock *>::const_iterator;
316
317    edge_iterator pred_begin() const { return Preds.begin(); }
318    edge_iterator pred_end() const { return Preds.end(); }
319    edge_iterator succ_begin() const { return Succs.begin(); }
320    edge_iterator succ_end() const { return Succs.end(); }
321
322    void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
323    void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
324
325    bool isExit() const { return Succs.empty(); }
326  };
327
328} // end anonymous namespace
329
330const unsigned BBState::OverflowOccurredValue = 0xffffffff;
331
332namespace llvm {
333
334raw_ostream &operator<<(raw_ostream &OS,
335                        BBState &BBState) LLVM_ATTRIBUTE_UNUSED;
336
337} // end namespace llvm
338
339void BBState::InitFromPred(const BBState &Other) {
340  PerPtrTopDown = Other.PerPtrTopDown;
341  TopDownPathCount = Other.TopDownPathCount;
342}
343
344void BBState::InitFromSucc(const BBState &Other) {
345  PerPtrBottomUp = Other.PerPtrBottomUp;
346  BottomUpPathCount = Other.BottomUpPathCount;
347}
348
349/// The top-down traversal uses this to merge information about predecessors to
350/// form the initial state for a new block.
351void BBState::MergePred(const BBState &Other) {
352  if (TopDownPathCount == OverflowOccurredValue)
353    return;
354
355  // Other.TopDownPathCount can be 0, in which case it is either dead or a
356  // loop backedge. Loop backedges are special.
357  TopDownPathCount += Other.TopDownPathCount;
358
359  // In order to be consistent, we clear the top down pointers when by adding
360  // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
361  // has not occurred.
362  if (TopDownPathCount == OverflowOccurredValue) {
363    clearTopDownPointers();
364    return;
365  }
366
367  // Check for overflow. If we have overflow, fall back to conservative
368  // behavior.
369  if (TopDownPathCount < Other.TopDownPathCount) {
370    TopDownPathCount = OverflowOccurredValue;
371    clearTopDownPointers();
372    return;
373  }
374
375  // For each entry in the other set, if our set has an entry with the same key,
376  // merge the entries. Otherwise, copy the entry and merge it with an empty
377  // entry.
378  for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end();
379       MI != ME; ++MI) {
380    auto Pair = PerPtrTopDown.insert(*MI);
381    Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second,
382                             /*TopDown=*/true);
383  }
384
385  // For each entry in our set, if the other set doesn't have an entry with the
386  // same key, force it to merge with an empty entry.
387  for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI)
388    if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
389      MI->second.Merge(TopDownPtrState(), /*TopDown=*/true);
390}
391
392/// The bottom-up traversal uses this to merge information about successors to
393/// form the initial state for a new block.
394void BBState::MergeSucc(const BBState &Other) {
395  if (BottomUpPathCount == OverflowOccurredValue)
396    return;
397
398  // Other.BottomUpPathCount can be 0, in which case it is either dead or a
399  // loop backedge. Loop backedges are special.
400  BottomUpPathCount += Other.BottomUpPathCount;
401
402  // In order to be consistent, we clear the top down pointers when by adding
403  // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
404  // has not occurred.
405  if (BottomUpPathCount == OverflowOccurredValue) {
406    clearBottomUpPointers();
407    return;
408  }
409
410  // Check for overflow. If we have overflow, fall back to conservative
411  // behavior.
412  if (BottomUpPathCount < Other.BottomUpPathCount) {
413    BottomUpPathCount = OverflowOccurredValue;
414    clearBottomUpPointers();
415    return;
416  }
417
418  // For each entry in the other set, if our set has an entry with the
419  // same key, merge the entries. Otherwise, copy the entry and merge
420  // it with an empty entry.
421  for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end();
422       MI != ME; ++MI) {
423    auto Pair = PerPtrBottomUp.insert(*MI);
424    Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second,
425                             /*TopDown=*/false);
426  }
427
428  // For each entry in our set, if the other set doesn't have an entry
429  // with the same key, force it to merge with an empty entry.
430  for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME;
431       ++MI)
432    if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
433      MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false);
434}
435
436raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) {
437  // Dump the pointers we are tracking.
438  OS << "    TopDown State:\n";
439  if (!BBInfo.hasTopDownPtrs()) {
440    LLVM_DEBUG(dbgs() << "        NONE!\n");
441  } else {
442    for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end();
443         I != E; ++I) {
444      const PtrState &P = I->second;
445      OS << "        Ptr: " << *I->first
446         << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false")
447         << "\n            ImpreciseRelease: "
448           << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
449         << "            HasCFGHazards:    "
450           << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
451         << "            KnownPositive:    "
452           << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
453         << "            Seq:              "
454         << P.GetSeq() << "\n";
455    }
456  }
457
458  OS << "    BottomUp State:\n";
459  if (!BBInfo.hasBottomUpPtrs()) {
460    LLVM_DEBUG(dbgs() << "        NONE!\n");
461  } else {
462    for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end();
463         I != E; ++I) {
464      const PtrState &P = I->second;
465      OS << "        Ptr: " << *I->first
466         << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false")
467         << "\n            ImpreciseRelease: "
468           << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
469         << "            HasCFGHazards:    "
470           << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
471         << "            KnownPositive:    "
472           << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
473         << "            Seq:              "
474         << P.GetSeq() << "\n";
475    }
476  }
477
478  return OS;
479}
480
481namespace {
482
483  /// The main ARC optimization pass.
484  class ObjCARCOpt : public FunctionPass {
485    bool Changed;
486    ProvenanceAnalysis PA;
487
488    /// A cache of references to runtime entry point constants.
489    ARCRuntimeEntryPoints EP;
490
491    /// A cache of MDKinds that can be passed into other functions to propagate
492    /// MDKind identifiers.
493    ARCMDKindCache MDKindCache;
494
495    /// A flag indicating whether this optimization pass should run.
496    bool Run;
497
498    /// A flag indicating whether the optimization that removes or moves
499    /// retain/release pairs should be performed.
500    bool DisableRetainReleasePairing = false;
501
502    /// Flags which determine whether each of the interesting runtime functions
503    /// is in fact used in the current function.
504    unsigned UsedInThisFunction;
505
506    bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
507    void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
508                                   ARCInstKind &Class);
509    void OptimizeIndividualCalls(Function &F);
510
511    /// Optimize an individual call, optionally passing the
512    /// GetArgRCIdentityRoot if it has already been computed.
513    void OptimizeIndividualCallImpl(
514        Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
515        Instruction *Inst, ARCInstKind Class, const Value *Arg);
516
517    /// Try to optimize an AutoreleaseRV with a RetainRV or ClaimRV.  If the
518    /// optimization occurs, returns true to indicate that the caller should
519    /// assume the instructions are dead.
520    bool OptimizeInlinedAutoreleaseRVCall(
521        Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
522        Instruction *Inst, const Value *&Arg, ARCInstKind Class,
523        Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg);
524
525    void CheckForCFGHazards(const BasicBlock *BB,
526                            DenseMap<const BasicBlock *, BBState> &BBStates,
527                            BBState &MyStates) const;
528    bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB,
529                                  BlotMapVector<Value *, RRInfo> &Retains,
530                                  BBState &MyStates);
531    bool VisitBottomUp(BasicBlock *BB,
532                       DenseMap<const BasicBlock *, BBState> &BBStates,
533                       BlotMapVector<Value *, RRInfo> &Retains);
534    bool VisitInstructionTopDown(Instruction *Inst,
535                                 DenseMap<Value *, RRInfo> &Releases,
536                                 BBState &MyStates);
537    bool VisitTopDown(BasicBlock *BB,
538                      DenseMap<const BasicBlock *, BBState> &BBStates,
539                      DenseMap<Value *, RRInfo> &Releases);
540    bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates,
541               BlotMapVector<Value *, RRInfo> &Retains,
542               DenseMap<Value *, RRInfo> &Releases);
543
544    void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
545                   BlotMapVector<Value *, RRInfo> &Retains,
546                   DenseMap<Value *, RRInfo> &Releases,
547                   SmallVectorImpl<Instruction *> &DeadInsts, Module *M);
548
549    bool
550    PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates,
551                             BlotMapVector<Value *, RRInfo> &Retains,
552                             DenseMap<Value *, RRInfo> &Releases, Module *M,
553                             Instruction * Retain,
554                             SmallVectorImpl<Instruction *> &DeadInsts,
555                             RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
556                             Value *Arg, bool KnownSafe,
557                             bool &AnyPairsCompletelyEliminated);
558
559    bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
560                              BlotMapVector<Value *, RRInfo> &Retains,
561                              DenseMap<Value *, RRInfo> &Releases, Module *M);
562
563    void OptimizeWeakCalls(Function &F);
564
565    bool OptimizeSequences(Function &F);
566
567    void OptimizeReturns(Function &F);
568
569#ifndef NDEBUG
570    void GatherStatistics(Function &F, bool AfterOptimization = false);
571#endif
572
573    void getAnalysisUsage(AnalysisUsage &AU) const override;
574    bool doInitialization(Module &M) override;
575    bool runOnFunction(Function &F) override;
576    void releaseMemory() override;
577
578  public:
579    static char ID;
580
581    ObjCARCOpt() : FunctionPass(ID) {
582      initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
583    }
584  };
585
586} // end anonymous namespace
587
588char ObjCARCOpt::ID = 0;
589
590INITIALIZE_PASS_BEGIN(ObjCARCOpt,
591                      "objc-arc", "ObjC ARC optimization", false, false)
592INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
593INITIALIZE_PASS_END(ObjCARCOpt,
594                    "objc-arc", "ObjC ARC optimization", false, false)
595
596Pass *llvm::createObjCARCOptPass() {
597  return new ObjCARCOpt();
598}
599
600void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
601  AU.addRequired<ObjCARCAAWrapperPass>();
602  AU.addRequired<AAResultsWrapperPass>();
603  // ARC optimization doesn't currently split critical edges.
604  AU.setPreservesCFG();
605}
606
607/// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
608/// not a return value.
609bool
610ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
611  // Check for the argument being from an immediately preceding call or invoke.
612  const Value *Arg = GetArgRCIdentityRoot(RetainRV);
613  ImmutableCallSite CS(Arg);
614  if (const Instruction *Call = CS.getInstruction()) {
615    if (Call->getParent() == RetainRV->getParent()) {
616      BasicBlock::const_iterator I(Call);
617      ++I;
618      while (IsNoopInstruction(&*I))
619        ++I;
620      if (&*I == RetainRV)
621        return false;
622    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
623      BasicBlock *RetainRVParent = RetainRV->getParent();
624      if (II->getNormalDest() == RetainRVParent) {
625        BasicBlock::const_iterator I = RetainRVParent->begin();
626        while (IsNoopInstruction(&*I))
627          ++I;
628        if (&*I == RetainRV)
629          return false;
630      }
631    }
632  }
633
634  // Turn it to a plain objc_retain.
635  Changed = true;
636  ++NumPeeps;
637
638  LLVM_DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
639                       "objc_retain since the operand is not a return value.\n"
640                       "Old = "
641                    << *RetainRV << "\n");
642
643  Function *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain);
644  cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
645
646  LLVM_DEBUG(dbgs() << "New = " << *RetainRV << "\n");
647
648  return false;
649}
650
651bool ObjCARCOpt::OptimizeInlinedAutoreleaseRVCall(
652    Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
653    Instruction *Inst, const Value *&Arg, ARCInstKind Class,
654    Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg) {
655  // Must be in the same basic block.
656  assert(Inst->getParent() == AutoreleaseRV->getParent());
657
658  // Must operate on the same root.
659  Arg = GetArgRCIdentityRoot(Inst);
660  AutoreleaseRVArg = GetArgRCIdentityRoot(AutoreleaseRV);
661  if (Arg != AutoreleaseRVArg) {
662    // If there isn't an exact match, check if we have equivalent PHIs.
663    const PHINode *PN = dyn_cast<PHINode>(Arg);
664    if (!PN)
665      return false;
666
667    SmallVector<const Value *, 4> ArgUsers;
668    getEquivalentPHIs(*PN, ArgUsers);
669    if (llvm::find(ArgUsers, AutoreleaseRVArg) == ArgUsers.end())
670      return false;
671  }
672
673  // Okay, this is a match.  Merge them.
674  ++NumPeeps;
675  LLVM_DEBUG(dbgs() << "Found inlined objc_autoreleaseReturnValue '"
676                    << *AutoreleaseRV << "' paired with '" << *Inst << "'\n");
677
678  // Delete the RV pair, starting with the AutoreleaseRV.
679  AutoreleaseRV->replaceAllUsesWith(
680      cast<CallInst>(AutoreleaseRV)->getArgOperand(0));
681  EraseInstruction(AutoreleaseRV);
682  if (Class == ARCInstKind::RetainRV) {
683    // AutoreleaseRV and RetainRV cancel out.  Delete the RetainRV.
684    Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
685    EraseInstruction(Inst);
686    return true;
687  }
688
689  // ClaimRV is a frontend peephole for RetainRV + Release.  Since the
690  // AutoreleaseRV and RetainRV cancel out, replace the ClaimRV with a Release.
691  assert(Class == ARCInstKind::ClaimRV);
692  Value *CallArg = cast<CallInst>(Inst)->getArgOperand(0);
693  CallInst *Release = CallInst::Create(
694      EP.get(ARCRuntimeEntryPointKind::Release), CallArg, "", Inst);
695  assert(IsAlwaysTail(ARCInstKind::ClaimRV) &&
696         "Expected ClaimRV to be safe to tail call");
697  Release->setTailCall();
698  Inst->replaceAllUsesWith(CallArg);
699  EraseInstruction(Inst);
700
701  // Run the normal optimizations on Release.
702  OptimizeIndividualCallImpl(F, BlockColors, Release, ARCInstKind::Release,
703                             Arg);
704  return true;
705}
706
707/// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
708/// used as a return value.
709void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F,
710                                           Instruction *AutoreleaseRV,
711                                           ARCInstKind &Class) {
712  // Check for a return of the pointer value.
713  const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV);
714
715  // If the argument is ConstantPointerNull or UndefValue, its other users
716  // aren't actually interesting to look at.
717  if (isa<ConstantData>(Ptr))
718    return;
719
720  SmallVector<const Value *, 2> Users;
721  Users.push_back(Ptr);
722
723  // Add PHIs that are equivalent to Ptr to Users.
724  if (const PHINode *PN = dyn_cast<PHINode>(Ptr))
725    getEquivalentPHIs(*PN, Users);
726
727  do {
728    Ptr = Users.pop_back_val();
729    for (const User *U : Ptr->users()) {
730      if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV)
731        return;
732      if (isa<BitCastInst>(U))
733        Users.push_back(U);
734    }
735  } while (!Users.empty());
736
737  Changed = true;
738  ++NumPeeps;
739
740  LLVM_DEBUG(
741      dbgs() << "Transforming objc_autoreleaseReturnValue => "
742                "objc_autorelease since its operand is not used as a return "
743                "value.\n"
744                "Old = "
745             << *AutoreleaseRV << "\n");
746
747  CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
748  Function *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease);
749  AutoreleaseRVCI->setCalledFunction(NewDecl);
750  AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
751  Class = ARCInstKind::Autorelease;
752
753  LLVM_DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
754}
755
756namespace {
757Instruction *
758CloneCallInstForBB(CallInst &CI, BasicBlock &BB,
759                   const DenseMap<BasicBlock *, ColorVector> &BlockColors) {
760  SmallVector<OperandBundleDef, 1> OpBundles;
761  for (unsigned I = 0, E = CI.getNumOperandBundles(); I != E; ++I) {
762    auto Bundle = CI.getOperandBundleAt(I);
763    // Funclets will be reassociated in the future.
764    if (Bundle.getTagID() == LLVMContext::OB_funclet)
765      continue;
766    OpBundles.emplace_back(Bundle);
767  }
768
769  if (!BlockColors.empty()) {
770    const ColorVector &CV = BlockColors.find(&BB)->second;
771    assert(CV.size() == 1 && "non-unique color for block!");
772    Instruction *EHPad = CV.front()->getFirstNonPHI();
773    if (EHPad->isEHPad())
774      OpBundles.emplace_back("funclet", EHPad);
775  }
776
777  return CallInst::Create(&CI, OpBundles);
778}
779}
780
781/// Visit each call, one at a time, and make simplifications without doing any
782/// additional analysis.
783void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
784  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
785  // Reset all the flags in preparation for recomputing them.
786  UsedInThisFunction = 0;
787
788  DenseMap<BasicBlock *, ColorVector> BlockColors;
789  if (F.hasPersonalityFn() &&
790      isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
791    BlockColors = colorEHFunclets(F);
792
793  // Store any delayed AutoreleaseRV intrinsics, so they can be easily paired
794  // with RetainRV and ClaimRV.
795  Instruction *DelayedAutoreleaseRV = nullptr;
796  const Value *DelayedAutoreleaseRVArg = nullptr;
797  auto setDelayedAutoreleaseRV = [&](Instruction *AutoreleaseRV) {
798    assert(!DelayedAutoreleaseRV || !AutoreleaseRV);
799    DelayedAutoreleaseRV = AutoreleaseRV;
800    DelayedAutoreleaseRVArg = nullptr;
801  };
802  auto optimizeDelayedAutoreleaseRV = [&]() {
803    if (!DelayedAutoreleaseRV)
804      return;
805    OptimizeIndividualCallImpl(F, BlockColors, DelayedAutoreleaseRV,
806                               ARCInstKind::AutoreleaseRV,
807                               DelayedAutoreleaseRVArg);
808    setDelayedAutoreleaseRV(nullptr);
809  };
810  auto shouldDelayAutoreleaseRV = [&](Instruction *NonARCInst) {
811    // Nothing to delay, but we may as well skip the logic below.
812    if (!DelayedAutoreleaseRV)
813      return true;
814
815    // If we hit the end of the basic block we're not going to find an RV-pair.
816    // Stop delaying.
817    if (NonARCInst->isTerminator())
818      return false;
819
820    // Given the frontend rules for emitting AutoreleaseRV, RetainRV, and
821    // ClaimRV, it's probably safe to skip over even opaque function calls
822    // here since OptimizeInlinedAutoreleaseRVCall will confirm that they
823    // have the same RCIdentityRoot.  However, what really matters is
824    // skipping instructions or intrinsics that the inliner could leave behind;
825    // be conservative for now and don't skip over opaque calls, which could
826    // potentially include other ARC calls.
827    auto *CB = dyn_cast<CallBase>(NonARCInst);
828    if (!CB)
829      return true;
830    return CB->getIntrinsicID() != Intrinsic::not_intrinsic;
831  };
832
833  // Visit all objc_* calls in F.
834  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
835    Instruction *Inst = &*I++;
836
837    ARCInstKind Class = GetBasicARCInstKind(Inst);
838
839    // Skip this loop if this instruction isn't itself an ARC intrinsic.
840    const Value *Arg = nullptr;
841    switch (Class) {
842    default:
843      optimizeDelayedAutoreleaseRV();
844      break;
845    case ARCInstKind::CallOrUser:
846    case ARCInstKind::User:
847    case ARCInstKind::None:
848      // This is a non-ARC instruction.  If we're delaying an AutoreleaseRV,
849      // check if it's safe to skip over it; if not, optimize the AutoreleaseRV
850      // now.
851      if (!shouldDelayAutoreleaseRV(Inst))
852        optimizeDelayedAutoreleaseRV();
853      continue;
854    case ARCInstKind::AutoreleaseRV:
855      optimizeDelayedAutoreleaseRV();
856      setDelayedAutoreleaseRV(Inst);
857      continue;
858    case ARCInstKind::RetainRV:
859    case ARCInstKind::ClaimRV:
860      if (DelayedAutoreleaseRV) {
861        // We have a potential RV pair.  Check if they cancel out.
862        if (OptimizeInlinedAutoreleaseRVCall(F, BlockColors, Inst, Arg, Class,
863                                             DelayedAutoreleaseRV,
864                                             DelayedAutoreleaseRVArg)) {
865          setDelayedAutoreleaseRV(nullptr);
866          continue;
867        }
868        optimizeDelayedAutoreleaseRV();
869      }
870      break;
871    }
872
873    OptimizeIndividualCallImpl(F, BlockColors, Inst, Class, Arg);
874  }
875
876  // Catch the final delayed AutoreleaseRV.
877  optimizeDelayedAutoreleaseRV();
878}
879
880void ObjCARCOpt::OptimizeIndividualCallImpl(
881    Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
882    Instruction *Inst, ARCInstKind Class, const Value *Arg) {
883  LLVM_DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
884
885  // Some of the ARC calls can be deleted if their arguments are global
886  // variables that are inert in ARC.
887  if (IsNoopOnGlobal(Class)) {
888    Value *Opnd = Inst->getOperand(0);
889    if (auto *GV = dyn_cast<GlobalVariable>(Opnd->stripPointerCasts()))
890      if (GV->hasAttribute("objc_arc_inert")) {
891        if (!Inst->getType()->isVoidTy())
892          Inst->replaceAllUsesWith(Opnd);
893        Inst->eraseFromParent();
894        return;
895      }
896  }
897
898  switch (Class) {
899  default:
900    break;
901
902  // Delete no-op casts. These function calls have special semantics, but
903  // the semantics are entirely implemented via lowering in the front-end,
904  // so by the time they reach the optimizer, they are just no-op calls
905  // which return their argument.
906  //
907  // There are gray areas here, as the ability to cast reference-counted
908  // pointers to raw void* and back allows code to break ARC assumptions,
909  // however these are currently considered to be unimportant.
910  case ARCInstKind::NoopCast:
911    Changed = true;
912    ++NumNoops;
913    LLVM_DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
914    EraseInstruction(Inst);
915    return;
916
917  // If the pointer-to-weak-pointer is null, it's undefined behavior.
918  case ARCInstKind::StoreWeak:
919  case ARCInstKind::LoadWeak:
920  case ARCInstKind::LoadWeakRetained:
921  case ARCInstKind::InitWeak:
922  case ARCInstKind::DestroyWeak: {
923    CallInst *CI = cast<CallInst>(Inst);
924    if (IsNullOrUndef(CI->getArgOperand(0))) {
925      Changed = true;
926      Type *Ty = CI->getArgOperand(0)->getType();
927      new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
928                    Constant::getNullValue(Ty), CI);
929      Value *NewValue = UndefValue::get(CI->getType());
930      LLVM_DEBUG(
931          dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
932                    "\nOld = "
933                 << *CI << "\nNew = " << *NewValue << "\n");
934      CI->replaceAllUsesWith(NewValue);
935      CI->eraseFromParent();
936      return;
937    }
938    break;
939  }
940  case ARCInstKind::CopyWeak:
941  case ARCInstKind::MoveWeak: {
942    CallInst *CI = cast<CallInst>(Inst);
943    if (IsNullOrUndef(CI->getArgOperand(0)) ||
944        IsNullOrUndef(CI->getArgOperand(1))) {
945      Changed = true;
946      Type *Ty = CI->getArgOperand(0)->getType();
947      new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
948                    Constant::getNullValue(Ty), CI);
949
950      Value *NewValue = UndefValue::get(CI->getType());
951      LLVM_DEBUG(
952          dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
953                    "\nOld = "
954                 << *CI << "\nNew = " << *NewValue << "\n");
955
956      CI->replaceAllUsesWith(NewValue);
957      CI->eraseFromParent();
958      return;
959    }
960    break;
961  }
962  case ARCInstKind::RetainRV:
963    if (OptimizeRetainRVCall(F, Inst))
964      return;
965    break;
966  case ARCInstKind::AutoreleaseRV:
967    OptimizeAutoreleaseRVCall(F, Inst, Class);
968    break;
969  }
970
971  // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
972  if (IsAutorelease(Class) && Inst->use_empty()) {
973    CallInst *Call = cast<CallInst>(Inst);
974    const Value *Arg = Call->getArgOperand(0);
975    Arg = FindSingleUseIdentifiedObject(Arg);
976    if (Arg) {
977      Changed = true;
978      ++NumAutoreleases;
979
980      // Create the declaration lazily.
981      LLVMContext &C = Inst->getContext();
982
983      Function *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
984      CallInst *NewCall =
985          CallInst::Create(Decl, Call->getArgOperand(0), "", Call);
986      NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease),
987                           MDNode::get(C, None));
988
989      LLVM_DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
990                           "since x is otherwise unused.\nOld: "
991                        << *Call << "\nNew: " << *NewCall << "\n");
992
993      EraseInstruction(Call);
994      Inst = NewCall;
995      Class = ARCInstKind::Release;
996    }
997  }
998
999  // For functions which can never be passed stack arguments, add
1000  // a tail keyword.
1001  if (IsAlwaysTail(Class) && !cast<CallInst>(Inst)->isNoTailCall()) {
1002    Changed = true;
1003    LLVM_DEBUG(
1004        dbgs() << "Adding tail keyword to function since it can never be "
1005                  "passed stack args: "
1006               << *Inst << "\n");
1007    cast<CallInst>(Inst)->setTailCall();
1008  }
1009
1010  // Ensure that functions that can never have a "tail" keyword due to the
1011  // semantics of ARC truly do not do so.
1012  if (IsNeverTail(Class)) {
1013    Changed = true;
1014    LLVM_DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst
1015                      << "\n");
1016    cast<CallInst>(Inst)->setTailCall(false);
1017  }
1018
1019  // Set nounwind as needed.
1020  if (IsNoThrow(Class)) {
1021    Changed = true;
1022    LLVM_DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
1023                      << "\n");
1024    cast<CallInst>(Inst)->setDoesNotThrow();
1025  }
1026
1027  // Note: This catches instructions unrelated to ARC.
1028  if (!IsNoopOnNull(Class)) {
1029    UsedInThisFunction |= 1 << unsigned(Class);
1030    return;
1031  }
1032
1033  // If we haven't already looked up the root, look it up now.
1034  if (!Arg)
1035    Arg = GetArgRCIdentityRoot(Inst);
1036
1037  // ARC calls with null are no-ops. Delete them.
1038  if (IsNullOrUndef(Arg)) {
1039    Changed = true;
1040    ++NumNoops;
1041    LLVM_DEBUG(dbgs() << "ARC calls with  null are no-ops. Erasing: " << *Inst
1042                      << "\n");
1043    EraseInstruction(Inst);
1044    return;
1045  }
1046
1047  // Keep track of which of retain, release, autorelease, and retain_block
1048  // are actually present in this function.
1049  UsedInThisFunction |= 1 << unsigned(Class);
1050
1051  // If Arg is a PHI, and one or more incoming values to the
1052  // PHI are null, and the call is control-equivalent to the PHI, and there
1053  // are no relevant side effects between the PHI and the call, and the call
1054  // is not a release that doesn't have the clang.imprecise_release tag, the
1055  // call could be pushed up to just those paths with non-null incoming
1056  // values. For now, don't bother splitting critical edges for this.
1057  if (Class == ARCInstKind::Release &&
1058      !Inst->getMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease)))
1059    return;
1060
1061  SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
1062  Worklist.push_back(std::make_pair(Inst, Arg));
1063  do {
1064    std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
1065    Inst = Pair.first;
1066    Arg = Pair.second;
1067
1068    const PHINode *PN = dyn_cast<PHINode>(Arg);
1069    if (!PN)
1070      continue;
1071
1072    // Determine if the PHI has any null operands, or any incoming
1073    // critical edges.
1074    bool HasNull = false;
1075    bool HasCriticalEdges = false;
1076    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1077      Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i));
1078      if (IsNullOrUndef(Incoming))
1079        HasNull = true;
1080      else if (PN->getIncomingBlock(i)->getTerminator()->getNumSuccessors() !=
1081               1) {
1082        HasCriticalEdges = true;
1083        break;
1084      }
1085    }
1086    // If we have null operands and no critical edges, optimize.
1087    if (HasCriticalEdges)
1088      continue;
1089    if (!HasNull)
1090      continue;
1091
1092    SmallPtrSet<Instruction *, 4> DependingInstructions;
1093    SmallPtrSet<const BasicBlock *, 4> Visited;
1094
1095    // Check that there is nothing that cares about the reference
1096    // count between the call and the phi.
1097    switch (Class) {
1098    case ARCInstKind::Retain:
1099    case ARCInstKind::RetainBlock:
1100      // These can always be moved up.
1101      break;
1102    case ARCInstKind::Release:
1103      // These can't be moved across things that care about the retain
1104      // count.
1105      FindDependencies(NeedsPositiveRetainCount, Arg, Inst->getParent(), Inst,
1106                       DependingInstructions, Visited, PA);
1107      break;
1108    case ARCInstKind::Autorelease:
1109      // These can't be moved across autorelease pool scope boundaries.
1110      FindDependencies(AutoreleasePoolBoundary, Arg, Inst->getParent(), Inst,
1111                       DependingInstructions, Visited, PA);
1112      break;
1113    case ARCInstKind::ClaimRV:
1114    case ARCInstKind::RetainRV:
1115    case ARCInstKind::AutoreleaseRV:
1116      // Don't move these; the RV optimization depends on the autoreleaseRV
1117      // being tail called, and the retainRV being immediately after a call
1118      // (which might still happen if we get lucky with codegen layout, but
1119      // it's not worth taking the chance).
1120      continue;
1121    default:
1122      llvm_unreachable("Invalid dependence flavor");
1123    }
1124
1125    if (DependingInstructions.size() != 1)
1126      continue;
1127    if (*DependingInstructions.begin() != PN)
1128      continue;
1129
1130    Changed = true;
1131    ++NumPartialNoops;
1132    // Clone the call into each predecessor that has a non-null value.
1133    CallInst *CInst = cast<CallInst>(Inst);
1134    Type *ParamTy = CInst->getArgOperand(0)->getType();
1135    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1136      Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i));
1137      if (IsNullOrUndef(Incoming))
1138        continue;
1139      Value *Op = PN->getIncomingValue(i);
1140      Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
1141      CallInst *Clone = cast<CallInst>(
1142          CloneCallInstForBB(*CInst, *InsertPos->getParent(), BlockColors));
1143      if (Op->getType() != ParamTy)
1144        Op = new BitCastInst(Op, ParamTy, "", InsertPos);
1145      Clone->setArgOperand(0, Op);
1146      Clone->insertBefore(InsertPos);
1147
1148      LLVM_DEBUG(dbgs() << "Cloning " << *CInst << "\n"
1149                                                   "And inserting clone at "
1150                        << *InsertPos << "\n");
1151      Worklist.push_back(std::make_pair(Clone, Incoming));
1152    }
1153    // Erase the original call.
1154    LLVM_DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
1155    EraseInstruction(CInst);
1156  } while (!Worklist.empty());
1157}
1158
1159/// If we have a top down pointer in the S_Use state, make sure that there are
1160/// no CFG hazards by checking the states of various bottom up pointers.
1161static void CheckForUseCFGHazard(const Sequence SuccSSeq,
1162                                 const bool SuccSRRIKnownSafe,
1163                                 TopDownPtrState &S,
1164                                 bool &SomeSuccHasSame,
1165                                 bool &AllSuccsHaveSame,
1166                                 bool &NotAllSeqEqualButKnownSafe,
1167                                 bool &ShouldContinue) {
1168  switch (SuccSSeq) {
1169  case S_CanRelease: {
1170    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
1171      S.ClearSequenceProgress();
1172      break;
1173    }
1174    S.SetCFGHazardAfflicted(true);
1175    ShouldContinue = true;
1176    break;
1177  }
1178  case S_Use:
1179    SomeSuccHasSame = true;
1180    break;
1181  case S_Stop:
1182  case S_Release:
1183  case S_MovableRelease:
1184    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
1185      AllSuccsHaveSame = false;
1186    else
1187      NotAllSeqEqualButKnownSafe = true;
1188    break;
1189  case S_Retain:
1190    llvm_unreachable("bottom-up pointer in retain state!");
1191  case S_None:
1192    llvm_unreachable("This should have been handled earlier.");
1193  }
1194}
1195
1196/// If we have a Top Down pointer in the S_CanRelease state, make sure that
1197/// there are no CFG hazards by checking the states of various bottom up
1198/// pointers.
1199static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
1200                                        const bool SuccSRRIKnownSafe,
1201                                        TopDownPtrState &S,
1202                                        bool &SomeSuccHasSame,
1203                                        bool &AllSuccsHaveSame,
1204                                        bool &NotAllSeqEqualButKnownSafe) {
1205  switch (SuccSSeq) {
1206  case S_CanRelease:
1207    SomeSuccHasSame = true;
1208    break;
1209  case S_Stop:
1210  case S_Release:
1211  case S_MovableRelease:
1212  case S_Use:
1213    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
1214      AllSuccsHaveSame = false;
1215    else
1216      NotAllSeqEqualButKnownSafe = true;
1217    break;
1218  case S_Retain:
1219    llvm_unreachable("bottom-up pointer in retain state!");
1220  case S_None:
1221    llvm_unreachable("This should have been handled earlier.");
1222  }
1223}
1224
1225/// Check for critical edges, loop boundaries, irreducible control flow, or
1226/// other CFG structures where moving code across the edge would result in it
1227/// being executed more.
1228void
1229ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
1230                               DenseMap<const BasicBlock *, BBState> &BBStates,
1231                               BBState &MyStates) const {
1232  // If any top-down local-use or possible-dec has a succ which is earlier in
1233  // the sequence, forget it.
1234  for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end();
1235       I != E; ++I) {
1236    TopDownPtrState &S = I->second;
1237    const Sequence Seq = I->second.GetSeq();
1238
1239    // We only care about S_Retain, S_CanRelease, and S_Use.
1240    if (Seq == S_None)
1241      continue;
1242
1243    // Make sure that if extra top down states are added in the future that this
1244    // code is updated to handle it.
1245    assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
1246           "Unknown top down sequence state.");
1247
1248    const Value *Arg = I->first;
1249    bool SomeSuccHasSame = false;
1250    bool AllSuccsHaveSame = true;
1251    bool NotAllSeqEqualButKnownSafe = false;
1252
1253    for (const BasicBlock *Succ : successors(BB)) {
1254      // If VisitBottomUp has pointer information for this successor, take
1255      // what we know about it.
1256      const DenseMap<const BasicBlock *, BBState>::iterator BBI =
1257          BBStates.find(Succ);
1258      assert(BBI != BBStates.end());
1259      const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
1260      const Sequence SuccSSeq = SuccS.GetSeq();
1261
1262      // If bottom up, the pointer is in an S_None state, clear the sequence
1263      // progress since the sequence in the bottom up state finished
1264      // suggesting a mismatch in between retains/releases. This is true for
1265      // all three cases that we are handling here: S_Retain, S_Use, and
1266      // S_CanRelease.
1267      if (SuccSSeq == S_None) {
1268        S.ClearSequenceProgress();
1269        continue;
1270      }
1271
1272      // If we have S_Use or S_CanRelease, perform our check for cfg hazard
1273      // checks.
1274      const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
1275
1276      // *NOTE* We do not use Seq from above here since we are allowing for
1277      // S.GetSeq() to change while we are visiting basic blocks.
1278      switch(S.GetSeq()) {
1279      case S_Use: {
1280        bool ShouldContinue = false;
1281        CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
1282                             AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
1283                             ShouldContinue);
1284        if (ShouldContinue)
1285          continue;
1286        break;
1287      }
1288      case S_CanRelease:
1289        CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
1290                                    SomeSuccHasSame, AllSuccsHaveSame,
1291                                    NotAllSeqEqualButKnownSafe);
1292        break;
1293      case S_Retain:
1294      case S_None:
1295      case S_Stop:
1296      case S_Release:
1297      case S_MovableRelease:
1298        break;
1299      }
1300    }
1301
1302    // If the state at the other end of any of the successor edges
1303    // matches the current state, require all edges to match. This
1304    // guards against loops in the middle of a sequence.
1305    if (SomeSuccHasSame && !AllSuccsHaveSame) {
1306      S.ClearSequenceProgress();
1307    } else if (NotAllSeqEqualButKnownSafe) {
1308      // If we would have cleared the state foregoing the fact that we are known
1309      // safe, stop code motion. This is because whether or not it is safe to
1310      // remove RR pairs via KnownSafe is an orthogonal concept to whether we
1311      // are allowed to perform code motion.
1312      S.SetCFGHazardAfflicted(true);
1313    }
1314  }
1315}
1316
1317bool ObjCARCOpt::VisitInstructionBottomUp(
1318    Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains,
1319    BBState &MyStates) {
1320  bool NestingDetected = false;
1321  ARCInstKind Class = GetARCInstKind(Inst);
1322  const Value *Arg = nullptr;
1323
1324  LLVM_DEBUG(dbgs() << "        Class: " << Class << "\n");
1325
1326  switch (Class) {
1327  case ARCInstKind::Release: {
1328    Arg = GetArgRCIdentityRoot(Inst);
1329
1330    BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
1331    NestingDetected |= S.InitBottomUp(MDKindCache, Inst);
1332    break;
1333  }
1334  case ARCInstKind::RetainBlock:
1335    // In OptimizeIndividualCalls, we have strength reduced all optimizable
1336    // objc_retainBlocks to objc_retains. Thus at this point any
1337    // objc_retainBlocks that we see are not optimizable.
1338    break;
1339  case ARCInstKind::Retain:
1340  case ARCInstKind::RetainRV: {
1341    Arg = GetArgRCIdentityRoot(Inst);
1342    BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
1343    if (S.MatchWithRetain()) {
1344      // Don't do retain+release tracking for ARCInstKind::RetainRV, because
1345      // it's better to let it remain as the first instruction after a call.
1346      if (Class != ARCInstKind::RetainRV) {
1347        LLVM_DEBUG(dbgs() << "        Matching with: " << *Inst << "\n");
1348        Retains[Inst] = S.GetRRInfo();
1349      }
1350      S.ClearSequenceProgress();
1351    }
1352    // A retain moving bottom up can be a use.
1353    break;
1354  }
1355  case ARCInstKind::AutoreleasepoolPop:
1356    // Conservatively, clear MyStates for all known pointers.
1357    MyStates.clearBottomUpPointers();
1358    return NestingDetected;
1359  case ARCInstKind::AutoreleasepoolPush:
1360  case ARCInstKind::None:
1361    // These are irrelevant.
1362    return NestingDetected;
1363  default:
1364    break;
1365  }
1366
1367  // Consider any other possible effects of this instruction on each
1368  // pointer being tracked.
1369  for (auto MI = MyStates.bottom_up_ptr_begin(),
1370            ME = MyStates.bottom_up_ptr_end();
1371       MI != ME; ++MI) {
1372    const Value *Ptr = MI->first;
1373    if (Ptr == Arg)
1374      continue; // Handled above.
1375    BottomUpPtrState &S = MI->second;
1376
1377    if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
1378      continue;
1379
1380    S.HandlePotentialUse(BB, Inst, Ptr, PA, Class);
1381  }
1382
1383  return NestingDetected;
1384}
1385
1386bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
1387                               DenseMap<const BasicBlock *, BBState> &BBStates,
1388                               BlotMapVector<Value *, RRInfo> &Retains) {
1389  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
1390
1391  bool NestingDetected = false;
1392  BBState &MyStates = BBStates[BB];
1393
1394  // Merge the states from each successor to compute the initial state
1395  // for the current block.
1396  BBState::edge_iterator SI(MyStates.succ_begin()),
1397                         SE(MyStates.succ_end());
1398  if (SI != SE) {
1399    const BasicBlock *Succ = *SI;
1400    DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
1401    assert(I != BBStates.end());
1402    MyStates.InitFromSucc(I->second);
1403    ++SI;
1404    for (; SI != SE; ++SI) {
1405      Succ = *SI;
1406      I = BBStates.find(Succ);
1407      assert(I != BBStates.end());
1408      MyStates.MergeSucc(I->second);
1409    }
1410  }
1411
1412  LLVM_DEBUG(dbgs() << "Before:\n"
1413                    << BBStates[BB] << "\n"
1414                    << "Performing Dataflow:\n");
1415
1416  // Visit all the instructions, bottom-up.
1417  for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
1418    Instruction *Inst = &*std::prev(I);
1419
1420    // Invoke instructions are visited as part of their successors (below).
1421    if (isa<InvokeInst>(Inst))
1422      continue;
1423
1424    LLVM_DEBUG(dbgs() << "    Visiting " << *Inst << "\n");
1425
1426    NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
1427
1428    // Bail out if the number of pointers being tracked becomes too large so
1429    // that this pass can complete in a reasonable amount of time.
1430    if (MyStates.bottom_up_ptr_list_size() > MaxPtrStates) {
1431      DisableRetainReleasePairing = true;
1432      return false;
1433    }
1434  }
1435
1436  // If there's a predecessor with an invoke, visit the invoke as if it were
1437  // part of this block, since we can't insert code after an invoke in its own
1438  // block, and we don't want to split critical edges.
1439  for (BBState::edge_iterator PI(MyStates.pred_begin()),
1440       PE(MyStates.pred_end()); PI != PE; ++PI) {
1441    BasicBlock *Pred = *PI;
1442    if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
1443      NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
1444  }
1445
1446  LLVM_DEBUG(dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n");
1447
1448  return NestingDetected;
1449}
1450
1451bool
1452ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
1453                                    DenseMap<Value *, RRInfo> &Releases,
1454                                    BBState &MyStates) {
1455  bool NestingDetected = false;
1456  ARCInstKind Class = GetARCInstKind(Inst);
1457  const Value *Arg = nullptr;
1458
1459  LLVM_DEBUG(dbgs() << "        Class: " << Class << "\n");
1460
1461  switch (Class) {
1462  case ARCInstKind::RetainBlock:
1463    // In OptimizeIndividualCalls, we have strength reduced all optimizable
1464    // objc_retainBlocks to objc_retains. Thus at this point any
1465    // objc_retainBlocks that we see are not optimizable. We need to break since
1466    // a retain can be a potential use.
1467    break;
1468  case ARCInstKind::Retain:
1469  case ARCInstKind::RetainRV: {
1470    Arg = GetArgRCIdentityRoot(Inst);
1471    TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
1472    NestingDetected |= S.InitTopDown(Class, Inst);
1473    // A retain can be a potential use; proceed to the generic checking
1474    // code below.
1475    break;
1476  }
1477  case ARCInstKind::Release: {
1478    Arg = GetArgRCIdentityRoot(Inst);
1479    TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
1480    // Try to form a tentative pair in between this release instruction and the
1481    // top down pointers that we are tracking.
1482    if (S.MatchWithRelease(MDKindCache, Inst)) {
1483      // If we succeed, copy S's RRInfo into the Release -> {Retain Set
1484      // Map}. Then we clear S.
1485      LLVM_DEBUG(dbgs() << "        Matching with: " << *Inst << "\n");
1486      Releases[Inst] = S.GetRRInfo();
1487      S.ClearSequenceProgress();
1488    }
1489    break;
1490  }
1491  case ARCInstKind::AutoreleasepoolPop:
1492    // Conservatively, clear MyStates for all known pointers.
1493    MyStates.clearTopDownPointers();
1494    return false;
1495  case ARCInstKind::AutoreleasepoolPush:
1496  case ARCInstKind::None:
1497    // These can not be uses of
1498    return false;
1499  default:
1500    break;
1501  }
1502
1503  // Consider any other possible effects of this instruction on each
1504  // pointer being tracked.
1505  for (auto MI = MyStates.top_down_ptr_begin(),
1506            ME = MyStates.top_down_ptr_end();
1507       MI != ME; ++MI) {
1508    const Value *Ptr = MI->first;
1509    if (Ptr == Arg)
1510      continue; // Handled above.
1511    TopDownPtrState &S = MI->second;
1512    if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
1513      continue;
1514
1515    S.HandlePotentialUse(Inst, Ptr, PA, Class);
1516  }
1517
1518  return NestingDetected;
1519}
1520
1521bool
1522ObjCARCOpt::VisitTopDown(BasicBlock *BB,
1523                         DenseMap<const BasicBlock *, BBState> &BBStates,
1524                         DenseMap<Value *, RRInfo> &Releases) {
1525  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
1526  bool NestingDetected = false;
1527  BBState &MyStates = BBStates[BB];
1528
1529  // Merge the states from each predecessor to compute the initial state
1530  // for the current block.
1531  BBState::edge_iterator PI(MyStates.pred_begin()),
1532                         PE(MyStates.pred_end());
1533  if (PI != PE) {
1534    const BasicBlock *Pred = *PI;
1535    DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
1536    assert(I != BBStates.end());
1537    MyStates.InitFromPred(I->second);
1538    ++PI;
1539    for (; PI != PE; ++PI) {
1540      Pred = *PI;
1541      I = BBStates.find(Pred);
1542      assert(I != BBStates.end());
1543      MyStates.MergePred(I->second);
1544    }
1545  }
1546
1547  LLVM_DEBUG(dbgs() << "Before:\n"
1548                    << BBStates[BB] << "\n"
1549                    << "Performing Dataflow:\n");
1550
1551  // Visit all the instructions, top-down.
1552  for (Instruction &Inst : *BB) {
1553    LLVM_DEBUG(dbgs() << "    Visiting " << Inst << "\n");
1554
1555    NestingDetected |= VisitInstructionTopDown(&Inst, Releases, MyStates);
1556
1557    // Bail out if the number of pointers being tracked becomes too large so
1558    // that this pass can complete in a reasonable amount of time.
1559    if (MyStates.top_down_ptr_list_size() > MaxPtrStates) {
1560      DisableRetainReleasePairing = true;
1561      return false;
1562    }
1563  }
1564
1565  LLVM_DEBUG(dbgs() << "\nState Before Checking for CFG Hazards:\n"
1566                    << BBStates[BB] << "\n\n");
1567  CheckForCFGHazards(BB, BBStates, MyStates);
1568  LLVM_DEBUG(dbgs() << "Final State:\n" << BBStates[BB] << "\n");
1569  return NestingDetected;
1570}
1571
1572static void
1573ComputePostOrders(Function &F,
1574                  SmallVectorImpl<BasicBlock *> &PostOrder,
1575                  SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
1576                  unsigned NoObjCARCExceptionsMDKind,
1577                  DenseMap<const BasicBlock *, BBState> &BBStates) {
1578  /// The visited set, for doing DFS walks.
1579  SmallPtrSet<BasicBlock *, 16> Visited;
1580
1581  // Do DFS, computing the PostOrder.
1582  SmallPtrSet<BasicBlock *, 16> OnStack;
1583  SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
1584
1585  // Functions always have exactly one entry block, and we don't have
1586  // any other block that we treat like an entry block.
1587  BasicBlock *EntryBB = &F.getEntryBlock();
1588  BBState &MyStates = BBStates[EntryBB];
1589  MyStates.SetAsEntry();
1590  Instruction *EntryTI = EntryBB->getTerminator();
1591  SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
1592  Visited.insert(EntryBB);
1593  OnStack.insert(EntryBB);
1594  do {
1595  dfs_next_succ:
1596    BasicBlock *CurrBB = SuccStack.back().first;
1597    succ_iterator SE(CurrBB->getTerminator(), false);
1598
1599    while (SuccStack.back().second != SE) {
1600      BasicBlock *SuccBB = *SuccStack.back().second++;
1601      if (Visited.insert(SuccBB).second) {
1602        SuccStack.push_back(
1603            std::make_pair(SuccBB, succ_iterator(SuccBB->getTerminator())));
1604        BBStates[CurrBB].addSucc(SuccBB);
1605        BBState &SuccStates = BBStates[SuccBB];
1606        SuccStates.addPred(CurrBB);
1607        OnStack.insert(SuccBB);
1608        goto dfs_next_succ;
1609      }
1610
1611      if (!OnStack.count(SuccBB)) {
1612        BBStates[CurrBB].addSucc(SuccBB);
1613        BBStates[SuccBB].addPred(CurrBB);
1614      }
1615    }
1616    OnStack.erase(CurrBB);
1617    PostOrder.push_back(CurrBB);
1618    SuccStack.pop_back();
1619  } while (!SuccStack.empty());
1620
1621  Visited.clear();
1622
1623  // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
1624  // Functions may have many exits, and there also blocks which we treat
1625  // as exits due to ignored edges.
1626  SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
1627  for (BasicBlock &ExitBB : F) {
1628    BBState &MyStates = BBStates[&ExitBB];
1629    if (!MyStates.isExit())
1630      continue;
1631
1632    MyStates.SetAsExit();
1633
1634    PredStack.push_back(std::make_pair(&ExitBB, MyStates.pred_begin()));
1635    Visited.insert(&ExitBB);
1636    while (!PredStack.empty()) {
1637    reverse_dfs_next_succ:
1638      BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
1639      while (PredStack.back().second != PE) {
1640        BasicBlock *BB = *PredStack.back().second++;
1641        if (Visited.insert(BB).second) {
1642          PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
1643          goto reverse_dfs_next_succ;
1644        }
1645      }
1646      ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
1647    }
1648  }
1649}
1650
1651// Visit the function both top-down and bottom-up.
1652bool ObjCARCOpt::Visit(Function &F,
1653                       DenseMap<const BasicBlock *, BBState> &BBStates,
1654                       BlotMapVector<Value *, RRInfo> &Retains,
1655                       DenseMap<Value *, RRInfo> &Releases) {
1656  // Use reverse-postorder traversals, because we magically know that loops
1657  // will be well behaved, i.e. they won't repeatedly call retain on a single
1658  // pointer without doing a release. We can't use the ReversePostOrderTraversal
1659  // class here because we want the reverse-CFG postorder to consider each
1660  // function exit point, and we want to ignore selected cycle edges.
1661  SmallVector<BasicBlock *, 16> PostOrder;
1662  SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
1663  ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
1664                    MDKindCache.get(ARCMDKindID::NoObjCARCExceptions),
1665                    BBStates);
1666
1667  // Use reverse-postorder on the reverse CFG for bottom-up.
1668  bool BottomUpNestingDetected = false;
1669  for (BasicBlock *BB : llvm::reverse(ReverseCFGPostOrder)) {
1670    BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains);
1671    if (DisableRetainReleasePairing)
1672      return false;
1673  }
1674
1675  // Use reverse-postorder for top-down.
1676  bool TopDownNestingDetected = false;
1677  for (BasicBlock *BB : llvm::reverse(PostOrder)) {
1678    TopDownNestingDetected |= VisitTopDown(BB, BBStates, Releases);
1679    if (DisableRetainReleasePairing)
1680      return false;
1681  }
1682
1683  return TopDownNestingDetected && BottomUpNestingDetected;
1684}
1685
1686/// Move the calls in RetainsToMove and ReleasesToMove.
1687void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove,
1688                           RRInfo &ReleasesToMove,
1689                           BlotMapVector<Value *, RRInfo> &Retains,
1690                           DenseMap<Value *, RRInfo> &Releases,
1691                           SmallVectorImpl<Instruction *> &DeadInsts,
1692                           Module *M) {
1693  Type *ArgTy = Arg->getType();
1694  Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
1695
1696  LLVM_DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
1697
1698  // Insert the new retain and release calls.
1699  for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) {
1700    Value *MyArg = ArgTy == ParamTy ? Arg :
1701                   new BitCastInst(Arg, ParamTy, "", InsertPt);
1702    Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
1703    CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
1704    Call->setDoesNotThrow();
1705    Call->setTailCall();
1706
1707    LLVM_DEBUG(dbgs() << "Inserting new Retain: " << *Call
1708                      << "\n"
1709                         "At insertion point: "
1710                      << *InsertPt << "\n");
1711  }
1712  for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) {
1713    Value *MyArg = ArgTy == ParamTy ? Arg :
1714                   new BitCastInst(Arg, ParamTy, "", InsertPt);
1715    Function *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
1716    CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
1717    // Attach a clang.imprecise_release metadata tag, if appropriate.
1718    if (MDNode *M = ReleasesToMove.ReleaseMetadata)
1719      Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M);
1720    Call->setDoesNotThrow();
1721    if (ReleasesToMove.IsTailCallRelease)
1722      Call->setTailCall();
1723
1724    LLVM_DEBUG(dbgs() << "Inserting new Release: " << *Call
1725                      << "\n"
1726                         "At insertion point: "
1727                      << *InsertPt << "\n");
1728  }
1729
1730  // Delete the original retain and release calls.
1731  for (Instruction *OrigRetain : RetainsToMove.Calls) {
1732    Retains.blot(OrigRetain);
1733    DeadInsts.push_back(OrigRetain);
1734    LLVM_DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
1735  }
1736  for (Instruction *OrigRelease : ReleasesToMove.Calls) {
1737    Releases.erase(OrigRelease);
1738    DeadInsts.push_back(OrigRelease);
1739    LLVM_DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
1740  }
1741}
1742
1743bool ObjCARCOpt::PairUpRetainsAndReleases(
1744    DenseMap<const BasicBlock *, BBState> &BBStates,
1745    BlotMapVector<Value *, RRInfo> &Retains,
1746    DenseMap<Value *, RRInfo> &Releases, Module *M,
1747    Instruction *Retain,
1748    SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove,
1749    RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe,
1750    bool &AnyPairsCompletelyEliminated) {
1751  // If a pair happens in a region where it is known that the reference count
1752  // is already incremented, we can similarly ignore possible decrements unless
1753  // we are dealing with a retainable object with multiple provenance sources.
1754  bool KnownSafeTD = true, KnownSafeBU = true;
1755  bool CFGHazardAfflicted = false;
1756
1757  // Connect the dots between the top-down-collected RetainsToMove and
1758  // bottom-up-collected ReleasesToMove to form sets of related calls.
1759  // This is an iterative process so that we connect multiple releases
1760  // to multiple retains if needed.
1761  unsigned OldDelta = 0;
1762  unsigned NewDelta = 0;
1763  unsigned OldCount = 0;
1764  unsigned NewCount = 0;
1765  bool FirstRelease = true;
1766  for (SmallVector<Instruction *, 4> NewRetains{Retain};;) {
1767    SmallVector<Instruction *, 4> NewReleases;
1768    for (Instruction *NewRetain : NewRetains) {
1769      auto It = Retains.find(NewRetain);
1770      assert(It != Retains.end());
1771      const RRInfo &NewRetainRRI = It->second;
1772      KnownSafeTD &= NewRetainRRI.KnownSafe;
1773      CFGHazardAfflicted |= NewRetainRRI.CFGHazardAfflicted;
1774      for (Instruction *NewRetainRelease : NewRetainRRI.Calls) {
1775        auto Jt = Releases.find(NewRetainRelease);
1776        if (Jt == Releases.end())
1777          return false;
1778        const RRInfo &NewRetainReleaseRRI = Jt->second;
1779
1780        // If the release does not have a reference to the retain as well,
1781        // something happened which is unaccounted for. Do not do anything.
1782        //
1783        // This can happen if we catch an additive overflow during path count
1784        // merging.
1785        if (!NewRetainReleaseRRI.Calls.count(NewRetain))
1786          return false;
1787
1788        if (ReleasesToMove.Calls.insert(NewRetainRelease).second) {
1789          // If we overflow when we compute the path count, don't remove/move
1790          // anything.
1791          const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
1792          unsigned PathCount = BBState::OverflowOccurredValue;
1793          if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
1794            return false;
1795          assert(PathCount != BBState::OverflowOccurredValue &&
1796                 "PathCount at this point can not be "
1797                 "OverflowOccurredValue.");
1798          OldDelta -= PathCount;
1799
1800          // Merge the ReleaseMetadata and IsTailCallRelease values.
1801          if (FirstRelease) {
1802            ReleasesToMove.ReleaseMetadata =
1803              NewRetainReleaseRRI.ReleaseMetadata;
1804            ReleasesToMove.IsTailCallRelease =
1805              NewRetainReleaseRRI.IsTailCallRelease;
1806            FirstRelease = false;
1807          } else {
1808            if (ReleasesToMove.ReleaseMetadata !=
1809                NewRetainReleaseRRI.ReleaseMetadata)
1810              ReleasesToMove.ReleaseMetadata = nullptr;
1811            if (ReleasesToMove.IsTailCallRelease !=
1812                NewRetainReleaseRRI.IsTailCallRelease)
1813              ReleasesToMove.IsTailCallRelease = false;
1814          }
1815
1816          // Collect the optimal insertion points.
1817          if (!KnownSafe)
1818            for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) {
1819              if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) {
1820                // If we overflow when we compute the path count, don't
1821                // remove/move anything.
1822                const BBState &RIPBBState = BBStates[RIP->getParent()];
1823                PathCount = BBState::OverflowOccurredValue;
1824                if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
1825                  return false;
1826                assert(PathCount != BBState::OverflowOccurredValue &&
1827                       "PathCount at this point can not be "
1828                       "OverflowOccurredValue.");
1829                NewDelta -= PathCount;
1830              }
1831            }
1832          NewReleases.push_back(NewRetainRelease);
1833        }
1834      }
1835    }
1836    NewRetains.clear();
1837    if (NewReleases.empty()) break;
1838
1839    // Back the other way.
1840    for (Instruction *NewRelease : NewReleases) {
1841      auto It = Releases.find(NewRelease);
1842      assert(It != Releases.end());
1843      const RRInfo &NewReleaseRRI = It->second;
1844      KnownSafeBU &= NewReleaseRRI.KnownSafe;
1845      CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
1846      for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) {
1847        auto Jt = Retains.find(NewReleaseRetain);
1848        if (Jt == Retains.end())
1849          return false;
1850        const RRInfo &NewReleaseRetainRRI = Jt->second;
1851
1852        // If the retain does not have a reference to the release as well,
1853        // something happened which is unaccounted for. Do not do anything.
1854        //
1855        // This can happen if we catch an additive overflow during path count
1856        // merging.
1857        if (!NewReleaseRetainRRI.Calls.count(NewRelease))
1858          return false;
1859
1860        if (RetainsToMove.Calls.insert(NewReleaseRetain).second) {
1861          // If we overflow when we compute the path count, don't remove/move
1862          // anything.
1863          const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
1864          unsigned PathCount = BBState::OverflowOccurredValue;
1865          if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
1866            return false;
1867          assert(PathCount != BBState::OverflowOccurredValue &&
1868                 "PathCount at this point can not be "
1869                 "OverflowOccurredValue.");
1870          OldDelta += PathCount;
1871          OldCount += PathCount;
1872
1873          // Collect the optimal insertion points.
1874          if (!KnownSafe)
1875            for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) {
1876              if (RetainsToMove.ReverseInsertPts.insert(RIP).second) {
1877                // If we overflow when we compute the path count, don't
1878                // remove/move anything.
1879                const BBState &RIPBBState = BBStates[RIP->getParent()];
1880
1881                PathCount = BBState::OverflowOccurredValue;
1882                if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
1883                  return false;
1884                assert(PathCount != BBState::OverflowOccurredValue &&
1885                       "PathCount at this point can not be "
1886                       "OverflowOccurredValue.");
1887                NewDelta += PathCount;
1888                NewCount += PathCount;
1889              }
1890            }
1891          NewRetains.push_back(NewReleaseRetain);
1892        }
1893      }
1894    }
1895    if (NewRetains.empty()) break;
1896  }
1897
1898  // We can only remove pointers if we are known safe in both directions.
1899  bool UnconditionallySafe = KnownSafeTD && KnownSafeBU;
1900  if (UnconditionallySafe) {
1901    RetainsToMove.ReverseInsertPts.clear();
1902    ReleasesToMove.ReverseInsertPts.clear();
1903    NewCount = 0;
1904  } else {
1905    // Determine whether the new insertion points we computed preserve the
1906    // balance of retain and release calls through the program.
1907    // TODO: If the fully aggressive solution isn't valid, try to find a
1908    // less aggressive solution which is.
1909    if (NewDelta != 0)
1910      return false;
1911
1912    // At this point, we are not going to remove any RR pairs, but we still are
1913    // able to move RR pairs. If one of our pointers is afflicted with
1914    // CFGHazards, we cannot perform such code motion so exit early.
1915    const bool WillPerformCodeMotion =
1916        !RetainsToMove.ReverseInsertPts.empty() ||
1917        !ReleasesToMove.ReverseInsertPts.empty();
1918    if (CFGHazardAfflicted && WillPerformCodeMotion)
1919      return false;
1920  }
1921
1922  // Determine whether the original call points are balanced in the retain and
1923  // release calls through the program. If not, conservatively don't touch
1924  // them.
1925  // TODO: It's theoretically possible to do code motion in this case, as
1926  // long as the existing imbalances are maintained.
1927  if (OldDelta != 0)
1928    return false;
1929
1930  Changed = true;
1931  assert(OldCount != 0 && "Unreachable code?");
1932  NumRRs += OldCount - NewCount;
1933  // Set to true if we completely removed any RR pairs.
1934  AnyPairsCompletelyEliminated = NewCount == 0;
1935
1936  // We can move calls!
1937  return true;
1938}
1939
1940/// Identify pairings between the retains and releases, and delete and/or move
1941/// them.
1942bool ObjCARCOpt::PerformCodePlacement(
1943    DenseMap<const BasicBlock *, BBState> &BBStates,
1944    BlotMapVector<Value *, RRInfo> &Retains,
1945    DenseMap<Value *, RRInfo> &Releases, Module *M) {
1946  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
1947
1948  bool AnyPairsCompletelyEliminated = false;
1949  SmallVector<Instruction *, 8> DeadInsts;
1950
1951  // Visit each retain.
1952  for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
1953                                                      E = Retains.end();
1954       I != E; ++I) {
1955    Value *V = I->first;
1956    if (!V) continue; // blotted
1957
1958    Instruction *Retain = cast<Instruction>(V);
1959
1960    LLVM_DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
1961
1962    Value *Arg = GetArgRCIdentityRoot(Retain);
1963
1964    // If the object being released is in static or stack storage, we know it's
1965    // not being managed by ObjC reference counting, so we can delete pairs
1966    // regardless of what possible decrements or uses lie between them.
1967    bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
1968
1969    // A constant pointer can't be pointing to an object on the heap. It may
1970    // be reference-counted, but it won't be deleted.
1971    if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
1972      if (const GlobalVariable *GV =
1973            dyn_cast<GlobalVariable>(
1974              GetRCIdentityRoot(LI->getPointerOperand())))
1975        if (GV->isConstant())
1976          KnownSafe = true;
1977
1978    // Connect the dots between the top-down-collected RetainsToMove and
1979    // bottom-up-collected ReleasesToMove to form sets of related calls.
1980    RRInfo RetainsToMove, ReleasesToMove;
1981
1982    bool PerformMoveCalls = PairUpRetainsAndReleases(
1983        BBStates, Retains, Releases, M, Retain, DeadInsts,
1984        RetainsToMove, ReleasesToMove, Arg, KnownSafe,
1985        AnyPairsCompletelyEliminated);
1986
1987    if (PerformMoveCalls) {
1988      // Ok, everything checks out and we're all set. Let's move/delete some
1989      // code!
1990      MoveCalls(Arg, RetainsToMove, ReleasesToMove,
1991                Retains, Releases, DeadInsts, M);
1992    }
1993  }
1994
1995  // Now that we're done moving everything, we can delete the newly dead
1996  // instructions, as we no longer need them as insert points.
1997  while (!DeadInsts.empty())
1998    EraseInstruction(DeadInsts.pop_back_val());
1999
2000  return AnyPairsCompletelyEliminated;
2001}
2002
2003/// Weak pointer optimizations.
2004void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
2005  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
2006
2007  // First, do memdep-style RLE and S2L optimizations. We can't use memdep
2008  // itself because it uses AliasAnalysis and we need to do provenance
2009  // queries instead.
2010  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2011    Instruction *Inst = &*I++;
2012
2013    LLVM_DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
2014
2015    ARCInstKind Class = GetBasicARCInstKind(Inst);
2016    if (Class != ARCInstKind::LoadWeak &&
2017        Class != ARCInstKind::LoadWeakRetained)
2018      continue;
2019
2020    // Delete objc_loadWeak calls with no users.
2021    if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) {
2022      Inst->eraseFromParent();
2023      continue;
2024    }
2025
2026    // TODO: For now, just look for an earlier available version of this value
2027    // within the same block. Theoretically, we could do memdep-style non-local
2028    // analysis too, but that would want caching. A better approach would be to
2029    // use the technique that EarlyCSE uses.
2030    inst_iterator Current = std::prev(I);
2031    BasicBlock *CurrentBB = &*Current.getBasicBlockIterator();
2032    for (BasicBlock::iterator B = CurrentBB->begin(),
2033                              J = Current.getInstructionIterator();
2034         J != B; --J) {
2035      Instruction *EarlierInst = &*std::prev(J);
2036      ARCInstKind EarlierClass = GetARCInstKind(EarlierInst);
2037      switch (EarlierClass) {
2038      case ARCInstKind::LoadWeak:
2039      case ARCInstKind::LoadWeakRetained: {
2040        // If this is loading from the same pointer, replace this load's value
2041        // with that one.
2042        CallInst *Call = cast<CallInst>(Inst);
2043        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
2044        Value *Arg = Call->getArgOperand(0);
2045        Value *EarlierArg = EarlierCall->getArgOperand(0);
2046        switch (PA.getAA()->alias(Arg, EarlierArg)) {
2047        case MustAlias:
2048          Changed = true;
2049          // If the load has a builtin retain, insert a plain retain for it.
2050          if (Class == ARCInstKind::LoadWeakRetained) {
2051            Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
2052            CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
2053            CI->setTailCall();
2054          }
2055          // Zap the fully redundant load.
2056          Call->replaceAllUsesWith(EarlierCall);
2057          Call->eraseFromParent();
2058          goto clobbered;
2059        case MayAlias:
2060        case PartialAlias:
2061          goto clobbered;
2062        case NoAlias:
2063          break;
2064        }
2065        break;
2066      }
2067      case ARCInstKind::StoreWeak:
2068      case ARCInstKind::InitWeak: {
2069        // If this is storing to the same pointer and has the same size etc.
2070        // replace this load's value with the stored value.
2071        CallInst *Call = cast<CallInst>(Inst);
2072        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
2073        Value *Arg = Call->getArgOperand(0);
2074        Value *EarlierArg = EarlierCall->getArgOperand(0);
2075        switch (PA.getAA()->alias(Arg, EarlierArg)) {
2076        case MustAlias:
2077          Changed = true;
2078          // If the load has a builtin retain, insert a plain retain for it.
2079          if (Class == ARCInstKind::LoadWeakRetained) {
2080            Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
2081            CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
2082            CI->setTailCall();
2083          }
2084          // Zap the fully redundant load.
2085          Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
2086          Call->eraseFromParent();
2087          goto clobbered;
2088        case MayAlias:
2089        case PartialAlias:
2090          goto clobbered;
2091        case NoAlias:
2092          break;
2093        }
2094        break;
2095      }
2096      case ARCInstKind::MoveWeak:
2097      case ARCInstKind::CopyWeak:
2098        // TOOD: Grab the copied value.
2099        goto clobbered;
2100      case ARCInstKind::AutoreleasepoolPush:
2101      case ARCInstKind::None:
2102      case ARCInstKind::IntrinsicUser:
2103      case ARCInstKind::User:
2104        // Weak pointers are only modified through the weak entry points
2105        // (and arbitrary calls, which could call the weak entry points).
2106        break;
2107      default:
2108        // Anything else could modify the weak pointer.
2109        goto clobbered;
2110      }
2111    }
2112  clobbered:;
2113  }
2114
2115  // Then, for each destroyWeak with an alloca operand, check to see if
2116  // the alloca and all its users can be zapped.
2117  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2118    Instruction *Inst = &*I++;
2119    ARCInstKind Class = GetBasicARCInstKind(Inst);
2120    if (Class != ARCInstKind::DestroyWeak)
2121      continue;
2122
2123    CallInst *Call = cast<CallInst>(Inst);
2124    Value *Arg = Call->getArgOperand(0);
2125    if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
2126      for (User *U : Alloca->users()) {
2127        const Instruction *UserInst = cast<Instruction>(U);
2128        switch (GetBasicARCInstKind(UserInst)) {
2129        case ARCInstKind::InitWeak:
2130        case ARCInstKind::StoreWeak:
2131        case ARCInstKind::DestroyWeak:
2132          continue;
2133        default:
2134          goto done;
2135        }
2136      }
2137      Changed = true;
2138      for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) {
2139        CallInst *UserInst = cast<CallInst>(*UI++);
2140        switch (GetBasicARCInstKind(UserInst)) {
2141        case ARCInstKind::InitWeak:
2142        case ARCInstKind::StoreWeak:
2143          // These functions return their second argument.
2144          UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
2145          break;
2146        case ARCInstKind::DestroyWeak:
2147          // No return value.
2148          break;
2149        default:
2150          llvm_unreachable("alloca really is used!");
2151        }
2152        UserInst->eraseFromParent();
2153      }
2154      Alloca->eraseFromParent();
2155    done:;
2156    }
2157  }
2158}
2159
2160/// Identify program paths which execute sequences of retains and releases which
2161/// can be eliminated.
2162bool ObjCARCOpt::OptimizeSequences(Function &F) {
2163  // Releases, Retains - These are used to store the results of the main flow
2164  // analysis. These use Value* as the key instead of Instruction* so that the
2165  // map stays valid when we get around to rewriting code and calls get
2166  // replaced by arguments.
2167  DenseMap<Value *, RRInfo> Releases;
2168  BlotMapVector<Value *, RRInfo> Retains;
2169
2170  // This is used during the traversal of the function to track the
2171  // states for each identified object at each block.
2172  DenseMap<const BasicBlock *, BBState> BBStates;
2173
2174  // Analyze the CFG of the function, and all instructions.
2175  bool NestingDetected = Visit(F, BBStates, Retains, Releases);
2176
2177  if (DisableRetainReleasePairing)
2178    return false;
2179
2180  // Transform.
2181  bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
2182                                                           Releases,
2183                                                           F.getParent());
2184
2185  return AnyPairsCompletelyEliminated && NestingDetected;
2186}
2187
2188/// Check if there is a dependent call earlier that does not have anything in
2189/// between the Retain and the call that can affect the reference count of their
2190/// shared pointer argument. Note that Retain need not be in BB.
2191static bool
2192HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
2193                             SmallPtrSetImpl<Instruction *> &DepInsts,
2194                             SmallPtrSetImpl<const BasicBlock *> &Visited,
2195                             ProvenanceAnalysis &PA) {
2196  FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
2197                   DepInsts, Visited, PA);
2198  if (DepInsts.size() != 1)
2199    return false;
2200
2201  auto *Call = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2202
2203  // Check that the pointer is the return value of the call.
2204  if (!Call || Arg != Call)
2205    return false;
2206
2207  // Check that the call is a regular call.
2208  ARCInstKind Class = GetBasicARCInstKind(Call);
2209  return Class == ARCInstKind::CallOrUser || Class == ARCInstKind::Call;
2210}
2211
2212/// Find a dependent retain that precedes the given autorelease for which there
2213/// is nothing in between the two instructions that can affect the ref count of
2214/// Arg.
2215static CallInst *
2216FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
2217                                  Instruction *Autorelease,
2218                                  SmallPtrSetImpl<Instruction *> &DepInsts,
2219                                  SmallPtrSetImpl<const BasicBlock *> &Visited,
2220                                  ProvenanceAnalysis &PA) {
2221  FindDependencies(CanChangeRetainCount, Arg,
2222                   BB, Autorelease, DepInsts, Visited, PA);
2223  if (DepInsts.size() != 1)
2224    return nullptr;
2225
2226  auto *Retain = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2227
2228  // Check that we found a retain with the same argument.
2229  if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) ||
2230      GetArgRCIdentityRoot(Retain) != Arg) {
2231    return nullptr;
2232  }
2233
2234  return Retain;
2235}
2236
2237/// Look for an ``autorelease'' instruction dependent on Arg such that there are
2238/// no instructions dependent on Arg that need a positive ref count in between
2239/// the autorelease and the ret.
2240static CallInst *
2241FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
2242                                       ReturnInst *Ret,
2243                                       SmallPtrSetImpl<Instruction *> &DepInsts,
2244                                       SmallPtrSetImpl<const BasicBlock *> &V,
2245                                       ProvenanceAnalysis &PA) {
2246  FindDependencies(NeedsPositiveRetainCount, Arg,
2247                   BB, Ret, DepInsts, V, PA);
2248  if (DepInsts.size() != 1)
2249    return nullptr;
2250
2251  auto *Autorelease = dyn_cast_or_null<CallInst>(*DepInsts.begin());
2252  if (!Autorelease)
2253    return nullptr;
2254  ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease);
2255  if (!IsAutorelease(AutoreleaseClass))
2256    return nullptr;
2257  if (GetArgRCIdentityRoot(Autorelease) != Arg)
2258    return nullptr;
2259
2260  return Autorelease;
2261}
2262
2263/// Look for this pattern:
2264/// \code
2265///    %call = call i8* @something(...)
2266///    %2 = call i8* @objc_retain(i8* %call)
2267///    %3 = call i8* @objc_autorelease(i8* %2)
2268///    ret i8* %3
2269/// \endcode
2270/// And delete the retain and autorelease.
2271void ObjCARCOpt::OptimizeReturns(Function &F) {
2272  if (!F.getReturnType()->isPointerTy())
2273    return;
2274
2275  LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
2276
2277  SmallPtrSet<Instruction *, 4> DependingInstructions;
2278  SmallPtrSet<const BasicBlock *, 4> Visited;
2279  for (BasicBlock &BB: F) {
2280    ReturnInst *Ret = dyn_cast<ReturnInst>(&BB.back());
2281    if (!Ret)
2282      continue;
2283
2284    LLVM_DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
2285
2286    const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0));
2287
2288    // Look for an ``autorelease'' instruction that is a predecessor of Ret and
2289    // dependent on Arg such that there are no instructions dependent on Arg
2290    // that need a positive ref count in between the autorelease and Ret.
2291    CallInst *Autorelease = FindPredecessorAutoreleaseWithSafePath(
2292        Arg, &BB, Ret, DependingInstructions, Visited, PA);
2293    DependingInstructions.clear();
2294    Visited.clear();
2295
2296    if (!Autorelease)
2297      continue;
2298
2299    CallInst *Retain = FindPredecessorRetainWithSafePath(
2300        Arg, Autorelease->getParent(), Autorelease, DependingInstructions,
2301        Visited, PA);
2302    DependingInstructions.clear();
2303    Visited.clear();
2304
2305    if (!Retain)
2306      continue;
2307
2308    // Check that there is nothing that can affect the reference count
2309    // between the retain and the call.  Note that Retain need not be in BB.
2310    bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
2311                                                          DependingInstructions,
2312                                                          Visited, PA);
2313    DependingInstructions.clear();
2314    Visited.clear();
2315
2316    if (!HasSafePathToCall)
2317      continue;
2318
2319    // If so, we can zap the retain and autorelease.
2320    Changed = true;
2321    ++NumRets;
2322    LLVM_DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " << *Autorelease
2323                      << "\n");
2324    EraseInstruction(Retain);
2325    EraseInstruction(Autorelease);
2326  }
2327}
2328
2329#ifndef NDEBUG
2330void
2331ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
2332  Statistic &NumRetains =
2333      AfterOptimization ? NumRetainsAfterOpt : NumRetainsBeforeOpt;
2334  Statistic &NumReleases =
2335      AfterOptimization ? NumReleasesAfterOpt : NumReleasesBeforeOpt;
2336
2337  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2338    Instruction *Inst = &*I++;
2339    switch (GetBasicARCInstKind(Inst)) {
2340    default:
2341      break;
2342    case ARCInstKind::Retain:
2343      ++NumRetains;
2344      break;
2345    case ARCInstKind::Release:
2346      ++NumReleases;
2347      break;
2348    }
2349  }
2350}
2351#endif
2352
2353bool ObjCARCOpt::doInitialization(Module &M) {
2354  if (!EnableARCOpts)
2355    return false;
2356
2357  // If nothing in the Module uses ARC, don't do anything.
2358  Run = ModuleHasARC(M);
2359  if (!Run)
2360    return false;
2361
2362  // Intuitively, objc_retain and others are nocapture, however in practice
2363  // they are not, because they return their argument value. And objc_release
2364  // calls finalizers which can have arbitrary side effects.
2365  MDKindCache.init(&M);
2366
2367  // Initialize our runtime entry point cache.
2368  EP.init(&M);
2369
2370  return false;
2371}
2372
2373bool ObjCARCOpt::runOnFunction(Function &F) {
2374  if (!EnableARCOpts)
2375    return false;
2376
2377  // If nothing in the Module uses ARC, don't do anything.
2378  if (!Run)
2379    return false;
2380
2381  Changed = false;
2382
2383  LLVM_DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName()
2384                    << " >>>"
2385                       "\n");
2386
2387  PA.setAA(&getAnalysis<AAResultsWrapperPass>().getAAResults());
2388
2389#ifndef NDEBUG
2390  if (AreStatisticsEnabled()) {
2391    GatherStatistics(F, false);
2392  }
2393#endif
2394
2395  // This pass performs several distinct transformations. As a compile-time aid
2396  // when compiling code that isn't ObjC, skip these if the relevant ObjC
2397  // library functions aren't declared.
2398
2399  // Preliminary optimizations. This also computes UsedInThisFunction.
2400  OptimizeIndividualCalls(F);
2401
2402  // Optimizations for weak pointers.
2403  if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) |
2404                            (1 << unsigned(ARCInstKind::LoadWeakRetained)) |
2405                            (1 << unsigned(ARCInstKind::StoreWeak)) |
2406                            (1 << unsigned(ARCInstKind::InitWeak)) |
2407                            (1 << unsigned(ARCInstKind::CopyWeak)) |
2408                            (1 << unsigned(ARCInstKind::MoveWeak)) |
2409                            (1 << unsigned(ARCInstKind::DestroyWeak))))
2410    OptimizeWeakCalls(F);
2411
2412  // Optimizations for retain+release pairs.
2413  if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) |
2414                            (1 << unsigned(ARCInstKind::RetainRV)) |
2415                            (1 << unsigned(ARCInstKind::RetainBlock))))
2416    if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release)))
2417      // Run OptimizeSequences until it either stops making changes or
2418      // no retain+release pair nesting is detected.
2419      while (OptimizeSequences(F)) {}
2420
2421  // Optimizations if objc_autorelease is used.
2422  if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) |
2423                            (1 << unsigned(ARCInstKind::AutoreleaseRV))))
2424    OptimizeReturns(F);
2425
2426  // Gather statistics after optimization.
2427#ifndef NDEBUG
2428  if (AreStatisticsEnabled()) {
2429    GatherStatistics(F, true);
2430  }
2431#endif
2432
2433  LLVM_DEBUG(dbgs() << "\n");
2434
2435  return Changed;
2436}
2437
2438void ObjCARCOpt::releaseMemory() {
2439  PA.clear();
2440}
2441
2442/// @}
2443///
2444