1//===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements an _extremely_ simple interprocedural constant
10// propagation pass.  It could certainly be improved in many different ways,
11// like using a worklist.  This pass makes arguments dead, but does not remove
12// them.  The existing dead argument elimination pass should be run after this
13// to clean up the mess.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/CallSite.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/Instructions.h"
23#include "llvm/IR/Module.h"
24#include "llvm/InitializePasses.h"
25#include "llvm/Pass.h"
26#include "llvm/Transforms/IPO.h"
27using namespace llvm;
28
29#define DEBUG_TYPE "ipconstprop"
30
31STATISTIC(NumArgumentsProped, "Number of args turned into constants");
32STATISTIC(NumReturnValProped, "Number of return values turned into constants");
33
34namespace {
35  /// IPCP - The interprocedural constant propagation pass
36  ///
37  struct IPCP : public ModulePass {
38    static char ID; // Pass identification, replacement for typeid
39    IPCP() : ModulePass(ID) {
40      initializeIPCPPass(*PassRegistry::getPassRegistry());
41    }
42
43    bool runOnModule(Module &M) override;
44  };
45}
46
47/// PropagateConstantsIntoArguments - Look at all uses of the specified
48/// function.  If all uses are direct call sites, and all pass a particular
49/// constant in for an argument, propagate that constant in as the argument.
50///
51static bool PropagateConstantsIntoArguments(Function &F) {
52  if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
53
54  // For each argument, keep track of its constant value and whether it is a
55  // constant or not.  The bool is driven to true when found to be non-constant.
56  SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
57  ArgumentConstants.resize(F.arg_size());
58
59  unsigned NumNonconstant = 0;
60  for (Use &U : F.uses()) {
61    User *UR = U.getUser();
62    // Ignore blockaddress uses.
63    if (isa<BlockAddress>(UR)) continue;
64
65    // If no abstract call site was created we did not understand the use, bail.
66    AbstractCallSite ACS(&U);
67    if (!ACS)
68      return false;
69
70    // Mismatched argument count is undefined behavior. Simply bail out to avoid
71    // handling of such situations below (avoiding asserts/crashes).
72    unsigned NumActualArgs = ACS.getNumArgOperands();
73    if (F.isVarArg() ? ArgumentConstants.size() > NumActualArgs
74                     : ArgumentConstants.size() != NumActualArgs)
75      return false;
76
77    // Check out all of the potentially constant arguments.  Note that we don't
78    // inspect varargs here.
79    Function::arg_iterator Arg = F.arg_begin();
80    for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++Arg) {
81
82      // If this argument is known non-constant, ignore it.
83      if (ArgumentConstants[i].second)
84        continue;
85
86      Value *V = ACS.getCallArgOperand(i);
87      Constant *C = dyn_cast_or_null<Constant>(V);
88
89      // Mismatched argument type is undefined behavior. Simply bail out to avoid
90      // handling of such situations below (avoiding asserts/crashes).
91      if (C && Arg->getType() != C->getType())
92        return false;
93
94      // We can only propagate thread independent values through callbacks.
95      // This is different to direct/indirect call sites because for them we
96      // know the thread executing the caller and callee is the same. For
97      // callbacks this is not guaranteed, thus a thread dependent value could
98      // be different for the caller and callee, making it invalid to propagate.
99      if (C && ACS.isCallbackCall() && C->isThreadDependent()) {
100        // Argument became non-constant. If all arguments are non-constant now,
101        // give up on this function.
102        if (++NumNonconstant == ArgumentConstants.size())
103          return false;
104
105        ArgumentConstants[i].second = true;
106        continue;
107      }
108
109      if (C && ArgumentConstants[i].first == nullptr) {
110        ArgumentConstants[i].first = C;   // First constant seen.
111      } else if (C && ArgumentConstants[i].first == C) {
112        // Still the constant value we think it is.
113      } else if (V == &*Arg) {
114        // Ignore recursive calls passing argument down.
115      } else {
116        // Argument became non-constant.  If all arguments are non-constant now,
117        // give up on this function.
118        if (++NumNonconstant == ArgumentConstants.size())
119          return false;
120        ArgumentConstants[i].second = true;
121      }
122    }
123  }
124
125  // If we got to this point, there is a constant argument!
126  assert(NumNonconstant != ArgumentConstants.size());
127  bool MadeChange = false;
128  Function::arg_iterator AI = F.arg_begin();
129  for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
130    // Do we have a constant argument?
131    if (ArgumentConstants[i].second || AI->use_empty() ||
132        AI->hasInAllocaAttr() || (AI->hasByValAttr() && !F.onlyReadsMemory()))
133      continue;
134
135    Value *V = ArgumentConstants[i].first;
136    if (!V) V = UndefValue::get(AI->getType());
137    AI->replaceAllUsesWith(V);
138    ++NumArgumentsProped;
139    MadeChange = true;
140  }
141  return MadeChange;
142}
143
144
145// Check to see if this function returns one or more constants. If so, replace
146// all callers that use those return values with the constant value. This will
147// leave in the actual return values and instructions, but deadargelim will
148// clean that up.
149//
150// Additionally if a function always returns one of its arguments directly,
151// callers will be updated to use the value they pass in directly instead of
152// using the return value.
153static bool PropagateConstantReturn(Function &F) {
154  if (F.getReturnType()->isVoidTy())
155    return false; // No return value.
156
157  // We can infer and propagate the return value only when we know that the
158  // definition we'll get at link time is *exactly* the definition we see now.
159  // For more details, see GlobalValue::mayBeDerefined.
160  if (!F.isDefinitionExact())
161    return false;
162
163  // Don't touch naked functions. The may contain asm returning
164  // value we don't see, so we may end up interprocedurally propagating
165  // the return value incorrectly.
166  if (F.hasFnAttribute(Attribute::Naked))
167    return false;
168
169  // Check to see if this function returns a constant.
170  SmallVector<Value *,4> RetVals;
171  StructType *STy = dyn_cast<StructType>(F.getReturnType());
172  if (STy)
173    for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
174      RetVals.push_back(UndefValue::get(STy->getElementType(i)));
175  else
176    RetVals.push_back(UndefValue::get(F.getReturnType()));
177
178  unsigned NumNonConstant = 0;
179  for (BasicBlock &BB : F)
180    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
181      for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
182        // Already found conflicting return values?
183        Value *RV = RetVals[i];
184        if (!RV)
185          continue;
186
187        // Find the returned value
188        Value *V;
189        if (!STy)
190          V = RI->getOperand(0);
191        else
192          V = FindInsertedValue(RI->getOperand(0), i);
193
194        if (V) {
195          // Ignore undefs, we can change them into anything
196          if (isa<UndefValue>(V))
197            continue;
198
199          // Try to see if all the rets return the same constant or argument.
200          if (isa<Constant>(V) || isa<Argument>(V)) {
201            if (isa<UndefValue>(RV)) {
202              // No value found yet? Try the current one.
203              RetVals[i] = V;
204              continue;
205            }
206            // Returning the same value? Good.
207            if (RV == V)
208              continue;
209          }
210        }
211        // Different or no known return value? Don't propagate this return
212        // value.
213        RetVals[i] = nullptr;
214        // All values non-constant? Stop looking.
215        if (++NumNonConstant == RetVals.size())
216          return false;
217      }
218    }
219
220  // If we got here, the function returns at least one constant value.  Loop
221  // over all users, replacing any uses of the return value with the returned
222  // constant.
223  bool MadeChange = false;
224  for (Use &U : F.uses()) {
225    CallSite CS(U.getUser());
226    Instruction* Call = CS.getInstruction();
227
228    // Not a call instruction or a call instruction that's not calling F
229    // directly?
230    if (!Call || !CS.isCallee(&U))
231      continue;
232
233    // Call result not used?
234    if (Call->use_empty())
235      continue;
236
237    MadeChange = true;
238
239    if (!STy) {
240      Value* New = RetVals[0];
241      if (Argument *A = dyn_cast<Argument>(New))
242        // Was an argument returned? Then find the corresponding argument in
243        // the call instruction and use that.
244        New = CS.getArgument(A->getArgNo());
245      Call->replaceAllUsesWith(New);
246      continue;
247    }
248
249    for (auto I = Call->user_begin(), E = Call->user_end(); I != E;) {
250      Instruction *Ins = cast<Instruction>(*I);
251
252      // Increment now, so we can remove the use
253      ++I;
254
255      // Find the index of the retval to replace with
256      int index = -1;
257      if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
258        if (EV->getNumIndices() == 1)
259          index = *EV->idx_begin();
260
261      // If this use uses a specific return value, and we have a replacement,
262      // replace it.
263      if (index != -1) {
264        Value *New = RetVals[index];
265        if (New) {
266          if (Argument *A = dyn_cast<Argument>(New))
267            // Was an argument returned? Then find the corresponding argument in
268            // the call instruction and use that.
269            New = CS.getArgument(A->getArgNo());
270          Ins->replaceAllUsesWith(New);
271          Ins->eraseFromParent();
272        }
273      }
274    }
275  }
276
277  if (MadeChange) ++NumReturnValProped;
278  return MadeChange;
279}
280
281char IPCP::ID = 0;
282INITIALIZE_PASS(IPCP, "ipconstprop",
283                "Interprocedural constant propagation", false, false)
284
285ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
286
287bool IPCP::runOnModule(Module &M) {
288  if (skipModule(M))
289    return false;
290
291  bool Changed = false;
292  bool LocalChange = true;
293
294  // FIXME: instead of using smart algorithms, we just iterate until we stop
295  // making changes.
296  while (LocalChange) {
297    LocalChange = false;
298    for (Function &F : M)
299      if (!F.isDeclaration()) {
300        // Delete any klingons.
301        F.removeDeadConstantUsers();
302        if (F.hasLocalLinkage())
303          LocalChange |= PropagateConstantsIntoArguments(F);
304        Changed |= PropagateConstantReturn(F);
305      }
306    Changed |= LocalChange;
307  }
308  return Changed;
309}
310