WebAssemblyLowerEmscriptenEHSjLj.cpp revision 360660
1//=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file lowers exception-related instructions and setjmp/longjmp
11/// function calls in order to use Emscripten's JavaScript try and catch
12/// mechanism.
13///
14/// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15/// try and catch syntax and relevant exception-related libraries implemented
16/// in JavaScript glue code that will be produced by Emscripten. This is similar
17/// to the current Emscripten asm.js exception handling in fastcomp. For
18/// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
19/// (Location: https://github.com/kripken/emscripten-fastcomp)
20/// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
21/// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
22/// lib/Target/JSBackend/JSBackend.cpp
23/// lib/Target/JSBackend/CallHandlers.h
24///
25/// * Exception handling
26/// This pass lowers invokes and landingpads into library functions in JS glue
27/// code. Invokes are lowered into function wrappers called invoke wrappers that
28/// exist in JS side, which wraps the original function call with JS try-catch.
29/// If an exception occurred, cxa_throw() function in JS side sets some
30/// variables (see below) so we can check whether an exception occurred from
31/// wasm code and handle it appropriately.
32///
33/// * Setjmp-longjmp handling
34/// This pass lowers setjmp to a reasonably-performant approach for emscripten.
35/// The idea is that each block with a setjmp is broken up into two parts: the
36/// part containing setjmp and the part right after the setjmp. The latter part
37/// is either reached from the setjmp, or later from a longjmp. To handle the
38/// longjmp, all calls that might longjmp are also called using invoke wrappers
39/// and thus JS / try-catch. JS longjmp() function also sets some variables so
40/// we can check / whether a longjmp occurred from wasm code. Each block with a
41/// function call that might longjmp is also split up after the longjmp call.
42/// After the longjmp call, we check whether a longjmp occurred, and if it did,
43/// which setjmp it corresponds to, and jump to the right post-setjmp block.
44/// We assume setjmp-longjmp handling always run after EH handling, which means
45/// we don't expect any exception-related instructions when SjLj runs.
46/// FIXME Currently this scheme does not support indirect call of setjmp,
47/// because of the limitation of the scheme itself. fastcomp does not support it
48/// either.
49///
50/// In detail, this pass does following things:
51///
52/// 1) Assumes the existence of global variables: __THREW__, __threwValue
53///    __THREW__ and __threwValue will be set in invoke wrappers
54///    in JS glue code. For what invoke wrappers are, refer to 3). These
55///    variables are used for both exceptions and setjmp/longjmps.
56///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
57///    means nothing occurred, 1 means an exception occurred, and other numbers
58///    mean a longjmp occurred. In the case of longjmp, __threwValue variable
59///    indicates the corresponding setjmp buffer the longjmp corresponds to.
60///
61/// * Exception handling
62///
63/// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
64///    at link time.
65///    The global variables in 1) will exist in wasm address space,
66///    but their values should be set in JS code, so these functions
67///    as interfaces to JS glue code. These functions are equivalent to the
68///    following JS functions, which actually exist in asm.js version of JS
69///    library.
70///
71///    function setThrew(threw, value) {
72///      if (__THREW__ == 0) {
73///        __THREW__ = threw;
74///        __threwValue = value;
75///      }
76///    }
77//
78///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
79///
80///    In exception handling, getTempRet0 indicates the type of an exception
81///    caught, and in setjmp/longjmp, it means the second argument to longjmp
82///    function.
83///
84/// 3) Lower
85///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
86///    into
87///      __THREW__ = 0;
88///      call @__invoke_SIG(func, arg1, arg2)
89///      %__THREW__.val = __THREW__;
90///      __THREW__ = 0;
91///      if (%__THREW__.val == 1)
92///        goto %lpad
93///      else
94///         goto %invoke.cont
95///    SIG is a mangled string generated based on the LLVM IR-level function
96///    signature. After LLVM IR types are lowered to the target wasm types,
97///    the names for these wrappers will change based on wasm types as well,
98///    as in invoke_vi (function takes an int and returns void). The bodies of
99///    these wrappers will be generated in JS glue code, and inside those
100///    wrappers we use JS try-catch to generate actual exception effects. It
101///    also calls the original callee function. An example wrapper in JS code
102///    would look like this:
103///      function invoke_vi(index,a1) {
104///        try {
105///          Module["dynCall_vi"](index,a1); // This calls original callee
106///        } catch(e) {
107///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
108///          asm["setThrew"](1, 0); // setThrew is called here
109///        }
110///      }
111///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
112///    so we can jump to the right BB based on this value.
113///
114/// 4) Lower
115///      %val = landingpad catch c1 catch c2 catch c3 ...
116///      ... use %val ...
117///    into
118///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
119///      %val = {%fmc, getTempRet0()}
120///      ... use %val ...
121///    Here N is a number calculated based on the number of clauses.
122///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
123///
124/// 5) Lower
125///      resume {%a, %b}
126///    into
127///      call @__resumeException(%a)
128///    where __resumeException() is a function in JS glue code.
129///
130/// 6) Lower
131///      call @llvm.eh.typeid.for(type) (intrinsic)
132///    into
133///      call @llvm_eh_typeid_for(type)
134///    llvm_eh_typeid_for function will be generated in JS glue code.
135///
136/// * Setjmp / Longjmp handling
137///
138/// In case calls to longjmp() exists
139///
140/// 1) Lower
141///      longjmp(buf, value)
142///    into
143///      emscripten_longjmp_jmpbuf(buf, value)
144///    emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
145///
146/// In case calls to setjmp() exists
147///
148/// 2) In the function entry that calls setjmp, initialize setjmpTable and
149///    sejmpTableSize as follows:
150///      setjmpTableSize = 4;
151///      setjmpTable = (int *) malloc(40);
152///      setjmpTable[0] = 0;
153///    setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
154///    code.
155///
156/// 3) Lower
157///      setjmp(buf)
158///    into
159///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
160///      setjmpTableSize = getTempRet0();
161///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
162///    is incrementally assigned from 0) and its label (a unique number that
163///    represents each callsite of setjmp). When we need more entries in
164///    setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
165///    return the new table address, and assign the new table size in
166///    setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
167///    buf. A BB with setjmp is split into two after setjmp call in order to
168///    make the post-setjmp BB the possible destination of longjmp BB.
169///
170///
171/// 4) Lower every call that might longjmp into
172///      __THREW__ = 0;
173///      call @__invoke_SIG(func, arg1, arg2)
174///      %__THREW__.val = __THREW__;
175///      __THREW__ = 0;
176///      if (%__THREW__.val != 0 & __threwValue != 0) {
177///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
178///                            setjmpTableSize);
179///        if (%label == 0)
180///          emscripten_longjmp(%__THREW__.val, __threwValue);
181///        setTempRet0(__threwValue);
182///      } else {
183///        %label = -1;
184///      }
185///      longjmp_result = getTempRet0();
186///      switch label {
187///        label 1: goto post-setjmp BB 1
188///        label 2: goto post-setjmp BB 2
189///        ...
190///        default: goto splitted next BB
191///      }
192///    testSetjmp examines setjmpTable to see if there is a matching setjmp
193///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
194///    will be the address of matching jmp_buf buffer and __threwValue be the
195///    second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
196///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
197///    each setjmp callsite. Label 0 means this longjmp buffer does not
198///    correspond to one of the setjmp callsites in this function, so in this
199///    case we just chain the longjmp to the caller. (Here we call
200///    emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
201///    emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
202///    emscripten_longjmp takes an int. Both of them will eventually be lowered
203///    to emscripten_longjmp in s2wasm, but here we need two signatures - we
204///    can't translate an int value to a jmp_buf.)
205///    Label -1 means no longjmp occurred. Otherwise we jump to the right
206///    post-setjmp BB based on the label.
207///
208///===----------------------------------------------------------------------===//
209
210#include "WebAssembly.h"
211#include "llvm/IR/CallSite.h"
212#include "llvm/IR/Dominators.h"
213#include "llvm/IR/IRBuilder.h"
214#include "llvm/Transforms/Utils/BasicBlockUtils.h"
215#include "llvm/Transforms/Utils/SSAUpdater.h"
216
217using namespace llvm;
218
219#define DEBUG_TYPE "wasm-lower-em-ehsjlj"
220
221static cl::list<std::string>
222    EHWhitelist("emscripten-cxx-exceptions-whitelist",
223                cl::desc("The list of function names in which Emscripten-style "
224                         "exception handling is enabled (see emscripten "
225                         "EMSCRIPTEN_CATCHING_WHITELIST options)"),
226                cl::CommaSeparated);
227
228namespace {
229class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
230  static const char *ResumeFName;
231  static const char *EHTypeIDFName;
232  static const char *EmLongjmpFName;
233  static const char *EmLongjmpJmpbufFName;
234  static const char *SaveSetjmpFName;
235  static const char *TestSetjmpFName;
236  static const char *FindMatchingCatchPrefix;
237  static const char *InvokePrefix;
238
239  bool EnableEH;   // Enable exception handling
240  bool EnableSjLj; // Enable setjmp/longjmp handling
241
242  GlobalVariable *ThrewGV = nullptr;
243  GlobalVariable *ThrewValueGV = nullptr;
244  Function *GetTempRet0Func = nullptr;
245  Function *SetTempRet0Func = nullptr;
246  Function *ResumeF = nullptr;
247  Function *EHTypeIDF = nullptr;
248  Function *EmLongjmpF = nullptr;
249  Function *EmLongjmpJmpbufF = nullptr;
250  Function *SaveSetjmpF = nullptr;
251  Function *TestSetjmpF = nullptr;
252
253  // __cxa_find_matching_catch_N functions.
254  // Indexed by the number of clauses in an original landingpad instruction.
255  DenseMap<int, Function *> FindMatchingCatches;
256  // Map of <function signature string, invoke_ wrappers>
257  StringMap<Function *> InvokeWrappers;
258  // Set of whitelisted function names for exception handling
259  std::set<std::string> EHWhitelistSet;
260
261  StringRef getPassName() const override {
262    return "WebAssembly Lower Emscripten Exceptions";
263  }
264
265  bool runEHOnFunction(Function &F);
266  bool runSjLjOnFunction(Function &F);
267  Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
268
269  template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
270  void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
271                      Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
272                      Value *&LongjmpResult, BasicBlock *&EndBB);
273  template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
274
275  bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
276  bool canLongjmp(Module &M, const Value *Callee) const;
277
278  void rebuildSSA(Function &F);
279
280public:
281  static char ID;
282
283  WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
284      : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
285    EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
286  }
287  bool runOnModule(Module &M) override;
288
289  void getAnalysisUsage(AnalysisUsage &AU) const override {
290    AU.addRequired<DominatorTreeWrapperPass>();
291  }
292};
293} // End anonymous namespace
294
295const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException";
296const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName =
297    "llvm_eh_typeid_for";
298const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName =
299    "emscripten_longjmp";
300const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName =
301    "emscripten_longjmp_jmpbuf";
302const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp";
303const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp";
304const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix =
305    "__cxa_find_matching_catch_";
306const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_";
307
308char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
309INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
310                "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
311                false, false)
312
313ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
314                                                         bool EnableSjLj) {
315  return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
316}
317
318static bool canThrow(const Value *V) {
319  if (const auto *F = dyn_cast<const Function>(V)) {
320    // Intrinsics cannot throw
321    if (F->isIntrinsic())
322      return false;
323    StringRef Name = F->getName();
324    // leave setjmp and longjmp (mostly) alone, we process them properly later
325    if (Name == "setjmp" || Name == "longjmp")
326      return false;
327    return !F->doesNotThrow();
328  }
329  // not a function, so an indirect call - can throw, we can't tell
330  return true;
331}
332
333// Get a global variable with the given name.  If it doesn't exist declare it,
334// which will generate an import and asssumes that it will exist at link time.
335static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
336                                            const char *Name) {
337
338  auto* GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty()));
339  if (!GV)
340    report_fatal_error(Twine("unable to create global: ") + Name);
341
342  return GV;
343}
344
345// Simple function name mangler.
346// This function simply takes LLVM's string representation of parameter types
347// and concatenate them with '_'. There are non-alphanumeric characters but llc
348// is ok with it, and we need to postprocess these names after the lowering
349// phase anyway.
350static std::string getSignature(FunctionType *FTy) {
351  std::string Sig;
352  raw_string_ostream OS(Sig);
353  OS << *FTy->getReturnType();
354  for (Type *ParamTy : FTy->params())
355    OS << "_" << *ParamTy;
356  if (FTy->isVarArg())
357    OS << "_...";
358  Sig = OS.str();
359  Sig.erase(remove_if(Sig, isspace), Sig.end());
360  // When s2wasm parses .s file, a comma means the end of an argument. So a
361  // mangled function name can contain any character but a comma.
362  std::replace(Sig.begin(), Sig.end(), ',', '.');
363  return Sig;
364}
365
366// Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
367// This is because a landingpad instruction contains two more arguments, a
368// personality function and a cleanup bit, and __cxa_find_matching_catch_N
369// functions are named after the number of arguments in the original landingpad
370// instruction.
371Function *
372WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
373                                                       unsigned NumClauses) {
374  if (FindMatchingCatches.count(NumClauses))
375    return FindMatchingCatches[NumClauses];
376  PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
377  SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
378  FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
379  Function *F =
380      Function::Create(FTy, GlobalValue::ExternalLinkage,
381                       FindMatchingCatchPrefix + Twine(NumClauses + 2), &M);
382  FindMatchingCatches[NumClauses] = F;
383  return F;
384}
385
386// Generate invoke wrapper seqence with preamble and postamble
387// Preamble:
388// __THREW__ = 0;
389// Postamble:
390// %__THREW__.val = __THREW__; __THREW__ = 0;
391// Returns %__THREW__.val, which indicates whether an exception is thrown (or
392// whether longjmp occurred), for future use.
393template <typename CallOrInvoke>
394Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
395  LLVMContext &C = CI->getModule()->getContext();
396
397  // If we are calling a function that is noreturn, we must remove that
398  // attribute. The code we insert here does expect it to return, after we
399  // catch the exception.
400  if (CI->doesNotReturn()) {
401    if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
402      F->removeFnAttr(Attribute::NoReturn);
403    CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
404  }
405
406  IRBuilder<> IRB(C);
407  IRB.SetInsertPoint(CI);
408
409  // Pre-invoke
410  // __THREW__ = 0;
411  IRB.CreateStore(IRB.getInt32(0), ThrewGV);
412
413  // Invoke function wrapper in JavaScript
414  SmallVector<Value *, 16> Args;
415  // Put the pointer to the callee as first argument, so it can be called
416  // within the invoke wrapper later
417  Args.push_back(CI->getCalledValue());
418  Args.append(CI->arg_begin(), CI->arg_end());
419  CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
420  NewCall->takeName(CI);
421  NewCall->setCallingConv(CI->getCallingConv());
422  NewCall->setDebugLoc(CI->getDebugLoc());
423
424  // Because we added the pointer to the callee as first argument, all
425  // argument attribute indices have to be incremented by one.
426  SmallVector<AttributeSet, 8> ArgAttributes;
427  const AttributeList &InvokeAL = CI->getAttributes();
428
429  // No attributes for the callee pointer.
430  ArgAttributes.push_back(AttributeSet());
431  // Copy the argument attributes from the original
432  for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
433    ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
434
435  // Reconstruct the AttributesList based on the vector we constructed.
436  AttributeList NewCallAL =
437      AttributeList::get(C, InvokeAL.getFnAttributes(),
438                         InvokeAL.getRetAttributes(), ArgAttributes);
439  NewCall->setAttributes(NewCallAL);
440
441  CI->replaceAllUsesWith(NewCall);
442
443  // Post-invoke
444  // %__THREW__.val = __THREW__; __THREW__ = 0;
445  Value *Threw =
446      IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val");
447  IRB.CreateStore(IRB.getInt32(0), ThrewGV);
448  return Threw;
449}
450
451// Get matching invoke wrapper based on callee signature
452template <typename CallOrInvoke>
453Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
454  Module *M = CI->getModule();
455  SmallVector<Type *, 16> ArgTys;
456  Value *Callee = CI->getCalledValue();
457  FunctionType *CalleeFTy;
458  if (auto *F = dyn_cast<Function>(Callee))
459    CalleeFTy = F->getFunctionType();
460  else {
461    auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
462    CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
463  }
464
465  std::string Sig = getSignature(CalleeFTy);
466  if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
467    return InvokeWrappers[Sig];
468
469  // Put the pointer to the callee as first argument
470  ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
471  // Add argument types
472  ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
473
474  FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
475                                        CalleeFTy->isVarArg());
476  Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
477                                 InvokePrefix + Sig, M);
478  InvokeWrappers[Sig] = F;
479  return F;
480}
481
482bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
483                                                  const Value *Callee) const {
484  if (auto *CalleeF = dyn_cast<Function>(Callee))
485    if (CalleeF->isIntrinsic())
486      return false;
487
488  // Attempting to transform inline assembly will result in something like:
489  //     call void @__invoke_void(void ()* asm ...)
490  // which is invalid because inline assembly blocks do not have addresses
491  // and can't be passed by pointer. The result is a crash with illegal IR.
492  if (isa<InlineAsm>(Callee))
493    return false;
494
495  // The reason we include malloc/free here is to exclude the malloc/free
496  // calls generated in setjmp prep / cleanup routines.
497  Function *SetjmpF = M.getFunction("setjmp");
498  Function *MallocF = M.getFunction("malloc");
499  Function *FreeF = M.getFunction("free");
500  if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF)
501    return false;
502
503  // There are functions in JS glue code
504  if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF ||
505      Callee == TestSetjmpF)
506    return false;
507
508  // __cxa_find_matching_catch_N functions cannot longjmp
509  if (Callee->getName().startswith(FindMatchingCatchPrefix))
510    return false;
511
512  // Exception-catching related functions
513  Function *BeginCatchF = M.getFunction("__cxa_begin_catch");
514  Function *EndCatchF = M.getFunction("__cxa_end_catch");
515  Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception");
516  Function *ThrowF = M.getFunction("__cxa_throw");
517  Function *TerminateF = M.getFunction("__clang_call_terminate");
518  if (Callee == BeginCatchF || Callee == EndCatchF ||
519      Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF ||
520      Callee == GetTempRet0Func || Callee == SetTempRet0Func)
521    return false;
522
523  // Otherwise we don't know
524  return true;
525}
526
527// Generate testSetjmp function call seqence with preamble and postamble.
528// The code this generates is equivalent to the following JavaScript code:
529// if (%__THREW__.val != 0 & threwValue != 0) {
530//   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
531//   if (%label == 0)
532//     emscripten_longjmp(%__THREW__.val, threwValue);
533//   setTempRet0(threwValue);
534// } else {
535//   %label = -1;
536// }
537// %longjmp_result = getTempRet0();
538//
539// As output parameters. returns %label, %longjmp_result, and the BB the last
540// instruction (%longjmp_result = ...) is in.
541void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
542    BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
543    Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
544    BasicBlock *&EndBB) {
545  Function *F = BB->getParent();
546  LLVMContext &C = BB->getModule()->getContext();
547  IRBuilder<> IRB(C);
548  IRB.SetInsertPoint(InsertPt);
549
550  // if (%__THREW__.val != 0 & threwValue != 0)
551  IRB.SetInsertPoint(BB);
552  BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
553  BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
554  BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
555  Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
556  Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
557                                     ThrewValueGV->getName() + ".val");
558  Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
559  Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
560  IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
561
562  // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
563  // if (%label == 0)
564  IRB.SetInsertPoint(ThenBB1);
565  BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
566  BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
567  Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
568                                       Threw->getName() + ".i32p");
569  Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt,
570                                      ThrewInt->getName() + ".loaded");
571  Value *ThenLabel = IRB.CreateCall(
572      TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
573  Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
574  IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
575
576  // emscripten_longjmp(%__THREW__.val, threwValue);
577  IRB.SetInsertPoint(ThenBB2);
578  IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
579  IRB.CreateUnreachable();
580
581  // setTempRet0(threwValue);
582  IRB.SetInsertPoint(EndBB2);
583  IRB.CreateCall(SetTempRet0Func, ThrewValue);
584  IRB.CreateBr(EndBB1);
585
586  IRB.SetInsertPoint(ElseBB1);
587  IRB.CreateBr(EndBB1);
588
589  // longjmp_result = getTempRet0();
590  IRB.SetInsertPoint(EndBB1);
591  PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
592  LabelPHI->addIncoming(ThenLabel, EndBB2);
593
594  LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
595
596  // Output parameter assignment
597  Label = LabelPHI;
598  EndBB = EndBB1;
599  LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
600}
601
602void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
603  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
604  DT.recalculate(F); // CFG has been changed
605  SSAUpdater SSA;
606  for (BasicBlock &BB : F) {
607    for (Instruction &I : BB) {
608      for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
609        Use &U = *UI;
610        ++UI;
611        SSA.Initialize(I.getType(), I.getName());
612        SSA.AddAvailableValue(&BB, &I);
613        auto *User = cast<Instruction>(U.getUser());
614        if (User->getParent() == &BB)
615          continue;
616
617        if (auto *UserPN = dyn_cast<PHINode>(User))
618          if (UserPN->getIncomingBlock(U) == &BB)
619            continue;
620
621        if (DT.dominates(&I, User))
622          continue;
623        SSA.RewriteUseAfterInsertions(U);
624      }
625    }
626  }
627}
628
629bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
630  LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
631
632  LLVMContext &C = M.getContext();
633  IRBuilder<> IRB(C);
634
635  Function *SetjmpF = M.getFunction("setjmp");
636  Function *LongjmpF = M.getFunction("longjmp");
637  bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
638  bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
639  bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
640
641  // Declare (or get) global variables __THREW__, __threwValue, and
642  // getTempRet0/setTempRet0 function which are used in common for both
643  // exception handling and setjmp/longjmp handling
644  ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__");
645  ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue");
646  GetTempRet0Func =
647      Function::Create(FunctionType::get(IRB.getInt32Ty(), false),
648                       GlobalValue::ExternalLinkage, "getTempRet0", &M);
649  SetTempRet0Func = Function::Create(
650      FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
651      GlobalValue::ExternalLinkage, "setTempRet0", &M);
652  GetTempRet0Func->setDoesNotThrow();
653  SetTempRet0Func->setDoesNotThrow();
654
655  bool Changed = false;
656
657  // Exception handling
658  if (EnableEH) {
659    // Register __resumeException function
660    FunctionType *ResumeFTy =
661        FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
662    ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
663                               ResumeFName, &M);
664
665    // Register llvm_eh_typeid_for function
666    FunctionType *EHTypeIDTy =
667        FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
668    EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
669                                 EHTypeIDFName, &M);
670
671    for (Function &F : M) {
672      if (F.isDeclaration())
673        continue;
674      Changed |= runEHOnFunction(F);
675    }
676  }
677
678  // Setjmp/longjmp handling
679  if (DoSjLj) {
680    Changed = true; // We have setjmp or longjmp somewhere
681
682    if (LongjmpF) {
683      // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
684      // defined in JS code
685      EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
686                                          GlobalValue::ExternalLinkage,
687                                          EmLongjmpJmpbufFName, &M);
688
689      LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
690    }
691
692    if (SetjmpF) {
693      // Register saveSetjmp function
694      FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
695      SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
696                                       IRB.getInt32Ty(), Type::getInt32PtrTy(C),
697                                       IRB.getInt32Ty()};
698      FunctionType *FTy =
699          FunctionType::get(Type::getInt32PtrTy(C), Params, false);
700      SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
701                                     SaveSetjmpFName, &M);
702
703      // Register testSetjmp function
704      Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
705      FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
706      TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
707                                     TestSetjmpFName, &M);
708
709      FTy = FunctionType::get(IRB.getVoidTy(),
710                              {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
711      EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
712                                    EmLongjmpFName, &M);
713
714      // Only traverse functions that uses setjmp in order not to insert
715      // unnecessary prep / cleanup code in every function
716      SmallPtrSet<Function *, 8> SetjmpUsers;
717      for (User *U : SetjmpF->users()) {
718        auto *UI = cast<Instruction>(U);
719        SetjmpUsers.insert(UI->getFunction());
720      }
721      for (Function *F : SetjmpUsers)
722        runSjLjOnFunction(*F);
723    }
724  }
725
726  if (!Changed) {
727    // Delete unused global variables and functions
728    if (ResumeF)
729      ResumeF->eraseFromParent();
730    if (EHTypeIDF)
731      EHTypeIDF->eraseFromParent();
732    if (EmLongjmpF)
733      EmLongjmpF->eraseFromParent();
734    if (SaveSetjmpF)
735      SaveSetjmpF->eraseFromParent();
736    if (TestSetjmpF)
737      TestSetjmpF->eraseFromParent();
738    return false;
739  }
740
741  return true;
742}
743
744bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
745  Module &M = *F.getParent();
746  LLVMContext &C = F.getContext();
747  IRBuilder<> IRB(C);
748  bool Changed = false;
749  SmallVector<Instruction *, 64> ToErase;
750  SmallPtrSet<LandingPadInst *, 32> LandingPads;
751  bool AllowExceptions =
752      areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
753
754  for (BasicBlock &BB : F) {
755    auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
756    if (!II)
757      continue;
758    Changed = true;
759    LandingPads.insert(II->getLandingPadInst());
760    IRB.SetInsertPoint(II);
761
762    bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
763    if (NeedInvoke) {
764      // Wrap invoke with invoke wrapper and generate preamble/postamble
765      Value *Threw = wrapInvoke(II);
766      ToErase.push_back(II);
767
768      // Insert a branch based on __THREW__ variable
769      Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
770      IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
771
772    } else {
773      // This can't throw, and we don't need this invoke, just replace it with a
774      // call+branch
775      SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
776      CallInst *NewCall =
777          IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args);
778      NewCall->takeName(II);
779      NewCall->setCallingConv(II->getCallingConv());
780      NewCall->setDebugLoc(II->getDebugLoc());
781      NewCall->setAttributes(II->getAttributes());
782      II->replaceAllUsesWith(NewCall);
783      ToErase.push_back(II);
784
785      IRB.CreateBr(II->getNormalDest());
786
787      // Remove any PHI node entries from the exception destination
788      II->getUnwindDest()->removePredecessor(&BB);
789    }
790  }
791
792  // Process resume instructions
793  for (BasicBlock &BB : F) {
794    // Scan the body of the basic block for resumes
795    for (Instruction &I : BB) {
796      auto *RI = dyn_cast<ResumeInst>(&I);
797      if (!RI)
798        continue;
799
800      // Split the input into legal values
801      Value *Input = RI->getValue();
802      IRB.SetInsertPoint(RI);
803      Value *Low = IRB.CreateExtractValue(Input, 0, "low");
804      // Create a call to __resumeException function
805      IRB.CreateCall(ResumeF, {Low});
806      // Add a terminator to the block
807      IRB.CreateUnreachable();
808      ToErase.push_back(RI);
809    }
810  }
811
812  // Process llvm.eh.typeid.for intrinsics
813  for (BasicBlock &BB : F) {
814    for (Instruction &I : BB) {
815      auto *CI = dyn_cast<CallInst>(&I);
816      if (!CI)
817        continue;
818      const Function *Callee = CI->getCalledFunction();
819      if (!Callee)
820        continue;
821      if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
822        continue;
823
824      IRB.SetInsertPoint(CI);
825      CallInst *NewCI =
826          IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
827      CI->replaceAllUsesWith(NewCI);
828      ToErase.push_back(CI);
829    }
830  }
831
832  // Look for orphan landingpads, can occur in blocks with no predecessors
833  for (BasicBlock &BB : F) {
834    Instruction *I = BB.getFirstNonPHI();
835    if (auto *LPI = dyn_cast<LandingPadInst>(I))
836      LandingPads.insert(LPI);
837  }
838
839  // Handle all the landingpad for this function together, as multiple invokes
840  // may share a single lp
841  for (LandingPadInst *LPI : LandingPads) {
842    IRB.SetInsertPoint(LPI);
843    SmallVector<Value *, 16> FMCArgs;
844    for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
845      Constant *Clause = LPI->getClause(I);
846      // As a temporary workaround for the lack of aggregate varargs support
847      // in the interface between JS and wasm, break out filter operands into
848      // their component elements.
849      if (LPI->isFilter(I)) {
850        auto *ATy = cast<ArrayType>(Clause->getType());
851        for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) {
852          Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter");
853          FMCArgs.push_back(EV);
854        }
855      } else
856        FMCArgs.push_back(Clause);
857    }
858
859    // Create a call to __cxa_find_matching_catch_N function
860    Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
861    CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
862    Value *Undef = UndefValue::get(LPI->getType());
863    Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
864    Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
865    Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
866
867    LPI->replaceAllUsesWith(Pair1);
868    ToErase.push_back(LPI);
869  }
870
871  // Erase everything we no longer need in this function
872  for (Instruction *I : ToErase)
873    I->eraseFromParent();
874
875  return Changed;
876}
877
878bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
879  Module &M = *F.getParent();
880  LLVMContext &C = F.getContext();
881  IRBuilder<> IRB(C);
882  SmallVector<Instruction *, 64> ToErase;
883  // Vector of %setjmpTable values
884  std::vector<Instruction *> SetjmpTableInsts;
885  // Vector of %setjmpTableSize values
886  std::vector<Instruction *> SetjmpTableSizeInsts;
887
888  // Setjmp preparation
889
890  // This instruction effectively means %setjmpTableSize = 4.
891  // We create this as an instruction intentionally, and we don't want to fold
892  // this instruction to a constant 4, because this value will be used in
893  // SSAUpdater.AddAvailableValue(...) later.
894  BasicBlock &EntryBB = F.getEntryBlock();
895  BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
896      Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
897      &*EntryBB.getFirstInsertionPt());
898  // setjmpTable = (int *) malloc(40);
899  Instruction *SetjmpTable = CallInst::CreateMalloc(
900      SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
901      nullptr, nullptr, "setjmpTable");
902  // setjmpTable[0] = 0;
903  IRB.SetInsertPoint(SetjmpTableSize);
904  IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
905  SetjmpTableInsts.push_back(SetjmpTable);
906  SetjmpTableSizeInsts.push_back(SetjmpTableSize);
907
908  // Setjmp transformation
909  std::vector<PHINode *> SetjmpRetPHIs;
910  Function *SetjmpF = M.getFunction("setjmp");
911  for (User *U : SetjmpF->users()) {
912    auto *CI = dyn_cast<CallInst>(U);
913    if (!CI)
914      report_fatal_error("Does not support indirect calls to setjmp");
915
916    BasicBlock *BB = CI->getParent();
917    if (BB->getParent() != &F) // in other function
918      continue;
919
920    // The tail is everything right after the call, and will be reached once
921    // when setjmp is called, and later when longjmp returns to the setjmp
922    BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
923    // Add a phi to the tail, which will be the output of setjmp, which
924    // indicates if this is the first call or a longjmp back. The phi directly
925    // uses the right value based on where we arrive from
926    IRB.SetInsertPoint(Tail->getFirstNonPHI());
927    PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
928
929    // setjmp initial call returns 0
930    SetjmpRet->addIncoming(IRB.getInt32(0), BB);
931    // The proper output is now this, not the setjmp call itself
932    CI->replaceAllUsesWith(SetjmpRet);
933    // longjmp returns to the setjmp will add themselves to this phi
934    SetjmpRetPHIs.push_back(SetjmpRet);
935
936    // Fix call target
937    // Our index in the function is our place in the array + 1 to avoid index
938    // 0, because index 0 means the longjmp is not ours to handle.
939    IRB.SetInsertPoint(CI);
940    Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
941                     SetjmpTable, SetjmpTableSize};
942    Instruction *NewSetjmpTable =
943        IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
944    Instruction *NewSetjmpTableSize =
945        IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
946    SetjmpTableInsts.push_back(NewSetjmpTable);
947    SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
948    ToErase.push_back(CI);
949  }
950
951  // Update each call that can longjmp so it can return to a setjmp where
952  // relevant.
953
954  // Because we are creating new BBs while processing and don't want to make
955  // all these newly created BBs candidates again for longjmp processing, we
956  // first make the vector of candidate BBs.
957  std::vector<BasicBlock *> BBs;
958  for (BasicBlock &BB : F)
959    BBs.push_back(&BB);
960
961  // BBs.size() will change within the loop, so we query it every time
962  for (unsigned I = 0; I < BBs.size(); I++) {
963    BasicBlock *BB = BBs[I];
964    for (Instruction &I : *BB) {
965      assert(!isa<InvokeInst>(&I));
966      auto *CI = dyn_cast<CallInst>(&I);
967      if (!CI)
968        continue;
969
970      const Value *Callee = CI->getCalledValue();
971      if (!canLongjmp(M, Callee))
972        continue;
973
974      Value *Threw = nullptr;
975      BasicBlock *Tail;
976      if (Callee->getName().startswith(InvokePrefix)) {
977        // If invoke wrapper has already been generated for this call in
978        // previous EH phase, search for the load instruction
979        // %__THREW__.val = __THREW__;
980        // in postamble after the invoke wrapper call
981        LoadInst *ThrewLI = nullptr;
982        StoreInst *ThrewResetSI = nullptr;
983        for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
984             I != IE; ++I) {
985          if (auto *LI = dyn_cast<LoadInst>(I))
986            if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
987              if (GV == ThrewGV) {
988                Threw = ThrewLI = LI;
989                break;
990              }
991        }
992        // Search for the store instruction after the load above
993        // __THREW__ = 0;
994        for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
995             I != IE; ++I) {
996          if (auto *SI = dyn_cast<StoreInst>(I))
997            if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
998              if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
999                ThrewResetSI = SI;
1000                break;
1001              }
1002        }
1003        assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1004        assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1005        Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1006
1007      } else {
1008        // Wrap call with invoke wrapper and generate preamble/postamble
1009        Threw = wrapInvoke(CI);
1010        ToErase.push_back(CI);
1011        Tail = SplitBlock(BB, CI->getNextNode());
1012      }
1013
1014      // We need to replace the terminator in Tail - SplitBlock makes BB go
1015      // straight to Tail, we need to check if a longjmp occurred, and go to the
1016      // right setjmp-tail if so
1017      ToErase.push_back(BB->getTerminator());
1018
1019      // Generate a function call to testSetjmp function and preamble/postamble
1020      // code to figure out (1) whether longjmp occurred (2) if longjmp
1021      // occurred, which setjmp it corresponds to
1022      Value *Label = nullptr;
1023      Value *LongjmpResult = nullptr;
1024      BasicBlock *EndBB = nullptr;
1025      wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1026                     LongjmpResult, EndBB);
1027      assert(Label && LongjmpResult && EndBB);
1028
1029      // Create switch instruction
1030      IRB.SetInsertPoint(EndBB);
1031      SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1032      // -1 means no longjmp happened, continue normally (will hit the default
1033      // switch case). 0 means a longjmp that is not ours to handle, needs a
1034      // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1035      // 0).
1036      for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1037        SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1038        SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1039      }
1040
1041      // We are splitting the block here, and must continue to find other calls
1042      // in the block - which is now split. so continue to traverse in the Tail
1043      BBs.push_back(Tail);
1044    }
1045  }
1046
1047  // Erase everything we no longer need in this function
1048  for (Instruction *I : ToErase)
1049    I->eraseFromParent();
1050
1051  // Free setjmpTable buffer before each return instruction
1052  for (BasicBlock &BB : F) {
1053    Instruction *TI = BB.getTerminator();
1054    if (isa<ReturnInst>(TI))
1055      CallInst::CreateFree(SetjmpTable, TI);
1056  }
1057
1058  // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1059  // (when buffer reallocation occurs)
1060  // entry:
1061  //   setjmpTableSize = 4;
1062  //   setjmpTable = (int *) malloc(40);
1063  //   setjmpTable[0] = 0;
1064  // ...
1065  // somebb:
1066  //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1067  //   setjmpTableSize = getTempRet0();
1068  // So we need to make sure the SSA for these variables is valid so that every
1069  // saveSetjmp and testSetjmp calls have the correct arguments.
1070  SSAUpdater SetjmpTableSSA;
1071  SSAUpdater SetjmpTableSizeSSA;
1072  SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1073  SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1074  for (Instruction *I : SetjmpTableInsts)
1075    SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1076  for (Instruction *I : SetjmpTableSizeInsts)
1077    SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1078
1079  for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1080       UI != UE;) {
1081    // Grab the use before incrementing the iterator.
1082    Use &U = *UI;
1083    // Increment the iterator before removing the use from the list.
1084    ++UI;
1085    if (auto *I = dyn_cast<Instruction>(U.getUser()))
1086      if (I->getParent() != &EntryBB)
1087        SetjmpTableSSA.RewriteUse(U);
1088  }
1089  for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1090       UI != UE;) {
1091    Use &U = *UI;
1092    ++UI;
1093    if (auto *I = dyn_cast<Instruction>(U.getUser()))
1094      if (I->getParent() != &EntryBB)
1095        SetjmpTableSizeSSA.RewriteUse(U);
1096  }
1097
1098  // Finally, our modifications to the cfg can break dominance of SSA variables.
1099  // For example, in this code,
1100  // if (x()) { .. setjmp() .. }
1101  // if (y()) { .. longjmp() .. }
1102  // We must split the longjmp block, and it can jump into the block splitted
1103  // from setjmp one. But that means that when we split the setjmp block, it's
1104  // first part no longer dominates its second part - there is a theoretically
1105  // possible control flow path where x() is false, then y() is true and we
1106  // reach the second part of the setjmp block, without ever reaching the first
1107  // part. So, we rebuild SSA form here.
1108  rebuildSSA(F);
1109  return true;
1110}
1111