1//=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file lowers exception-related instructions and setjmp/longjmp
11/// function calls in order to use Emscripten's JavaScript try and catch
12/// mechanism.
13///
14/// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15/// try and catch syntax and relevant exception-related libraries implemented
16/// in JavaScript glue code that will be produced by Emscripten. This is similar
17/// to the current Emscripten asm.js exception handling in fastcomp. For
18/// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
19/// (Location: https://github.com/kripken/emscripten-fastcomp)
20/// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
21/// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
22/// lib/Target/JSBackend/JSBackend.cpp
23/// lib/Target/JSBackend/CallHandlers.h
24///
25/// * Exception handling
26/// This pass lowers invokes and landingpads into library functions in JS glue
27/// code. Invokes are lowered into function wrappers called invoke wrappers that
28/// exist in JS side, which wraps the original function call with JS try-catch.
29/// If an exception occurred, cxa_throw() function in JS side sets some
30/// variables (see below) so we can check whether an exception occurred from
31/// wasm code and handle it appropriately.
32///
33/// * Setjmp-longjmp handling
34/// This pass lowers setjmp to a reasonably-performant approach for emscripten.
35/// The idea is that each block with a setjmp is broken up into two parts: the
36/// part containing setjmp and the part right after the setjmp. The latter part
37/// is either reached from the setjmp, or later from a longjmp. To handle the
38/// longjmp, all calls that might longjmp are also called using invoke wrappers
39/// and thus JS / try-catch. JS longjmp() function also sets some variables so
40/// we can check / whether a longjmp occurred from wasm code. Each block with a
41/// function call that might longjmp is also split up after the longjmp call.
42/// After the longjmp call, we check whether a longjmp occurred, and if it did,
43/// which setjmp it corresponds to, and jump to the right post-setjmp block.
44/// We assume setjmp-longjmp handling always run after EH handling, which means
45/// we don't expect any exception-related instructions when SjLj runs.
46/// FIXME Currently this scheme does not support indirect call of setjmp,
47/// because of the limitation of the scheme itself. fastcomp does not support it
48/// either.
49///
50/// In detail, this pass does following things:
51///
52/// 1) Assumes the existence of global variables: __THREW__, __threwValue
53///    __THREW__ and __threwValue will be set in invoke wrappers
54///    in JS glue code. For what invoke wrappers are, refer to 3). These
55///    variables are used for both exceptions and setjmp/longjmps.
56///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
57///    means nothing occurred, 1 means an exception occurred, and other numbers
58///    mean a longjmp occurred. In the case of longjmp, __threwValue variable
59///    indicates the corresponding setjmp buffer the longjmp corresponds to.
60///
61/// * Exception handling
62///
63/// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
64///    at link time.
65///    The global variables in 1) will exist in wasm address space,
66///    but their values should be set in JS code, so these functions
67///    as interfaces to JS glue code. These functions are equivalent to the
68///    following JS functions, which actually exist in asm.js version of JS
69///    library.
70///
71///    function setThrew(threw, value) {
72///      if (__THREW__ == 0) {
73///        __THREW__ = threw;
74///        __threwValue = value;
75///      }
76///    }
77//
78///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
79///
80///    In exception handling, getTempRet0 indicates the type of an exception
81///    caught, and in setjmp/longjmp, it means the second argument to longjmp
82///    function.
83///
84/// 3) Lower
85///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
86///    into
87///      __THREW__ = 0;
88///      call @__invoke_SIG(func, arg1, arg2)
89///      %__THREW__.val = __THREW__;
90///      __THREW__ = 0;
91///      if (%__THREW__.val == 1)
92///        goto %lpad
93///      else
94///         goto %invoke.cont
95///    SIG is a mangled string generated based on the LLVM IR-level function
96///    signature. After LLVM IR types are lowered to the target wasm types,
97///    the names for these wrappers will change based on wasm types as well,
98///    as in invoke_vi (function takes an int and returns void). The bodies of
99///    these wrappers will be generated in JS glue code, and inside those
100///    wrappers we use JS try-catch to generate actual exception effects. It
101///    also calls the original callee function. An example wrapper in JS code
102///    would look like this:
103///      function invoke_vi(index,a1) {
104///        try {
105///          Module["dynCall_vi"](index,a1); // This calls original callee
106///        } catch(e) {
107///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
108///          asm["setThrew"](1, 0); // setThrew is called here
109///        }
110///      }
111///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
112///    so we can jump to the right BB based on this value.
113///
114/// 4) Lower
115///      %val = landingpad catch c1 catch c2 catch c3 ...
116///      ... use %val ...
117///    into
118///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
119///      %val = {%fmc, getTempRet0()}
120///      ... use %val ...
121///    Here N is a number calculated based on the number of clauses.
122///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
123///
124/// 5) Lower
125///      resume {%a, %b}
126///    into
127///      call @__resumeException(%a)
128///    where __resumeException() is a function in JS glue code.
129///
130/// 6) Lower
131///      call @llvm.eh.typeid.for(type) (intrinsic)
132///    into
133///      call @llvm_eh_typeid_for(type)
134///    llvm_eh_typeid_for function will be generated in JS glue code.
135///
136/// * Setjmp / Longjmp handling
137///
138/// In case calls to longjmp() exists
139///
140/// 1) Lower
141///      longjmp(buf, value)
142///    into
143///      emscripten_longjmp_jmpbuf(buf, value)
144///    emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
145///
146/// In case calls to setjmp() exists
147///
148/// 2) In the function entry that calls setjmp, initialize setjmpTable and
149///    sejmpTableSize as follows:
150///      setjmpTableSize = 4;
151///      setjmpTable = (int *) malloc(40);
152///      setjmpTable[0] = 0;
153///    setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
154///    code.
155///
156/// 3) Lower
157///      setjmp(buf)
158///    into
159///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
160///      setjmpTableSize = getTempRet0();
161///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
162///    is incrementally assigned from 0) and its label (a unique number that
163///    represents each callsite of setjmp). When we need more entries in
164///    setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
165///    return the new table address, and assign the new table size in
166///    setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
167///    buf. A BB with setjmp is split into two after setjmp call in order to
168///    make the post-setjmp BB the possible destination of longjmp BB.
169///
170///
171/// 4) Lower every call that might longjmp into
172///      __THREW__ = 0;
173///      call @__invoke_SIG(func, arg1, arg2)
174///      %__THREW__.val = __THREW__;
175///      __THREW__ = 0;
176///      if (%__THREW__.val != 0 & __threwValue != 0) {
177///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
178///                            setjmpTableSize);
179///        if (%label == 0)
180///          emscripten_longjmp(%__THREW__.val, __threwValue);
181///        setTempRet0(__threwValue);
182///      } else {
183///        %label = -1;
184///      }
185///      longjmp_result = getTempRet0();
186///      switch label {
187///        label 1: goto post-setjmp BB 1
188///        label 2: goto post-setjmp BB 2
189///        ...
190///        default: goto splitted next BB
191///      }
192///    testSetjmp examines setjmpTable to see if there is a matching setjmp
193///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
194///    will be the address of matching jmp_buf buffer and __threwValue be the
195///    second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
196///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
197///    each setjmp callsite. Label 0 means this longjmp buffer does not
198///    correspond to one of the setjmp callsites in this function, so in this
199///    case we just chain the longjmp to the caller. (Here we call
200///    emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
201///    emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
202///    emscripten_longjmp takes an int. Both of them will eventually be lowered
203///    to emscripten_longjmp in s2wasm, but here we need two signatures - we
204///    can't translate an int value to a jmp_buf.)
205///    Label -1 means no longjmp occurred. Otherwise we jump to the right
206///    post-setjmp BB based on the label.
207///
208///===----------------------------------------------------------------------===//
209
210#include "WebAssembly.h"
211#include "llvm/IR/CallSite.h"
212#include "llvm/IR/Dominators.h"
213#include "llvm/IR/IRBuilder.h"
214#include "llvm/Support/CommandLine.h"
215#include "llvm/Transforms/Utils/BasicBlockUtils.h"
216#include "llvm/Transforms/Utils/SSAUpdater.h"
217
218using namespace llvm;
219
220#define DEBUG_TYPE "wasm-lower-em-ehsjlj"
221
222static cl::list<std::string>
223    EHWhitelist("emscripten-cxx-exceptions-whitelist",
224                cl::desc("The list of function names in which Emscripten-style "
225                         "exception handling is enabled (see emscripten "
226                         "EMSCRIPTEN_CATCHING_WHITELIST options)"),
227                cl::CommaSeparated);
228
229namespace {
230class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
231  bool EnableEH;   // Enable exception handling
232  bool EnableSjLj; // Enable setjmp/longjmp handling
233
234  GlobalVariable *ThrewGV = nullptr;
235  GlobalVariable *ThrewValueGV = nullptr;
236  Function *GetTempRet0Func = nullptr;
237  Function *SetTempRet0Func = nullptr;
238  Function *ResumeF = nullptr;
239  Function *EHTypeIDF = nullptr;
240  Function *EmLongjmpF = nullptr;
241  Function *EmLongjmpJmpbufF = nullptr;
242  Function *SaveSetjmpF = nullptr;
243  Function *TestSetjmpF = nullptr;
244
245  // __cxa_find_matching_catch_N functions.
246  // Indexed by the number of clauses in an original landingpad instruction.
247  DenseMap<int, Function *> FindMatchingCatches;
248  // Map of <function signature string, invoke_ wrappers>
249  StringMap<Function *> InvokeWrappers;
250  // Set of whitelisted function names for exception handling
251  std::set<std::string> EHWhitelistSet;
252
253  StringRef getPassName() const override {
254    return "WebAssembly Lower Emscripten Exceptions";
255  }
256
257  bool runEHOnFunction(Function &F);
258  bool runSjLjOnFunction(Function &F);
259  Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
260
261  template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
262  void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
263                      Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
264                      Value *&LongjmpResult, BasicBlock *&EndBB);
265  template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
266
267  bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
268  bool canLongjmp(Module &M, const Value *Callee) const;
269  bool isEmAsmCall(Module &M, const Value *Callee) const;
270
271  void rebuildSSA(Function &F);
272
273public:
274  static char ID;
275
276  WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
277      : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
278    EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
279  }
280  bool runOnModule(Module &M) override;
281
282  void getAnalysisUsage(AnalysisUsage &AU) const override {
283    AU.addRequired<DominatorTreeWrapperPass>();
284  }
285};
286} // End anonymous namespace
287
288char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
289INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
290                "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
291                false, false)
292
293ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
294                                                         bool EnableSjLj) {
295  return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
296}
297
298static bool canThrow(const Value *V) {
299  if (const auto *F = dyn_cast<const Function>(V)) {
300    // Intrinsics cannot throw
301    if (F->isIntrinsic())
302      return false;
303    StringRef Name = F->getName();
304    // leave setjmp and longjmp (mostly) alone, we process them properly later
305    if (Name == "setjmp" || Name == "longjmp")
306      return false;
307    return !F->doesNotThrow();
308  }
309  // not a function, so an indirect call - can throw, we can't tell
310  return true;
311}
312
313// Get a global variable with the given name.  If it doesn't exist declare it,
314// which will generate an import and asssumes that it will exist at link time.
315static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
316                                            const char *Name) {
317
318  auto *GV =
319      dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty()));
320  if (!GV)
321    report_fatal_error(Twine("unable to create global: ") + Name);
322
323  return GV;
324}
325
326// Simple function name mangler.
327// This function simply takes LLVM's string representation of parameter types
328// and concatenate them with '_'. There are non-alphanumeric characters but llc
329// is ok with it, and we need to postprocess these names after the lowering
330// phase anyway.
331static std::string getSignature(FunctionType *FTy) {
332  std::string Sig;
333  raw_string_ostream OS(Sig);
334  OS << *FTy->getReturnType();
335  for (Type *ParamTy : FTy->params())
336    OS << "_" << *ParamTy;
337  if (FTy->isVarArg())
338    OS << "_...";
339  Sig = OS.str();
340  Sig.erase(remove_if(Sig, isspace), Sig.end());
341  // When s2wasm parses .s file, a comma means the end of an argument. So a
342  // mangled function name can contain any character but a comma.
343  std::replace(Sig.begin(), Sig.end(), ',', '.');
344  return Sig;
345}
346
347// Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
348// This is because a landingpad instruction contains two more arguments, a
349// personality function and a cleanup bit, and __cxa_find_matching_catch_N
350// functions are named after the number of arguments in the original landingpad
351// instruction.
352Function *
353WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
354                                                       unsigned NumClauses) {
355  if (FindMatchingCatches.count(NumClauses))
356    return FindMatchingCatches[NumClauses];
357  PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
358  SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
359  FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
360  Function *F = Function::Create(
361      FTy, GlobalValue::ExternalLinkage,
362      "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
363  FindMatchingCatches[NumClauses] = F;
364  return F;
365}
366
367// Generate invoke wrapper seqence with preamble and postamble
368// Preamble:
369// __THREW__ = 0;
370// Postamble:
371// %__THREW__.val = __THREW__; __THREW__ = 0;
372// Returns %__THREW__.val, which indicates whether an exception is thrown (or
373// whether longjmp occurred), for future use.
374template <typename CallOrInvoke>
375Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
376  LLVMContext &C = CI->getModule()->getContext();
377
378  // If we are calling a function that is noreturn, we must remove that
379  // attribute. The code we insert here does expect it to return, after we
380  // catch the exception.
381  if (CI->doesNotReturn()) {
382    if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
383      F->removeFnAttr(Attribute::NoReturn);
384    CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
385  }
386
387  IRBuilder<> IRB(C);
388  IRB.SetInsertPoint(CI);
389
390  // Pre-invoke
391  // __THREW__ = 0;
392  IRB.CreateStore(IRB.getInt32(0), ThrewGV);
393
394  // Invoke function wrapper in JavaScript
395  SmallVector<Value *, 16> Args;
396  // Put the pointer to the callee as first argument, so it can be called
397  // within the invoke wrapper later
398  Args.push_back(CI->getCalledValue());
399  Args.append(CI->arg_begin(), CI->arg_end());
400  CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
401  NewCall->takeName(CI);
402  NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
403  NewCall->setDebugLoc(CI->getDebugLoc());
404
405  // Because we added the pointer to the callee as first argument, all
406  // argument attribute indices have to be incremented by one.
407  SmallVector<AttributeSet, 8> ArgAttributes;
408  const AttributeList &InvokeAL = CI->getAttributes();
409
410  // No attributes for the callee pointer.
411  ArgAttributes.push_back(AttributeSet());
412  // Copy the argument attributes from the original
413  for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
414    ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
415
416  AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
417  if (FnAttrs.contains(Attribute::AllocSize)) {
418    // The allocsize attribute (if any) referes to parameters by index and needs
419    // to be adjusted.
420    unsigned SizeArg;
421    Optional<unsigned> NEltArg;
422    std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
423    SizeArg += 1;
424    if (NEltArg.hasValue())
425      NEltArg = NEltArg.getValue() + 1;
426    FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
427  }
428
429  // Reconstruct the AttributesList based on the vector we constructed.
430  AttributeList NewCallAL =
431      AttributeList::get(C, AttributeSet::get(C, FnAttrs),
432                         InvokeAL.getRetAttributes(), ArgAttributes);
433  NewCall->setAttributes(NewCallAL);
434
435  CI->replaceAllUsesWith(NewCall);
436
437  // Post-invoke
438  // %__THREW__.val = __THREW__; __THREW__ = 0;
439  Value *Threw =
440      IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val");
441  IRB.CreateStore(IRB.getInt32(0), ThrewGV);
442  return Threw;
443}
444
445// Get matching invoke wrapper based on callee signature
446template <typename CallOrInvoke>
447Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
448  Module *M = CI->getModule();
449  SmallVector<Type *, 16> ArgTys;
450  Value *Callee = CI->getCalledValue();
451  FunctionType *CalleeFTy;
452  if (auto *F = dyn_cast<Function>(Callee))
453    CalleeFTy = F->getFunctionType();
454  else {
455    auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
456    CalleeFTy = cast<FunctionType>(CalleeTy);
457  }
458
459  std::string Sig = getSignature(CalleeFTy);
460  if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
461    return InvokeWrappers[Sig];
462
463  // Put the pointer to the callee as first argument
464  ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
465  // Add argument types
466  ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
467
468  FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
469                                        CalleeFTy->isVarArg());
470  Function *F =
471      Function::Create(FTy, GlobalValue::ExternalLinkage, "__invoke_" + Sig, M);
472  InvokeWrappers[Sig] = F;
473  return F;
474}
475
476bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
477                                                  const Value *Callee) const {
478  if (auto *CalleeF = dyn_cast<Function>(Callee))
479    if (CalleeF->isIntrinsic())
480      return false;
481
482  // Attempting to transform inline assembly will result in something like:
483  //     call void @__invoke_void(void ()* asm ...)
484  // which is invalid because inline assembly blocks do not have addresses
485  // and can't be passed by pointer. The result is a crash with illegal IR.
486  if (isa<InlineAsm>(Callee))
487    return false;
488  StringRef CalleeName = Callee->getName();
489
490  // The reason we include malloc/free here is to exclude the malloc/free
491  // calls generated in setjmp prep / cleanup routines.
492  if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
493    return false;
494
495  // There are functions in JS glue code
496  if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
497      CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
498      CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
499    return false;
500
501  // __cxa_find_matching_catch_N functions cannot longjmp
502  if (Callee->getName().startswith("__cxa_find_matching_catch_"))
503    return false;
504
505  // Exception-catching related functions
506  if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
507      CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
508      CalleeName == "__clang_call_terminate")
509    return false;
510
511  // Otherwise we don't know
512  return true;
513}
514
515bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M,
516                                                   const Value *Callee) const {
517  StringRef CalleeName = Callee->getName();
518  // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
519  return CalleeName == "emscripten_asm_const_int" ||
520         CalleeName == "emscripten_asm_const_double" ||
521         CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
522         CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
523         CalleeName == "emscripten_asm_const_async_on_main_thread";
524}
525
526// Generate testSetjmp function call seqence with preamble and postamble.
527// The code this generates is equivalent to the following JavaScript code:
528// if (%__THREW__.val != 0 & threwValue != 0) {
529//   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
530//   if (%label == 0)
531//     emscripten_longjmp(%__THREW__.val, threwValue);
532//   setTempRet0(threwValue);
533// } else {
534//   %label = -1;
535// }
536// %longjmp_result = getTempRet0();
537//
538// As output parameters. returns %label, %longjmp_result, and the BB the last
539// instruction (%longjmp_result = ...) is in.
540void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
541    BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
542    Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
543    BasicBlock *&EndBB) {
544  Function *F = BB->getParent();
545  LLVMContext &C = BB->getModule()->getContext();
546  IRBuilder<> IRB(C);
547  IRB.SetInsertPoint(InsertPt);
548
549  // if (%__THREW__.val != 0 & threwValue != 0)
550  IRB.SetInsertPoint(BB);
551  BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
552  BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
553  BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
554  Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
555  Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
556                                     ThrewValueGV->getName() + ".val");
557  Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
558  Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
559  IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
560
561  // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
562  // if (%label == 0)
563  IRB.SetInsertPoint(ThenBB1);
564  BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
565  BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
566  Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
567                                       Threw->getName() + ".i32p");
568  Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt,
569                                      ThrewInt->getName() + ".loaded");
570  Value *ThenLabel = IRB.CreateCall(
571      TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
572  Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
573  IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
574
575  // emscripten_longjmp(%__THREW__.val, threwValue);
576  IRB.SetInsertPoint(ThenBB2);
577  IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
578  IRB.CreateUnreachable();
579
580  // setTempRet0(threwValue);
581  IRB.SetInsertPoint(EndBB2);
582  IRB.CreateCall(SetTempRet0Func, ThrewValue);
583  IRB.CreateBr(EndBB1);
584
585  IRB.SetInsertPoint(ElseBB1);
586  IRB.CreateBr(EndBB1);
587
588  // longjmp_result = getTempRet0();
589  IRB.SetInsertPoint(EndBB1);
590  PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
591  LabelPHI->addIncoming(ThenLabel, EndBB2);
592
593  LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
594
595  // Output parameter assignment
596  Label = LabelPHI;
597  EndBB = EndBB1;
598  LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
599}
600
601void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
602  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
603  DT.recalculate(F); // CFG has been changed
604  SSAUpdater SSA;
605  for (BasicBlock &BB : F) {
606    for (Instruction &I : BB) {
607      SSA.Initialize(I.getType(), I.getName());
608      SSA.AddAvailableValue(&BB, &I);
609      for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
610        Use &U = *UI;
611        ++UI;
612        auto *User = cast<Instruction>(U.getUser());
613        if (auto *UserPN = dyn_cast<PHINode>(User))
614          if (UserPN->getIncomingBlock(U) == &BB)
615            continue;
616
617        if (DT.dominates(&I, User))
618          continue;
619        SSA.RewriteUseAfterInsertions(U);
620      }
621    }
622  }
623}
624
625bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
626  LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
627
628  LLVMContext &C = M.getContext();
629  IRBuilder<> IRB(C);
630
631  Function *SetjmpF = M.getFunction("setjmp");
632  Function *LongjmpF = M.getFunction("longjmp");
633  bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
634  bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
635  bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
636
637  // Declare (or get) global variables __THREW__, __threwValue, and
638  // getTempRet0/setTempRet0 function which are used in common for both
639  // exception handling and setjmp/longjmp handling
640  ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__");
641  ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue");
642  GetTempRet0Func =
643      Function::Create(FunctionType::get(IRB.getInt32Ty(), false),
644                       GlobalValue::ExternalLinkage, "getTempRet0", &M);
645  SetTempRet0Func = Function::Create(
646      FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
647      GlobalValue::ExternalLinkage, "setTempRet0", &M);
648  GetTempRet0Func->setDoesNotThrow();
649  SetTempRet0Func->setDoesNotThrow();
650
651  bool Changed = false;
652
653  // Exception handling
654  if (EnableEH) {
655    // Register __resumeException function
656    FunctionType *ResumeFTy =
657        FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
658    ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
659                               "__resumeException", &M);
660
661    // Register llvm_eh_typeid_for function
662    FunctionType *EHTypeIDTy =
663        FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
664    EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
665                                 "llvm_eh_typeid_for", &M);
666
667    for (Function &F : M) {
668      if (F.isDeclaration())
669        continue;
670      Changed |= runEHOnFunction(F);
671    }
672  }
673
674  // Setjmp/longjmp handling
675  if (DoSjLj) {
676    Changed = true; // We have setjmp or longjmp somewhere
677
678    if (LongjmpF) {
679      // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
680      // defined in JS code
681      EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
682                                          GlobalValue::ExternalLinkage,
683                                          "emscripten_longjmp_jmpbuf", &M);
684
685      LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
686    }
687
688    if (SetjmpF) {
689      // Register saveSetjmp function
690      FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
691      SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
692                                       IRB.getInt32Ty(), Type::getInt32PtrTy(C),
693                                       IRB.getInt32Ty()};
694      FunctionType *FTy =
695          FunctionType::get(Type::getInt32PtrTy(C), Params, false);
696      SaveSetjmpF =
697          Function::Create(FTy, GlobalValue::ExternalLinkage, "saveSetjmp", &M);
698
699      // Register testSetjmp function
700      Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
701      FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
702      TestSetjmpF =
703          Function::Create(FTy, GlobalValue::ExternalLinkage, "testSetjmp", &M);
704
705      FTy = FunctionType::get(IRB.getVoidTy(),
706                              {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
707      EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
708                                    "emscripten_longjmp", &M);
709
710      // Only traverse functions that uses setjmp in order not to insert
711      // unnecessary prep / cleanup code in every function
712      SmallPtrSet<Function *, 8> SetjmpUsers;
713      for (User *U : SetjmpF->users()) {
714        auto *UI = cast<Instruction>(U);
715        SetjmpUsers.insert(UI->getFunction());
716      }
717      for (Function *F : SetjmpUsers)
718        runSjLjOnFunction(*F);
719    }
720  }
721
722  if (!Changed) {
723    // Delete unused global variables and functions
724    if (ResumeF)
725      ResumeF->eraseFromParent();
726    if (EHTypeIDF)
727      EHTypeIDF->eraseFromParent();
728    if (EmLongjmpF)
729      EmLongjmpF->eraseFromParent();
730    if (SaveSetjmpF)
731      SaveSetjmpF->eraseFromParent();
732    if (TestSetjmpF)
733      TestSetjmpF->eraseFromParent();
734    return false;
735  }
736
737  return true;
738}
739
740bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
741  Module &M = *F.getParent();
742  LLVMContext &C = F.getContext();
743  IRBuilder<> IRB(C);
744  bool Changed = false;
745  SmallVector<Instruction *, 64> ToErase;
746  SmallPtrSet<LandingPadInst *, 32> LandingPads;
747  bool AllowExceptions =
748      areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
749
750  for (BasicBlock &BB : F) {
751    auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
752    if (!II)
753      continue;
754    Changed = true;
755    LandingPads.insert(II->getLandingPadInst());
756    IRB.SetInsertPoint(II);
757
758    bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
759    if (NeedInvoke) {
760      // Wrap invoke with invoke wrapper and generate preamble/postamble
761      Value *Threw = wrapInvoke(II);
762      ToErase.push_back(II);
763
764      // Insert a branch based on __THREW__ variable
765      Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
766      IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
767
768    } else {
769      // This can't throw, and we don't need this invoke, just replace it with a
770      // call+branch
771      SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
772      CallInst *NewCall =
773          IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args);
774      NewCall->takeName(II);
775      NewCall->setCallingConv(II->getCallingConv());
776      NewCall->setDebugLoc(II->getDebugLoc());
777      NewCall->setAttributes(II->getAttributes());
778      II->replaceAllUsesWith(NewCall);
779      ToErase.push_back(II);
780
781      IRB.CreateBr(II->getNormalDest());
782
783      // Remove any PHI node entries from the exception destination
784      II->getUnwindDest()->removePredecessor(&BB);
785    }
786  }
787
788  // Process resume instructions
789  for (BasicBlock &BB : F) {
790    // Scan the body of the basic block for resumes
791    for (Instruction &I : BB) {
792      auto *RI = dyn_cast<ResumeInst>(&I);
793      if (!RI)
794        continue;
795      Changed = true;
796
797      // Split the input into legal values
798      Value *Input = RI->getValue();
799      IRB.SetInsertPoint(RI);
800      Value *Low = IRB.CreateExtractValue(Input, 0, "low");
801      // Create a call to __resumeException function
802      IRB.CreateCall(ResumeF, {Low});
803      // Add a terminator to the block
804      IRB.CreateUnreachable();
805      ToErase.push_back(RI);
806    }
807  }
808
809  // Process llvm.eh.typeid.for intrinsics
810  for (BasicBlock &BB : F) {
811    for (Instruction &I : BB) {
812      auto *CI = dyn_cast<CallInst>(&I);
813      if (!CI)
814        continue;
815      const Function *Callee = CI->getCalledFunction();
816      if (!Callee)
817        continue;
818      if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
819        continue;
820      Changed = true;
821
822      IRB.SetInsertPoint(CI);
823      CallInst *NewCI =
824          IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
825      CI->replaceAllUsesWith(NewCI);
826      ToErase.push_back(CI);
827    }
828  }
829
830  // Look for orphan landingpads, can occur in blocks with no predecessors
831  for (BasicBlock &BB : F) {
832    Instruction *I = BB.getFirstNonPHI();
833    if (auto *LPI = dyn_cast<LandingPadInst>(I))
834      LandingPads.insert(LPI);
835  }
836  Changed |= !LandingPads.empty();
837
838  // Handle all the landingpad for this function together, as multiple invokes
839  // may share a single lp
840  for (LandingPadInst *LPI : LandingPads) {
841    IRB.SetInsertPoint(LPI);
842    SmallVector<Value *, 16> FMCArgs;
843    for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
844      Constant *Clause = LPI->getClause(I);
845      // As a temporary workaround for the lack of aggregate varargs support
846      // in the interface between JS and wasm, break out filter operands into
847      // their component elements.
848      if (LPI->isFilter(I)) {
849        auto *ATy = cast<ArrayType>(Clause->getType());
850        for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) {
851          Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter");
852          FMCArgs.push_back(EV);
853        }
854      } else
855        FMCArgs.push_back(Clause);
856    }
857
858    // Create a call to __cxa_find_matching_catch_N function
859    Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
860    CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
861    Value *Undef = UndefValue::get(LPI->getType());
862    Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
863    Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
864    Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
865
866    LPI->replaceAllUsesWith(Pair1);
867    ToErase.push_back(LPI);
868  }
869
870  // Erase everything we no longer need in this function
871  for (Instruction *I : ToErase)
872    I->eraseFromParent();
873
874  return Changed;
875}
876
877bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
878  Module &M = *F.getParent();
879  LLVMContext &C = F.getContext();
880  IRBuilder<> IRB(C);
881  SmallVector<Instruction *, 64> ToErase;
882  // Vector of %setjmpTable values
883  std::vector<Instruction *> SetjmpTableInsts;
884  // Vector of %setjmpTableSize values
885  std::vector<Instruction *> SetjmpTableSizeInsts;
886
887  // Setjmp preparation
888
889  // This instruction effectively means %setjmpTableSize = 4.
890  // We create this as an instruction intentionally, and we don't want to fold
891  // this instruction to a constant 4, because this value will be used in
892  // SSAUpdater.AddAvailableValue(...) later.
893  BasicBlock &EntryBB = F.getEntryBlock();
894  BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
895      Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
896      &*EntryBB.getFirstInsertionPt());
897  // setjmpTable = (int *) malloc(40);
898  Instruction *SetjmpTable = CallInst::CreateMalloc(
899      SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
900      nullptr, nullptr, "setjmpTable");
901  // setjmpTable[0] = 0;
902  IRB.SetInsertPoint(SetjmpTableSize);
903  IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
904  SetjmpTableInsts.push_back(SetjmpTable);
905  SetjmpTableSizeInsts.push_back(SetjmpTableSize);
906
907  // Setjmp transformation
908  std::vector<PHINode *> SetjmpRetPHIs;
909  Function *SetjmpF = M.getFunction("setjmp");
910  for (User *U : SetjmpF->users()) {
911    auto *CI = dyn_cast<CallInst>(U);
912    if (!CI)
913      report_fatal_error("Does not support indirect calls to setjmp");
914
915    BasicBlock *BB = CI->getParent();
916    if (BB->getParent() != &F) // in other function
917      continue;
918
919    // The tail is everything right after the call, and will be reached once
920    // when setjmp is called, and later when longjmp returns to the setjmp
921    BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
922    // Add a phi to the tail, which will be the output of setjmp, which
923    // indicates if this is the first call or a longjmp back. The phi directly
924    // uses the right value based on where we arrive from
925    IRB.SetInsertPoint(Tail->getFirstNonPHI());
926    PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
927
928    // setjmp initial call returns 0
929    SetjmpRet->addIncoming(IRB.getInt32(0), BB);
930    // The proper output is now this, not the setjmp call itself
931    CI->replaceAllUsesWith(SetjmpRet);
932    // longjmp returns to the setjmp will add themselves to this phi
933    SetjmpRetPHIs.push_back(SetjmpRet);
934
935    // Fix call target
936    // Our index in the function is our place in the array + 1 to avoid index
937    // 0, because index 0 means the longjmp is not ours to handle.
938    IRB.SetInsertPoint(CI);
939    Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
940                     SetjmpTable, SetjmpTableSize};
941    Instruction *NewSetjmpTable =
942        IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
943    Instruction *NewSetjmpTableSize =
944        IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
945    SetjmpTableInsts.push_back(NewSetjmpTable);
946    SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
947    ToErase.push_back(CI);
948  }
949
950  // Update each call that can longjmp so it can return to a setjmp where
951  // relevant.
952
953  // Because we are creating new BBs while processing and don't want to make
954  // all these newly created BBs candidates again for longjmp processing, we
955  // first make the vector of candidate BBs.
956  std::vector<BasicBlock *> BBs;
957  for (BasicBlock &BB : F)
958    BBs.push_back(&BB);
959
960  // BBs.size() will change within the loop, so we query it every time
961  for (unsigned I = 0; I < BBs.size(); I++) {
962    BasicBlock *BB = BBs[I];
963    for (Instruction &I : *BB) {
964      assert(!isa<InvokeInst>(&I));
965      auto *CI = dyn_cast<CallInst>(&I);
966      if (!CI)
967        continue;
968
969      const Value *Callee = CI->getCalledValue();
970      if (!canLongjmp(M, Callee))
971        continue;
972      if (isEmAsmCall(M, Callee))
973        report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
974                               F.getName() +
975                               ". Please consider using EM_JS, or move the "
976                               "EM_ASM into another function.",
977                           false);
978
979      Value *Threw = nullptr;
980      BasicBlock *Tail;
981      if (Callee->getName().startswith("__invoke_")) {
982        // If invoke wrapper has already been generated for this call in
983        // previous EH phase, search for the load instruction
984        // %__THREW__.val = __THREW__;
985        // in postamble after the invoke wrapper call
986        LoadInst *ThrewLI = nullptr;
987        StoreInst *ThrewResetSI = nullptr;
988        for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
989             I != IE; ++I) {
990          if (auto *LI = dyn_cast<LoadInst>(I))
991            if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
992              if (GV == ThrewGV) {
993                Threw = ThrewLI = LI;
994                break;
995              }
996        }
997        // Search for the store instruction after the load above
998        // __THREW__ = 0;
999        for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1000             I != IE; ++I) {
1001          if (auto *SI = dyn_cast<StoreInst>(I))
1002            if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
1003              if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
1004                ThrewResetSI = SI;
1005                break;
1006              }
1007        }
1008        assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1009        assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1010        Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1011
1012      } else {
1013        // Wrap call with invoke wrapper and generate preamble/postamble
1014        Threw = wrapInvoke(CI);
1015        ToErase.push_back(CI);
1016        Tail = SplitBlock(BB, CI->getNextNode());
1017      }
1018
1019      // We need to replace the terminator in Tail - SplitBlock makes BB go
1020      // straight to Tail, we need to check if a longjmp occurred, and go to the
1021      // right setjmp-tail if so
1022      ToErase.push_back(BB->getTerminator());
1023
1024      // Generate a function call to testSetjmp function and preamble/postamble
1025      // code to figure out (1) whether longjmp occurred (2) if longjmp
1026      // occurred, which setjmp it corresponds to
1027      Value *Label = nullptr;
1028      Value *LongjmpResult = nullptr;
1029      BasicBlock *EndBB = nullptr;
1030      wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1031                     LongjmpResult, EndBB);
1032      assert(Label && LongjmpResult && EndBB);
1033
1034      // Create switch instruction
1035      IRB.SetInsertPoint(EndBB);
1036      SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1037      // -1 means no longjmp happened, continue normally (will hit the default
1038      // switch case). 0 means a longjmp that is not ours to handle, needs a
1039      // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1040      // 0).
1041      for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1042        SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1043        SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1044      }
1045
1046      // We are splitting the block here, and must continue to find other calls
1047      // in the block - which is now split. so continue to traverse in the Tail
1048      BBs.push_back(Tail);
1049    }
1050  }
1051
1052  // Erase everything we no longer need in this function
1053  for (Instruction *I : ToErase)
1054    I->eraseFromParent();
1055
1056  // Free setjmpTable buffer before each return instruction
1057  for (BasicBlock &BB : F) {
1058    Instruction *TI = BB.getTerminator();
1059    if (isa<ReturnInst>(TI))
1060      CallInst::CreateFree(SetjmpTable, TI);
1061  }
1062
1063  // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1064  // (when buffer reallocation occurs)
1065  // entry:
1066  //   setjmpTableSize = 4;
1067  //   setjmpTable = (int *) malloc(40);
1068  //   setjmpTable[0] = 0;
1069  // ...
1070  // somebb:
1071  //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1072  //   setjmpTableSize = getTempRet0();
1073  // So we need to make sure the SSA for these variables is valid so that every
1074  // saveSetjmp and testSetjmp calls have the correct arguments.
1075  SSAUpdater SetjmpTableSSA;
1076  SSAUpdater SetjmpTableSizeSSA;
1077  SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1078  SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1079  for (Instruction *I : SetjmpTableInsts)
1080    SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1081  for (Instruction *I : SetjmpTableSizeInsts)
1082    SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1083
1084  for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1085       UI != UE;) {
1086    // Grab the use before incrementing the iterator.
1087    Use &U = *UI;
1088    // Increment the iterator before removing the use from the list.
1089    ++UI;
1090    if (auto *I = dyn_cast<Instruction>(U.getUser()))
1091      if (I->getParent() != &EntryBB)
1092        SetjmpTableSSA.RewriteUse(U);
1093  }
1094  for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1095       UI != UE;) {
1096    Use &U = *UI;
1097    ++UI;
1098    if (auto *I = dyn_cast<Instruction>(U.getUser()))
1099      if (I->getParent() != &EntryBB)
1100        SetjmpTableSizeSSA.RewriteUse(U);
1101  }
1102
1103  // Finally, our modifications to the cfg can break dominance of SSA variables.
1104  // For example, in this code,
1105  // if (x()) { .. setjmp() .. }
1106  // if (y()) { .. longjmp() .. }
1107  // We must split the longjmp block, and it can jump into the block splitted
1108  // from setjmp one. But that means that when we split the setjmp block, it's
1109  // first part no longer dominates its second part - there is a theoretically
1110  // possible control flow path where x() is false, then y() is true and we
1111  // reach the second part of the setjmp block, without ever reaching the first
1112  // part. So, we rebuild SSA form here.
1113  rebuildSSA(F);
1114  return true;
1115}
1116