WebAssemblyLowerEmscriptenEHSjLj.cpp revision 311142
1//=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file lowers exception-related instructions and setjmp/longjmp
12/// function calls in order to use Emscripten's JavaScript try and catch
13/// mechanism.
14///
15/// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
16/// try and catch syntax and relevant exception-related libraries implemented
17/// in JavaScript glue code that will be produced by Emscripten. This is similar
18/// to the current Emscripten asm.js exception handling in fastcomp. For
19/// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
20/// (Location: https://github.com/kripken/emscripten-fastcomp)
21/// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
22/// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
23/// lib/Target/JSBackend/JSBackend.cpp
24/// lib/Target/JSBackend/CallHandlers.h
25///
26/// * Exception handling
27/// This pass lowers invokes and landingpads into library functions in JS glue
28/// code. Invokes are lowered into function wrappers called invoke wrappers that
29/// exist in JS side, which wraps the original function call with JS try-catch.
30/// If an exception occurred, cxa_throw() function in JS side sets some
31/// variables (see below) so we can check whether an exception occurred from
32/// wasm code and handle it appropriately.
33///
34/// * Setjmp-longjmp handling
35/// This pass lowers setjmp to a reasonably-performant approach for emscripten.
36/// The idea is that each block with a setjmp is broken up into two parts: the
37/// part containing setjmp and the part right after the setjmp. The latter part
38/// is either reached from the setjmp, or later from a longjmp. To handle the
39/// longjmp, all calls that might longjmp are also called using invoke wrappers
40/// and thus JS / try-catch. JS longjmp() function also sets some variables so
41/// we can check / whether a longjmp occurred from wasm code. Each block with a
42/// function call that might longjmp is also split up after the longjmp call.
43/// After the longjmp call, we check whether a longjmp occurred, and if it did,
44/// which setjmp it corresponds to, and jump to the right post-setjmp block.
45/// We assume setjmp-longjmp handling always run after EH handling, which means
46/// we don't expect any exception-related instructions when SjLj runs.
47/// FIXME Currently this scheme does not support indirect call of setjmp,
48/// because of the limitation of the scheme itself. fastcomp does not support it
49/// either.
50///
51/// In detail, this pass does following things:
52///
53/// 1) Create three global variables: __THREW__, __threwValue, and __tempRet0.
54///    __tempRet0 will be set within __cxa_find_matching_catch() function in
55///    JS library, and __THREW__ and __threwValue will be set in invoke wrappers
56///    in JS glue code. For what invoke wrappers are, refer to 3). These
57///    variables are used for both exceptions and setjmp/longjmps.
58///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
59///    means nothing occurred, 1 means an exception occurred, and other numbers
60///    mean a longjmp occurred. In the case of longjmp, __threwValue variable
61///    indicates the corresponding setjmp buffer the longjmp corresponds to.
62///    In exception handling, __tempRet0 indicates the type of an exception
63///    caught, and in setjmp/longjmp, it means the second argument to longjmp
64///    function.
65///
66/// * Exception handling
67///
68/// 2) Create setThrew and setTempRet0 functions.
69///    The global variables created in 1) will exist in wasm address space,
70///    but their values should be set in JS code, so we provide these functions
71///    as interfaces to JS glue code. These functions are equivalent to the
72///    following JS functions, which actually exist in asm.js version of JS
73///    library.
74///
75///    function setThrew(threw, value) {
76///      if (__THREW__ == 0) {
77///        __THREW__ = threw;
78///        __threwValue = value;
79///      }
80///    }
81///
82///    function setTempRet0(value) {
83///      __tempRet0 = value;
84///    }
85///
86/// 3) Lower
87///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
88///    into
89///      __THREW__ = 0;
90///      call @__invoke_SIG(func, arg1, arg2)
91///      %__THREW__.val = __THREW__;
92///      __THREW__ = 0;
93///      if (%__THREW__.val == 1)
94///        goto %lpad
95///      else
96///         goto %invoke.cont
97///    SIG is a mangled string generated based on the LLVM IR-level function
98///    signature. After LLVM IR types are lowered to the target wasm types,
99///    the names for these wrappers will change based on wasm types as well,
100///    as in invoke_vi (function takes an int and returns void). The bodies of
101///    these wrappers will be generated in JS glue code, and inside those
102///    wrappers we use JS try-catch to generate actual exception effects. It
103///    also calls the original callee function. An example wrapper in JS code
104///    would look like this:
105///      function invoke_vi(index,a1) {
106///        try {
107///          Module["dynCall_vi"](index,a1); // This calls original callee
108///        } catch(e) {
109///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
110///          asm["setThrew"](1, 0); // setThrew is called here
111///        }
112///      }
113///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
114///    so we can jump to the right BB based on this value.
115///
116/// 4) Lower
117///      %val = landingpad catch c1 catch c2 catch c3 ...
118///      ... use %val ...
119///    into
120///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
121///      %val = {%fmc, __tempRet0}
122///      ... use %val ...
123///    Here N is a number calculated based on the number of clauses.
124///    Global variable __tempRet0 is set within __cxa_find_matching_catch() in
125///    JS glue code.
126///
127/// 5) Lower
128///      resume {%a, %b}
129///    into
130///      call @__resumeException(%a)
131///    where __resumeException() is a function in JS glue code.
132///
133/// 6) Lower
134///      call @llvm.eh.typeid.for(type) (intrinsic)
135///    into
136///      call @llvm_eh_typeid_for(type)
137///    llvm_eh_typeid_for function will be generated in JS glue code.
138///
139/// * Setjmp / Longjmp handling
140///
141/// 7) In the function entry that calls setjmp, initialize setjmpTable and
142///    sejmpTableSize as follows:
143///      setjmpTableSize = 4;
144///      setjmpTable = (int *) malloc(40);
145///      setjmpTable[0] = 0;
146///    setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
147///    code.
148///
149/// 8) Lower
150///      setjmp(buf)
151///    into
152///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
153///      setjmpTableSize = __tempRet0;
154///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
155///    is incrementally assigned from 0) and its label (a unique number that
156///    represents each callsite of setjmp). When we need more entries in
157///    setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
158///    return the new table address, and assign the new table size in
159///    __tempRet0. saveSetjmp also stores the setjmp's ID into the buffer buf.
160///    A BB with setjmp is split into two after setjmp call in order to make the
161///    post-setjmp BB the possible destination of longjmp BB.
162///
163/// 9) Lower
164///      longjmp(buf, value)
165///    into
166///      emscripten_longjmp_jmpbuf(buf, value)
167///    emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
168///
169/// 10) Lower every call that might longjmp into
170///      __THREW__ = 0;
171///      call @__invoke_SIG(func, arg1, arg2)
172///      %__THREW__.val = __THREW__;
173///      __THREW__ = 0;
174///      if (%__THREW__.val != 0 & __threwValue != 0) {
175///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
176///                            setjmpTableSize);
177///        if (%label == 0)
178///          emscripten_longjmp(%__THREW__.val, __threwValue);
179///        __tempRet0 = __threwValue;
180///      } else {
181///        %label = -1;
182///      }
183///      longjmp_result = __tempRet0;
184///      switch label {
185///        label 1: goto post-setjmp BB 1
186///        label 2: goto post-setjmp BB 2
187///        ...
188///        default: goto splitted next BB
189///      }
190///     testSetjmp examines setjmpTable to see if there is a matching setjmp
191///     call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
192///     will be the address of matching jmp_buf buffer and __threwValue be the
193///     second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
194///     stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
195///     each setjmp callsite. Label 0 means this longjmp buffer does not
196///     correspond to one of the setjmp callsites in this function, so in this
197///     case we just chain the longjmp to the caller. (Here we call
198///     emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
199///     emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
200///     emscripten_longjmp takes an int. Both of them will eventually be lowered
201///     to emscripten_longjmp in s2wasm, but here we need two signatures - we
202///     can't translate an int value to a jmp_buf.)
203///     Label -1 means no longjmp occurred. Otherwise we jump to the right
204///     post-setjmp BB based on the label.
205///
206///===----------------------------------------------------------------------===//
207
208#include "WebAssembly.h"
209#include "llvm/IR/CallSite.h"
210#include "llvm/IR/Dominators.h"
211#include "llvm/IR/IRBuilder.h"
212#include "llvm/Transforms/Utils/BasicBlockUtils.h"
213#include "llvm/Transforms/Utils/SSAUpdater.h"
214
215using namespace llvm;
216
217#define DEBUG_TYPE "wasm-lower-em-ehsjlj"
218
219static cl::list<std::string>
220    EHWhitelist("emscripten-cxx-exceptions-whitelist",
221                cl::desc("The list of function names in which Emscripten-style "
222                         "exception handling is enabled (see emscripten "
223                         "EMSCRIPTEN_CATCHING_WHITELIST options)"),
224                cl::CommaSeparated);
225
226namespace {
227class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
228  static const char *ThrewGVName;
229  static const char *ThrewValueGVName;
230  static const char *TempRet0GVName;
231  static const char *ResumeFName;
232  static const char *EHTypeIDFName;
233  static const char *SetThrewFName;
234  static const char *SetTempRet0FName;
235  static const char *EmLongjmpFName;
236  static const char *EmLongjmpJmpbufFName;
237  static const char *SaveSetjmpFName;
238  static const char *TestSetjmpFName;
239  static const char *FindMatchingCatchPrefix;
240  static const char *InvokePrefix;
241
242  bool EnableEH;   // Enable exception handling
243  bool EnableSjLj; // Enable setjmp/longjmp handling
244
245  GlobalVariable *ThrewGV;
246  GlobalVariable *ThrewValueGV;
247  GlobalVariable *TempRet0GV;
248  Function *ResumeF;
249  Function *EHTypeIDF;
250  Function *EmLongjmpF;
251  Function *EmLongjmpJmpbufF;
252  Function *SaveSetjmpF;
253  Function *TestSetjmpF;
254
255  // __cxa_find_matching_catch_N functions.
256  // Indexed by the number of clauses in an original landingpad instruction.
257  DenseMap<int, Function *> FindMatchingCatches;
258  // Map of <function signature string, invoke_ wrappers>
259  StringMap<Function *> InvokeWrappers;
260  // Set of whitelisted function names for exception handling
261  std::set<std::string> EHWhitelistSet;
262
263  StringRef getPassName() const override {
264    return "WebAssembly Lower Emscripten Exceptions";
265  }
266
267  bool runEHOnFunction(Function &F);
268  bool runSjLjOnFunction(Function &F);
269  Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
270
271  template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
272  void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
273                      Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
274                      Value *&LongjmpResult, BasicBlock *&EndBB);
275  template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
276
277  bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
278  bool canLongjmp(Module &M, const Value *Callee) const;
279
280  void createSetThrewFunction(Module &M);
281  void createSetTempRet0Function(Module &M);
282
283  void rebuildSSA(Function &F);
284
285public:
286  static char ID;
287
288  WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
289      : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj),
290        ThrewGV(nullptr), ThrewValueGV(nullptr), TempRet0GV(nullptr),
291        ResumeF(nullptr), EHTypeIDF(nullptr), EmLongjmpF(nullptr),
292        EmLongjmpJmpbufF(nullptr), SaveSetjmpF(nullptr), TestSetjmpF(nullptr) {
293    EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
294  }
295  bool runOnModule(Module &M) override;
296
297  void getAnalysisUsage(AnalysisUsage &AU) const override {
298    AU.addRequired<DominatorTreeWrapperPass>();
299  }
300};
301} // End anonymous namespace
302
303const char *WebAssemblyLowerEmscriptenEHSjLj::ThrewGVName = "__THREW__";
304const char *WebAssemblyLowerEmscriptenEHSjLj::ThrewValueGVName = "__threwValue";
305const char *WebAssemblyLowerEmscriptenEHSjLj::TempRet0GVName = "__tempRet0";
306const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException";
307const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName =
308    "llvm_eh_typeid_for";
309const char *WebAssemblyLowerEmscriptenEHSjLj::SetThrewFName = "setThrew";
310const char *WebAssemblyLowerEmscriptenEHSjLj::SetTempRet0FName = "setTempRet0";
311const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName =
312    "emscripten_longjmp";
313const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName =
314    "emscripten_longjmp_jmpbuf";
315const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp";
316const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp";
317const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix =
318    "__cxa_find_matching_catch_";
319const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_";
320
321char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
322INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
323                "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
324                false, false)
325
326ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
327                                                         bool EnableSjLj) {
328  return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
329}
330
331static bool canThrow(const Value *V) {
332  if (const auto *F = dyn_cast<const Function>(V)) {
333    // Intrinsics cannot throw
334    if (F->isIntrinsic())
335      return false;
336    StringRef Name = F->getName();
337    // leave setjmp and longjmp (mostly) alone, we process them properly later
338    if (Name == "setjmp" || Name == "longjmp")
339      return false;
340    return !F->doesNotThrow();
341  }
342  // not a function, so an indirect call - can throw, we can't tell
343  return true;
344}
345
346// Returns an available name for a global value.
347// If the proposed name already exists in the module, adds '_' at the end of
348// the name until the name is available.
349static inline std::string createGlobalValueName(const Module &M,
350                                                const std::string &Propose) {
351  std::string Name = Propose;
352  while (M.getNamedGlobal(Name))
353    Name += "_";
354  return Name;
355}
356
357// Simple function name mangler.
358// This function simply takes LLVM's string representation of parameter types
359// and concatenate them with '_'. There are non-alphanumeric characters but llc
360// is ok with it, and we need to postprocess these names after the lowering
361// phase anyway.
362static std::string getSignature(FunctionType *FTy) {
363  std::string Sig;
364  raw_string_ostream OS(Sig);
365  OS << *FTy->getReturnType();
366  for (Type *ParamTy : FTy->params())
367    OS << "_" << *ParamTy;
368  if (FTy->isVarArg())
369    OS << "_...";
370  Sig = OS.str();
371  Sig.erase(remove_if(Sig, isspace), Sig.end());
372  // When s2wasm parses .s file, a comma means the end of an argument. So a
373  // mangled function name can contain any character but a comma.
374  std::replace(Sig.begin(), Sig.end(), ',', '.');
375  return Sig;
376}
377
378// Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
379// This is because a landingpad instruction contains two more arguments, a
380// personality function and a cleanup bit, and __cxa_find_matching_catch_N
381// functions are named after the number of arguments in the original landingpad
382// instruction.
383Function *
384WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
385                                                       unsigned NumClauses) {
386  if (FindMatchingCatches.count(NumClauses))
387    return FindMatchingCatches[NumClauses];
388  PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
389  SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
390  FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
391  Function *F =
392      Function::Create(FTy, GlobalValue::ExternalLinkage,
393                       FindMatchingCatchPrefix + Twine(NumClauses + 2), &M);
394  FindMatchingCatches[NumClauses] = F;
395  return F;
396}
397
398// Generate invoke wrapper seqence with preamble and postamble
399// Preamble:
400// __THREW__ = 0;
401// Postamble:
402// %__THREW__.val = __THREW__; __THREW__ = 0;
403// Returns %__THREW__.val, which indicates whether an exception is thrown (or
404// whether longjmp occurred), for future use.
405template <typename CallOrInvoke>
406Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
407  LLVMContext &C = CI->getModule()->getContext();
408
409  // If we are calling a function that is noreturn, we must remove that
410  // attribute. The code we insert here does expect it to return, after we
411  // catch the exception.
412  if (CI->doesNotReturn()) {
413    if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
414      F->removeFnAttr(Attribute::NoReturn);
415    CI->removeAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn);
416  }
417
418  IRBuilder<> IRB(C);
419  IRB.SetInsertPoint(CI);
420
421  // Pre-invoke
422  // __THREW__ = 0;
423  IRB.CreateStore(IRB.getInt32(0), ThrewGV);
424
425  // Invoke function wrapper in JavaScript
426  SmallVector<Value *, 16> Args;
427  // Put the pointer to the callee as first argument, so it can be called
428  // within the invoke wrapper later
429  Args.push_back(CI->getCalledValue());
430  Args.append(CI->arg_begin(), CI->arg_end());
431  CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
432  NewCall->takeName(CI);
433  NewCall->setCallingConv(CI->getCallingConv());
434  NewCall->setDebugLoc(CI->getDebugLoc());
435
436  // Because we added the pointer to the callee as first argument, all
437  // argument attribute indices have to be incremented by one.
438  SmallVector<AttributeSet, 8> AttributesVec;
439  const AttributeSet &InvokePAL = CI->getAttributes();
440  CallSite::arg_iterator AI = CI->arg_begin();
441  unsigned i = 1; // Argument attribute index starts from 1
442  for (unsigned e = CI->getNumArgOperands(); i <= e; ++AI, ++i) {
443    if (InvokePAL.hasAttributes(i)) {
444      AttrBuilder B(InvokePAL, i);
445      AttributesVec.push_back(AttributeSet::get(C, i + 1, B));
446    }
447  }
448  // Add any return attributes.
449  if (InvokePAL.hasAttributes(AttributeSet::ReturnIndex))
450    AttributesVec.push_back(AttributeSet::get(C, InvokePAL.getRetAttributes()));
451  // Add any function attributes.
452  if (InvokePAL.hasAttributes(AttributeSet::FunctionIndex))
453    AttributesVec.push_back(AttributeSet::get(C, InvokePAL.getFnAttributes()));
454  // Reconstruct the AttributesList based on the vector we constructed.
455  AttributeSet NewCallPAL = AttributeSet::get(C, AttributesVec);
456  NewCall->setAttributes(NewCallPAL);
457
458  CI->replaceAllUsesWith(NewCall);
459
460  // Post-invoke
461  // %__THREW__.val = __THREW__; __THREW__ = 0;
462  Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val");
463  IRB.CreateStore(IRB.getInt32(0), ThrewGV);
464  return Threw;
465}
466
467// Get matching invoke wrapper based on callee signature
468template <typename CallOrInvoke>
469Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
470  Module *M = CI->getModule();
471  SmallVector<Type *, 16> ArgTys;
472  Value *Callee = CI->getCalledValue();
473  FunctionType *CalleeFTy;
474  if (auto *F = dyn_cast<Function>(Callee))
475    CalleeFTy = F->getFunctionType();
476  else {
477    auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
478    CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
479  }
480
481  std::string Sig = getSignature(CalleeFTy);
482  if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
483    return InvokeWrappers[Sig];
484
485  // Put the pointer to the callee as first argument
486  ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
487  // Add argument types
488  ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
489
490  FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
491                                        CalleeFTy->isVarArg());
492  Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
493                                 InvokePrefix + Sig, M);
494  InvokeWrappers[Sig] = F;
495  return F;
496}
497
498bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
499                                                  const Value *Callee) const {
500  if (auto *CalleeF = dyn_cast<Function>(Callee))
501    if (CalleeF->isIntrinsic())
502      return false;
503
504  // The reason we include malloc/free here is to exclude the malloc/free
505  // calls generated in setjmp prep / cleanup routines.
506  Function *SetjmpF = M.getFunction("setjmp");
507  Function *MallocF = M.getFunction("malloc");
508  Function *FreeF = M.getFunction("free");
509  if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF)
510    return false;
511
512  // There are functions in JS glue code
513  if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF ||
514      Callee == TestSetjmpF)
515    return false;
516
517  // __cxa_find_matching_catch_N functions cannot longjmp
518  if (Callee->getName().startswith(FindMatchingCatchPrefix))
519    return false;
520
521  // Exception-catching related functions
522  Function *BeginCatchF = M.getFunction("__cxa_begin_catch");
523  Function *EndCatchF = M.getFunction("__cxa_end_catch");
524  Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception");
525  Function *ThrowF = M.getFunction("__cxa_throw");
526  Function *TerminateF = M.getFunction("__clang_call_terminate");
527  if (Callee == BeginCatchF || Callee == EndCatchF ||
528      Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF)
529    return false;
530
531  // Otherwise we don't know
532  return true;
533}
534
535// Generate testSetjmp function call seqence with preamble and postamble.
536// The code this generates is equivalent to the following JavaScript code:
537// if (%__THREW__.val != 0 & threwValue != 0) {
538//   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
539//   if (%label == 0)
540//     emscripten_longjmp(%__THREW__.val, threwValue);
541//   __tempRet0 = threwValue;
542// } else {
543//   %label = -1;
544// }
545// %longjmp_result = __tempRet0;
546//
547// As output parameters. returns %label, %longjmp_result, and the BB the last
548// instruction (%longjmp_result = ...) is in.
549void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
550    BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
551    Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
552    BasicBlock *&EndBB) {
553  Function *F = BB->getParent();
554  LLVMContext &C = BB->getModule()->getContext();
555  IRBuilder<> IRB(C);
556  IRB.SetInsertPoint(InsertPt);
557
558  // if (%__THREW__.val != 0 & threwValue != 0)
559  IRB.SetInsertPoint(BB);
560  BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
561  BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
562  BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
563  Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
564  Value *ThrewValue =
565      IRB.CreateLoad(ThrewValueGV, ThrewValueGV->getName() + ".val");
566  Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
567  Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
568  IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
569
570  // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
571  // if (%label == 0)
572  IRB.SetInsertPoint(ThenBB1);
573  BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
574  BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
575  Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
576                                       Threw->getName() + ".i32p");
577  Value *LoadedThrew =
578      IRB.CreateLoad(ThrewInt, ThrewInt->getName() + ".loaded");
579  Value *ThenLabel = IRB.CreateCall(
580      TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
581  Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
582  IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
583
584  // emscripten_longjmp(%__THREW__.val, threwValue);
585  IRB.SetInsertPoint(ThenBB2);
586  IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
587  IRB.CreateUnreachable();
588
589  // __tempRet0 = threwValue;
590  IRB.SetInsertPoint(EndBB2);
591  IRB.CreateStore(ThrewValue, TempRet0GV);
592  IRB.CreateBr(EndBB1);
593
594  IRB.SetInsertPoint(ElseBB1);
595  IRB.CreateBr(EndBB1);
596
597  // longjmp_result = __tempRet0;
598  IRB.SetInsertPoint(EndBB1);
599  PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
600  LabelPHI->addIncoming(ThenLabel, EndBB2);
601
602  LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
603
604  // Output parameter assignment
605  Label = LabelPHI;
606  EndBB = EndBB1;
607  LongjmpResult = IRB.CreateLoad(TempRet0GV, "longjmp_result");
608}
609
610// Create setThrew function
611// function setThrew(threw, value) {
612//   if (__THREW__ == 0) {
613//     __THREW__ = threw;
614//     __threwValue = value;
615//   }
616// }
617void WebAssemblyLowerEmscriptenEHSjLj::createSetThrewFunction(Module &M) {
618  LLVMContext &C = M.getContext();
619  IRBuilder<> IRB(C);
620
621  assert(!M.getNamedGlobal(SetThrewFName) && "setThrew already exists");
622  Type *Params[] = {IRB.getInt32Ty(), IRB.getInt32Ty()};
623  FunctionType *FTy = FunctionType::get(IRB.getVoidTy(), Params, false);
624  Function *F =
625      Function::Create(FTy, GlobalValue::ExternalLinkage, SetThrewFName, &M);
626  Argument *Arg1 = &*(F->arg_begin());
627  Argument *Arg2 = &*(++F->arg_begin());
628  Arg1->setName("threw");
629  Arg2->setName("value");
630  BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
631  BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", F);
632  BasicBlock *EndBB = BasicBlock::Create(C, "if.end", F);
633
634  IRB.SetInsertPoint(EntryBB);
635  Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val");
636  Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(0), "cmp");
637  IRB.CreateCondBr(Cmp, ThenBB, EndBB);
638
639  IRB.SetInsertPoint(ThenBB);
640  IRB.CreateStore(Arg1, ThrewGV);
641  IRB.CreateStore(Arg2, ThrewValueGV);
642  IRB.CreateBr(EndBB);
643
644  IRB.SetInsertPoint(EndBB);
645  IRB.CreateRetVoid();
646}
647
648// Create setTempRet0 function
649// function setTempRet0(value) {
650//   __tempRet0 = value;
651// }
652void WebAssemblyLowerEmscriptenEHSjLj::createSetTempRet0Function(Module &M) {
653  LLVMContext &C = M.getContext();
654  IRBuilder<> IRB(C);
655
656  assert(!M.getNamedGlobal(SetTempRet0FName) && "setTempRet0 already exists");
657  Type *Params[] = {IRB.getInt32Ty()};
658  FunctionType *FTy = FunctionType::get(IRB.getVoidTy(), Params, false);
659  Function *F =
660      Function::Create(FTy, GlobalValue::ExternalLinkage, SetTempRet0FName, &M);
661  F->arg_begin()->setName("value");
662  BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
663  IRB.SetInsertPoint(EntryBB);
664  IRB.CreateStore(&*F->arg_begin(), TempRet0GV);
665  IRB.CreateRetVoid();
666}
667
668void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
669  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
670  DT.recalculate(F); // CFG has been changed
671  SSAUpdater SSA;
672  for (BasicBlock &BB : F) {
673    for (Instruction &I : BB) {
674      for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
675        Use &U = *UI;
676        ++UI;
677        SSA.Initialize(I.getType(), I.getName());
678        SSA.AddAvailableValue(&BB, &I);
679        Instruction *User = cast<Instruction>(U.getUser());
680        if (User->getParent() == &BB)
681          continue;
682
683        if (PHINode *UserPN = dyn_cast<PHINode>(User))
684          if (UserPN->getIncomingBlock(U) == &BB)
685            continue;
686
687        if (DT.dominates(&I, User))
688          continue;
689        SSA.RewriteUseAfterInsertions(U);
690      }
691    }
692  }
693}
694
695bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
696  LLVMContext &C = M.getContext();
697  IRBuilder<> IRB(C);
698
699  Function *SetjmpF = M.getFunction("setjmp");
700  Function *LongjmpF = M.getFunction("longjmp");
701  bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
702  bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
703  bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
704
705  // Create global variables __THREW__, threwValue, and __tempRet0, which are
706  // used in common for both exception handling and setjmp/longjmp handling
707  ThrewGV = new GlobalVariable(M, IRB.getInt32Ty(), false,
708                               GlobalValue::ExternalLinkage, IRB.getInt32(0),
709                               createGlobalValueName(M, ThrewGVName));
710  ThrewValueGV = new GlobalVariable(
711      M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage, IRB.getInt32(0),
712      createGlobalValueName(M, ThrewValueGVName));
713  TempRet0GV = new GlobalVariable(M, IRB.getInt32Ty(), false,
714                                  GlobalValue::ExternalLinkage, IRB.getInt32(0),
715                                  createGlobalValueName(M, TempRet0GVName));
716
717  bool Changed = false;
718
719  // Exception handling
720  if (EnableEH) {
721    // Register __resumeException function
722    FunctionType *ResumeFTy =
723        FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
724    ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
725                               ResumeFName, &M);
726
727    // Register llvm_eh_typeid_for function
728    FunctionType *EHTypeIDTy =
729        FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
730    EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
731                                 EHTypeIDFName, &M);
732
733    for (Function &F : M) {
734      if (F.isDeclaration())
735        continue;
736      Changed |= runEHOnFunction(F);
737    }
738  }
739
740  // Setjmp/longjmp handling
741  if (DoSjLj) {
742    Changed = true; // We have setjmp or longjmp somewhere
743
744    Function *MallocF = M.getFunction("malloc");
745    Function *FreeF = M.getFunction("free");
746    if (!MallocF || !FreeF)
747      report_fatal_error(
748          "malloc and free must be linked into the module if setjmp is used");
749
750    // Register saveSetjmp function
751    FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
752    SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
753                                     IRB.getInt32Ty(), Type::getInt32PtrTy(C),
754                                     IRB.getInt32Ty()};
755    FunctionType *FTy =
756        FunctionType::get(Type::getInt32PtrTy(C), Params, false);
757    SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
758                                   SaveSetjmpFName, &M);
759
760    // Register testSetjmp function
761    Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
762    FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
763    TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
764                                   TestSetjmpFName, &M);
765
766    if (LongjmpF) {
767      // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
768      // defined in JS code
769      EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
770                                          GlobalValue::ExternalLinkage,
771                                          EmLongjmpJmpbufFName, &M);
772
773      LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
774    }
775    FTy = FunctionType::get(IRB.getVoidTy(),
776                            {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
777    EmLongjmpF =
778        Function::Create(FTy, GlobalValue::ExternalLinkage, EmLongjmpFName, &M);
779
780    // Only traverse functions that uses setjmp in order not to insert
781    // unnecessary prep / cleanup code in every function
782    SmallPtrSet<Function *, 8> SetjmpUsers;
783    for (User *U : SetjmpF->users()) {
784      auto *UI = cast<Instruction>(U);
785      SetjmpUsers.insert(UI->getFunction());
786    }
787    for (Function *F : SetjmpUsers)
788      runSjLjOnFunction(*F);
789  }
790
791  if (!Changed) {
792    // Delete unused global variables and functions
793    ThrewGV->eraseFromParent();
794    ThrewValueGV->eraseFromParent();
795    TempRet0GV->eraseFromParent();
796    if (ResumeF)
797      ResumeF->eraseFromParent();
798    if (EHTypeIDF)
799      EHTypeIDF->eraseFromParent();
800    if (EmLongjmpF)
801      EmLongjmpF->eraseFromParent();
802    if (SaveSetjmpF)
803      SaveSetjmpF->eraseFromParent();
804    if (TestSetjmpF)
805      TestSetjmpF->eraseFromParent();
806    return false;
807  }
808
809  // If we have made any changes while doing exception handling or
810  // setjmp/longjmp handling, we have to create these functions for JavaScript
811  // to call.
812  createSetThrewFunction(M);
813  createSetTempRet0Function(M);
814
815  return true;
816}
817
818bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
819  Module &M = *F.getParent();
820  LLVMContext &C = F.getContext();
821  IRBuilder<> IRB(C);
822  bool Changed = false;
823  SmallVector<Instruction *, 64> ToErase;
824  SmallPtrSet<LandingPadInst *, 32> LandingPads;
825  bool AllowExceptions =
826      areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
827
828  for (BasicBlock &BB : F) {
829    auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
830    if (!II)
831      continue;
832    Changed = true;
833    LandingPads.insert(II->getLandingPadInst());
834    IRB.SetInsertPoint(II);
835
836    bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
837    if (NeedInvoke) {
838      // Wrap invoke with invoke wrapper and generate preamble/postamble
839      Value *Threw = wrapInvoke(II);
840      ToErase.push_back(II);
841
842      // Insert a branch based on __THREW__ variable
843      Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
844      IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
845
846    } else {
847      // This can't throw, and we don't need this invoke, just replace it with a
848      // call+branch
849      SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
850      CallInst *NewCall = IRB.CreateCall(II->getCalledValue(), Args);
851      NewCall->takeName(II);
852      NewCall->setCallingConv(II->getCallingConv());
853      NewCall->setDebugLoc(II->getDebugLoc());
854      NewCall->setAttributes(II->getAttributes());
855      II->replaceAllUsesWith(NewCall);
856      ToErase.push_back(II);
857
858      IRB.CreateBr(II->getNormalDest());
859
860      // Remove any PHI node entries from the exception destination
861      II->getUnwindDest()->removePredecessor(&BB);
862    }
863  }
864
865  // Process resume instructions
866  for (BasicBlock &BB : F) {
867    // Scan the body of the basic block for resumes
868    for (Instruction &I : BB) {
869      auto *RI = dyn_cast<ResumeInst>(&I);
870      if (!RI)
871        continue;
872
873      // Split the input into legal values
874      Value *Input = RI->getValue();
875      IRB.SetInsertPoint(RI);
876      Value *Low = IRB.CreateExtractValue(Input, 0, "low");
877      // Create a call to __resumeException function
878      IRB.CreateCall(ResumeF, {Low});
879      // Add a terminator to the block
880      IRB.CreateUnreachable();
881      ToErase.push_back(RI);
882    }
883  }
884
885  // Process llvm.eh.typeid.for intrinsics
886  for (BasicBlock &BB : F) {
887    for (Instruction &I : BB) {
888      auto *CI = dyn_cast<CallInst>(&I);
889      if (!CI)
890        continue;
891      const Function *Callee = CI->getCalledFunction();
892      if (!Callee)
893        continue;
894      if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
895        continue;
896
897      IRB.SetInsertPoint(CI);
898      CallInst *NewCI =
899          IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
900      CI->replaceAllUsesWith(NewCI);
901      ToErase.push_back(CI);
902    }
903  }
904
905  // Look for orphan landingpads, can occur in blocks with no predecesors
906  for (BasicBlock &BB : F) {
907    Instruction *I = BB.getFirstNonPHI();
908    if (auto *LPI = dyn_cast<LandingPadInst>(I))
909      LandingPads.insert(LPI);
910  }
911
912  // Handle all the landingpad for this function together, as multiple invokes
913  // may share a single lp
914  for (LandingPadInst *LPI : LandingPads) {
915    IRB.SetInsertPoint(LPI);
916    SmallVector<Value *, 16> FMCArgs;
917    for (unsigned i = 0, e = LPI->getNumClauses(); i < e; ++i) {
918      Constant *Clause = LPI->getClause(i);
919      // As a temporary workaround for the lack of aggregate varargs support
920      // in the interface between JS and wasm, break out filter operands into
921      // their component elements.
922      if (LPI->isFilter(i)) {
923        auto *ATy = cast<ArrayType>(Clause->getType());
924        for (unsigned j = 0, e = ATy->getNumElements(); j < e; ++j) {
925          Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(j), "filter");
926          FMCArgs.push_back(EV);
927        }
928      } else
929        FMCArgs.push_back(Clause);
930    }
931
932    // Create a call to __cxa_find_matching_catch_N function
933    Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
934    CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
935    Value *Undef = UndefValue::get(LPI->getType());
936    Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
937    Value *TempRet0 =
938        IRB.CreateLoad(TempRet0GV, TempRet0GV->getName() + ".val");
939    Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
940
941    LPI->replaceAllUsesWith(Pair1);
942    ToErase.push_back(LPI);
943  }
944
945  // Erase everything we no longer need in this function
946  for (Instruction *I : ToErase)
947    I->eraseFromParent();
948
949  return Changed;
950}
951
952bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
953  Module &M = *F.getParent();
954  LLVMContext &C = F.getContext();
955  IRBuilder<> IRB(C);
956  SmallVector<Instruction *, 64> ToErase;
957  // Vector of %setjmpTable values
958  std::vector<Instruction *> SetjmpTableInsts;
959  // Vector of %setjmpTableSize values
960  std::vector<Instruction *> SetjmpTableSizeInsts;
961
962  // Setjmp preparation
963
964  // This instruction effectively means %setjmpTableSize = 4.
965  // We create this as an instruction intentionally, and we don't want to fold
966  // this instruction to a constant 4, because this value will be used in
967  // SSAUpdater.AddAvailableValue(...) later.
968  BasicBlock &EntryBB = F.getEntryBlock();
969  BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
970      Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
971      &*EntryBB.getFirstInsertionPt());
972  // setjmpTable = (int *) malloc(40);
973  Instruction *SetjmpTable = CallInst::CreateMalloc(
974      SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
975      nullptr, nullptr, "setjmpTable");
976  // setjmpTable[0] = 0;
977  IRB.SetInsertPoint(SetjmpTableSize);
978  IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
979  SetjmpTableInsts.push_back(SetjmpTable);
980  SetjmpTableSizeInsts.push_back(SetjmpTableSize);
981
982  // Setjmp transformation
983  std::vector<PHINode *> SetjmpRetPHIs;
984  Function *SetjmpF = M.getFunction("setjmp");
985  for (User *U : SetjmpF->users()) {
986    auto *CI = dyn_cast<CallInst>(U);
987    if (!CI)
988      report_fatal_error("Does not support indirect calls to setjmp");
989
990    BasicBlock *BB = CI->getParent();
991    if (BB->getParent() != &F) // in other function
992      continue;
993
994    // The tail is everything right after the call, and will be reached once
995    // when setjmp is called, and later when longjmp returns to the setjmp
996    BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
997    // Add a phi to the tail, which will be the output of setjmp, which
998    // indicates if this is the first call or a longjmp back. The phi directly
999    // uses the right value based on where we arrive from
1000    IRB.SetInsertPoint(Tail->getFirstNonPHI());
1001    PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1002
1003    // setjmp initial call returns 0
1004    SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1005    // The proper output is now this, not the setjmp call itself
1006    CI->replaceAllUsesWith(SetjmpRet);
1007    // longjmp returns to the setjmp will add themselves to this phi
1008    SetjmpRetPHIs.push_back(SetjmpRet);
1009
1010    // Fix call target
1011    // Our index in the function is our place in the array + 1 to avoid index
1012    // 0, because index 0 means the longjmp is not ours to handle.
1013    IRB.SetInsertPoint(CI);
1014    Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1015                     SetjmpTable, SetjmpTableSize};
1016    Instruction *NewSetjmpTable =
1017        IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1018    Instruction *NewSetjmpTableSize =
1019        IRB.CreateLoad(TempRet0GV, "setjmpTableSize");
1020    SetjmpTableInsts.push_back(NewSetjmpTable);
1021    SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1022    ToErase.push_back(CI);
1023  }
1024
1025  // Update each call that can longjmp so it can return to a setjmp where
1026  // relevant.
1027
1028  // Because we are creating new BBs while processing and don't want to make
1029  // all these newly created BBs candidates again for longjmp processing, we
1030  // first make the vector of candidate BBs.
1031  std::vector<BasicBlock *> BBs;
1032  for (BasicBlock &BB : F)
1033    BBs.push_back(&BB);
1034
1035  // BBs.size() will change within the loop, so we query it every time
1036  for (unsigned i = 0; i < BBs.size(); i++) {
1037    BasicBlock *BB = BBs[i];
1038    for (Instruction &I : *BB) {
1039      assert(!isa<InvokeInst>(&I));
1040      auto *CI = dyn_cast<CallInst>(&I);
1041      if (!CI)
1042        continue;
1043
1044      const Value *Callee = CI->getCalledValue();
1045      if (!canLongjmp(M, Callee))
1046        continue;
1047
1048      Value *Threw = nullptr;
1049      BasicBlock *Tail;
1050      if (Callee->getName().startswith(InvokePrefix)) {
1051        // If invoke wrapper has already been generated for this call in
1052        // previous EH phase, search for the load instruction
1053        // %__THREW__.val = __THREW__;
1054        // in postamble after the invoke wrapper call
1055        LoadInst *ThrewLI = nullptr;
1056        StoreInst *ThrewResetSI = nullptr;
1057        for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1058             I != IE; ++I) {
1059          if (auto *LI = dyn_cast<LoadInst>(I))
1060            if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1061              if (GV == ThrewGV) {
1062                Threw = ThrewLI = LI;
1063                break;
1064              }
1065        }
1066        // Search for the store instruction after the load above
1067        // __THREW__ = 0;
1068        for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1069             I != IE; ++I) {
1070          if (auto *SI = dyn_cast<StoreInst>(I))
1071            if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
1072              if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
1073                ThrewResetSI = SI;
1074                break;
1075              }
1076        }
1077        assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1078        assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1079        Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1080
1081      } else {
1082        // Wrap call with invoke wrapper and generate preamble/postamble
1083        Threw = wrapInvoke(CI);
1084        ToErase.push_back(CI);
1085        Tail = SplitBlock(BB, CI->getNextNode());
1086      }
1087
1088      // We need to replace the terminator in Tail - SplitBlock makes BB go
1089      // straight to Tail, we need to check if a longjmp occurred, and go to the
1090      // right setjmp-tail if so
1091      ToErase.push_back(BB->getTerminator());
1092
1093      // Generate a function call to testSetjmp function and preamble/postamble
1094      // code to figure out (1) whether longjmp occurred (2) if longjmp
1095      // occurred, which setjmp it corresponds to
1096      Value *Label = nullptr;
1097      Value *LongjmpResult = nullptr;
1098      BasicBlock *EndBB = nullptr;
1099      wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1100                     LongjmpResult, EndBB);
1101      assert(Label && LongjmpResult && EndBB);
1102
1103      // Create switch instruction
1104      IRB.SetInsertPoint(EndBB);
1105      SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1106      // -1 means no longjmp happened, continue normally (will hit the default
1107      // switch case). 0 means a longjmp that is not ours to handle, needs a
1108      // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1109      // 0).
1110      for (unsigned i = 0; i < SetjmpRetPHIs.size(); i++) {
1111        SI->addCase(IRB.getInt32(i + 1), SetjmpRetPHIs[i]->getParent());
1112        SetjmpRetPHIs[i]->addIncoming(LongjmpResult, EndBB);
1113      }
1114
1115      // We are splitting the block here, and must continue to find other calls
1116      // in the block - which is now split. so continue to traverse in the Tail
1117      BBs.push_back(Tail);
1118    }
1119  }
1120
1121  // Erase everything we no longer need in this function
1122  for (Instruction *I : ToErase)
1123    I->eraseFromParent();
1124
1125  // Free setjmpTable buffer before each return instruction
1126  for (BasicBlock &BB : F) {
1127    TerminatorInst *TI = BB.getTerminator();
1128    if (isa<ReturnInst>(TI))
1129      CallInst::CreateFree(SetjmpTable, TI);
1130  }
1131
1132  // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1133  // (when buffer reallocation occurs)
1134  // entry:
1135  //   setjmpTableSize = 4;
1136  //   setjmpTable = (int *) malloc(40);
1137  //   setjmpTable[0] = 0;
1138  // ...
1139  // somebb:
1140  //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1141  //   setjmpTableSize = __tempRet0;
1142  // So we need to make sure the SSA for these variables is valid so that every
1143  // saveSetjmp and testSetjmp calls have the correct arguments.
1144  SSAUpdater SetjmpTableSSA;
1145  SSAUpdater SetjmpTableSizeSSA;
1146  SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1147  SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1148  for (Instruction *I : SetjmpTableInsts)
1149    SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1150  for (Instruction *I : SetjmpTableSizeInsts)
1151    SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1152
1153  for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1154       UI != UE;) {
1155    // Grab the use before incrementing the iterator.
1156    Use &U = *UI;
1157    // Increment the iterator before removing the use from the list.
1158    ++UI;
1159    if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1160      if (I->getParent() != &EntryBB)
1161        SetjmpTableSSA.RewriteUse(U);
1162  }
1163  for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1164       UI != UE;) {
1165    Use &U = *UI;
1166    ++UI;
1167    if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1168      if (I->getParent() != &EntryBB)
1169        SetjmpTableSizeSSA.RewriteUse(U);
1170  }
1171
1172  // Finally, our modifications to the cfg can break dominance of SSA variables.
1173  // For example, in this code,
1174  // if (x()) { .. setjmp() .. }
1175  // if (y()) { .. longjmp() .. }
1176  // We must split the longjmp block, and it can jump into the block splitted
1177  // from setjmp one. But that means that when we split the setjmp block, it's
1178  // first part no longer dominates its second part - there is a theoretically
1179  // possible control flow path where x() is false, then y() is true and we
1180  // reach the second part of the setjmp block, without ever reaching the first
1181  // part. So, we rebuild SSA form here.
1182  rebuildSSA(F);
1183  return true;
1184}
1185