1//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an instruction selector for the SystemZ target.
10//
11//===----------------------------------------------------------------------===//
12
13#include "SystemZTargetMachine.h"
14#include "SystemZISelLowering.h"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/KnownBits.h"
19#include "llvm/Support/raw_ostream.h"
20
21using namespace llvm;
22
23#define DEBUG_TYPE "systemz-isel"
24
25namespace {
26// Used to build addressing modes.
27struct SystemZAddressingMode {
28  // The shape of the address.
29  enum AddrForm {
30    // base+displacement
31    FormBD,
32
33    // base+displacement+index for load and store operands
34    FormBDXNormal,
35
36    // base+displacement+index for load address operands
37    FormBDXLA,
38
39    // base+displacement+index+ADJDYNALLOC
40    FormBDXDynAlloc
41  };
42  AddrForm Form;
43
44  // The type of displacement.  The enum names here correspond directly
45  // to the definitions in SystemZOperand.td.  We could split them into
46  // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
47  enum DispRange {
48    Disp12Only,
49    Disp12Pair,
50    Disp20Only,
51    Disp20Only128,
52    Disp20Pair
53  };
54  DispRange DR;
55
56  // The parts of the address.  The address is equivalent to:
57  //
58  //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
59  SDValue Base;
60  int64_t Disp;
61  SDValue Index;
62  bool IncludesDynAlloc;
63
64  SystemZAddressingMode(AddrForm form, DispRange dr)
65    : Form(form), DR(dr), Base(), Disp(0), Index(),
66      IncludesDynAlloc(false) {}
67
68  // True if the address can have an index register.
69  bool hasIndexField() { return Form != FormBD; }
70
71  // True if the address can (and must) include ADJDYNALLOC.
72  bool isDynAlloc() { return Form == FormBDXDynAlloc; }
73
74  void dump(const llvm::SelectionDAG *DAG) {
75    errs() << "SystemZAddressingMode " << this << '\n';
76
77    errs() << " Base ";
78    if (Base.getNode())
79      Base.getNode()->dump(DAG);
80    else
81      errs() << "null\n";
82
83    if (hasIndexField()) {
84      errs() << " Index ";
85      if (Index.getNode())
86        Index.getNode()->dump(DAG);
87      else
88        errs() << "null\n";
89    }
90
91    errs() << " Disp " << Disp;
92    if (IncludesDynAlloc)
93      errs() << " + ADJDYNALLOC";
94    errs() << '\n';
95  }
96};
97
98// Return a mask with Count low bits set.
99static uint64_t allOnes(unsigned int Count) {
100  assert(Count <= 64);
101  if (Count > 63)
102    return UINT64_MAX;
103  return (uint64_t(1) << Count) - 1;
104}
105
106// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107// given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
108// Rotate (I5).  The combined operand value is effectively:
109//
110//   (or (rotl Input, Rotate), ~Mask)
111//
112// for RNSBG and:
113//
114//   (and (rotl Input, Rotate), Mask)
115//
116// otherwise.  The output value has BitSize bits, although Input may be
117// narrower (in which case the upper bits are don't care), or wider (in which
118// case the result will be truncated as part of the operation).
119struct RxSBGOperands {
120  RxSBGOperands(unsigned Op, SDValue N)
121    : Opcode(Op), BitSize(N.getValueSizeInBits()),
122      Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123      Rotate(0) {}
124
125  unsigned Opcode;
126  unsigned BitSize;
127  uint64_t Mask;
128  SDValue Input;
129  unsigned Start;
130  unsigned End;
131  unsigned Rotate;
132};
133
134class SystemZDAGToDAGISel : public SelectionDAGISel {
135  const SystemZSubtarget *Subtarget;
136
137  // Used by SystemZOperands.td to create integer constants.
138  inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139    return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
140  }
141
142  const SystemZTargetMachine &getTargetMachine() const {
143    return static_cast<const SystemZTargetMachine &>(TM);
144  }
145
146  const SystemZInstrInfo *getInstrInfo() const {
147    return Subtarget->getInstrInfo();
148  }
149
150  // Try to fold more of the base or index of AM into AM, where IsBase
151  // selects between the base and index.
152  bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
153
154  // Try to describe N in AM, returning true on success.
155  bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
156
157  // Extract individual target operands from matched address AM.
158  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159                          SDValue &Base, SDValue &Disp) const;
160  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161                          SDValue &Base, SDValue &Disp, SDValue &Index) const;
162
163  // Try to match Addr as a FormBD address with displacement type DR.
164  // Return true on success, storing the base and displacement in
165  // Base and Disp respectively.
166  bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167                    SDValue &Base, SDValue &Disp) const;
168
169  // Try to match Addr as a FormBDX address with displacement type DR.
170  // Return true on success and if the result had no index.  Store the
171  // base and displacement in Base and Disp respectively.
172  bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173                     SDValue &Base, SDValue &Disp) const;
174
175  // Try to match Addr as a FormBDX* address of form Form with
176  // displacement type DR.  Return true on success, storing the base,
177  // displacement and index in Base, Disp and Index respectively.
178  bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179                     SystemZAddressingMode::DispRange DR, SDValue Addr,
180                     SDValue &Base, SDValue &Disp, SDValue &Index) const;
181
182  // PC-relative address matching routines used by SystemZOperands.td.
183  bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184    if (SystemZISD::isPCREL(Addr.getOpcode())) {
185      Target = Addr.getOperand(0);
186      return true;
187    }
188    return false;
189  }
190
191  // BD matching routines used by SystemZOperands.td.
192  bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193    return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
194  }
195  bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196    return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
197  }
198  bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199    return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
200  }
201  bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202    return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
203  }
204
205  // MVI matching routines used by SystemZOperands.td.
206  bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207    return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
208  }
209  bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210    return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
211  }
212
213  // BDX matching routines used by SystemZOperands.td.
214  bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215                           SDValue &Index) const {
216    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217                         SystemZAddressingMode::Disp12Only,
218                         Addr, Base, Disp, Index);
219  }
220  bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221                           SDValue &Index) const {
222    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223                         SystemZAddressingMode::Disp12Pair,
224                         Addr, Base, Disp, Index);
225  }
226  bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227                            SDValue &Index) const {
228    return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229                         SystemZAddressingMode::Disp12Only,
230                         Addr, Base, Disp, Index);
231  }
232  bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233                           SDValue &Index) const {
234    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235                         SystemZAddressingMode::Disp20Only,
236                         Addr, Base, Disp, Index);
237  }
238  bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239                              SDValue &Index) const {
240    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241                         SystemZAddressingMode::Disp20Only128,
242                         Addr, Base, Disp, Index);
243  }
244  bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245                           SDValue &Index) const {
246    return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247                         SystemZAddressingMode::Disp20Pair,
248                         Addr, Base, Disp, Index);
249  }
250  bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251                          SDValue &Index) const {
252    return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253                         SystemZAddressingMode::Disp12Pair,
254                         Addr, Base, Disp, Index);
255  }
256  bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257                          SDValue &Index) const {
258    return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259                         SystemZAddressingMode::Disp20Pair,
260                         Addr, Base, Disp, Index);
261  }
262
263  // Try to match Addr as an address with a base, 12-bit displacement
264  // and index, where the index is element Elem of a vector.
265  // Return true on success, storing the base, displacement and vector
266  // in Base, Disp and Index respectively.
267  bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268                           SDValue &Disp, SDValue &Index) const;
269
270  // Check whether (or Op (and X InsertMask)) is effectively an insertion
271  // of X into bits InsertMask of some Y != Op.  Return true if so and
272  // set Op to that Y.
273  bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
274
275  // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276  // Return true on success.
277  bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
278
279  // Try to fold some of RxSBG.Input into other fields of RxSBG.
280  // Return true on success.
281  bool expandRxSBG(RxSBGOperands &RxSBG) const;
282
283  // Return an undefined value of type VT.
284  SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
285
286  // Convert N to VT, if it isn't already.
287  SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
288
289  // Try to implement AND or shift node N using RISBG with the zero flag set.
290  // Return the selected node on success, otherwise return null.
291  bool tryRISBGZero(SDNode *N);
292
293  // Try to use RISBG or Opcode to implement OR or XOR node N.
294  // Return the selected node on success, otherwise return null.
295  bool tryRxSBG(SDNode *N, unsigned Opcode);
296
297  // If Op0 is null, then Node is a constant that can be loaded using:
298  //
299  //   (Opcode UpperVal LowerVal)
300  //
301  // If Op0 is nonnull, then Node can be implemented using:
302  //
303  //   (Opcode (Opcode Op0 UpperVal) LowerVal)
304  void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305                           uint64_t UpperVal, uint64_t LowerVal);
306
307  void loadVectorConstant(const SystemZVectorConstantInfo &VCI,
308                          SDNode *Node);
309
310  // Try to use gather instruction Opcode to implement vector insertion N.
311  bool tryGather(SDNode *N, unsigned Opcode);
312
313  // Try to use scatter instruction Opcode to implement store Store.
314  bool tryScatter(StoreSDNode *Store, unsigned Opcode);
315
316  // Change a chain of {load; op; store} of the same value into a simple op
317  // through memory of that value, if the uses of the modified value and its
318  // address are suitable.
319  bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);
320
321  // Return true if Load and Store are loads and stores of the same size
322  // and are guaranteed not to overlap.  Such operations can be implemented
323  // using block (SS-format) instructions.
324  //
325  // Partial overlap would lead to incorrect code, since the block operations
326  // are logically bytewise, even though they have a fast path for the
327  // non-overlapping case.  We also need to avoid full overlap (i.e. two
328  // addresses that might be equal at run time) because although that case
329  // would be handled correctly, it might be implemented by millicode.
330  bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
331
332  // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
333  // from Y to X.
334  bool storeLoadCanUseMVC(SDNode *N) const;
335
336  // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
337  // if A[1 - I] == X and if N can use a block operation like NC from A[I]
338  // to X.
339  bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
340
341  // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
342  SDValue expandSelectBoolean(SDNode *Node);
343
344public:
345  SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
346      : SelectionDAGISel(TM, OptLevel) {}
347
348  bool runOnMachineFunction(MachineFunction &MF) override {
349    const Function &F = MF.getFunction();
350    if (F.getFnAttribute("fentry-call").getValueAsString() != "true") {
351      if (F.hasFnAttribute("mnop-mcount"))
352        report_fatal_error("mnop-mcount only supported with fentry-call");
353      if (F.hasFnAttribute("mrecord-mcount"))
354        report_fatal_error("mrecord-mcount only supported with fentry-call");
355    }
356
357    Subtarget = &MF.getSubtarget<SystemZSubtarget>();
358    return SelectionDAGISel::runOnMachineFunction(MF);
359  }
360
361  // Override MachineFunctionPass.
362  StringRef getPassName() const override {
363    return "SystemZ DAG->DAG Pattern Instruction Selection";
364  }
365
366  // Override SelectionDAGISel.
367  void Select(SDNode *Node) override;
368  bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
369                                    std::vector<SDValue> &OutOps) override;
370  bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
371  void PreprocessISelDAG() override;
372
373  // Include the pieces autogenerated from the target description.
374  #include "SystemZGenDAGISel.inc"
375};
376} // end anonymous namespace
377
378FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
379                                         CodeGenOpt::Level OptLevel) {
380  return new SystemZDAGToDAGISel(TM, OptLevel);
381}
382
383// Return true if Val should be selected as a displacement for an address
384// with range DR.  Here we're interested in the range of both the instruction
385// described by DR and of any pairing instruction.
386static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
387  switch (DR) {
388  case SystemZAddressingMode::Disp12Only:
389    return isUInt<12>(Val);
390
391  case SystemZAddressingMode::Disp12Pair:
392  case SystemZAddressingMode::Disp20Only:
393  case SystemZAddressingMode::Disp20Pair:
394    return isInt<20>(Val);
395
396  case SystemZAddressingMode::Disp20Only128:
397    return isInt<20>(Val) && isInt<20>(Val + 8);
398  }
399  llvm_unreachable("Unhandled displacement range");
400}
401
402// Change the base or index in AM to Value, where IsBase selects
403// between the base and index.
404static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
405                            SDValue Value) {
406  if (IsBase)
407    AM.Base = Value;
408  else
409    AM.Index = Value;
410}
411
412// The base or index of AM is equivalent to Value + ADJDYNALLOC,
413// where IsBase selects between the base and index.  Try to fold the
414// ADJDYNALLOC into AM.
415static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
416                              SDValue Value) {
417  if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
418    changeComponent(AM, IsBase, Value);
419    AM.IncludesDynAlloc = true;
420    return true;
421  }
422  return false;
423}
424
425// The base of AM is equivalent to Base + Index.  Try to use Index as
426// the index register.
427static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
428                        SDValue Index) {
429  if (AM.hasIndexField() && !AM.Index.getNode()) {
430    AM.Base = Base;
431    AM.Index = Index;
432    return true;
433  }
434  return false;
435}
436
437// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
438// between the base and index.  Try to fold Op1 into AM's displacement.
439static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
440                       SDValue Op0, uint64_t Op1) {
441  // First try adjusting the displacement.
442  int64_t TestDisp = AM.Disp + Op1;
443  if (selectDisp(AM.DR, TestDisp)) {
444    changeComponent(AM, IsBase, Op0);
445    AM.Disp = TestDisp;
446    return true;
447  }
448
449  // We could consider forcing the displacement into a register and
450  // using it as an index, but it would need to be carefully tuned.
451  return false;
452}
453
454bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
455                                        bool IsBase) const {
456  SDValue N = IsBase ? AM.Base : AM.Index;
457  unsigned Opcode = N.getOpcode();
458  if (Opcode == ISD::TRUNCATE) {
459    N = N.getOperand(0);
460    Opcode = N.getOpcode();
461  }
462  if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
463    SDValue Op0 = N.getOperand(0);
464    SDValue Op1 = N.getOperand(1);
465
466    unsigned Op0Code = Op0->getOpcode();
467    unsigned Op1Code = Op1->getOpcode();
468
469    if (Op0Code == SystemZISD::ADJDYNALLOC)
470      return expandAdjDynAlloc(AM, IsBase, Op1);
471    if (Op1Code == SystemZISD::ADJDYNALLOC)
472      return expandAdjDynAlloc(AM, IsBase, Op0);
473
474    if (Op0Code == ISD::Constant)
475      return expandDisp(AM, IsBase, Op1,
476                        cast<ConstantSDNode>(Op0)->getSExtValue());
477    if (Op1Code == ISD::Constant)
478      return expandDisp(AM, IsBase, Op0,
479                        cast<ConstantSDNode>(Op1)->getSExtValue());
480
481    if (IsBase && expandIndex(AM, Op0, Op1))
482      return true;
483  }
484  if (Opcode == SystemZISD::PCREL_OFFSET) {
485    SDValue Full = N.getOperand(0);
486    SDValue Base = N.getOperand(1);
487    SDValue Anchor = Base.getOperand(0);
488    uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
489                       cast<GlobalAddressSDNode>(Anchor)->getOffset());
490    return expandDisp(AM, IsBase, Base, Offset);
491  }
492  return false;
493}
494
495// Return true if an instruction with displacement range DR should be
496// used for displacement value Val.  selectDisp(DR, Val) must already hold.
497static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
498  assert(selectDisp(DR, Val) && "Invalid displacement");
499  switch (DR) {
500  case SystemZAddressingMode::Disp12Only:
501  case SystemZAddressingMode::Disp20Only:
502  case SystemZAddressingMode::Disp20Only128:
503    return true;
504
505  case SystemZAddressingMode::Disp12Pair:
506    // Use the other instruction if the displacement is too large.
507    return isUInt<12>(Val);
508
509  case SystemZAddressingMode::Disp20Pair:
510    // Use the other instruction if the displacement is small enough.
511    return !isUInt<12>(Val);
512  }
513  llvm_unreachable("Unhandled displacement range");
514}
515
516// Return true if Base + Disp + Index should be performed by LA(Y).
517static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
518  // Don't use LA(Y) for constants.
519  if (!Base)
520    return false;
521
522  // Always use LA(Y) for frame addresses, since we know that the destination
523  // register is almost always (perhaps always) going to be different from
524  // the frame register.
525  if (Base->getOpcode() == ISD::FrameIndex)
526    return true;
527
528  if (Disp) {
529    // Always use LA(Y) if there is a base, displacement and index.
530    if (Index)
531      return true;
532
533    // Always use LA if the displacement is small enough.  It should always
534    // be no worse than AGHI (and better if it avoids a move).
535    if (isUInt<12>(Disp))
536      return true;
537
538    // For similar reasons, always use LAY if the constant is too big for AGHI.
539    // LAY should be no worse than AGFI.
540    if (!isInt<16>(Disp))
541      return true;
542  } else {
543    // Don't use LA for plain registers.
544    if (!Index)
545      return false;
546
547    // Don't use LA for plain addition if the index operand is only used
548    // once.  It should be a natural two-operand addition in that case.
549    if (Index->hasOneUse())
550      return false;
551
552    // Prefer addition if the second operation is sign-extended, in the
553    // hope of using AGF.
554    unsigned IndexOpcode = Index->getOpcode();
555    if (IndexOpcode == ISD::SIGN_EXTEND ||
556        IndexOpcode == ISD::SIGN_EXTEND_INREG)
557      return false;
558  }
559
560  // Don't use LA for two-operand addition if either operand is only
561  // used once.  The addition instructions are better in that case.
562  if (Base->hasOneUse())
563    return false;
564
565  return true;
566}
567
568// Return true if Addr is suitable for AM, updating AM if so.
569bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
570                                        SystemZAddressingMode &AM) const {
571  // Start out assuming that the address will need to be loaded separately,
572  // then try to extend it as much as we can.
573  AM.Base = Addr;
574
575  // First try treating the address as a constant.
576  if (Addr.getOpcode() == ISD::Constant &&
577      expandDisp(AM, true, SDValue(),
578                 cast<ConstantSDNode>(Addr)->getSExtValue()))
579    ;
580  // Also see if it's a bare ADJDYNALLOC.
581  else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
582           expandAdjDynAlloc(AM, true, SDValue()))
583    ;
584  else
585    // Otherwise try expanding each component.
586    while (expandAddress(AM, true) ||
587           (AM.Index.getNode() && expandAddress(AM, false)))
588      continue;
589
590  // Reject cases where it isn't profitable to use LA(Y).
591  if (AM.Form == SystemZAddressingMode::FormBDXLA &&
592      !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
593    return false;
594
595  // Reject cases where the other instruction in a pair should be used.
596  if (!isValidDisp(AM.DR, AM.Disp))
597    return false;
598
599  // Make sure that ADJDYNALLOC is included where necessary.
600  if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
601    return false;
602
603  LLVM_DEBUG(AM.dump(CurDAG));
604  return true;
605}
606
607// Insert a node into the DAG at least before Pos.  This will reposition
608// the node as needed, and will assign it a node ID that is <= Pos's ID.
609// Note that this does *not* preserve the uniqueness of node IDs!
610// The selection DAG must no longer depend on their uniqueness when this
611// function is used.
612static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
613  if (N->getNodeId() == -1 ||
614      (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
615       SelectionDAGISel::getUninvalidatedNodeId(Pos))) {
616    DAG->RepositionNode(Pos->getIterator(), N.getNode());
617    // Mark Node as invalid for pruning as after this it may be a successor to a
618    // selected node but otherwise be in the same position of Pos.
619    // Conservatively mark it with the same -abs(Id) to assure node id
620    // invariant is preserved.
621    N->setNodeId(Pos->getNodeId());
622    SelectionDAGISel::InvalidateNodeId(N.getNode());
623  }
624}
625
626void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
627                                             EVT VT, SDValue &Base,
628                                             SDValue &Disp) const {
629  Base = AM.Base;
630  if (!Base.getNode())
631    // Register 0 means "no base".  This is mostly useful for shifts.
632    Base = CurDAG->getRegister(0, VT);
633  else if (Base.getOpcode() == ISD::FrameIndex) {
634    // Lower a FrameIndex to a TargetFrameIndex.
635    int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
636    Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
637  } else if (Base.getValueType() != VT) {
638    // Truncate values from i64 to i32, for shifts.
639    assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
640           "Unexpected truncation");
641    SDLoc DL(Base);
642    SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
643    insertDAGNode(CurDAG, Base.getNode(), Trunc);
644    Base = Trunc;
645  }
646
647  // Lower the displacement to a TargetConstant.
648  Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
649}
650
651void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
652                                             EVT VT, SDValue &Base,
653                                             SDValue &Disp,
654                                             SDValue &Index) const {
655  getAddressOperands(AM, VT, Base, Disp);
656
657  Index = AM.Index;
658  if (!Index.getNode())
659    // Register 0 means "no index".
660    Index = CurDAG->getRegister(0, VT);
661}
662
663bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
664                                       SDValue Addr, SDValue &Base,
665                                       SDValue &Disp) const {
666  SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
667  if (!selectAddress(Addr, AM))
668    return false;
669
670  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
671  return true;
672}
673
674bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
675                                        SDValue Addr, SDValue &Base,
676                                        SDValue &Disp) const {
677  SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
678  if (!selectAddress(Addr, AM) || AM.Index.getNode())
679    return false;
680
681  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
682  return true;
683}
684
685bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
686                                        SystemZAddressingMode::DispRange DR,
687                                        SDValue Addr, SDValue &Base,
688                                        SDValue &Disp, SDValue &Index) const {
689  SystemZAddressingMode AM(Form, DR);
690  if (!selectAddress(Addr, AM))
691    return false;
692
693  getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
694  return true;
695}
696
697bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
698                                              SDValue &Base,
699                                              SDValue &Disp,
700                                              SDValue &Index) const {
701  SDValue Regs[2];
702  if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
703      Regs[0].getNode() && Regs[1].getNode()) {
704    for (unsigned int I = 0; I < 2; ++I) {
705      Base = Regs[I];
706      Index = Regs[1 - I];
707      // We can't tell here whether the index vector has the right type
708      // for the access; the caller needs to do that instead.
709      if (Index.getOpcode() == ISD::ZERO_EXTEND)
710        Index = Index.getOperand(0);
711      if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
712          Index.getOperand(1) == Elem) {
713        Index = Index.getOperand(0);
714        return true;
715      }
716    }
717  }
718  return false;
719}
720
721bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
722                                               uint64_t InsertMask) const {
723  // We're only interested in cases where the insertion is into some operand
724  // of Op, rather than into Op itself.  The only useful case is an AND.
725  if (Op.getOpcode() != ISD::AND)
726    return false;
727
728  // We need a constant mask.
729  auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
730  if (!MaskNode)
731    return false;
732
733  // It's not an insertion of Op.getOperand(0) if the two masks overlap.
734  uint64_t AndMask = MaskNode->getZExtValue();
735  if (InsertMask & AndMask)
736    return false;
737
738  // It's only an insertion if all bits are covered or are known to be zero.
739  // The inner check covers all cases but is more expensive.
740  uint64_t Used = allOnes(Op.getValueSizeInBits());
741  if (Used != (AndMask | InsertMask)) {
742    KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0));
743    if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
744      return false;
745  }
746
747  Op = Op.getOperand(0);
748  return true;
749}
750
751bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
752                                          uint64_t Mask) const {
753  const SystemZInstrInfo *TII = getInstrInfo();
754  if (RxSBG.Rotate != 0)
755    Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
756  Mask &= RxSBG.Mask;
757  if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
758    RxSBG.Mask = Mask;
759    return true;
760  }
761  return false;
762}
763
764// Return true if any bits of (RxSBG.Input & Mask) are significant.
765static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
766  // Rotate the mask in the same way as RxSBG.Input is rotated.
767  if (RxSBG.Rotate != 0)
768    Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
769  return (Mask & RxSBG.Mask) != 0;
770}
771
772bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
773  SDValue N = RxSBG.Input;
774  unsigned Opcode = N.getOpcode();
775  switch (Opcode) {
776  case ISD::TRUNCATE: {
777    if (RxSBG.Opcode == SystemZ::RNSBG)
778      return false;
779    uint64_t BitSize = N.getValueSizeInBits();
780    uint64_t Mask = allOnes(BitSize);
781    if (!refineRxSBGMask(RxSBG, Mask))
782      return false;
783    RxSBG.Input = N.getOperand(0);
784    return true;
785  }
786  case ISD::AND: {
787    if (RxSBG.Opcode == SystemZ::RNSBG)
788      return false;
789
790    auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
791    if (!MaskNode)
792      return false;
793
794    SDValue Input = N.getOperand(0);
795    uint64_t Mask = MaskNode->getZExtValue();
796    if (!refineRxSBGMask(RxSBG, Mask)) {
797      // If some bits of Input are already known zeros, those bits will have
798      // been removed from the mask.  See if adding them back in makes the
799      // mask suitable.
800      KnownBits Known = CurDAG->computeKnownBits(Input);
801      Mask |= Known.Zero.getZExtValue();
802      if (!refineRxSBGMask(RxSBG, Mask))
803        return false;
804    }
805    RxSBG.Input = Input;
806    return true;
807  }
808
809  case ISD::OR: {
810    if (RxSBG.Opcode != SystemZ::RNSBG)
811      return false;
812
813    auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
814    if (!MaskNode)
815      return false;
816
817    SDValue Input = N.getOperand(0);
818    uint64_t Mask = ~MaskNode->getZExtValue();
819    if (!refineRxSBGMask(RxSBG, Mask)) {
820      // If some bits of Input are already known ones, those bits will have
821      // been removed from the mask.  See if adding them back in makes the
822      // mask suitable.
823      KnownBits Known = CurDAG->computeKnownBits(Input);
824      Mask &= ~Known.One.getZExtValue();
825      if (!refineRxSBGMask(RxSBG, Mask))
826        return false;
827    }
828    RxSBG.Input = Input;
829    return true;
830  }
831
832  case ISD::ROTL: {
833    // Any 64-bit rotate left can be merged into the RxSBG.
834    if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
835      return false;
836    auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
837    if (!CountNode)
838      return false;
839
840    RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
841    RxSBG.Input = N.getOperand(0);
842    return true;
843  }
844
845  case ISD::ANY_EXTEND:
846    // Bits above the extended operand are don't-care.
847    RxSBG.Input = N.getOperand(0);
848    return true;
849
850  case ISD::ZERO_EXTEND:
851    if (RxSBG.Opcode != SystemZ::RNSBG) {
852      // Restrict the mask to the extended operand.
853      unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
854      if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
855        return false;
856
857      RxSBG.Input = N.getOperand(0);
858      return true;
859    }
860    LLVM_FALLTHROUGH;
861
862  case ISD::SIGN_EXTEND: {
863    // Check that the extension bits are don't-care (i.e. are masked out
864    // by the final mask).
865    unsigned BitSize = N.getValueSizeInBits();
866    unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
867    if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
868      // In the case where only the sign bit is active, increase Rotate with
869      // the extension width.
870      if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
871        RxSBG.Rotate += (BitSize - InnerBitSize);
872      else
873        return false;
874    }
875
876    RxSBG.Input = N.getOperand(0);
877    return true;
878  }
879
880  case ISD::SHL: {
881    auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
882    if (!CountNode)
883      return false;
884
885    uint64_t Count = CountNode->getZExtValue();
886    unsigned BitSize = N.getValueSizeInBits();
887    if (Count < 1 || Count >= BitSize)
888      return false;
889
890    if (RxSBG.Opcode == SystemZ::RNSBG) {
891      // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
892      // count bits from RxSBG.Input are ignored.
893      if (maskMatters(RxSBG, allOnes(Count)))
894        return false;
895    } else {
896      // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
897      if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
898        return false;
899    }
900
901    RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
902    RxSBG.Input = N.getOperand(0);
903    return true;
904  }
905
906  case ISD::SRL:
907  case ISD::SRA: {
908    auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
909    if (!CountNode)
910      return false;
911
912    uint64_t Count = CountNode->getZExtValue();
913    unsigned BitSize = N.getValueSizeInBits();
914    if (Count < 1 || Count >= BitSize)
915      return false;
916
917    if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
918      // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
919      // count bits from RxSBG.Input are ignored.
920      if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
921        return false;
922    } else {
923      // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
924      // which is similar to SLL above.
925      if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
926        return false;
927    }
928
929    RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
930    RxSBG.Input = N.getOperand(0);
931    return true;
932  }
933  default:
934    return false;
935  }
936}
937
938SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
939  SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
940  return SDValue(N, 0);
941}
942
943SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
944                                       SDValue N) const {
945  if (N.getValueType() == MVT::i32 && VT == MVT::i64)
946    return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
947                                         DL, VT, getUNDEF(DL, MVT::i64), N);
948  if (N.getValueType() == MVT::i64 && VT == MVT::i32)
949    return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
950  assert(N.getValueType() == VT && "Unexpected value types");
951  return N;
952}
953
954bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
955  SDLoc DL(N);
956  EVT VT = N->getValueType(0);
957  if (!VT.isInteger() || VT.getSizeInBits() > 64)
958    return false;
959  RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
960  unsigned Count = 0;
961  while (expandRxSBG(RISBG))
962    // The widening or narrowing is expected to be free.
963    // Counting widening or narrowing as a saved operation will result in
964    // preferring an R*SBG over a simple shift/logical instruction.
965    if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
966        RISBG.Input.getOpcode() != ISD::TRUNCATE)
967      Count += 1;
968  if (Count == 0)
969    return false;
970
971  // Prefer to use normal shift instructions over RISBG, since they can handle
972  // all cases and are sometimes shorter.
973  if (Count == 1 && N->getOpcode() != ISD::AND)
974    return false;
975
976  // Prefer register extensions like LLC over RISBG.  Also prefer to start
977  // out with normal ANDs if one instruction would be enough.  We can convert
978  // these ANDs into an RISBG later if a three-address instruction is useful.
979  if (RISBG.Rotate == 0) {
980    bool PreferAnd = false;
981    // Prefer AND for any 32-bit and-immediate operation.
982    if (VT == MVT::i32)
983      PreferAnd = true;
984    // As well as for any 64-bit operation that can be implemented via LLC(R),
985    // LLH(R), LLGT(R), or one of the and-immediate instructions.
986    else if (RISBG.Mask == 0xff ||
987             RISBG.Mask == 0xffff ||
988             RISBG.Mask == 0x7fffffff ||
989             SystemZ::isImmLF(~RISBG.Mask) ||
990             SystemZ::isImmHF(~RISBG.Mask))
991     PreferAnd = true;
992    // And likewise for the LLZRGF instruction, which doesn't have a register
993    // to register version.
994    else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
995      if (Load->getMemoryVT() == MVT::i32 &&
996          (Load->getExtensionType() == ISD::EXTLOAD ||
997           Load->getExtensionType() == ISD::ZEXTLOAD) &&
998          RISBG.Mask == 0xffffff00 &&
999          Subtarget->hasLoadAndZeroRightmostByte())
1000      PreferAnd = true;
1001    }
1002    if (PreferAnd) {
1003      // Replace the current node with an AND.  Note that the current node
1004      // might already be that same AND, in which case it is already CSE'd
1005      // with it, and we must not call ReplaceNode.
1006      SDValue In = convertTo(DL, VT, RISBG.Input);
1007      SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
1008      SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
1009      if (N != New.getNode()) {
1010        insertDAGNode(CurDAG, N, Mask);
1011        insertDAGNode(CurDAG, N, New);
1012        ReplaceNode(N, New.getNode());
1013        N = New.getNode();
1014      }
1015      // Now, select the machine opcode to implement this operation.
1016      if (!N->isMachineOpcode())
1017        SelectCode(N);
1018      return true;
1019    }
1020  }
1021
1022  unsigned Opcode = SystemZ::RISBG;
1023  // Prefer RISBGN if available, since it does not clobber CC.
1024  if (Subtarget->hasMiscellaneousExtensions())
1025    Opcode = SystemZ::RISBGN;
1026  EVT OpcodeVT = MVT::i64;
1027  if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1028      // We can only use the 32-bit instructions if all source bits are
1029      // in the low 32 bits without wrapping, both after rotation (because
1030      // of the smaller range for Start and End) and before rotation
1031      // (because the input value is truncated).
1032      RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1033      ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1034      ((RISBG.End + RISBG.Rotate) & 63) >=
1035      ((RISBG.Start + RISBG.Rotate) & 63)) {
1036    Opcode = SystemZ::RISBMux;
1037    OpcodeVT = MVT::i32;
1038    RISBG.Start &= 31;
1039    RISBG.End &= 31;
1040  }
1041  SDValue Ops[5] = {
1042    getUNDEF(DL, OpcodeVT),
1043    convertTo(DL, OpcodeVT, RISBG.Input),
1044    CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1045    CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1046    CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1047  };
1048  SDValue New = convertTo(
1049      DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1050  ReplaceNode(N, New.getNode());
1051  return true;
1052}
1053
1054bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1055  SDLoc DL(N);
1056  EVT VT = N->getValueType(0);
1057  if (!VT.isInteger() || VT.getSizeInBits() > 64)
1058    return false;
1059  // Try treating each operand of N as the second operand of the RxSBG
1060  // and see which goes deepest.
1061  RxSBGOperands RxSBG[] = {
1062    RxSBGOperands(Opcode, N->getOperand(0)),
1063    RxSBGOperands(Opcode, N->getOperand(1))
1064  };
1065  unsigned Count[] = { 0, 0 };
1066  for (unsigned I = 0; I < 2; ++I)
1067    while (expandRxSBG(RxSBG[I]))
1068      // The widening or narrowing is expected to be free.
1069      // Counting widening or narrowing as a saved operation will result in
1070      // preferring an R*SBG over a simple shift/logical instruction.
1071      if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1072          RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1073        Count[I] += 1;
1074
1075  // Do nothing if neither operand is suitable.
1076  if (Count[0] == 0 && Count[1] == 0)
1077    return false;
1078
1079  // Pick the deepest second operand.
1080  unsigned I = Count[0] > Count[1] ? 0 : 1;
1081  SDValue Op0 = N->getOperand(I ^ 1);
1082
1083  // Prefer IC for character insertions from memory.
1084  if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1085    if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1086      if (Load->getMemoryVT() == MVT::i8)
1087        return false;
1088
1089  // See whether we can avoid an AND in the first operand by converting
1090  // ROSBG to RISBG.
1091  if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1092    Opcode = SystemZ::RISBG;
1093    // Prefer RISBGN if available, since it does not clobber CC.
1094    if (Subtarget->hasMiscellaneousExtensions())
1095      Opcode = SystemZ::RISBGN;
1096  }
1097
1098  SDValue Ops[5] = {
1099    convertTo(DL, MVT::i64, Op0),
1100    convertTo(DL, MVT::i64, RxSBG[I].Input),
1101    CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1102    CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1103    CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1104  };
1105  SDValue New = convertTo(
1106      DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1107  ReplaceNode(N, New.getNode());
1108  return true;
1109}
1110
1111void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1112                                              SDValue Op0, uint64_t UpperVal,
1113                                              uint64_t LowerVal) {
1114  EVT VT = Node->getValueType(0);
1115  SDLoc DL(Node);
1116  SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1117  if (Op0.getNode())
1118    Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1119
1120  {
1121    // When we haven't passed in Op0, Upper will be a constant. In order to
1122    // prevent folding back to the large immediate in `Or = getNode(...)` we run
1123    // SelectCode first and end up with an opaque machine node. This means that
1124    // we need to use a handle to keep track of Upper in case it gets CSE'd by
1125    // SelectCode.
1126    //
1127    // Note that in the case where Op0 is passed in we could just call
1128    // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1129    // the handle at all, but it's fine to do it here.
1130    //
1131    // TODO: This is a pretty hacky way to do this. Can we do something that
1132    // doesn't require a two paragraph explanation?
1133    HandleSDNode Handle(Upper);
1134    SelectCode(Upper.getNode());
1135    Upper = Handle.getValue();
1136  }
1137
1138  SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1139  SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1140
1141  ReplaceNode(Node, Or.getNode());
1142
1143  SelectCode(Or.getNode());
1144}
1145
1146void SystemZDAGToDAGISel::loadVectorConstant(
1147    const SystemZVectorConstantInfo &VCI, SDNode *Node) {
1148  assert((VCI.Opcode == SystemZISD::BYTE_MASK ||
1149          VCI.Opcode == SystemZISD::REPLICATE ||
1150          VCI.Opcode == SystemZISD::ROTATE_MASK) &&
1151         "Bad opcode!");
1152  assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type");
1153  EVT VT = Node->getValueType(0);
1154  SDLoc DL(Node);
1155  SmallVector<SDValue, 2> Ops;
1156  for (unsigned OpVal : VCI.OpVals)
1157    Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32));
1158  SDValue Op = CurDAG->getNode(VCI.Opcode, DL, VCI.VecVT, Ops);
1159
1160  if (VCI.VecVT == VT.getSimpleVT())
1161    ReplaceNode(Node, Op.getNode());
1162  else if (VT.getSizeInBits() == 128) {
1163    SDValue BitCast = CurDAG->getNode(ISD::BITCAST, DL, VT, Op);
1164    ReplaceNode(Node, BitCast.getNode());
1165    SelectCode(BitCast.getNode());
1166  } else { // float or double
1167    unsigned SubRegIdx =
1168        (VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64);
1169    ReplaceNode(
1170        Node, CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, Op).getNode());
1171  }
1172  SelectCode(Op.getNode());
1173}
1174
1175bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1176  SDValue ElemV = N->getOperand(2);
1177  auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1178  if (!ElemN)
1179    return false;
1180
1181  unsigned Elem = ElemN->getZExtValue();
1182  EVT VT = N->getValueType(0);
1183  if (Elem >= VT.getVectorNumElements())
1184    return false;
1185
1186  auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1187  if (!Load || !Load->hasNUsesOfValue(1, 0))
1188    return false;
1189  if (Load->getMemoryVT().getSizeInBits() !=
1190      Load->getValueType(0).getSizeInBits())
1191    return false;
1192
1193  SDValue Base, Disp, Index;
1194  if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1195      Index.getValueType() != VT.changeVectorElementTypeToInteger())
1196    return false;
1197
1198  SDLoc DL(Load);
1199  SDValue Ops[] = {
1200    N->getOperand(0), Base, Disp, Index,
1201    CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1202  };
1203  SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1204  ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1205  ReplaceNode(N, Res);
1206  return true;
1207}
1208
1209bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1210  SDValue Value = Store->getValue();
1211  if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1212    return false;
1213  if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1214    return false;
1215
1216  SDValue ElemV = Value.getOperand(1);
1217  auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1218  if (!ElemN)
1219    return false;
1220
1221  SDValue Vec = Value.getOperand(0);
1222  EVT VT = Vec.getValueType();
1223  unsigned Elem = ElemN->getZExtValue();
1224  if (Elem >= VT.getVectorNumElements())
1225    return false;
1226
1227  SDValue Base, Disp, Index;
1228  if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1229      Index.getValueType() != VT.changeVectorElementTypeToInteger())
1230    return false;
1231
1232  SDLoc DL(Store);
1233  SDValue Ops[] = {
1234    Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1235    Store->getChain()
1236  };
1237  ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1238  return true;
1239}
1240
1241// Check whether or not the chain ending in StoreNode is suitable for doing
1242// the {load; op; store} to modify transformation.
1243static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
1244                                        SDValue StoredVal, SelectionDAG *CurDAG,
1245                                        LoadSDNode *&LoadNode,
1246                                        SDValue &InputChain) {
1247  // Is the stored value result 0 of the operation?
1248  if (StoredVal.getResNo() != 0)
1249    return false;
1250
1251  // Are there other uses of the loaded value than the operation?
1252  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0))
1253    return false;
1254
1255  // Is the store non-extending and non-indexed?
1256  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1257    return false;
1258
1259  SDValue Load = StoredVal->getOperand(0);
1260  // Is the stored value a non-extending and non-indexed load?
1261  if (!ISD::isNormalLoad(Load.getNode()))
1262    return false;
1263
1264  // Return LoadNode by reference.
1265  LoadNode = cast<LoadSDNode>(Load);
1266
1267  // Is store the only read of the loaded value?
1268  if (!Load.hasOneUse())
1269    return false;
1270
1271  // Is the address of the store the same as the load?
1272  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1273      LoadNode->getOffset() != StoreNode->getOffset())
1274    return false;
1275
1276  // Check if the chain is produced by the load or is a TokenFactor with
1277  // the load output chain as an operand. Return InputChain by reference.
1278  SDValue Chain = StoreNode->getChain();
1279
1280  bool ChainCheck = false;
1281  if (Chain == Load.getValue(1)) {
1282    ChainCheck = true;
1283    InputChain = LoadNode->getChain();
1284  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1285    SmallVector<SDValue, 4> ChainOps;
1286    SmallVector<const SDNode *, 4> LoopWorklist;
1287    SmallPtrSet<const SDNode *, 16> Visited;
1288    const unsigned int Max = 1024;
1289    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1290      SDValue Op = Chain.getOperand(i);
1291      if (Op == Load.getValue(1)) {
1292        ChainCheck = true;
1293        // Drop Load, but keep its chain. No cycle check necessary.
1294        ChainOps.push_back(Load.getOperand(0));
1295        continue;
1296      }
1297      LoopWorklist.push_back(Op.getNode());
1298      ChainOps.push_back(Op);
1299    }
1300
1301    if (ChainCheck) {
1302      // Add the other operand of StoredVal to worklist.
1303      for (SDValue Op : StoredVal->ops())
1304        if (Op.getNode() != LoadNode)
1305          LoopWorklist.push_back(Op.getNode());
1306
1307      // Check if Load is reachable from any of the nodes in the worklist.
1308      if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
1309                                       true))
1310        return false;
1311
1312      // Make a new TokenFactor with all the other input chains except
1313      // for the load.
1314      InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1315                                   MVT::Other, ChainOps);
1316    }
1317  }
1318  if (!ChainCheck)
1319    return false;
1320
1321  return true;
1322}
1323
1324// Change a chain of {load; op; store} of the same value into a simple op
1325// through memory of that value, if the uses of the modified value and its
1326// address are suitable.
1327//
1328// The tablegen pattern memory operand pattern is currently not able to match
1329// the case where the CC on the original operation are used.
1330//
1331// See the equivalent routine in X86ISelDAGToDAG for further comments.
1332bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
1333  StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
1334  SDValue StoredVal = StoreNode->getOperand(1);
1335  unsigned Opc = StoredVal->getOpcode();
1336  SDLoc DL(StoreNode);
1337
1338  // Before we try to select anything, make sure this is memory operand size
1339  // and opcode we can handle. Note that this must match the code below that
1340  // actually lowers the opcodes.
1341  EVT MemVT = StoreNode->getMemoryVT();
1342  unsigned NewOpc = 0;
1343  bool NegateOperand = false;
1344  switch (Opc) {
1345  default:
1346    return false;
1347  case SystemZISD::SSUBO:
1348    NegateOperand = true;
1349    LLVM_FALLTHROUGH;
1350  case SystemZISD::SADDO:
1351    if (MemVT == MVT::i32)
1352      NewOpc = SystemZ::ASI;
1353    else if (MemVT == MVT::i64)
1354      NewOpc = SystemZ::AGSI;
1355    else
1356      return false;
1357    break;
1358  case SystemZISD::USUBO:
1359    NegateOperand = true;
1360    LLVM_FALLTHROUGH;
1361  case SystemZISD::UADDO:
1362    if (MemVT == MVT::i32)
1363      NewOpc = SystemZ::ALSI;
1364    else if (MemVT == MVT::i64)
1365      NewOpc = SystemZ::ALGSI;
1366    else
1367      return false;
1368    break;
1369  }
1370
1371  LoadSDNode *LoadNode = nullptr;
1372  SDValue InputChain;
1373  if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
1374                                   InputChain))
1375    return false;
1376
1377  SDValue Operand = StoredVal.getOperand(1);
1378  auto *OperandC = dyn_cast<ConstantSDNode>(Operand);
1379  if (!OperandC)
1380    return false;
1381  auto OperandV = OperandC->getAPIntValue();
1382  if (NegateOperand)
1383    OperandV = -OperandV;
1384  if (OperandV.getMinSignedBits() > 8)
1385    return false;
1386  Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT);
1387
1388  SDValue Base, Disp;
1389  if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp))
1390    return false;
1391
1392  SDValue Ops[] = { Base, Disp, Operand, InputChain };
1393  MachineSDNode *Result =
1394    CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
1395  CurDAG->setNodeMemRefs(
1396      Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()});
1397
1398  ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
1399  ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
1400  CurDAG->RemoveDeadNode(Node);
1401  return true;
1402}
1403
1404bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1405                                               LoadSDNode *Load) const {
1406  // Check that the two memory operands have the same size.
1407  if (Load->getMemoryVT() != Store->getMemoryVT())
1408    return false;
1409
1410  // Volatility stops an access from being decomposed.
1411  if (Load->isVolatile() || Store->isVolatile())
1412    return false;
1413
1414  // There's no chance of overlap if the load is invariant.
1415  if (Load->isInvariant() && Load->isDereferenceable())
1416    return true;
1417
1418  // Otherwise we need to check whether there's an alias.
1419  const Value *V1 = Load->getMemOperand()->getValue();
1420  const Value *V2 = Store->getMemOperand()->getValue();
1421  if (!V1 || !V2)
1422    return false;
1423
1424  // Reject equality.
1425  uint64_t Size = Load->getMemoryVT().getStoreSize();
1426  int64_t End1 = Load->getSrcValueOffset() + Size;
1427  int64_t End2 = Store->getSrcValueOffset() + Size;
1428  if (V1 == V2 && End1 == End2)
1429    return false;
1430
1431  return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
1432                    MemoryLocation(V2, End2, Store->getAAInfo()));
1433}
1434
1435bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1436  auto *Store = cast<StoreSDNode>(N);
1437  auto *Load = cast<LoadSDNode>(Store->getValue());
1438
1439  // Prefer not to use MVC if either address can use ... RELATIVE LONG
1440  // instructions.
1441  uint64_t Size = Load->getMemoryVT().getStoreSize();
1442  if (Size > 1 && Size <= 8) {
1443    // Prefer LHRL, LRL and LGRL.
1444    if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1445      return false;
1446    // Prefer STHRL, STRL and STGRL.
1447    if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1448      return false;
1449  }
1450
1451  return canUseBlockOperation(Store, Load);
1452}
1453
1454bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1455                                                     unsigned I) const {
1456  auto *StoreA = cast<StoreSDNode>(N);
1457  auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1458  auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1459  return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1460}
1461
1462void SystemZDAGToDAGISel::Select(SDNode *Node) {
1463  // If we have a custom node, we already have selected!
1464  if (Node->isMachineOpcode()) {
1465    LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1466    Node->setNodeId(-1);
1467    return;
1468  }
1469
1470  unsigned Opcode = Node->getOpcode();
1471  switch (Opcode) {
1472  case ISD::OR:
1473    if (Node->getOperand(1).getOpcode() != ISD::Constant)
1474      if (tryRxSBG(Node, SystemZ::ROSBG))
1475        return;
1476    goto or_xor;
1477
1478  case ISD::XOR:
1479    if (Node->getOperand(1).getOpcode() != ISD::Constant)
1480      if (tryRxSBG(Node, SystemZ::RXSBG))
1481        return;
1482    // Fall through.
1483  or_xor:
1484    // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1485    // split the operation into two.  If both operands here happen to be
1486    // constant, leave this to common code to optimize.
1487    if (Node->getValueType(0) == MVT::i64 &&
1488        Node->getOperand(0).getOpcode() != ISD::Constant)
1489      if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1490        uint64_t Val = Op1->getZExtValue();
1491        // Don't split the operation if we can match one of the combined
1492        // logical operations provided by miscellaneous-extensions-3.
1493        if (Subtarget->hasMiscellaneousExtensions3()) {
1494          unsigned ChildOpcode = Node->getOperand(0).getOpcode();
1495          // Check whether this expression matches NAND/NOR/NXOR.
1496          if (Val == (uint64_t)-1 && Opcode == ISD::XOR)
1497            if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR ||
1498                ChildOpcode == ISD::XOR)
1499              break;
1500          // Check whether this expression matches OR-with-complement
1501          // (or matches an alternate pattern for NXOR).
1502          if (ChildOpcode == ISD::XOR) {
1503            auto Op0 = Node->getOperand(0);
1504            if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Op0->getOperand(1)))
1505              if (Op0Op1->getZExtValue() == (uint64_t)-1)
1506                break;
1507          }
1508        }
1509        if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1510          splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1511                              Val - uint32_t(Val), uint32_t(Val));
1512          return;
1513        }
1514      }
1515    break;
1516
1517  case ISD::AND:
1518    if (Node->getOperand(1).getOpcode() != ISD::Constant)
1519      if (tryRxSBG(Node, SystemZ::RNSBG))
1520        return;
1521    LLVM_FALLTHROUGH;
1522  case ISD::ROTL:
1523  case ISD::SHL:
1524  case ISD::SRL:
1525  case ISD::ZERO_EXTEND:
1526    if (tryRISBGZero(Node))
1527      return;
1528    break;
1529
1530  case ISD::Constant:
1531    // If this is a 64-bit constant that is out of the range of LLILF,
1532    // LLIHF and LGFI, split it into two 32-bit pieces.
1533    if (Node->getValueType(0) == MVT::i64) {
1534      uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1535      if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1536        splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1537                            uint32_t(Val));
1538        return;
1539      }
1540    }
1541    break;
1542
1543  case SystemZISD::SELECT_CCMASK: {
1544    SDValue Op0 = Node->getOperand(0);
1545    SDValue Op1 = Node->getOperand(1);
1546    // Prefer to put any load first, so that it can be matched as a
1547    // conditional load.  Likewise for constants in range for LOCHI.
1548    if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1549        (Subtarget->hasLoadStoreOnCond2() &&
1550         Node->getValueType(0).isInteger() &&
1551         Op1.getOpcode() == ISD::Constant &&
1552         isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1553         !(Op0.getOpcode() == ISD::Constant &&
1554           isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1555      SDValue CCValid = Node->getOperand(2);
1556      SDValue CCMask = Node->getOperand(3);
1557      uint64_t ConstCCValid =
1558        cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1559      uint64_t ConstCCMask =
1560        cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1561      // Invert the condition.
1562      CCMask = CurDAG->getTargetConstant(ConstCCValid ^ ConstCCMask,
1563                                         SDLoc(Node), CCMask.getValueType());
1564      SDValue Op4 = Node->getOperand(4);
1565      SDNode *UpdatedNode =
1566        CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1567      if (UpdatedNode != Node) {
1568        // In case this node already exists then replace Node with it.
1569        ReplaceNode(Node, UpdatedNode);
1570        Node = UpdatedNode;
1571      }
1572    }
1573    break;
1574  }
1575
1576  case ISD::INSERT_VECTOR_ELT: {
1577    EVT VT = Node->getValueType(0);
1578    unsigned ElemBitSize = VT.getScalarSizeInBits();
1579    if (ElemBitSize == 32) {
1580      if (tryGather(Node, SystemZ::VGEF))
1581        return;
1582    } else if (ElemBitSize == 64) {
1583      if (tryGather(Node, SystemZ::VGEG))
1584        return;
1585    }
1586    break;
1587  }
1588
1589  case ISD::BUILD_VECTOR: {
1590    auto *BVN = cast<BuildVectorSDNode>(Node);
1591    SystemZVectorConstantInfo VCI(BVN);
1592    if (VCI.isVectorConstantLegal(*Subtarget)) {
1593      loadVectorConstant(VCI, Node);
1594      return;
1595    }
1596    break;
1597  }
1598
1599  case ISD::ConstantFP: {
1600    APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF();
1601    if (Imm.isZero() || Imm.isNegZero())
1602      break;
1603    SystemZVectorConstantInfo VCI(Imm);
1604    bool Success = VCI.isVectorConstantLegal(*Subtarget); (void)Success;
1605    assert(Success && "Expected legal FP immediate");
1606    loadVectorConstant(VCI, Node);
1607    return;
1608  }
1609
1610  case ISD::STORE: {
1611    if (tryFoldLoadStoreIntoMemOperand(Node))
1612      return;
1613    auto *Store = cast<StoreSDNode>(Node);
1614    unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1615    if (ElemBitSize == 32) {
1616      if (tryScatter(Store, SystemZ::VSCEF))
1617        return;
1618    } else if (ElemBitSize == 64) {
1619      if (tryScatter(Store, SystemZ::VSCEG))
1620        return;
1621    }
1622    break;
1623  }
1624  }
1625
1626  SelectCode(Node);
1627}
1628
1629bool SystemZDAGToDAGISel::
1630SelectInlineAsmMemoryOperand(const SDValue &Op,
1631                             unsigned ConstraintID,
1632                             std::vector<SDValue> &OutOps) {
1633  SystemZAddressingMode::AddrForm Form;
1634  SystemZAddressingMode::DispRange DispRange;
1635  SDValue Base, Disp, Index;
1636
1637  switch(ConstraintID) {
1638  default:
1639    llvm_unreachable("Unexpected asm memory constraint");
1640  case InlineAsm::Constraint_i:
1641  case InlineAsm::Constraint_Q:
1642    // Accept an address with a short displacement, but no index.
1643    Form = SystemZAddressingMode::FormBD;
1644    DispRange = SystemZAddressingMode::Disp12Only;
1645    break;
1646  case InlineAsm::Constraint_R:
1647    // Accept an address with a short displacement and an index.
1648    Form = SystemZAddressingMode::FormBDXNormal;
1649    DispRange = SystemZAddressingMode::Disp12Only;
1650    break;
1651  case InlineAsm::Constraint_S:
1652    // Accept an address with a long displacement, but no index.
1653    Form = SystemZAddressingMode::FormBD;
1654    DispRange = SystemZAddressingMode::Disp20Only;
1655    break;
1656  case InlineAsm::Constraint_T:
1657  case InlineAsm::Constraint_m:
1658  case InlineAsm::Constraint_o:
1659    // Accept an address with a long displacement and an index.
1660    // m works the same as T, as this is the most general case.
1661    // We don't really have any special handling of "offsettable"
1662    // memory addresses, so just treat o the same as m.
1663    Form = SystemZAddressingMode::FormBDXNormal;
1664    DispRange = SystemZAddressingMode::Disp20Only;
1665    break;
1666  }
1667
1668  if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1669    const TargetRegisterClass *TRC =
1670      Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1671    SDLoc DL(Base);
1672    SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1673
1674    // Make sure that the base address doesn't go into %r0.
1675    // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1676    if (Base.getOpcode() != ISD::TargetFrameIndex &&
1677        Base.getOpcode() != ISD::Register) {
1678      Base =
1679        SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1680                                       DL, Base.getValueType(),
1681                                       Base, RC), 0);
1682    }
1683
1684    // Make sure that the index register isn't assigned to %r0 either.
1685    if (Index.getOpcode() != ISD::Register) {
1686      Index =
1687        SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1688                                       DL, Index.getValueType(),
1689                                       Index, RC), 0);
1690    }
1691
1692    OutOps.push_back(Base);
1693    OutOps.push_back(Disp);
1694    OutOps.push_back(Index);
1695    return false;
1696  }
1697
1698  return true;
1699}
1700
1701// IsProfitableToFold - Returns true if is profitable to fold the specific
1702// operand node N of U during instruction selection that starts at Root.
1703bool
1704SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1705                                        SDNode *Root) const {
1706  // We want to avoid folding a LOAD into an ICMP node if as a result
1707  // we would be forced to spill the condition code into a GPR.
1708  if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
1709    if (!N.hasOneUse() || !U->hasOneUse())
1710      return false;
1711
1712    // The user of the CC value will usually be a CopyToReg into the
1713    // physical CC register, which in turn is glued and chained to the
1714    // actual instruction that uses the CC value.  Bail out if we have
1715    // anything else than that.
1716    SDNode *CCUser = *U->use_begin();
1717    SDNode *CCRegUser = nullptr;
1718    if (CCUser->getOpcode() == ISD::CopyToReg ||
1719        cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
1720      for (auto *U : CCUser->uses()) {
1721        if (CCRegUser == nullptr)
1722          CCRegUser = U;
1723        else if (CCRegUser != U)
1724          return false;
1725      }
1726    }
1727    if (CCRegUser == nullptr)
1728      return false;
1729
1730    // If the actual instruction is a branch, the only thing that remains to be
1731    // checked is whether the CCUser chain is a predecessor of the load.
1732    if (CCRegUser->isMachineOpcode() &&
1733        CCRegUser->getMachineOpcode() == SystemZ::BRC)
1734      return !N->isPredecessorOf(CCUser->getOperand(0).getNode());
1735
1736    // Otherwise, the instruction may have multiple operands, and we need to
1737    // verify that none of them are a predecessor of the load.  This is exactly
1738    // the same check that would be done by common code if the CC setter were
1739    // glued to the CC user, so simply invoke that check here.
1740    if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false))
1741      return false;
1742  }
1743
1744  return true;
1745}
1746
1747namespace {
1748// Represents a sequence for extracting a 0/1 value from an IPM result:
1749// (((X ^ XORValue) + AddValue) >> Bit)
1750struct IPMConversion {
1751  IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1752    : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1753
1754  int64_t XORValue;
1755  int64_t AddValue;
1756  unsigned Bit;
1757};
1758} // end anonymous namespace
1759
1760// Return a sequence for getting a 1 from an IPM result when CC has a
1761// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1762// The handling of CC values outside CCValid doesn't matter.
1763static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1764  // Deal with cases where the result can be taken directly from a bit
1765  // of the IPM result.
1766  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1767    return IPMConversion(0, 0, SystemZ::IPM_CC);
1768  if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1769    return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1770
1771  // Deal with cases where we can add a value to force the sign bit
1772  // to contain the right value.  Putting the bit in 31 means we can
1773  // use SRL rather than RISBG(L), and also makes it easier to get a
1774  // 0/-1 value, so it has priority over the other tests below.
1775  //
1776  // These sequences rely on the fact that the upper two bits of the
1777  // IPM result are zero.
1778  uint64_t TopBit = uint64_t(1) << 31;
1779  if (CCMask == (CCValid & SystemZ::CCMASK_0))
1780    return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1781  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1782    return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1783  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1784                            | SystemZ::CCMASK_1
1785                            | SystemZ::CCMASK_2)))
1786    return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1787  if (CCMask == (CCValid & SystemZ::CCMASK_3))
1788    return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1789  if (CCMask == (CCValid & (SystemZ::CCMASK_1
1790                            | SystemZ::CCMASK_2
1791                            | SystemZ::CCMASK_3)))
1792    return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1793
1794  // Next try inverting the value and testing a bit.  0/1 could be
1795  // handled this way too, but we dealt with that case above.
1796  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1797    return IPMConversion(-1, 0, SystemZ::IPM_CC);
1798
1799  // Handle cases where adding a value forces a non-sign bit to contain
1800  // the right value.
1801  if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1802    return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1803  if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1804    return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1805
1806  // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1807  // can be done by inverting the low CC bit and applying one of the
1808  // sign-based extractions above.
1809  if (CCMask == (CCValid & SystemZ::CCMASK_1))
1810    return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1811  if (CCMask == (CCValid & SystemZ::CCMASK_2))
1812    return IPMConversion(1 << SystemZ::IPM_CC,
1813                         TopBit - (3 << SystemZ::IPM_CC), 31);
1814  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1815                            | SystemZ::CCMASK_1
1816                            | SystemZ::CCMASK_3)))
1817    return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1818  if (CCMask == (CCValid & (SystemZ::CCMASK_0
1819                            | SystemZ::CCMASK_2
1820                            | SystemZ::CCMASK_3)))
1821    return IPMConversion(1 << SystemZ::IPM_CC,
1822                         TopBit - (1 << SystemZ::IPM_CC), 31);
1823
1824  llvm_unreachable("Unexpected CC combination");
1825}
1826
1827SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
1828  auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
1829  auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
1830  if (!TrueOp || !FalseOp)
1831    return SDValue();
1832  if (FalseOp->getZExtValue() != 0)
1833    return SDValue();
1834  if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
1835    return SDValue();
1836
1837  auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
1838  auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
1839  if (!CCValidOp || !CCMaskOp)
1840    return SDValue();
1841  int CCValid = CCValidOp->getZExtValue();
1842  int CCMask = CCMaskOp->getZExtValue();
1843
1844  SDLoc DL(Node);
1845  SDValue CCReg = Node->getOperand(4);
1846  IPMConversion IPM = getIPMConversion(CCValid, CCMask);
1847  SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
1848
1849  if (IPM.XORValue)
1850    Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
1851                             CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
1852
1853  if (IPM.AddValue)
1854    Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
1855                             CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
1856
1857  EVT VT = Node->getValueType(0);
1858  if (VT == MVT::i32 && IPM.Bit == 31) {
1859    unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
1860    Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
1861                             CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1862  } else {
1863    if (VT != MVT::i32)
1864      Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);
1865
1866    if (TrueOp->getSExtValue() == 1) {
1867      // The SHR/AND sequence should get optimized to an RISBG.
1868      Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
1869                               CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1870      Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
1871                               CurDAG->getConstant(1, DL, VT));
1872    } else {
1873      // Sign-extend from IPM.Bit using a pair of shifts.
1874      int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
1875      int SraAmt = VT.getSizeInBits() - 1;
1876      Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
1877                               CurDAG->getConstant(ShlAmt, DL, MVT::i32));
1878      Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
1879                               CurDAG->getConstant(SraAmt, DL, MVT::i32));
1880    }
1881  }
1882
1883  return Result;
1884}
1885
1886void SystemZDAGToDAGISel::PreprocessISelDAG() {
1887  // If we have conditional immediate loads, we always prefer
1888  // using those over an IPM sequence.
1889  if (Subtarget->hasLoadStoreOnCond2())
1890    return;
1891
1892  bool MadeChange = false;
1893
1894  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
1895                                       E = CurDAG->allnodes_end();
1896       I != E;) {
1897    SDNode *N = &*I++;
1898    if (N->use_empty())
1899      continue;
1900
1901    SDValue Res;
1902    switch (N->getOpcode()) {
1903    default: break;
1904    case SystemZISD::SELECT_CCMASK:
1905      Res = expandSelectBoolean(N);
1906      break;
1907    }
1908
1909    if (Res) {
1910      LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld:    ");
1911      LLVM_DEBUG(N->dump(CurDAG));
1912      LLVM_DEBUG(dbgs() << "\nNew: ");
1913      LLVM_DEBUG(Res.getNode()->dump(CurDAG));
1914      LLVM_DEBUG(dbgs() << "\n");
1915
1916      CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1917      MadeChange = true;
1918    }
1919  }
1920
1921  if (MadeChange)
1922    CurDAG->RemoveDeadNodes();
1923}
1924