1//===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation  ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the MSP430TargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "MSP430ISelLowering.h"
14#include "MSP430.h"
15#include "MSP430MachineFunctionInfo.h"
16#include "MSP430Subtarget.h"
17#include "MSP430TargetMachine.h"
18#include "llvm/CodeGen/CallingConvLower.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/SelectionDAGISel.h"
24#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/IR/CallingConv.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/GlobalAlias.h"
30#include "llvm/IR/GlobalVariable.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36using namespace llvm;
37
38#define DEBUG_TYPE "msp430-lower"
39
40static cl::opt<bool>MSP430NoLegalImmediate(
41  "msp430-no-legal-immediate", cl::Hidden,
42  cl::desc("Enable non legal immediates (for testing purposes only)"),
43  cl::init(false));
44
45MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM,
46                                           const MSP430Subtarget &STI)
47    : TargetLowering(TM) {
48
49  // Set up the register classes.
50  addRegisterClass(MVT::i8,  &MSP430::GR8RegClass);
51  addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
52
53  // Compute derived properties from the register classes
54  computeRegisterProperties(STI.getRegisterInfo());
55
56  // Provide all sorts of operation actions
57  setStackPointerRegisterToSaveRestore(MSP430::SP);
58  setBooleanContents(ZeroOrOneBooleanContent);
59  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
60
61  // We have post-incremented loads / stores.
62  setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
63  setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
64
65  for (MVT VT : MVT::integer_valuetypes()) {
66    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
67    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
68    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
69    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8,  Expand);
70    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
71  }
72
73  // We don't have any truncstores
74  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
75
76  setOperationAction(ISD::SRA,              MVT::i8,    Custom);
77  setOperationAction(ISD::SHL,              MVT::i8,    Custom);
78  setOperationAction(ISD::SRL,              MVT::i8,    Custom);
79  setOperationAction(ISD::SRA,              MVT::i16,   Custom);
80  setOperationAction(ISD::SHL,              MVT::i16,   Custom);
81  setOperationAction(ISD::SRL,              MVT::i16,   Custom);
82  setOperationAction(ISD::ROTL,             MVT::i8,    Expand);
83  setOperationAction(ISD::ROTR,             MVT::i8,    Expand);
84  setOperationAction(ISD::ROTL,             MVT::i16,   Expand);
85  setOperationAction(ISD::ROTR,             MVT::i16,   Expand);
86  setOperationAction(ISD::GlobalAddress,    MVT::i16,   Custom);
87  setOperationAction(ISD::ExternalSymbol,   MVT::i16,   Custom);
88  setOperationAction(ISD::BlockAddress,     MVT::i16,   Custom);
89  setOperationAction(ISD::BR_JT,            MVT::Other, Expand);
90  setOperationAction(ISD::BR_CC,            MVT::i8,    Custom);
91  setOperationAction(ISD::BR_CC,            MVT::i16,   Custom);
92  setOperationAction(ISD::BRCOND,           MVT::Other, Expand);
93  setOperationAction(ISD::SETCC,            MVT::i8,    Custom);
94  setOperationAction(ISD::SETCC,            MVT::i16,   Custom);
95  setOperationAction(ISD::SELECT,           MVT::i8,    Expand);
96  setOperationAction(ISD::SELECT,           MVT::i16,   Expand);
97  setOperationAction(ISD::SELECT_CC,        MVT::i8,    Custom);
98  setOperationAction(ISD::SELECT_CC,        MVT::i16,   Custom);
99  setOperationAction(ISD::SIGN_EXTEND,      MVT::i16,   Custom);
100  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
101  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
102  setOperationAction(ISD::STACKSAVE,        MVT::Other, Expand);
103  setOperationAction(ISD::STACKRESTORE,     MVT::Other, Expand);
104
105  setOperationAction(ISD::CTTZ,             MVT::i8,    Expand);
106  setOperationAction(ISD::CTTZ,             MVT::i16,   Expand);
107  setOperationAction(ISD::CTLZ,             MVT::i8,    Expand);
108  setOperationAction(ISD::CTLZ,             MVT::i16,   Expand);
109  setOperationAction(ISD::CTPOP,            MVT::i8,    Expand);
110  setOperationAction(ISD::CTPOP,            MVT::i16,   Expand);
111
112  setOperationAction(ISD::SHL_PARTS,        MVT::i8,    Expand);
113  setOperationAction(ISD::SHL_PARTS,        MVT::i16,   Expand);
114  setOperationAction(ISD::SRL_PARTS,        MVT::i8,    Expand);
115  setOperationAction(ISD::SRL_PARTS,        MVT::i16,   Expand);
116  setOperationAction(ISD::SRA_PARTS,        MVT::i8,    Expand);
117  setOperationAction(ISD::SRA_PARTS,        MVT::i16,   Expand);
118
119  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,   Expand);
120
121  // FIXME: Implement efficiently multiplication by a constant
122  setOperationAction(ISD::MUL,              MVT::i8,    Promote);
123  setOperationAction(ISD::MULHS,            MVT::i8,    Promote);
124  setOperationAction(ISD::MULHU,            MVT::i8,    Promote);
125  setOperationAction(ISD::SMUL_LOHI,        MVT::i8,    Promote);
126  setOperationAction(ISD::UMUL_LOHI,        MVT::i8,    Promote);
127  setOperationAction(ISD::MUL,              MVT::i16,   LibCall);
128  setOperationAction(ISD::MULHS,            MVT::i16,   Expand);
129  setOperationAction(ISD::MULHU,            MVT::i16,   Expand);
130  setOperationAction(ISD::SMUL_LOHI,        MVT::i16,   Expand);
131  setOperationAction(ISD::UMUL_LOHI,        MVT::i16,   Expand);
132
133  setOperationAction(ISD::UDIV,             MVT::i8,    Promote);
134  setOperationAction(ISD::UDIVREM,          MVT::i8,    Promote);
135  setOperationAction(ISD::UREM,             MVT::i8,    Promote);
136  setOperationAction(ISD::SDIV,             MVT::i8,    Promote);
137  setOperationAction(ISD::SDIVREM,          MVT::i8,    Promote);
138  setOperationAction(ISD::SREM,             MVT::i8,    Promote);
139  setOperationAction(ISD::UDIV,             MVT::i16,   LibCall);
140  setOperationAction(ISD::UDIVREM,          MVT::i16,   Expand);
141  setOperationAction(ISD::UREM,             MVT::i16,   LibCall);
142  setOperationAction(ISD::SDIV,             MVT::i16,   LibCall);
143  setOperationAction(ISD::SDIVREM,          MVT::i16,   Expand);
144  setOperationAction(ISD::SREM,             MVT::i16,   LibCall);
145
146  // varargs support
147  setOperationAction(ISD::VASTART,          MVT::Other, Custom);
148  setOperationAction(ISD::VAARG,            MVT::Other, Expand);
149  setOperationAction(ISD::VAEND,            MVT::Other, Expand);
150  setOperationAction(ISD::VACOPY,           MVT::Other, Expand);
151  setOperationAction(ISD::JumpTable,        MVT::i16,   Custom);
152
153  // EABI Libcalls - EABI Section 6.2
154  const struct {
155    const RTLIB::Libcall Op;
156    const char * const Name;
157    const ISD::CondCode Cond;
158  } LibraryCalls[] = {
159    // Floating point conversions - EABI Table 6
160    { RTLIB::FPROUND_F64_F32,   "__mspabi_cvtdf",   ISD::SETCC_INVALID },
161    { RTLIB::FPEXT_F32_F64,     "__mspabi_cvtfd",   ISD::SETCC_INVALID },
162    // The following is NOT implemented in libgcc
163    //{ RTLIB::FPTOSINT_F64_I16,  "__mspabi_fixdi", ISD::SETCC_INVALID },
164    { RTLIB::FPTOSINT_F64_I32,  "__mspabi_fixdli",  ISD::SETCC_INVALID },
165    { RTLIB::FPTOSINT_F64_I64,  "__mspabi_fixdlli", ISD::SETCC_INVALID },
166    // The following is NOT implemented in libgcc
167    //{ RTLIB::FPTOUINT_F64_I16,  "__mspabi_fixdu", ISD::SETCC_INVALID },
168    { RTLIB::FPTOUINT_F64_I32,  "__mspabi_fixdul",  ISD::SETCC_INVALID },
169    { RTLIB::FPTOUINT_F64_I64,  "__mspabi_fixdull", ISD::SETCC_INVALID },
170    // The following is NOT implemented in libgcc
171    //{ RTLIB::FPTOSINT_F32_I16,  "__mspabi_fixfi", ISD::SETCC_INVALID },
172    { RTLIB::FPTOSINT_F32_I32,  "__mspabi_fixfli",  ISD::SETCC_INVALID },
173    { RTLIB::FPTOSINT_F32_I64,  "__mspabi_fixflli", ISD::SETCC_INVALID },
174    // The following is NOT implemented in libgcc
175    //{ RTLIB::FPTOUINT_F32_I16,  "__mspabi_fixfu", ISD::SETCC_INVALID },
176    { RTLIB::FPTOUINT_F32_I32,  "__mspabi_fixful",  ISD::SETCC_INVALID },
177    { RTLIB::FPTOUINT_F32_I64,  "__mspabi_fixfull", ISD::SETCC_INVALID },
178    // TODO The following IS implemented in libgcc
179    //{ RTLIB::SINTTOFP_I16_F64,  "__mspabi_fltid", ISD::SETCC_INVALID },
180    { RTLIB::SINTTOFP_I32_F64,  "__mspabi_fltlid",  ISD::SETCC_INVALID },
181    // TODO The following IS implemented in libgcc but is not in the EABI
182    { RTLIB::SINTTOFP_I64_F64,  "__mspabi_fltllid", ISD::SETCC_INVALID },
183    // TODO The following IS implemented in libgcc
184    //{ RTLIB::UINTTOFP_I16_F64,  "__mspabi_fltud", ISD::SETCC_INVALID },
185    { RTLIB::UINTTOFP_I32_F64,  "__mspabi_fltuld",  ISD::SETCC_INVALID },
186    // The following IS implemented in libgcc but is not in the EABI
187    { RTLIB::UINTTOFP_I64_F64,  "__mspabi_fltulld", ISD::SETCC_INVALID },
188    // TODO The following IS implemented in libgcc
189    //{ RTLIB::SINTTOFP_I16_F32,  "__mspabi_fltif", ISD::SETCC_INVALID },
190    { RTLIB::SINTTOFP_I32_F32,  "__mspabi_fltlif",  ISD::SETCC_INVALID },
191    // TODO The following IS implemented in libgcc but is not in the EABI
192    { RTLIB::SINTTOFP_I64_F32,  "__mspabi_fltllif", ISD::SETCC_INVALID },
193    // TODO The following IS implemented in libgcc
194    //{ RTLIB::UINTTOFP_I16_F32,  "__mspabi_fltuf", ISD::SETCC_INVALID },
195    { RTLIB::UINTTOFP_I32_F32,  "__mspabi_fltulf",  ISD::SETCC_INVALID },
196    // The following IS implemented in libgcc but is not in the EABI
197    { RTLIB::UINTTOFP_I64_F32,  "__mspabi_fltullf", ISD::SETCC_INVALID },
198
199    // Floating point comparisons - EABI Table 7
200    { RTLIB::OEQ_F64, "__mspabi_cmpd", ISD::SETEQ },
201    { RTLIB::UNE_F64, "__mspabi_cmpd", ISD::SETNE },
202    { RTLIB::OGE_F64, "__mspabi_cmpd", ISD::SETGE },
203    { RTLIB::OLT_F64, "__mspabi_cmpd", ISD::SETLT },
204    { RTLIB::OLE_F64, "__mspabi_cmpd", ISD::SETLE },
205    { RTLIB::OGT_F64, "__mspabi_cmpd", ISD::SETGT },
206    { RTLIB::OEQ_F32, "__mspabi_cmpf", ISD::SETEQ },
207    { RTLIB::UNE_F32, "__mspabi_cmpf", ISD::SETNE },
208    { RTLIB::OGE_F32, "__mspabi_cmpf", ISD::SETGE },
209    { RTLIB::OLT_F32, "__mspabi_cmpf", ISD::SETLT },
210    { RTLIB::OLE_F32, "__mspabi_cmpf", ISD::SETLE },
211    { RTLIB::OGT_F32, "__mspabi_cmpf", ISD::SETGT },
212
213    // Floating point arithmetic - EABI Table 8
214    { RTLIB::ADD_F64,  "__mspabi_addd", ISD::SETCC_INVALID },
215    { RTLIB::ADD_F32,  "__mspabi_addf", ISD::SETCC_INVALID },
216    { RTLIB::DIV_F64,  "__mspabi_divd", ISD::SETCC_INVALID },
217    { RTLIB::DIV_F32,  "__mspabi_divf", ISD::SETCC_INVALID },
218    { RTLIB::MUL_F64,  "__mspabi_mpyd", ISD::SETCC_INVALID },
219    { RTLIB::MUL_F32,  "__mspabi_mpyf", ISD::SETCC_INVALID },
220    { RTLIB::SUB_F64,  "__mspabi_subd", ISD::SETCC_INVALID },
221    { RTLIB::SUB_F32,  "__mspabi_subf", ISD::SETCC_INVALID },
222    // The following are NOT implemented in libgcc
223    // { RTLIB::NEG_F64,  "__mspabi_negd", ISD::SETCC_INVALID },
224    // { RTLIB::NEG_F32,  "__mspabi_negf", ISD::SETCC_INVALID },
225
226    // Universal Integer Operations - EABI Table 9
227    { RTLIB::SDIV_I16,   "__mspabi_divi", ISD::SETCC_INVALID },
228    { RTLIB::SDIV_I32,   "__mspabi_divli", ISD::SETCC_INVALID },
229    { RTLIB::SDIV_I64,   "__mspabi_divlli", ISD::SETCC_INVALID },
230    { RTLIB::UDIV_I16,   "__mspabi_divu", ISD::SETCC_INVALID },
231    { RTLIB::UDIV_I32,   "__mspabi_divul", ISD::SETCC_INVALID },
232    { RTLIB::UDIV_I64,   "__mspabi_divull", ISD::SETCC_INVALID },
233    { RTLIB::SREM_I16,   "__mspabi_remi", ISD::SETCC_INVALID },
234    { RTLIB::SREM_I32,   "__mspabi_remli", ISD::SETCC_INVALID },
235    { RTLIB::SREM_I64,   "__mspabi_remlli", ISD::SETCC_INVALID },
236    { RTLIB::UREM_I16,   "__mspabi_remu", ISD::SETCC_INVALID },
237    { RTLIB::UREM_I32,   "__mspabi_remul", ISD::SETCC_INVALID },
238    { RTLIB::UREM_I64,   "__mspabi_remull", ISD::SETCC_INVALID },
239
240    // Bitwise Operations - EABI Table 10
241    // TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc
242    { RTLIB::SRL_I32,    "__mspabi_srll", ISD::SETCC_INVALID },
243    { RTLIB::SRA_I32,    "__mspabi_sral", ISD::SETCC_INVALID },
244    { RTLIB::SHL_I32,    "__mspabi_slll", ISD::SETCC_INVALID },
245    // __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc
246
247  };
248
249  for (const auto &LC : LibraryCalls) {
250    setLibcallName(LC.Op, LC.Name);
251    if (LC.Cond != ISD::SETCC_INVALID)
252      setCmpLibcallCC(LC.Op, LC.Cond);
253  }
254
255  if (STI.hasHWMult16()) {
256    const struct {
257      const RTLIB::Libcall Op;
258      const char * const Name;
259    } LibraryCalls[] = {
260      // Integer Multiply - EABI Table 9
261      { RTLIB::MUL_I16,   "__mspabi_mpyi_hw" },
262      { RTLIB::MUL_I32,   "__mspabi_mpyl_hw" },
263      { RTLIB::MUL_I64,   "__mspabi_mpyll_hw" },
264      // TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc
265      // TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc
266    };
267    for (const auto &LC : LibraryCalls) {
268      setLibcallName(LC.Op, LC.Name);
269    }
270  } else if (STI.hasHWMult32()) {
271    const struct {
272      const RTLIB::Libcall Op;
273      const char * const Name;
274    } LibraryCalls[] = {
275      // Integer Multiply - EABI Table 9
276      { RTLIB::MUL_I16,   "__mspabi_mpyi_hw" },
277      { RTLIB::MUL_I32,   "__mspabi_mpyl_hw32" },
278      { RTLIB::MUL_I64,   "__mspabi_mpyll_hw32" },
279      // TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc
280      // TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc
281    };
282    for (const auto &LC : LibraryCalls) {
283      setLibcallName(LC.Op, LC.Name);
284    }
285  } else if (STI.hasHWMultF5()) {
286    const struct {
287      const RTLIB::Libcall Op;
288      const char * const Name;
289    } LibraryCalls[] = {
290      // Integer Multiply - EABI Table 9
291      { RTLIB::MUL_I16,   "__mspabi_mpyi_f5hw" },
292      { RTLIB::MUL_I32,   "__mspabi_mpyl_f5hw" },
293      { RTLIB::MUL_I64,   "__mspabi_mpyll_f5hw" },
294      // TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc
295      // TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc
296    };
297    for (const auto &LC : LibraryCalls) {
298      setLibcallName(LC.Op, LC.Name);
299    }
300  } else { // NoHWMult
301    const struct {
302      const RTLIB::Libcall Op;
303      const char * const Name;
304    } LibraryCalls[] = {
305      // Integer Multiply - EABI Table 9
306      { RTLIB::MUL_I16,   "__mspabi_mpyi" },
307      { RTLIB::MUL_I32,   "__mspabi_mpyl" },
308      { RTLIB::MUL_I64,   "__mspabi_mpyll" },
309      // The __mspabi_mpysl* functions are NOT implemented in libgcc
310      // The __mspabi_mpyul* functions are NOT implemented in libgcc
311    };
312    for (const auto &LC : LibraryCalls) {
313      setLibcallName(LC.Op, LC.Name);
314    }
315    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::MSP430_BUILTIN);
316  }
317
318  // Several of the runtime library functions use a special calling conv
319  setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::MSP430_BUILTIN);
320  setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::MSP430_BUILTIN);
321  setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::MSP430_BUILTIN);
322  setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::MSP430_BUILTIN);
323  setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::MSP430_BUILTIN);
324  setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::MSP430_BUILTIN);
325  setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::MSP430_BUILTIN);
326  setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::MSP430_BUILTIN);
327  setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::MSP430_BUILTIN);
328  setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::MSP430_BUILTIN);
329  setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::MSP430_BUILTIN);
330  setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::MSP430_BUILTIN);
331  setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::MSP430_BUILTIN);
332  setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::MSP430_BUILTIN);
333  // TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll
334
335  setMinFunctionAlignment(Align(2));
336  setPrefFunctionAlignment(Align(2));
337}
338
339SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
340                                             SelectionDAG &DAG) const {
341  switch (Op.getOpcode()) {
342  case ISD::SHL: // FALLTHROUGH
343  case ISD::SRL:
344  case ISD::SRA:              return LowerShifts(Op, DAG);
345  case ISD::GlobalAddress:    return LowerGlobalAddress(Op, DAG);
346  case ISD::BlockAddress:     return LowerBlockAddress(Op, DAG);
347  case ISD::ExternalSymbol:   return LowerExternalSymbol(Op, DAG);
348  case ISD::SETCC:            return LowerSETCC(Op, DAG);
349  case ISD::BR_CC:            return LowerBR_CC(Op, DAG);
350  case ISD::SELECT_CC:        return LowerSELECT_CC(Op, DAG);
351  case ISD::SIGN_EXTEND:      return LowerSIGN_EXTEND(Op, DAG);
352  case ISD::RETURNADDR:       return LowerRETURNADDR(Op, DAG);
353  case ISD::FRAMEADDR:        return LowerFRAMEADDR(Op, DAG);
354  case ISD::VASTART:          return LowerVASTART(Op, DAG);
355  case ISD::JumpTable:        return LowerJumpTable(Op, DAG);
356  default:
357    llvm_unreachable("unimplemented operand");
358  }
359}
360
361// Define non profitable transforms into shifts
362bool MSP430TargetLowering::shouldAvoidTransformToShift(EVT VT,
363                                                       unsigned Amount) const {
364  return !(Amount == 8 || Amount == 9 || Amount<=2);
365}
366
367// Implemented to verify test case assertions in
368// tests/codegen/msp430/shift-amount-threshold-b.ll
369bool MSP430TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
370  if (MSP430NoLegalImmediate)
371    return Immed >= -32 && Immed < 32;
372  return TargetLowering::isLegalICmpImmediate(Immed);
373}
374
375//===----------------------------------------------------------------------===//
376//                       MSP430 Inline Assembly Support
377//===----------------------------------------------------------------------===//
378
379/// getConstraintType - Given a constraint letter, return the type of
380/// constraint it is for this target.
381TargetLowering::ConstraintType
382MSP430TargetLowering::getConstraintType(StringRef Constraint) const {
383  if (Constraint.size() == 1) {
384    switch (Constraint[0]) {
385    case 'r':
386      return C_RegisterClass;
387    default:
388      break;
389    }
390  }
391  return TargetLowering::getConstraintType(Constraint);
392}
393
394std::pair<unsigned, const TargetRegisterClass *>
395MSP430TargetLowering::getRegForInlineAsmConstraint(
396    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
397  if (Constraint.size() == 1) {
398    // GCC Constraint Letters
399    switch (Constraint[0]) {
400    default: break;
401    case 'r':   // GENERAL_REGS
402      if (VT == MVT::i8)
403        return std::make_pair(0U, &MSP430::GR8RegClass);
404
405      return std::make_pair(0U, &MSP430::GR16RegClass);
406    }
407  }
408
409  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
410}
411
412//===----------------------------------------------------------------------===//
413//                      Calling Convention Implementation
414//===----------------------------------------------------------------------===//
415
416#include "MSP430GenCallingConv.inc"
417
418/// For each argument in a function store the number of pieces it is composed
419/// of.
420template<typename ArgT>
421static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
422                              SmallVectorImpl<unsigned> &Out) {
423  unsigned CurrentArgIndex;
424
425  if (Args.empty())
426    return;
427
428  CurrentArgIndex = Args[0].OrigArgIndex;
429  Out.push_back(0);
430
431  for (auto &Arg : Args) {
432    if (CurrentArgIndex == Arg.OrigArgIndex) {
433      Out.back() += 1;
434    } else {
435      Out.push_back(1);
436      CurrentArgIndex = Arg.OrigArgIndex;
437    }
438  }
439}
440
441static void AnalyzeVarArgs(CCState &State,
442                           const SmallVectorImpl<ISD::OutputArg> &Outs) {
443  State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
444}
445
446static void AnalyzeVarArgs(CCState &State,
447                           const SmallVectorImpl<ISD::InputArg> &Ins) {
448  State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
449}
450
451/// Analyze incoming and outgoing function arguments. We need custom C++ code
452/// to handle special constraints in the ABI like reversing the order of the
453/// pieces of splitted arguments. In addition, all pieces of a certain argument
454/// have to be passed either using registers or the stack but never mixing both.
455template<typename ArgT>
456static void AnalyzeArguments(CCState &State,
457                             SmallVectorImpl<CCValAssign> &ArgLocs,
458                             const SmallVectorImpl<ArgT> &Args) {
459  static const MCPhysReg CRegList[] = {
460    MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
461  };
462  static const unsigned CNbRegs = array_lengthof(CRegList);
463  static const MCPhysReg BuiltinRegList[] = {
464    MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
465    MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
466  };
467  static const unsigned BuiltinNbRegs = array_lengthof(BuiltinRegList);
468
469  ArrayRef<MCPhysReg> RegList;
470  unsigned NbRegs;
471
472  bool Builtin = (State.getCallingConv() == CallingConv::MSP430_BUILTIN);
473  if (Builtin) {
474    RegList = BuiltinRegList;
475    NbRegs = BuiltinNbRegs;
476  } else {
477    RegList = CRegList;
478    NbRegs = CNbRegs;
479  }
480
481  if (State.isVarArg()) {
482    AnalyzeVarArgs(State, Args);
483    return;
484  }
485
486  SmallVector<unsigned, 4> ArgsParts;
487  ParseFunctionArgs(Args, ArgsParts);
488
489  if (Builtin) {
490    assert(ArgsParts.size() == 2 &&
491        "Builtin calling convention requires two arguments");
492  }
493
494  unsigned RegsLeft = NbRegs;
495  bool UsedStack = false;
496  unsigned ValNo = 0;
497
498  for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
499    MVT ArgVT = Args[ValNo].VT;
500    ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
501    MVT LocVT = ArgVT;
502    CCValAssign::LocInfo LocInfo = CCValAssign::Full;
503
504    // Promote i8 to i16
505    if (LocVT == MVT::i8) {
506      LocVT = MVT::i16;
507      if (ArgFlags.isSExt())
508          LocInfo = CCValAssign::SExt;
509      else if (ArgFlags.isZExt())
510          LocInfo = CCValAssign::ZExt;
511      else
512          LocInfo = CCValAssign::AExt;
513    }
514
515    // Handle byval arguments
516    if (ArgFlags.isByVal()) {
517      State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags);
518      continue;
519    }
520
521    unsigned Parts = ArgsParts[i];
522
523    if (Builtin) {
524      assert(Parts == 4 &&
525          "Builtin calling convention requires 64-bit arguments");
526    }
527
528    if (!UsedStack && Parts == 2 && RegsLeft == 1) {
529      // Special case for 32-bit register split, see EABI section 3.3.3
530      unsigned Reg = State.AllocateReg(RegList);
531      State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
532      RegsLeft -= 1;
533
534      UsedStack = true;
535      CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
536    } else if (Parts <= RegsLeft) {
537      for (unsigned j = 0; j < Parts; j++) {
538        unsigned Reg = State.AllocateReg(RegList);
539        State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
540        RegsLeft--;
541      }
542    } else {
543      UsedStack = true;
544      for (unsigned j = 0; j < Parts; j++)
545        CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
546    }
547  }
548}
549
550static void AnalyzeRetResult(CCState &State,
551                             const SmallVectorImpl<ISD::InputArg> &Ins) {
552  State.AnalyzeCallResult(Ins, RetCC_MSP430);
553}
554
555static void AnalyzeRetResult(CCState &State,
556                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
557  State.AnalyzeReturn(Outs, RetCC_MSP430);
558}
559
560template<typename ArgT>
561static void AnalyzeReturnValues(CCState &State,
562                                SmallVectorImpl<CCValAssign> &RVLocs,
563                                const SmallVectorImpl<ArgT> &Args) {
564  AnalyzeRetResult(State, Args);
565}
566
567SDValue MSP430TargetLowering::LowerFormalArguments(
568    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
569    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
570    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
571
572  switch (CallConv) {
573  default:
574    report_fatal_error("Unsupported calling convention");
575  case CallingConv::C:
576  case CallingConv::Fast:
577    return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
578  case CallingConv::MSP430_INTR:
579    if (Ins.empty())
580      return Chain;
581    report_fatal_error("ISRs cannot have arguments");
582  }
583}
584
585SDValue
586MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
587                                SmallVectorImpl<SDValue> &InVals) const {
588  SelectionDAG &DAG                     = CLI.DAG;
589  SDLoc &dl                             = CLI.DL;
590  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
591  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
592  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
593  SDValue Chain                         = CLI.Chain;
594  SDValue Callee                        = CLI.Callee;
595  bool &isTailCall                      = CLI.IsTailCall;
596  CallingConv::ID CallConv              = CLI.CallConv;
597  bool isVarArg                         = CLI.IsVarArg;
598
599  // MSP430 target does not yet support tail call optimization.
600  isTailCall = false;
601
602  switch (CallConv) {
603  default:
604    report_fatal_error("Unsupported calling convention");
605  case CallingConv::MSP430_BUILTIN:
606  case CallingConv::Fast:
607  case CallingConv::C:
608    return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
609                          Outs, OutVals, Ins, dl, DAG, InVals);
610  case CallingConv::MSP430_INTR:
611    report_fatal_error("ISRs cannot be called directly");
612  }
613}
614
615/// LowerCCCArguments - transform physical registers into virtual registers and
616/// generate load operations for arguments places on the stack.
617// FIXME: struct return stuff
618SDValue MSP430TargetLowering::LowerCCCArguments(
619    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
620    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
621    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
622  MachineFunction &MF = DAG.getMachineFunction();
623  MachineFrameInfo &MFI = MF.getFrameInfo();
624  MachineRegisterInfo &RegInfo = MF.getRegInfo();
625  MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
626
627  // Assign locations to all of the incoming arguments.
628  SmallVector<CCValAssign, 16> ArgLocs;
629  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
630                 *DAG.getContext());
631  AnalyzeArguments(CCInfo, ArgLocs, Ins);
632
633  // Create frame index for the start of the first vararg value
634  if (isVarArg) {
635    unsigned Offset = CCInfo.getNextStackOffset();
636    FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, Offset, true));
637  }
638
639  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
640    CCValAssign &VA = ArgLocs[i];
641    if (VA.isRegLoc()) {
642      // Arguments passed in registers
643      EVT RegVT = VA.getLocVT();
644      switch (RegVT.getSimpleVT().SimpleTy) {
645      default:
646        {
647#ifndef NDEBUG
648          errs() << "LowerFormalArguments Unhandled argument type: "
649               << RegVT.getEVTString() << "\n";
650#endif
651          llvm_unreachable(nullptr);
652        }
653      case MVT::i16:
654        Register VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
655        RegInfo.addLiveIn(VA.getLocReg(), VReg);
656        SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
657
658        // If this is an 8-bit value, it is really passed promoted to 16
659        // bits. Insert an assert[sz]ext to capture this, then truncate to the
660        // right size.
661        if (VA.getLocInfo() == CCValAssign::SExt)
662          ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
663                                 DAG.getValueType(VA.getValVT()));
664        else if (VA.getLocInfo() == CCValAssign::ZExt)
665          ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
666                                 DAG.getValueType(VA.getValVT()));
667
668        if (VA.getLocInfo() != CCValAssign::Full)
669          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
670
671        InVals.push_back(ArgValue);
672      }
673    } else {
674      // Sanity check
675      assert(VA.isMemLoc());
676
677      SDValue InVal;
678      ISD::ArgFlagsTy Flags = Ins[i].Flags;
679
680      if (Flags.isByVal()) {
681        int FI = MFI.CreateFixedObject(Flags.getByValSize(),
682                                       VA.getLocMemOffset(), true);
683        InVal = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
684      } else {
685        // Load the argument to a virtual register
686        unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
687        if (ObjSize > 2) {
688            errs() << "LowerFormalArguments Unhandled argument type: "
689                << EVT(VA.getLocVT()).getEVTString()
690                << "\n";
691        }
692        // Create the frame index object for this incoming parameter...
693        int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
694
695        // Create the SelectionDAG nodes corresponding to a load
696        //from this parameter
697        SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
698        InVal = DAG.getLoad(
699            VA.getLocVT(), dl, Chain, FIN,
700            MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
701      }
702
703      InVals.push_back(InVal);
704    }
705  }
706
707  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
708    if (Ins[i].Flags.isSRet()) {
709      unsigned Reg = FuncInfo->getSRetReturnReg();
710      if (!Reg) {
711        Reg = MF.getRegInfo().createVirtualRegister(
712            getRegClassFor(MVT::i16));
713        FuncInfo->setSRetReturnReg(Reg);
714      }
715      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
716      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
717    }
718  }
719
720  return Chain;
721}
722
723bool
724MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
725                                     MachineFunction &MF,
726                                     bool IsVarArg,
727                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
728                                     LLVMContext &Context) const {
729  SmallVector<CCValAssign, 16> RVLocs;
730  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
731  return CCInfo.CheckReturn(Outs, RetCC_MSP430);
732}
733
734SDValue
735MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
736                                  bool isVarArg,
737                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
738                                  const SmallVectorImpl<SDValue> &OutVals,
739                                  const SDLoc &dl, SelectionDAG &DAG) const {
740
741  MachineFunction &MF = DAG.getMachineFunction();
742
743  // CCValAssign - represent the assignment of the return value to a location
744  SmallVector<CCValAssign, 16> RVLocs;
745
746  // ISRs cannot return any value.
747  if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
748    report_fatal_error("ISRs cannot return any value");
749
750  // CCState - Info about the registers and stack slot.
751  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
752                 *DAG.getContext());
753
754  // Analize return values.
755  AnalyzeReturnValues(CCInfo, RVLocs, Outs);
756
757  SDValue Flag;
758  SmallVector<SDValue, 4> RetOps(1, Chain);
759
760  // Copy the result values into the output registers.
761  for (unsigned i = 0; i != RVLocs.size(); ++i) {
762    CCValAssign &VA = RVLocs[i];
763    assert(VA.isRegLoc() && "Can only return in registers!");
764
765    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
766                             OutVals[i], Flag);
767
768    // Guarantee that all emitted copies are stuck together,
769    // avoiding something bad.
770    Flag = Chain.getValue(1);
771    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
772  }
773
774  if (MF.getFunction().hasStructRetAttr()) {
775    MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
776    unsigned Reg = FuncInfo->getSRetReturnReg();
777
778    if (!Reg)
779      llvm_unreachable("sret virtual register not created in entry block");
780
781    SDValue Val =
782      DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy(DAG.getDataLayout()));
783    unsigned R12 = MSP430::R12;
784
785    Chain = DAG.getCopyToReg(Chain, dl, R12, Val, Flag);
786    Flag = Chain.getValue(1);
787    RetOps.push_back(DAG.getRegister(R12, getPointerTy(DAG.getDataLayout())));
788  }
789
790  unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
791                  MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG);
792
793  RetOps[0] = Chain;  // Update chain.
794
795  // Add the flag if we have it.
796  if (Flag.getNode())
797    RetOps.push_back(Flag);
798
799  return DAG.getNode(Opc, dl, MVT::Other, RetOps);
800}
801
802/// LowerCCCCallTo - functions arguments are copied from virtual regs to
803/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
804SDValue MSP430TargetLowering::LowerCCCCallTo(
805    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
806    bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
807    const SmallVectorImpl<SDValue> &OutVals,
808    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
809    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
810  // Analyze operands of the call, assigning locations to each operand.
811  SmallVector<CCValAssign, 16> ArgLocs;
812  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
813                 *DAG.getContext());
814  AnalyzeArguments(CCInfo, ArgLocs, Outs);
815
816  // Get a count of how many bytes are to be pushed on the stack.
817  unsigned NumBytes = CCInfo.getNextStackOffset();
818  auto PtrVT = getPointerTy(DAG.getDataLayout());
819
820  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
821
822  SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
823  SmallVector<SDValue, 12> MemOpChains;
824  SDValue StackPtr;
825
826  // Walk the register/memloc assignments, inserting copies/loads.
827  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
828    CCValAssign &VA = ArgLocs[i];
829
830    SDValue Arg = OutVals[i];
831
832    // Promote the value if needed.
833    switch (VA.getLocInfo()) {
834      default: llvm_unreachable("Unknown loc info!");
835      case CCValAssign::Full: break;
836      case CCValAssign::SExt:
837        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
838        break;
839      case CCValAssign::ZExt:
840        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
841        break;
842      case CCValAssign::AExt:
843        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
844        break;
845    }
846
847    // Arguments that can be passed on register must be kept at RegsToPass
848    // vector
849    if (VA.isRegLoc()) {
850      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
851    } else {
852      assert(VA.isMemLoc());
853
854      if (!StackPtr.getNode())
855        StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT);
856
857      SDValue PtrOff =
858          DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
859                      DAG.getIntPtrConstant(VA.getLocMemOffset(), dl));
860
861      SDValue MemOp;
862      ISD::ArgFlagsTy Flags = Outs[i].Flags;
863
864      if (Flags.isByVal()) {
865        SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16);
866        MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
867                              Flags.getByValAlign(),
868                              /*isVolatile*/false,
869                              /*AlwaysInline=*/true,
870                              /*isTailCall=*/false,
871                              MachinePointerInfo(),
872                              MachinePointerInfo());
873      } else {
874        MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
875      }
876
877      MemOpChains.push_back(MemOp);
878    }
879  }
880
881  // Transform all store nodes into one single node because all store nodes are
882  // independent of each other.
883  if (!MemOpChains.empty())
884    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
885
886  // Build a sequence of copy-to-reg nodes chained together with token chain and
887  // flag operands which copy the outgoing args into registers.  The InFlag in
888  // necessary since all emitted instructions must be stuck together.
889  SDValue InFlag;
890  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
891    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
892                             RegsToPass[i].second, InFlag);
893    InFlag = Chain.getValue(1);
894  }
895
896  // If the callee is a GlobalAddress node (quite common, every direct call is)
897  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
898  // Likewise ExternalSymbol -> TargetExternalSymbol.
899  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
900    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
901  else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
902    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
903
904  // Returns a chain & a flag for retval copy to use.
905  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
906  SmallVector<SDValue, 8> Ops;
907  Ops.push_back(Chain);
908  Ops.push_back(Callee);
909
910  // Add argument registers to the end of the list so that they are
911  // known live into the call.
912  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
913    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
914                                  RegsToPass[i].second.getValueType()));
915
916  if (InFlag.getNode())
917    Ops.push_back(InFlag);
918
919  Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
920  InFlag = Chain.getValue(1);
921
922  // Create the CALLSEQ_END node.
923  Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
924                             DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
925  InFlag = Chain.getValue(1);
926
927  // Handle result values, copying them out of physregs into vregs that we
928  // return.
929  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
930                         DAG, InVals);
931}
932
933/// LowerCallResult - Lower the result values of a call into the
934/// appropriate copies out of appropriate physical registers.
935///
936SDValue MSP430TargetLowering::LowerCallResult(
937    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
938    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
939    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
940
941  // Assign locations to each value returned by this call.
942  SmallVector<CCValAssign, 16> RVLocs;
943  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
944                 *DAG.getContext());
945
946  AnalyzeReturnValues(CCInfo, RVLocs, Ins);
947
948  // Copy all of the result registers out of their specified physreg.
949  for (unsigned i = 0; i != RVLocs.size(); ++i) {
950    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
951                               RVLocs[i].getValVT(), InFlag).getValue(1);
952    InFlag = Chain.getValue(2);
953    InVals.push_back(Chain.getValue(0));
954  }
955
956  return Chain;
957}
958
959SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
960                                          SelectionDAG &DAG) const {
961  unsigned Opc = Op.getOpcode();
962  SDNode* N = Op.getNode();
963  EVT VT = Op.getValueType();
964  SDLoc dl(N);
965
966  // Expand non-constant shifts to loops:
967  if (!isa<ConstantSDNode>(N->getOperand(1)))
968    return Op;
969
970  uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
971
972  // Expand the stuff into sequence of shifts.
973  SDValue Victim = N->getOperand(0);
974
975  if (ShiftAmount >= 8) {
976    assert(VT == MVT::i16 && "Can not shift i8 by 8 and more");
977    switch(Opc) {
978    default:
979      llvm_unreachable("Unknown shift");
980    case ISD::SHL:
981      // foo << (8 + N) => swpb(zext(foo)) << N
982      Victim = DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
983      Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
984      break;
985    case ISD::SRA:
986    case ISD::SRL:
987      // foo >> (8 + N) => sxt(swpb(foo)) >> N
988      Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
989      Victim = (Opc == ISD::SRA)
990                   ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Victim,
991                                 DAG.getValueType(MVT::i8))
992                   : DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
993      break;
994    }
995    ShiftAmount -= 8;
996  }
997
998  if (Opc == ISD::SRL && ShiftAmount) {
999    // Emit a special goodness here:
1000    // srl A, 1 => clrc; rrc A
1001    Victim = DAG.getNode(MSP430ISD::RRCL, dl, VT, Victim);
1002    ShiftAmount -= 1;
1003  }
1004
1005  while (ShiftAmount--)
1006    Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
1007                         dl, VT, Victim);
1008
1009  return Victim;
1010}
1011
1012SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
1013                                                 SelectionDAG &DAG) const {
1014  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1015  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1016  auto PtrVT = getPointerTy(DAG.getDataLayout());
1017
1018  // Create the TargetGlobalAddress node, folding in the constant offset.
1019  SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset);
1020  return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result);
1021}
1022
1023SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
1024                                                  SelectionDAG &DAG) const {
1025  SDLoc dl(Op);
1026  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
1027  auto PtrVT = getPointerTy(DAG.getDataLayout());
1028  SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT);
1029
1030  return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1031}
1032
1033SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
1034                                                SelectionDAG &DAG) const {
1035  SDLoc dl(Op);
1036  auto PtrVT = getPointerTy(DAG.getDataLayout());
1037  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1038  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
1039
1040  return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1041}
1042
1043static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
1044                       ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) {
1045  // FIXME: Handle bittests someday
1046  assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
1047
1048  // FIXME: Handle jump negative someday
1049  MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
1050  switch (CC) {
1051  default: llvm_unreachable("Invalid integer condition!");
1052  case ISD::SETEQ:
1053    TCC = MSP430CC::COND_E;     // aka COND_Z
1054    // Minor optimization: if LHS is a constant, swap operands, then the
1055    // constant can be folded into comparison.
1056    if (LHS.getOpcode() == ISD::Constant)
1057      std::swap(LHS, RHS);
1058    break;
1059  case ISD::SETNE:
1060    TCC = MSP430CC::COND_NE;    // aka COND_NZ
1061    // Minor optimization: if LHS is a constant, swap operands, then the
1062    // constant can be folded into comparison.
1063    if (LHS.getOpcode() == ISD::Constant)
1064      std::swap(LHS, RHS);
1065    break;
1066  case ISD::SETULE:
1067    std::swap(LHS, RHS);
1068    LLVM_FALLTHROUGH;
1069  case ISD::SETUGE:
1070    // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
1071    // fold constant into instruction.
1072    if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1073      LHS = RHS;
1074      RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1075      TCC = MSP430CC::COND_LO;
1076      break;
1077    }
1078    TCC = MSP430CC::COND_HS;    // aka COND_C
1079    break;
1080  case ISD::SETUGT:
1081    std::swap(LHS, RHS);
1082    LLVM_FALLTHROUGH;
1083  case ISD::SETULT:
1084    // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
1085    // fold constant into instruction.
1086    if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1087      LHS = RHS;
1088      RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1089      TCC = MSP430CC::COND_HS;
1090      break;
1091    }
1092    TCC = MSP430CC::COND_LO;    // aka COND_NC
1093    break;
1094  case ISD::SETLE:
1095    std::swap(LHS, RHS);
1096    LLVM_FALLTHROUGH;
1097  case ISD::SETGE:
1098    // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
1099    // fold constant into instruction.
1100    if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1101      LHS = RHS;
1102      RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1103      TCC = MSP430CC::COND_L;
1104      break;
1105    }
1106    TCC = MSP430CC::COND_GE;
1107    break;
1108  case ISD::SETGT:
1109    std::swap(LHS, RHS);
1110    LLVM_FALLTHROUGH;
1111  case ISD::SETLT:
1112    // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
1113    // fold constant into instruction.
1114    if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1115      LHS = RHS;
1116      RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1117      TCC = MSP430CC::COND_GE;
1118      break;
1119    }
1120    TCC = MSP430CC::COND_L;
1121    break;
1122  }
1123
1124  TargetCC = DAG.getConstant(TCC, dl, MVT::i8);
1125  return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
1126}
1127
1128
1129SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1130  SDValue Chain = Op.getOperand(0);
1131  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1132  SDValue LHS   = Op.getOperand(2);
1133  SDValue RHS   = Op.getOperand(3);
1134  SDValue Dest  = Op.getOperand(4);
1135  SDLoc dl  (Op);
1136
1137  SDValue TargetCC;
1138  SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1139
1140  return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
1141                     Chain, Dest, TargetCC, Flag);
1142}
1143
1144SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1145  SDValue LHS   = Op.getOperand(0);
1146  SDValue RHS   = Op.getOperand(1);
1147  SDLoc dl  (Op);
1148
1149  // If we are doing an AND and testing against zero, then the CMP
1150  // will not be generated.  The AND (or BIT) will generate the condition codes,
1151  // but they are different from CMP.
1152  // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
1153  // lowering & isel wouldn't diverge.
1154  bool andCC = false;
1155  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1156    if (RHSC->isNullValue() && LHS.hasOneUse() &&
1157        (LHS.getOpcode() == ISD::AND ||
1158         (LHS.getOpcode() == ISD::TRUNCATE &&
1159          LHS.getOperand(0).getOpcode() == ISD::AND))) {
1160      andCC = true;
1161    }
1162  }
1163  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1164  SDValue TargetCC;
1165  SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1166
1167  // Get the condition codes directly from the status register, if its easy.
1168  // Otherwise a branch will be generated.  Note that the AND and BIT
1169  // instructions generate different flags than CMP, the carry bit can be used
1170  // for NE/EQ.
1171  bool Invert = false;
1172  bool Shift = false;
1173  bool Convert = true;
1174  switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) {
1175   default:
1176    Convert = false;
1177    break;
1178   case MSP430CC::COND_HS:
1179     // Res = SR & 1, no processing is required
1180     break;
1181   case MSP430CC::COND_LO:
1182     // Res = ~(SR & 1)
1183     Invert = true;
1184     break;
1185   case MSP430CC::COND_NE:
1186     if (andCC) {
1187       // C = ~Z, thus Res = SR & 1, no processing is required
1188     } else {
1189       // Res = ~((SR >> 1) & 1)
1190       Shift = true;
1191       Invert = true;
1192     }
1193     break;
1194   case MSP430CC::COND_E:
1195     Shift = true;
1196     // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
1197     // Res = (SR >> 1) & 1 is 1 word shorter.
1198     break;
1199  }
1200  EVT VT = Op.getValueType();
1201  SDValue One  = DAG.getConstant(1, dl, VT);
1202  if (Convert) {
1203    SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
1204                                    MVT::i16, Flag);
1205    if (Shift)
1206      // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
1207      SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
1208    SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
1209    if (Invert)
1210      SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
1211    return SR;
1212  } else {
1213    SDValue Zero = DAG.getConstant(0, dl, VT);
1214    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1215    SDValue Ops[] = {One, Zero, TargetCC, Flag};
1216    return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
1217  }
1218}
1219
1220SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
1221                                             SelectionDAG &DAG) const {
1222  SDValue LHS    = Op.getOperand(0);
1223  SDValue RHS    = Op.getOperand(1);
1224  SDValue TrueV  = Op.getOperand(2);
1225  SDValue FalseV = Op.getOperand(3);
1226  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1227  SDLoc dl   (Op);
1228
1229  SDValue TargetCC;
1230  SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1231
1232  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1233  SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
1234
1235  return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
1236}
1237
1238SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
1239                                               SelectionDAG &DAG) const {
1240  SDValue Val = Op.getOperand(0);
1241  EVT VT      = Op.getValueType();
1242  SDLoc dl(Op);
1243
1244  assert(VT == MVT::i16 && "Only support i16 for now!");
1245
1246  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
1247                     DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
1248                     DAG.getValueType(Val.getValueType()));
1249}
1250
1251SDValue
1252MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
1253  MachineFunction &MF = DAG.getMachineFunction();
1254  MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1255  int ReturnAddrIndex = FuncInfo->getRAIndex();
1256  auto PtrVT = getPointerTy(MF.getDataLayout());
1257
1258  if (ReturnAddrIndex == 0) {
1259    // Set up a frame object for the return address.
1260    uint64_t SlotSize = MF.getDataLayout().getPointerSize();
1261    ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, -SlotSize,
1262                                                           true);
1263    FuncInfo->setRAIndex(ReturnAddrIndex);
1264  }
1265
1266  return DAG.getFrameIndex(ReturnAddrIndex, PtrVT);
1267}
1268
1269SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
1270                                              SelectionDAG &DAG) const {
1271  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1272  MFI.setReturnAddressIsTaken(true);
1273
1274  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1275    return SDValue();
1276
1277  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1278  SDLoc dl(Op);
1279  auto PtrVT = getPointerTy(DAG.getDataLayout());
1280
1281  if (Depth > 0) {
1282    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1283    SDValue Offset =
1284        DAG.getConstant(DAG.getDataLayout().getPointerSize(), dl, MVT::i16);
1285    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1286                       DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
1287                       MachinePointerInfo());
1288  }
1289
1290  // Just load the return address.
1291  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
1292  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
1293                     MachinePointerInfo());
1294}
1295
1296SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
1297                                             SelectionDAG &DAG) const {
1298  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1299  MFI.setFrameAddressIsTaken(true);
1300
1301  EVT VT = Op.getValueType();
1302  SDLoc dl(Op);  // FIXME probably not meaningful
1303  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1304  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1305                                         MSP430::FP, VT);
1306  while (Depth--)
1307    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1308                            MachinePointerInfo());
1309  return FrameAddr;
1310}
1311
1312SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
1313                                           SelectionDAG &DAG) const {
1314  MachineFunction &MF = DAG.getMachineFunction();
1315  MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1316  auto PtrVT = getPointerTy(DAG.getDataLayout());
1317
1318  // Frame index of first vararg argument
1319  SDValue FrameIndex =
1320      DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1321  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1322
1323  // Create a store of the frame index to the location operand
1324  return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, Op.getOperand(1),
1325                      MachinePointerInfo(SV));
1326}
1327
1328SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
1329                                             SelectionDAG &DAG) const {
1330    JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1331    auto PtrVT = getPointerTy(DAG.getDataLayout());
1332    SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1333    return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result);
1334}
1335
1336/// getPostIndexedAddressParts - returns true by value, base pointer and
1337/// offset pointer and addressing mode by reference if this node can be
1338/// combined with a load / store to form a post-indexed load / store.
1339bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
1340                                                      SDValue &Base,
1341                                                      SDValue &Offset,
1342                                                      ISD::MemIndexedMode &AM,
1343                                                      SelectionDAG &DAG) const {
1344
1345  LoadSDNode *LD = cast<LoadSDNode>(N);
1346  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
1347    return false;
1348
1349  EVT VT = LD->getMemoryVT();
1350  if (VT != MVT::i8 && VT != MVT::i16)
1351    return false;
1352
1353  if (Op->getOpcode() != ISD::ADD)
1354    return false;
1355
1356  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
1357    uint64_t RHSC = RHS->getZExtValue();
1358    if ((VT == MVT::i16 && RHSC != 2) ||
1359        (VT == MVT::i8 && RHSC != 1))
1360      return false;
1361
1362    Base = Op->getOperand(0);
1363    Offset = DAG.getConstant(RHSC, SDLoc(N), VT);
1364    AM = ISD::POST_INC;
1365    return true;
1366  }
1367
1368  return false;
1369}
1370
1371
1372const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
1373  switch ((MSP430ISD::NodeType)Opcode) {
1374  case MSP430ISD::FIRST_NUMBER:       break;
1375  case MSP430ISD::RET_FLAG:           return "MSP430ISD::RET_FLAG";
1376  case MSP430ISD::RETI_FLAG:          return "MSP430ISD::RETI_FLAG";
1377  case MSP430ISD::RRA:                return "MSP430ISD::RRA";
1378  case MSP430ISD::RLA:                return "MSP430ISD::RLA";
1379  case MSP430ISD::RRC:                return "MSP430ISD::RRC";
1380  case MSP430ISD::RRCL:               return "MSP430ISD::RRCL";
1381  case MSP430ISD::CALL:               return "MSP430ISD::CALL";
1382  case MSP430ISD::Wrapper:            return "MSP430ISD::Wrapper";
1383  case MSP430ISD::BR_CC:              return "MSP430ISD::BR_CC";
1384  case MSP430ISD::CMP:                return "MSP430ISD::CMP";
1385  case MSP430ISD::SETCC:              return "MSP430ISD::SETCC";
1386  case MSP430ISD::SELECT_CC:          return "MSP430ISD::SELECT_CC";
1387  case MSP430ISD::DADD:               return "MSP430ISD::DADD";
1388  }
1389  return nullptr;
1390}
1391
1392bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
1393                                          Type *Ty2) const {
1394  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1395    return false;
1396
1397  return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits());
1398}
1399
1400bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1401  if (!VT1.isInteger() || !VT2.isInteger())
1402    return false;
1403
1404  return (VT1.getSizeInBits() > VT2.getSizeInBits());
1405}
1406
1407bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
1408  // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1409  return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
1410}
1411
1412bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
1413  // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1414  return 0 && VT1 == MVT::i8 && VT2 == MVT::i16;
1415}
1416
1417bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1418  return isZExtFree(Val.getValueType(), VT2);
1419}
1420
1421//===----------------------------------------------------------------------===//
1422//  Other Lowering Code
1423//===----------------------------------------------------------------------===//
1424
1425MachineBasicBlock *
1426MSP430TargetLowering::EmitShiftInstr(MachineInstr &MI,
1427                                     MachineBasicBlock *BB) const {
1428  MachineFunction *F = BB->getParent();
1429  MachineRegisterInfo &RI = F->getRegInfo();
1430  DebugLoc dl = MI.getDebugLoc();
1431  const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
1432
1433  unsigned Opc;
1434  bool ClearCarry = false;
1435  const TargetRegisterClass * RC;
1436  switch (MI.getOpcode()) {
1437  default: llvm_unreachable("Invalid shift opcode!");
1438  case MSP430::Shl8:
1439    Opc = MSP430::ADD8rr;
1440    RC = &MSP430::GR8RegClass;
1441    break;
1442  case MSP430::Shl16:
1443    Opc = MSP430::ADD16rr;
1444    RC = &MSP430::GR16RegClass;
1445    break;
1446  case MSP430::Sra8:
1447    Opc = MSP430::RRA8r;
1448    RC = &MSP430::GR8RegClass;
1449    break;
1450  case MSP430::Sra16:
1451    Opc = MSP430::RRA16r;
1452    RC = &MSP430::GR16RegClass;
1453    break;
1454  case MSP430::Srl8:
1455    ClearCarry = true;
1456    Opc = MSP430::RRC8r;
1457    RC = &MSP430::GR8RegClass;
1458    break;
1459  case MSP430::Srl16:
1460    ClearCarry = true;
1461    Opc = MSP430::RRC16r;
1462    RC = &MSP430::GR16RegClass;
1463    break;
1464  case MSP430::Rrcl8:
1465  case MSP430::Rrcl16: {
1466    BuildMI(*BB, MI, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1467      .addReg(MSP430::SR).addImm(1);
1468    Register SrcReg = MI.getOperand(1).getReg();
1469    Register DstReg = MI.getOperand(0).getReg();
1470    unsigned RrcOpc = MI.getOpcode() == MSP430::Rrcl16
1471                    ? MSP430::RRC16r : MSP430::RRC8r;
1472    BuildMI(*BB, MI, dl, TII.get(RrcOpc), DstReg)
1473      .addReg(SrcReg);
1474    MI.eraseFromParent(); // The pseudo instruction is gone now.
1475    return BB;
1476  }
1477  }
1478
1479  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1480  MachineFunction::iterator I = ++BB->getIterator();
1481
1482  // Create loop block
1483  MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1484  MachineBasicBlock *RemBB  = F->CreateMachineBasicBlock(LLVM_BB);
1485
1486  F->insert(I, LoopBB);
1487  F->insert(I, RemBB);
1488
1489  // Update machine-CFG edges by transferring all successors of the current
1490  // block to the block containing instructions after shift.
1491  RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1492                BB->end());
1493  RemBB->transferSuccessorsAndUpdatePHIs(BB);
1494
1495  // Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
1496  BB->addSuccessor(LoopBB);
1497  BB->addSuccessor(RemBB);
1498  LoopBB->addSuccessor(RemBB);
1499  LoopBB->addSuccessor(LoopBB);
1500
1501  Register ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
1502  Register ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
1503  Register ShiftReg = RI.createVirtualRegister(RC);
1504  Register ShiftReg2 = RI.createVirtualRegister(RC);
1505  Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1506  Register SrcReg = MI.getOperand(1).getReg();
1507  Register DstReg = MI.getOperand(0).getReg();
1508
1509  // BB:
1510  // cmp 0, N
1511  // je RemBB
1512  BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
1513    .addReg(ShiftAmtSrcReg).addImm(0);
1514  BuildMI(BB, dl, TII.get(MSP430::JCC))
1515    .addMBB(RemBB)
1516    .addImm(MSP430CC::COND_E);
1517
1518  // LoopBB:
1519  // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1520  // ShiftAmt = phi [%N, BB],      [%ShiftAmt2, LoopBB]
1521  // ShiftReg2 = shift ShiftReg
1522  // ShiftAmt2 = ShiftAmt - 1;
1523  BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
1524    .addReg(SrcReg).addMBB(BB)
1525    .addReg(ShiftReg2).addMBB(LoopBB);
1526  BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
1527    .addReg(ShiftAmtSrcReg).addMBB(BB)
1528    .addReg(ShiftAmtReg2).addMBB(LoopBB);
1529  if (ClearCarry)
1530    BuildMI(LoopBB, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1531      .addReg(MSP430::SR).addImm(1);
1532  if (Opc == MSP430::ADD8rr || Opc == MSP430::ADD16rr)
1533    BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1534      .addReg(ShiftReg)
1535      .addReg(ShiftReg);
1536  else
1537    BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1538      .addReg(ShiftReg);
1539  BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
1540    .addReg(ShiftAmtReg).addImm(1);
1541  BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
1542    .addMBB(LoopBB)
1543    .addImm(MSP430CC::COND_NE);
1544
1545  // RemBB:
1546  // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1547  BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
1548    .addReg(SrcReg).addMBB(BB)
1549    .addReg(ShiftReg2).addMBB(LoopBB);
1550
1551  MI.eraseFromParent(); // The pseudo instruction is gone now.
1552  return RemBB;
1553}
1554
1555MachineBasicBlock *
1556MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1557                                                  MachineBasicBlock *BB) const {
1558  unsigned Opc = MI.getOpcode();
1559
1560  if (Opc == MSP430::Shl8  || Opc == MSP430::Shl16 ||
1561      Opc == MSP430::Sra8  || Opc == MSP430::Sra16 ||
1562      Opc == MSP430::Srl8  || Opc == MSP430::Srl16 ||
1563      Opc == MSP430::Rrcl8 || Opc == MSP430::Rrcl16)
1564    return EmitShiftInstr(MI, BB);
1565
1566  const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1567  DebugLoc dl = MI.getDebugLoc();
1568
1569  assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
1570         "Unexpected instr type to insert");
1571
1572  // To "insert" a SELECT instruction, we actually have to insert the diamond
1573  // control-flow pattern.  The incoming instruction knows the destination vreg
1574  // to set, the condition code register to branch on, the true/false values to
1575  // select between, and a branch opcode to use.
1576  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1577  MachineFunction::iterator I = ++BB->getIterator();
1578
1579  //  thisMBB:
1580  //  ...
1581  //   TrueVal = ...
1582  //   cmpTY ccX, r1, r2
1583  //   jCC copy1MBB
1584  //   fallthrough --> copy0MBB
1585  MachineBasicBlock *thisMBB = BB;
1586  MachineFunction *F = BB->getParent();
1587  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1588  MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
1589  F->insert(I, copy0MBB);
1590  F->insert(I, copy1MBB);
1591  // Update machine-CFG edges by transferring all successors of the current
1592  // block to the new block which will contain the Phi node for the select.
1593  copy1MBB->splice(copy1MBB->begin(), BB,
1594                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1595  copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
1596  // Next, add the true and fallthrough blocks as its successors.
1597  BB->addSuccessor(copy0MBB);
1598  BB->addSuccessor(copy1MBB);
1599
1600  BuildMI(BB, dl, TII.get(MSP430::JCC))
1601      .addMBB(copy1MBB)
1602      .addImm(MI.getOperand(3).getImm());
1603
1604  //  copy0MBB:
1605  //   %FalseValue = ...
1606  //   # fallthrough to copy1MBB
1607  BB = copy0MBB;
1608
1609  // Update machine-CFG edges
1610  BB->addSuccessor(copy1MBB);
1611
1612  //  copy1MBB:
1613  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1614  //  ...
1615  BB = copy1MBB;
1616  BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg())
1617      .addReg(MI.getOperand(2).getReg())
1618      .addMBB(copy0MBB)
1619      .addReg(MI.getOperand(1).getReg())
1620      .addMBB(thisMBB);
1621
1622  MI.eraseFromParent(); // The pseudo instruction is gone now.
1623  return BB;
1624}
1625