1//===- HexagonEarlyIfConv.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements a Hexagon-specific if-conversion pass that runs on the
10// SSA form.
11// In SSA it is not straightforward to represent instructions that condi-
12// tionally define registers, since a conditionally-defined register may
13// only be used under the same condition on which the definition was based.
14// To avoid complications of this nature, this patch will only generate
15// predicated stores, and speculate other instructions from the "if-conver-
16// ted" block.
17// The code will recognize CFG patterns where a block with a conditional
18// branch "splits" into a "true block" and a "false block". Either of these
19// could be omitted (in case of a triangle, for example).
20// If after conversion of the side block(s) the CFG allows it, the resul-
21// ting blocks may be merged. If the "join" block contained PHI nodes, they
22// will be replaced with MUX (or MUX-like) instructions to maintain the
23// semantics of the PHI.
24//
25// Example:
26//
27//         %40 = L2_loadrub_io killed %39, 1
28//         %41 = S2_tstbit_i killed %40, 0
29//         J2_jumpt killed %41, <%bb.5>, implicit dead %pc
30//         J2_jump <%bb.4>, implicit dead %pc
31//     Successors according to CFG: %bb.4(62) %bb.5(62)
32//
33// %bb.4: derived from LLVM BB %if.then
34//     Predecessors according to CFG: %bb.3
35//         %11 = A2_addp %6, %10
36//         S2_storerd_io %32, 16, %11
37//     Successors according to CFG: %bb.5
38//
39// %bb.5: derived from LLVM BB %if.end
40//     Predecessors according to CFG: %bb.3 %bb.4
41//         %12 = PHI %6, <%bb.3>, %11, <%bb.4>
42//         %13 = A2_addp %7, %12
43//         %42 = C2_cmpeqi %9, 10
44//         J2_jumpf killed %42, <%bb.3>, implicit dead %pc
45//         J2_jump <%bb.6>, implicit dead %pc
46//     Successors according to CFG: %bb.6(4) %bb.3(124)
47//
48// would become:
49//
50//         %40 = L2_loadrub_io killed %39, 1
51//         %41 = S2_tstbit_i killed %40, 0
52// spec->  %11 = A2_addp %6, %10
53// pred->  S2_pstorerdf_io %41, %32, 16, %11
54//         %46 = PS_pselect %41, %6, %11
55//         %13 = A2_addp %7, %46
56//         %42 = C2_cmpeqi %9, 10
57//         J2_jumpf killed %42, <%bb.3>, implicit dead %pc
58//         J2_jump <%bb.6>, implicit dead %pc
59//     Successors according to CFG: %bb.6 %bb.3
60
61#include "Hexagon.h"
62#include "HexagonInstrInfo.h"
63#include "HexagonSubtarget.h"
64#include "llvm/ADT/DenseSet.h"
65#include "llvm/ADT/SmallVector.h"
66#include "llvm/ADT/StringRef.h"
67#include "llvm/ADT/iterator_range.h"
68#include "llvm/CodeGen/MachineBasicBlock.h"
69#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
70#include "llvm/CodeGen/MachineDominators.h"
71#include "llvm/CodeGen/MachineFunction.h"
72#include "llvm/CodeGen/MachineFunctionPass.h"
73#include "llvm/CodeGen/MachineInstr.h"
74#include "llvm/CodeGen/MachineInstrBuilder.h"
75#include "llvm/CodeGen/MachineLoopInfo.h"
76#include "llvm/CodeGen/MachineOperand.h"
77#include "llvm/CodeGen/MachineRegisterInfo.h"
78#include "llvm/CodeGen/TargetRegisterInfo.h"
79#include "llvm/IR/DebugLoc.h"
80#include "llvm/Pass.h"
81#include "llvm/Support/BranchProbability.h"
82#include "llvm/Support/CommandLine.h"
83#include "llvm/Support/Compiler.h"
84#include "llvm/Support/Debug.h"
85#include "llvm/Support/ErrorHandling.h"
86#include "llvm/Support/raw_ostream.h"
87#include <cassert>
88#include <iterator>
89
90#define DEBUG_TYPE "hexagon-eif"
91
92using namespace llvm;
93
94namespace llvm {
95
96  FunctionPass *createHexagonEarlyIfConversion();
97  void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry);
98
99} // end namespace llvm
100
101static cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden,
102  cl::init(true), cl::desc("Enable branch probability info"));
103static cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden,
104  cl::desc("Size limit in Hexagon early if-conversion"));
105static cl::opt<bool> SkipExitBranches("eif-no-loop-exit", cl::init(false),
106  cl::Hidden, cl::desc("Do not convert branches that may exit the loop"));
107
108namespace {
109
110  struct PrintMB {
111    PrintMB(const MachineBasicBlock *B) : MB(B) {}
112
113    const MachineBasicBlock *MB;
114  };
115  raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) {
116    if (!P.MB)
117      return OS << "<none>";
118    return OS << '#' << P.MB->getNumber();
119  }
120
121  struct FlowPattern {
122    FlowPattern() = default;
123    FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB,
124          MachineBasicBlock *FB, MachineBasicBlock *JB)
125      : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {}
126
127    MachineBasicBlock *SplitB = nullptr;
128    MachineBasicBlock *TrueB = nullptr;
129    MachineBasicBlock *FalseB = nullptr;
130    MachineBasicBlock *JoinB = nullptr;
131    unsigned PredR = 0;
132  };
133
134  struct PrintFP {
135    PrintFP(const FlowPattern &P, const TargetRegisterInfo &T)
136      : FP(P), TRI(T) {}
137
138    const FlowPattern &FP;
139    const TargetRegisterInfo &TRI;
140    friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P);
141  };
142  raw_ostream &operator<<(raw_ostream &OS,
143                          const PrintFP &P) LLVM_ATTRIBUTE_UNUSED;
144  raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) {
145    OS << "{ SplitB:" << PrintMB(P.FP.SplitB)
146       << ", PredR:" << printReg(P.FP.PredR, &P.TRI)
147       << ", TrueB:" << PrintMB(P.FP.TrueB)
148       << ", FalseB:" << PrintMB(P.FP.FalseB)
149       << ", JoinB:" << PrintMB(P.FP.JoinB) << " }";
150    return OS;
151  }
152
153  class HexagonEarlyIfConversion : public MachineFunctionPass {
154  public:
155    static char ID;
156
157    HexagonEarlyIfConversion() : MachineFunctionPass(ID) {}
158
159    StringRef getPassName() const override {
160      return "Hexagon early if conversion";
161    }
162
163    void getAnalysisUsage(AnalysisUsage &AU) const override {
164      AU.addRequired<MachineBranchProbabilityInfo>();
165      AU.addRequired<MachineDominatorTree>();
166      AU.addPreserved<MachineDominatorTree>();
167      AU.addRequired<MachineLoopInfo>();
168      MachineFunctionPass::getAnalysisUsage(AU);
169    }
170
171    bool runOnMachineFunction(MachineFunction &MF) override;
172
173  private:
174    using BlockSetType = DenseSet<MachineBasicBlock *>;
175
176    bool isPreheader(const MachineBasicBlock *B) const;
177    bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L,
178          FlowPattern &FP);
179    bool visitBlock(MachineBasicBlock *B, MachineLoop *L);
180    bool visitLoop(MachineLoop *L);
181
182    bool hasEHLabel(const MachineBasicBlock *B) const;
183    bool hasUncondBranch(const MachineBasicBlock *B) const;
184    bool isValidCandidate(const MachineBasicBlock *B) const;
185    bool usesUndefVReg(const MachineInstr *MI) const;
186    bool isValid(const FlowPattern &FP) const;
187    unsigned countPredicateDefs(const MachineBasicBlock *B) const;
188    unsigned computePhiCost(const MachineBasicBlock *B,
189          const FlowPattern &FP) const;
190    bool isProfitable(const FlowPattern &FP) const;
191    bool isPredicableStore(const MachineInstr *MI) const;
192    bool isSafeToSpeculate(const MachineInstr *MI) const;
193    bool isPredicate(unsigned R) const;
194
195    unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const;
196    void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At,
197          MachineInstr *MI, unsigned PredR, bool IfTrue);
198    void predicateBlockNB(MachineBasicBlock *ToB,
199          MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
200          unsigned PredR, bool IfTrue);
201
202    unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At,
203          const TargetRegisterClass *DRC, unsigned PredR, unsigned TR,
204          unsigned TSR, unsigned FR, unsigned FSR);
205    void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP);
206    void convert(const FlowPattern &FP);
207
208    void removeBlock(MachineBasicBlock *B);
209    void eliminatePhis(MachineBasicBlock *B);
210    void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB);
211    void simplifyFlowGraph(const FlowPattern &FP);
212
213    const HexagonInstrInfo *HII = nullptr;
214    const TargetRegisterInfo *TRI = nullptr;
215    MachineFunction *MFN = nullptr;
216    MachineRegisterInfo *MRI = nullptr;
217    MachineDominatorTree *MDT = nullptr;
218    MachineLoopInfo *MLI = nullptr;
219    BlockSetType Deleted;
220    const MachineBranchProbabilityInfo *MBPI = nullptr;
221  };
222
223} // end anonymous namespace
224
225char HexagonEarlyIfConversion::ID = 0;
226
227INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-early-if",
228  "Hexagon early if conversion", false, false)
229
230bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const {
231  if (B->succ_size() != 1)
232    return false;
233  MachineBasicBlock *SB = *B->succ_begin();
234  MachineLoop *L = MLI->getLoopFor(SB);
235  return L && SB == L->getHeader() && MDT->dominates(B, SB);
236}
237
238bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B,
239    MachineLoop *L, FlowPattern &FP) {
240  LLVM_DEBUG(dbgs() << "Checking flow pattern at " << printMBBReference(*B)
241                    << "\n");
242
243  // Interested only in conditional branches, no .new, no new-value, etc.
244  // Check the terminators directly, it's easier than handling all responses
245  // from analyzeBranch.
246  MachineBasicBlock *TB = nullptr, *FB = nullptr;
247  MachineBasicBlock::const_iterator T1I = B->getFirstTerminator();
248  if (T1I == B->end())
249    return false;
250  unsigned Opc = T1I->getOpcode();
251  if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf)
252    return false;
253  Register PredR = T1I->getOperand(0).getReg();
254
255  // Get the layout successor, or 0 if B does not have one.
256  MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B));
257  MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr;
258
259  MachineBasicBlock *T1B = T1I->getOperand(1).getMBB();
260  MachineBasicBlock::const_iterator T2I = std::next(T1I);
261  // The second terminator should be an unconditional branch.
262  assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump);
263  MachineBasicBlock *T2B = (T2I == B->end()) ? NextB
264                                             : T2I->getOperand(0).getMBB();
265  if (T1B == T2B) {
266    // XXX merge if T1B == NextB, or convert branch to unconditional.
267    // mark as diamond with both sides equal?
268    return false;
269  }
270
271  // Record the true/false blocks in such a way that "true" means "if (PredR)",
272  // and "false" means "if (!PredR)".
273  if (Opc == Hexagon::J2_jumpt)
274    TB = T1B, FB = T2B;
275  else
276    TB = T2B, FB = T1B;
277
278  if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB))
279    return false;
280
281  // Detect triangle first. In case of a triangle, one of the blocks TB/FB
282  // can fall through into the other, in other words, it will be executed
283  // in both cases. We only want to predicate the block that is executed
284  // conditionally.
285  assert(TB && FB && "Failed to find triangle control flow blocks");
286  unsigned TNP = TB->pred_size(), FNP = FB->pred_size();
287  unsigned TNS = TB->succ_size(), FNS = FB->succ_size();
288
289  // A block is predicable if it has one predecessor (it must be B), and
290  // it has a single successor. In fact, the block has to end either with
291  // an unconditional branch (which can be predicated), or with a fall-
292  // through.
293  // Also, skip blocks that do not belong to the same loop.
294  bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(TB) == L);
295  bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(FB) == L);
296
297  // If requested (via an option), do not consider branches where the
298  // true and false targets do not belong to the same loop.
299  if (SkipExitBranches && MLI->getLoopFor(TB) != MLI->getLoopFor(FB))
300    return false;
301
302  // If neither is predicable, there is nothing interesting.
303  if (!TOk && !FOk)
304    return false;
305
306  MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr;
307  MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr;
308  MachineBasicBlock *JB = nullptr;
309
310  if (TOk) {
311    if (FOk) {
312      if (TSB == FSB)
313        JB = TSB;
314      // Diamond: "if (P) then TB; else FB;".
315    } else {
316      // TOk && !FOk
317      if (TSB == FB)
318        JB = FB;
319      FB = nullptr;
320    }
321  } else {
322    // !TOk && FOk  (at least one must be true by now).
323    if (FSB == TB)
324      JB = TB;
325    TB = nullptr;
326  }
327  // Don't try to predicate loop preheaders.
328  if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) {
329    LLVM_DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB)
330                      << " is a loop preheader. Skipping.\n");
331    return false;
332  }
333
334  FP = FlowPattern(B, PredR, TB, FB, JB);
335  LLVM_DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n");
336  return true;
337}
338
339// KLUDGE: HexagonInstrInfo::analyzeBranch won't work on a block that
340// contains EH_LABEL.
341bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const {
342  for (auto &I : *B)
343    if (I.isEHLabel())
344      return true;
345  return false;
346}
347
348// KLUDGE: HexagonInstrInfo::analyzeBranch may be unable to recognize
349// that a block can never fall-through.
350bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B)
351      const {
352  MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
353  while (I != E) {
354    if (I->isBarrier())
355      return true;
356    ++I;
357  }
358  return false;
359}
360
361bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B)
362      const {
363  if (!B)
364    return true;
365  if (B->isEHPad() || B->hasAddressTaken())
366    return false;
367  if (B->succ_size() == 0)
368    return false;
369
370  for (auto &MI : *B) {
371    if (MI.isDebugInstr())
372      continue;
373    if (MI.isConditionalBranch())
374      return false;
375    unsigned Opc = MI.getOpcode();
376    bool IsJMP = (Opc == Hexagon::J2_jump);
377    if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI))
378      return false;
379    // Look for predicate registers defined by this instruction. It's ok
380    // to speculate such an instruction, but the predicate register cannot
381    // be used outside of this block (or else it won't be possible to
382    // update the use of it after predication). PHI uses will be updated
383    // to use a result of a MUX, and a MUX cannot be created for predicate
384    // registers.
385    for (const MachineOperand &MO : MI.operands()) {
386      if (!MO.isReg() || !MO.isDef())
387        continue;
388      Register R = MO.getReg();
389      if (!Register::isVirtualRegister(R))
390        continue;
391      if (!isPredicate(R))
392        continue;
393      for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U)
394        if (U->getParent()->isPHI())
395          return false;
396    }
397  }
398  return true;
399}
400
401bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const {
402  for (const MachineOperand &MO : MI->operands()) {
403    if (!MO.isReg() || !MO.isUse())
404      continue;
405    Register R = MO.getReg();
406    if (!Register::isVirtualRegister(R))
407      continue;
408    const MachineInstr *DefI = MRI->getVRegDef(R);
409    // "Undefined" virtual registers are actually defined via IMPLICIT_DEF.
410    assert(DefI && "Expecting a reaching def in MRI");
411    if (DefI->isImplicitDef())
412      return true;
413  }
414  return false;
415}
416
417bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const {
418  if (hasEHLabel(FP.SplitB))  // KLUDGE: see function definition
419    return false;
420  if (FP.TrueB && !isValidCandidate(FP.TrueB))
421    return false;
422  if (FP.FalseB && !isValidCandidate(FP.FalseB))
423    return false;
424  // Check the PHIs in the join block. If any of them use a register
425  // that is defined as IMPLICIT_DEF, do not convert this. This can
426  // legitimately happen if one side of the split never executes, but
427  // the compiler is unable to prove it. That side may then seem to
428  // provide an "undef" value to the join block, however it will never
429  // execute at run-time. If we convert this case, the "undef" will
430  // be used in a MUX instruction, and that may seem like actually
431  // using an undefined value to other optimizations. This could lead
432  // to trouble further down the optimization stream, cause assertions
433  // to fail, etc.
434  if (FP.JoinB) {
435    const MachineBasicBlock &B = *FP.JoinB;
436    for (auto &MI : B) {
437      if (!MI.isPHI())
438        break;
439      if (usesUndefVReg(&MI))
440        return false;
441      Register DefR = MI.getOperand(0).getReg();
442      if (isPredicate(DefR))
443        return false;
444    }
445  }
446  return true;
447}
448
449unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B,
450      const FlowPattern &FP) const {
451  if (B->pred_size() < 2)
452    return 0;
453
454  unsigned Cost = 0;
455  for (const MachineInstr &MI : *B) {
456    if (!MI.isPHI())
457      break;
458    // If both incoming blocks are one of the TrueB/FalseB/SplitB, then
459    // a MUX may be needed. Otherwise the PHI will need to be updated at
460    // no extra cost.
461    // Find the interesting PHI operands for further checks.
462    SmallVector<unsigned,2> Inc;
463    for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
464      const MachineBasicBlock *BB = MI.getOperand(i+1).getMBB();
465      if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB)
466        Inc.push_back(i);
467    }
468    assert(Inc.size() <= 2);
469    if (Inc.size() < 2)
470      continue;
471
472    const MachineOperand &RA = MI.getOperand(1);
473    const MachineOperand &RB = MI.getOperand(3);
474    assert(RA.isReg() && RB.isReg());
475    // Must have a MUX if the phi uses a subregister.
476    if (RA.getSubReg() != 0 || RB.getSubReg() != 0) {
477      Cost++;
478      continue;
479    }
480    const MachineInstr *Def1 = MRI->getVRegDef(RA.getReg());
481    const MachineInstr *Def3 = MRI->getVRegDef(RB.getReg());
482    if (!HII->isPredicable(*Def1) || !HII->isPredicable(*Def3))
483      Cost++;
484  }
485  return Cost;
486}
487
488unsigned HexagonEarlyIfConversion::countPredicateDefs(
489      const MachineBasicBlock *B) const {
490  unsigned PredDefs = 0;
491  for (auto &MI : *B) {
492    for (const MachineOperand &MO : MI.operands()) {
493      if (!MO.isReg() || !MO.isDef())
494        continue;
495      Register R = MO.getReg();
496      if (!Register::isVirtualRegister(R))
497        continue;
498      if (isPredicate(R))
499        PredDefs++;
500    }
501  }
502  return PredDefs;
503}
504
505bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const {
506  BranchProbability JumpProb(1, 10);
507  BranchProbability Prob(9, 10);
508  if (MBPI && FP.TrueB && !FP.FalseB &&
509      (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) < JumpProb ||
510       MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob))
511    return false;
512
513  if (MBPI && !FP.TrueB && FP.FalseB &&
514      (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) < JumpProb ||
515       MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob))
516    return false;
517
518  if (FP.TrueB && FP.FalseB) {
519    // Do not IfCovert if the branch is one sided.
520    if (MBPI) {
521      if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)
522        return false;
523      if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)
524        return false;
525    }
526
527    // If both sides are predicable, convert them if they join, and the
528    // join block has no other predecessors.
529    MachineBasicBlock *TSB = *FP.TrueB->succ_begin();
530    MachineBasicBlock *FSB = *FP.FalseB->succ_begin();
531    if (TSB != FSB)
532      return false;
533    if (TSB->pred_size() != 2)
534      return false;
535  }
536
537  // Calculate the total size of the predicated blocks.
538  // Assume instruction counts without branches to be the approximation of
539  // the code size. If the predicated blocks are smaller than a packet size,
540  // approximate the spare room in the packet that could be filled with the
541  // predicated/speculated instructions.
542  auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) {
543    if (!B)
544      return 0u;
545    unsigned T = std::count_if(B->begin(), B->getFirstTerminator(),
546                               [](const MachineInstr &MI) {
547                                 return !MI.isMetaInstruction();
548                               });
549    if (T < HEXAGON_PACKET_SIZE)
550      Spare += HEXAGON_PACKET_SIZE-T;
551    return T;
552  };
553  unsigned Spare = 0;
554  unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare);
555  LLVM_DEBUG(
556      dbgs() << "Total number of instructions to be predicated/speculated: "
557             << TotalIn << ", spare room: " << Spare << "\n");
558  if (TotalIn >= SizeLimit+Spare)
559    return false;
560
561  // Count the number of PHI nodes that will need to be updated (converted
562  // to MUX). Those can be later converted to predicated instructions, so
563  // they aren't always adding extra cost.
564  // KLUDGE: Also, count the number of predicate register definitions in
565  // each block. The scheduler may increase the pressure of these and cause
566  // expensive spills (e.g. bitmnp01).
567  unsigned TotalPh = 0;
568  unsigned PredDefs = countPredicateDefs(FP.SplitB);
569  if (FP.JoinB) {
570    TotalPh = computePhiCost(FP.JoinB, FP);
571    PredDefs += countPredicateDefs(FP.JoinB);
572  } else {
573    if (FP.TrueB && FP.TrueB->succ_size() > 0) {
574      MachineBasicBlock *SB = *FP.TrueB->succ_begin();
575      TotalPh += computePhiCost(SB, FP);
576      PredDefs += countPredicateDefs(SB);
577    }
578    if (FP.FalseB && FP.FalseB->succ_size() > 0) {
579      MachineBasicBlock *SB = *FP.FalseB->succ_begin();
580      TotalPh += computePhiCost(SB, FP);
581      PredDefs += countPredicateDefs(SB);
582    }
583  }
584  LLVM_DEBUG(dbgs() << "Total number of extra muxes from converted phis: "
585                    << TotalPh << "\n");
586  if (TotalIn+TotalPh >= SizeLimit+Spare)
587    return false;
588
589  LLVM_DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs
590                    << "\n");
591  if (PredDefs > 4)
592    return false;
593
594  return true;
595}
596
597bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B,
598      MachineLoop *L) {
599  bool Changed = false;
600
601  // Visit all dominated blocks from the same loop first, then process B.
602  MachineDomTreeNode *N = MDT->getNode(B);
603
604  using GTN = GraphTraits<MachineDomTreeNode *>;
605
606  // We will change CFG/DT during this traversal, so take precautions to
607  // avoid problems related to invalidated iterators. In fact, processing
608  // a child C of B cannot cause another child to be removed, but it can
609  // cause a new child to be added (which was a child of C before C itself
610  // was removed. This new child C, however, would have been processed
611  // prior to processing B, so there is no need to process it again.
612  // Simply keep a list of children of B, and traverse that list.
613  using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>;
614  DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
615  for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
616    MachineBasicBlock *SB = (*I)->getBlock();
617    if (!Deleted.count(SB))
618      Changed |= visitBlock(SB, L);
619  }
620  // When walking down the dominator tree, we want to traverse through
621  // blocks from nested (other) loops, because they can dominate blocks
622  // that are in L. Skip the non-L blocks only after the tree traversal.
623  if (MLI->getLoopFor(B) != L)
624    return Changed;
625
626  FlowPattern FP;
627  if (!matchFlowPattern(B, L, FP))
628    return Changed;
629
630  if (!isValid(FP)) {
631    LLVM_DEBUG(dbgs() << "Conversion is not valid\n");
632    return Changed;
633  }
634  if (!isProfitable(FP)) {
635    LLVM_DEBUG(dbgs() << "Conversion is not profitable\n");
636    return Changed;
637  }
638
639  convert(FP);
640  simplifyFlowGraph(FP);
641  return true;
642}
643
644bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) {
645  MachineBasicBlock *HB = L ? L->getHeader() : nullptr;
646  LLVM_DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB)
647                : dbgs() << "Visiting function")
648             << "\n");
649  bool Changed = false;
650  if (L) {
651    for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
652      Changed |= visitLoop(*I);
653  }
654
655  MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN);
656  Changed |= visitBlock(L ? HB : EntryB, L);
657  return Changed;
658}
659
660bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI)
661      const {
662  // HexagonInstrInfo::isPredicable will consider these stores are non-
663  // -predicable if the offset would become constant-extended after
664  // predication.
665  unsigned Opc = MI->getOpcode();
666  switch (Opc) {
667    case Hexagon::S2_storerb_io:
668    case Hexagon::S2_storerbnew_io:
669    case Hexagon::S2_storerh_io:
670    case Hexagon::S2_storerhnew_io:
671    case Hexagon::S2_storeri_io:
672    case Hexagon::S2_storerinew_io:
673    case Hexagon::S2_storerd_io:
674    case Hexagon::S4_storeirb_io:
675    case Hexagon::S4_storeirh_io:
676    case Hexagon::S4_storeiri_io:
677      return true;
678  }
679
680  // TargetInstrInfo::isPredicable takes a non-const pointer.
681  return MI->mayStore() && HII->isPredicable(const_cast<MachineInstr&>(*MI));
682}
683
684bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI)
685      const {
686  if (MI->mayLoadOrStore())
687    return false;
688  if (MI->isCall() || MI->isBarrier() || MI->isBranch())
689    return false;
690  if (MI->hasUnmodeledSideEffects())
691    return false;
692  if (MI->getOpcode() == TargetOpcode::LIFETIME_END)
693    return false;
694
695  return true;
696}
697
698bool HexagonEarlyIfConversion::isPredicate(unsigned R) const {
699  const TargetRegisterClass *RC = MRI->getRegClass(R);
700  return RC == &Hexagon::PredRegsRegClass ||
701         RC == &Hexagon::HvxQRRegClass;
702}
703
704unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc,
705      bool IfTrue) const {
706  return HII->getCondOpcode(Opc, !IfTrue);
707}
708
709void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB,
710      MachineBasicBlock::iterator At, MachineInstr *MI,
711      unsigned PredR, bool IfTrue) {
712  DebugLoc DL;
713  if (At != ToB->end())
714    DL = At->getDebugLoc();
715  else if (!ToB->empty())
716    DL = ToB->back().getDebugLoc();
717
718  unsigned Opc = MI->getOpcode();
719
720  if (isPredicableStore(MI)) {
721    unsigned COpc = getCondStoreOpcode(Opc, IfTrue);
722    assert(COpc);
723    MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, HII->get(COpc));
724    MachineInstr::mop_iterator MOI = MI->operands_begin();
725    if (HII->isPostIncrement(*MI)) {
726      MIB.add(*MOI);
727      ++MOI;
728    }
729    MIB.addReg(PredR);
730    for (const MachineOperand &MO : make_range(MOI, MI->operands_end()))
731      MIB.add(MO);
732
733    // Set memory references.
734    MIB.cloneMemRefs(*MI);
735
736    MI->eraseFromParent();
737    return;
738  }
739
740  if (Opc == Hexagon::J2_jump) {
741    MachineBasicBlock *TB = MI->getOperand(0).getMBB();
742    const MCInstrDesc &D = HII->get(IfTrue ? Hexagon::J2_jumpt
743                                           : Hexagon::J2_jumpf);
744    BuildMI(*ToB, At, DL, D)
745      .addReg(PredR)
746      .addMBB(TB);
747    MI->eraseFromParent();
748    return;
749  }
750
751  // Print the offending instruction unconditionally as we are about to
752  // abort.
753  dbgs() << *MI;
754  llvm_unreachable("Unexpected instruction");
755}
756
757// Predicate/speculate non-branch instructions from FromB into block ToB.
758// Leave the branches alone, they will be handled later. Btw, at this point
759// FromB should have at most one branch, and it should be unconditional.
760void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB,
761      MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
762      unsigned PredR, bool IfTrue) {
763  LLVM_DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n");
764  MachineBasicBlock::iterator End = FromB->getFirstTerminator();
765  MachineBasicBlock::iterator I, NextI;
766
767  for (I = FromB->begin(); I != End; I = NextI) {
768    assert(!I->isPHI());
769    NextI = std::next(I);
770    if (isSafeToSpeculate(&*I))
771      ToB->splice(At, FromB, I);
772    else
773      predicateInstr(ToB, At, &*I, PredR, IfTrue);
774  }
775}
776
777unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B,
778      MachineBasicBlock::iterator At, const TargetRegisterClass *DRC,
779      unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) {
780  unsigned Opc = 0;
781  switch (DRC->getID()) {
782    case Hexagon::IntRegsRegClassID:
783    case Hexagon::IntRegsLow8RegClassID:
784      Opc = Hexagon::C2_mux;
785      break;
786    case Hexagon::DoubleRegsRegClassID:
787    case Hexagon::GeneralDoubleLow8RegsRegClassID:
788      Opc = Hexagon::PS_pselect;
789      break;
790    case Hexagon::HvxVRRegClassID:
791      Opc = Hexagon::PS_vselect;
792      break;
793    case Hexagon::HvxWRRegClassID:
794      Opc = Hexagon::PS_wselect;
795      break;
796    default:
797      llvm_unreachable("unexpected register type");
798  }
799  const MCInstrDesc &D = HII->get(Opc);
800
801  DebugLoc DL = B->findBranchDebugLoc();
802  Register MuxR = MRI->createVirtualRegister(DRC);
803  BuildMI(*B, At, DL, D, MuxR)
804    .addReg(PredR)
805    .addReg(TR, 0, TSR)
806    .addReg(FR, 0, FSR);
807  return MuxR;
808}
809
810void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB,
811      const FlowPattern &FP) {
812  // Visit all PHI nodes in the WhereB block and generate MUX instructions
813  // in the split block. Update the PHI nodes with the values of the MUX.
814  auto NonPHI = WhereB->getFirstNonPHI();
815  for (auto I = WhereB->begin(); I != NonPHI; ++I) {
816    MachineInstr *PN = &*I;
817    // Registers and subregisters corresponding to TrueB, FalseB and SplitB.
818    unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0;
819    for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
820      const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1);
821      if (BO.getMBB() == FP.SplitB)
822        SR = RO.getReg(), SSR = RO.getSubReg();
823      else if (BO.getMBB() == FP.TrueB)
824        TR = RO.getReg(), TSR = RO.getSubReg();
825      else if (BO.getMBB() == FP.FalseB)
826        FR = RO.getReg(), FSR = RO.getSubReg();
827      else
828        continue;
829      PN->RemoveOperand(i+1);
830      PN->RemoveOperand(i);
831    }
832    if (TR == 0)
833      TR = SR, TSR = SSR;
834    else if (FR == 0)
835      FR = SR, FSR = SSR;
836
837    assert(TR || FR);
838    unsigned MuxR = 0, MuxSR = 0;
839
840    if (TR && FR) {
841      Register DR = PN->getOperand(0).getReg();
842      const TargetRegisterClass *RC = MRI->getRegClass(DR);
843      MuxR = buildMux(FP.SplitB, FP.SplitB->getFirstTerminator(), RC,
844                      FP.PredR, TR, TSR, FR, FSR);
845    } else if (TR) {
846      MuxR = TR;
847      MuxSR = TSR;
848    } else {
849      MuxR = FR;
850      MuxSR = FSR;
851    }
852
853    PN->addOperand(MachineOperand::CreateReg(MuxR, false, false, false, false,
854                                             false, false, MuxSR));
855    PN->addOperand(MachineOperand::CreateMBB(FP.SplitB));
856  }
857}
858
859void HexagonEarlyIfConversion::convert(const FlowPattern &FP) {
860  MachineBasicBlock *TSB = nullptr, *FSB = nullptr;
861  MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator();
862  assert(OldTI != FP.SplitB->end());
863  DebugLoc DL = OldTI->getDebugLoc();
864
865  if (FP.TrueB) {
866    TSB = *FP.TrueB->succ_begin();
867    predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true);
868  }
869  if (FP.FalseB) {
870    FSB = *FP.FalseB->succ_begin();
871    MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator();
872    predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false);
873  }
874
875  // Regenerate new terminators in the split block and update the successors.
876  // First, remember any information that may be needed later and remove the
877  // existing terminators/successors from the split block.
878  MachineBasicBlock *SSB = nullptr;
879  FP.SplitB->erase(OldTI, FP.SplitB->end());
880  while (FP.SplitB->succ_size() > 0) {
881    MachineBasicBlock *T = *FP.SplitB->succ_begin();
882    // It's possible that the split block had a successor that is not a pre-
883    // dicated block. This could only happen if there was only one block to
884    // be predicated. Example:
885    //   split_b:
886    //     if (p) jump true_b
887    //     jump unrelated2_b
888    //   unrelated1_b:
889    //     ...
890    //   unrelated2_b:  ; can have other predecessors, so it's not "false_b"
891    //     jump other_b
892    //   true_b:        ; only reachable from split_b, can be predicated
893    //     ...
894    //
895    // Find this successor (SSB) if it exists.
896    if (T != FP.TrueB && T != FP.FalseB) {
897      assert(!SSB);
898      SSB = T;
899    }
900    FP.SplitB->removeSuccessor(FP.SplitB->succ_begin());
901  }
902
903  // Insert new branches and update the successors of the split block. This
904  // may create unconditional branches to the layout successor, etc., but
905  // that will be cleaned up later. For now, make sure that correct code is
906  // generated.
907  if (FP.JoinB) {
908    assert(!SSB || SSB == FP.JoinB);
909    BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
910      .addMBB(FP.JoinB);
911    FP.SplitB->addSuccessor(FP.JoinB);
912  } else {
913    bool HasBranch = false;
914    if (TSB) {
915      BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jumpt))
916        .addReg(FP.PredR)
917        .addMBB(TSB);
918      FP.SplitB->addSuccessor(TSB);
919      HasBranch = true;
920    }
921    if (FSB) {
922      const MCInstrDesc &D = HasBranch ? HII->get(Hexagon::J2_jump)
923                                       : HII->get(Hexagon::J2_jumpf);
924      MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D);
925      if (!HasBranch)
926        MIB.addReg(FP.PredR);
927      MIB.addMBB(FSB);
928      FP.SplitB->addSuccessor(FSB);
929    }
930    if (SSB) {
931      // This cannot happen if both TSB and FSB are set. [TF]SB are the
932      // successor blocks of the TrueB and FalseB (or null of the TrueB
933      // or FalseB block is null). SSB is the potential successor block
934      // of the SplitB that is neither TrueB nor FalseB.
935      BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
936        .addMBB(SSB);
937      FP.SplitB->addSuccessor(SSB);
938    }
939  }
940
941  // What is left to do is to update the PHI nodes that could have entries
942  // referring to predicated blocks.
943  if (FP.JoinB) {
944    updatePhiNodes(FP.JoinB, FP);
945  } else {
946    if (TSB)
947      updatePhiNodes(TSB, FP);
948    if (FSB)
949      updatePhiNodes(FSB, FP);
950    // Nothing to update in SSB, since SSB's predecessors haven't changed.
951  }
952}
953
954void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) {
955  LLVM_DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n");
956
957  // Transfer the immediate dominator information from B to its descendants.
958  MachineDomTreeNode *N = MDT->getNode(B);
959  MachineDomTreeNode *IDN = N->getIDom();
960  if (IDN) {
961    MachineBasicBlock *IDB = IDN->getBlock();
962
963    using GTN = GraphTraits<MachineDomTreeNode *>;
964    using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>;
965
966    DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
967    for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
968      MachineBasicBlock *SB = (*I)->getBlock();
969      MDT->changeImmediateDominator(SB, IDB);
970    }
971  }
972
973  while (B->succ_size() > 0)
974    B->removeSuccessor(B->succ_begin());
975
976  for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I)
977    (*I)->removeSuccessor(B, true);
978
979  Deleted.insert(B);
980  MDT->eraseNode(B);
981  MFN->erase(B->getIterator());
982}
983
984void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) {
985  LLVM_DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n");
986  MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI();
987  for (I = B->begin(); I != NonPHI; I = NextI) {
988    NextI = std::next(I);
989    MachineInstr *PN = &*I;
990    assert(PN->getNumOperands() == 3 && "Invalid phi node");
991    MachineOperand &UO = PN->getOperand(1);
992    Register UseR = UO.getReg(), UseSR = UO.getSubReg();
993    Register DefR = PN->getOperand(0).getReg();
994    unsigned NewR = UseR;
995    if (UseSR) {
996      // MRI.replaceVregUsesWith does not allow to update the subregister,
997      // so instead of doing the use-iteration here, create a copy into a
998      // "non-subregistered" register.
999      const DebugLoc &DL = PN->getDebugLoc();
1000      const TargetRegisterClass *RC = MRI->getRegClass(DefR);
1001      NewR = MRI->createVirtualRegister(RC);
1002      NonPHI = BuildMI(*B, NonPHI, DL, HII->get(TargetOpcode::COPY), NewR)
1003        .addReg(UseR, 0, UseSR);
1004    }
1005    MRI->replaceRegWith(DefR, NewR);
1006    B->erase(I);
1007  }
1008}
1009
1010void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB,
1011      MachineBasicBlock *SuccB) {
1012  LLVM_DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and "
1013                    << PrintMB(SuccB) << "\n");
1014  bool TermOk = hasUncondBranch(SuccB);
1015  eliminatePhis(SuccB);
1016  HII->removeBranch(*PredB);
1017  PredB->removeSuccessor(SuccB);
1018  PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end());
1019  PredB->transferSuccessorsAndUpdatePHIs(SuccB);
1020  removeBlock(SuccB);
1021  if (!TermOk)
1022    PredB->updateTerminator();
1023}
1024
1025void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) {
1026  if (FP.TrueB)
1027    removeBlock(FP.TrueB);
1028  if (FP.FalseB)
1029    removeBlock(FP.FalseB);
1030
1031  FP.SplitB->updateTerminator();
1032  if (FP.SplitB->succ_size() != 1)
1033    return;
1034
1035  MachineBasicBlock *SB = *FP.SplitB->succ_begin();
1036  if (SB->pred_size() != 1)
1037    return;
1038
1039  // By now, the split block has only one successor (SB), and SB has only
1040  // one predecessor. We can try to merge them. We will need to update ter-
1041  // minators in FP.Split+SB, and that requires working analyzeBranch, which
1042  // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends
1043  // with an unconditional branch, we won't need to touch the terminators.
1044  if (!hasEHLabel(SB) || hasUncondBranch(SB))
1045    mergeBlocks(FP.SplitB, SB);
1046}
1047
1048bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) {
1049  if (skipFunction(MF.getFunction()))
1050    return false;
1051
1052  auto &ST = MF.getSubtarget<HexagonSubtarget>();
1053  HII = ST.getInstrInfo();
1054  TRI = ST.getRegisterInfo();
1055  MFN = &MF;
1056  MRI = &MF.getRegInfo();
1057  MDT = &getAnalysis<MachineDominatorTree>();
1058  MLI = &getAnalysis<MachineLoopInfo>();
1059  MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() :
1060    nullptr;
1061
1062  Deleted.clear();
1063  bool Changed = false;
1064
1065  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
1066    Changed |= visitLoop(*I);
1067  Changed |= visitLoop(nullptr);
1068
1069  return Changed;
1070}
1071
1072//===----------------------------------------------------------------------===//
1073//                         Public Constructor Functions
1074//===----------------------------------------------------------------------===//
1075FunctionPass *llvm::createHexagonEarlyIfConversion() {
1076  return new HexagonEarlyIfConversion();
1077}
1078