HexagonCommonGEP.cpp revision 355940
1//===- HexagonCommonGEP.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#define DEBUG_TYPE "commgep"
10
11#include "llvm/ADT/ArrayRef.h"
12#include "llvm/ADT/FoldingSet.h"
13#include "llvm/ADT/GraphTraits.h"
14#include "llvm/ADT/SetVector.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/StringRef.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/Analysis/PostDominators.h"
19#include "llvm/Transforms/Utils/Local.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/Constant.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/Dominators.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/Instruction.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/Type.h"
29#include "llvm/IR/Use.h"
30#include "llvm/IR/User.h"
31#include "llvm/IR/Value.h"
32#include "llvm/IR/Verifier.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/Allocator.h"
35#include "llvm/Support/Casting.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40#include <algorithm>
41#include <cassert>
42#include <cstddef>
43#include <cstdint>
44#include <iterator>
45#include <map>
46#include <set>
47#include <utility>
48#include <vector>
49
50using namespace llvm;
51
52static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
53  cl::Hidden, cl::ZeroOrMore);
54
55static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden,
56  cl::ZeroOrMore);
57
58static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
59  cl::Hidden, cl::ZeroOrMore);
60
61namespace llvm {
62
63  void initializeHexagonCommonGEPPass(PassRegistry&);
64
65} // end namespace llvm
66
67namespace {
68
69  struct GepNode;
70  using NodeSet = std::set<GepNode *>;
71  using NodeToValueMap = std::map<GepNode *, Value *>;
72  using NodeVect = std::vector<GepNode *>;
73  using NodeChildrenMap = std::map<GepNode *, NodeVect>;
74  using UseSet = SetVector<Use *>;
75  using NodeToUsesMap = std::map<GepNode *, UseSet>;
76
77  // Numbering map for gep nodes. Used to keep track of ordering for
78  // gep nodes.
79  struct NodeOrdering {
80    NodeOrdering() = default;
81
82    void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
83    void clear() { Map.clear(); }
84
85    bool operator()(const GepNode *N1, const GepNode *N2) const {
86      auto F1 = Map.find(N1), F2 = Map.find(N2);
87      assert(F1 != Map.end() && F2 != Map.end());
88      return F1->second < F2->second;
89    }
90
91  private:
92    std::map<const GepNode *, unsigned> Map;
93    unsigned LastNum = 0;
94  };
95
96  class HexagonCommonGEP : public FunctionPass {
97  public:
98    static char ID;
99
100    HexagonCommonGEP() : FunctionPass(ID) {
101      initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
102    }
103
104    bool runOnFunction(Function &F) override;
105    StringRef getPassName() const override { return "Hexagon Common GEP"; }
106
107    void getAnalysisUsage(AnalysisUsage &AU) const override {
108      AU.addRequired<DominatorTreeWrapperPass>();
109      AU.addPreserved<DominatorTreeWrapperPass>();
110      AU.addRequired<PostDominatorTreeWrapperPass>();
111      AU.addPreserved<PostDominatorTreeWrapperPass>();
112      AU.addRequired<LoopInfoWrapperPass>();
113      AU.addPreserved<LoopInfoWrapperPass>();
114      FunctionPass::getAnalysisUsage(AU);
115    }
116
117  private:
118    using ValueToNodeMap = std::map<Value *, GepNode *>;
119    using ValueVect = std::vector<Value *>;
120    using NodeToValuesMap = std::map<GepNode *, ValueVect>;
121
122    void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
123    bool isHandledGepForm(GetElementPtrInst *GepI);
124    void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
125    void collect();
126    void common();
127
128    BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
129                                     NodeToValueMap &Loc);
130    BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
131                                        NodeToValueMap &Loc);
132    bool isInvariantIn(Value *Val, Loop *L);
133    bool isInvariantIn(GepNode *Node, Loop *L);
134    bool isInMainPath(BasicBlock *B, Loop *L);
135    BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
136                                    NodeToValueMap &Loc);
137    void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
138    void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
139                                NodeToValueMap &Loc);
140    void computeNodePlacement(NodeToValueMap &Loc);
141
142    Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
143                        BasicBlock *LocB);
144    void getAllUsersForNode(GepNode *Node, ValueVect &Values,
145                            NodeChildrenMap &NCM);
146    void materialize(NodeToValueMap &Loc);
147
148    void removeDeadCode();
149
150    NodeVect Nodes;
151    NodeToUsesMap Uses;
152    NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior.
153    SpecificBumpPtrAllocator<GepNode> *Mem;
154    LLVMContext *Ctx;
155    LoopInfo *LI;
156    DominatorTree *DT;
157    PostDominatorTree *PDT;
158    Function *Fn;
159  };
160
161} // end anonymous namespace
162
163char HexagonCommonGEP::ID = 0;
164
165INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
166      false, false)
167INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
168INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
169INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
170INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
171      false, false)
172
173namespace {
174
175  struct GepNode {
176    enum {
177      None      = 0,
178      Root      = 0x01,
179      Internal  = 0x02,
180      Used      = 0x04,
181      InBounds  = 0x08
182    };
183
184    uint32_t Flags = 0;
185    union {
186      GepNode *Parent;
187      Value *BaseVal;
188    };
189    Value *Idx = nullptr;
190    Type *PTy = nullptr;  // Type of the pointer operand.
191
192    GepNode() : Parent(nullptr) {}
193    GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
194      if (Flags & Root)
195        BaseVal = N->BaseVal;
196      else
197        Parent = N->Parent;
198    }
199
200    friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
201  };
202
203  Type *next_type(Type *Ty, Value *Idx) {
204    if (auto *PTy = dyn_cast<PointerType>(Ty))
205      return PTy->getElementType();
206    // Advance the type.
207    if (!Ty->isStructTy()) {
208      Type *NexTy = cast<SequentialType>(Ty)->getElementType();
209      return NexTy;
210    }
211    // Otherwise it is a struct type.
212    ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
213    assert(CI && "Struct type with non-constant index");
214    int64_t i = CI->getValue().getSExtValue();
215    Type *NextTy = cast<StructType>(Ty)->getElementType(i);
216    return NextTy;
217  }
218
219  raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
220    OS << "{ {";
221    bool Comma = false;
222    if (GN.Flags & GepNode::Root) {
223      OS << "root";
224      Comma = true;
225    }
226    if (GN.Flags & GepNode::Internal) {
227      if (Comma)
228        OS << ',';
229      OS << "internal";
230      Comma = true;
231    }
232    if (GN.Flags & GepNode::Used) {
233      if (Comma)
234        OS << ',';
235      OS << "used";
236    }
237    if (GN.Flags & GepNode::InBounds) {
238      if (Comma)
239        OS << ',';
240      OS << "inbounds";
241    }
242    OS << "} ";
243    if (GN.Flags & GepNode::Root)
244      OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
245    else
246      OS << "Parent:" << GN.Parent;
247
248    OS << " Idx:";
249    if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
250      OS << CI->getValue().getSExtValue();
251    else if (GN.Idx->hasName())
252      OS << GN.Idx->getName();
253    else
254      OS << "<anon> =" << *GN.Idx;
255
256    OS << " PTy:";
257    if (GN.PTy->isStructTy()) {
258      StructType *STy = cast<StructType>(GN.PTy);
259      if (!STy->isLiteral())
260        OS << GN.PTy->getStructName();
261      else
262        OS << "<anon-struct>:" << *STy;
263    }
264    else
265      OS << *GN.PTy;
266    OS << " }";
267    return OS;
268  }
269
270  template <typename NodeContainer>
271  void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
272    using const_iterator = typename NodeContainer::const_iterator;
273
274    for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
275      OS << *I << ' ' << **I << '\n';
276  }
277
278  raw_ostream &operator<< (raw_ostream &OS,
279                           const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
280  raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
281    dump_node_container(OS, S);
282    return OS;
283  }
284
285  raw_ostream &operator<< (raw_ostream &OS,
286                           const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
287  raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
288    using const_iterator = NodeToUsesMap::const_iterator;
289
290    for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
291      const UseSet &Us = I->second;
292      OS << I->first << " -> #" << Us.size() << '{';
293      for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
294        User *R = (*J)->getUser();
295        if (R->hasName())
296          OS << ' ' << R->getName();
297        else
298          OS << " <?>(" << *R << ')';
299      }
300      OS << " }\n";
301    }
302    return OS;
303  }
304
305  struct in_set {
306    in_set(const NodeSet &S) : NS(S) {}
307
308    bool operator() (GepNode *N) const {
309      return NS.find(N) != NS.end();
310    }
311
312  private:
313    const NodeSet &NS;
314  };
315
316} // end anonymous namespace
317
318inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
319  return A.Allocate();
320}
321
322void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
323      ValueVect &Order) {
324  // Compute block ordering for a typical DT-based traversal of the flow
325  // graph: "before visiting a block, all of its dominators must have been
326  // visited".
327
328  Order.push_back(Root);
329  for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root)))
330    getBlockTraversalOrder(DTN->getBlock(), Order);
331}
332
333bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
334  // No vector GEPs.
335  if (!GepI->getType()->isPointerTy())
336    return false;
337  // No GEPs without any indices.  (Is this possible?)
338  if (GepI->idx_begin() == GepI->idx_end())
339    return false;
340  return true;
341}
342
343void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
344      ValueToNodeMap &NM) {
345  LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
346  GepNode *N = new (*Mem) GepNode;
347  Value *PtrOp = GepI->getPointerOperand();
348  uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0;
349  ValueToNodeMap::iterator F = NM.find(PtrOp);
350  if (F == NM.end()) {
351    N->BaseVal = PtrOp;
352    N->Flags |= GepNode::Root | InBounds;
353  } else {
354    // If PtrOp was a GEP instruction, it must have already been processed.
355    // The ValueToNodeMap entry for it is the last gep node in the generated
356    // chain. Link to it here.
357    N->Parent = F->second;
358  }
359  N->PTy = PtrOp->getType();
360  N->Idx = *GepI->idx_begin();
361
362  // Collect the list of users of this GEP instruction. Will add it to the
363  // last node created for it.
364  UseSet Us;
365  for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
366       UI != UE; ++UI) {
367    // Check if this gep is used by anything other than other geps that
368    // we will process.
369    if (isa<GetElementPtrInst>(*UI)) {
370      GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
371      if (isHandledGepForm(UserG))
372        continue;
373    }
374    Us.insert(&UI.getUse());
375  }
376  Nodes.push_back(N);
377  NodeOrder.insert(N);
378
379  // Skip the first index operand, since we only handle 0. This dereferences
380  // the pointer operand.
381  GepNode *PN = N;
382  Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType();
383  for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end();
384       OI != OE; ++OI) {
385    Value *Op = *OI;
386    GepNode *Nx = new (*Mem) GepNode;
387    Nx->Parent = PN;  // Link Nx to the previous node.
388    Nx->Flags |= GepNode::Internal | InBounds;
389    Nx->PTy = PtrTy;
390    Nx->Idx = Op;
391    Nodes.push_back(Nx);
392    NodeOrder.insert(Nx);
393    PN = Nx;
394
395    PtrTy = next_type(PtrTy, Op);
396  }
397
398  // After last node has been created, update the use information.
399  if (!Us.empty()) {
400    PN->Flags |= GepNode::Used;
401    Uses[PN].insert(Us.begin(), Us.end());
402  }
403
404  // Link the last node with the originating GEP instruction. This is to
405  // help with linking chained GEP instructions.
406  NM.insert(std::make_pair(GepI, PN));
407}
408
409void HexagonCommonGEP::collect() {
410  // Establish depth-first traversal order of the dominator tree.
411  ValueVect BO;
412  getBlockTraversalOrder(&Fn->front(), BO);
413
414  // The creation of gep nodes requires DT-traversal. When processing a GEP
415  // instruction that uses another GEP instruction as the base pointer, the
416  // gep node for the base pointer should already exist.
417  ValueToNodeMap NM;
418  for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) {
419    BasicBlock *B = cast<BasicBlock>(*I);
420    for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) {
421      if (!isa<GetElementPtrInst>(J))
422        continue;
423      GetElementPtrInst *GepI = cast<GetElementPtrInst>(J);
424      if (isHandledGepForm(GepI))
425        processGepInst(GepI, NM);
426    }
427  }
428
429  LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
430}
431
432static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
433                              NodeVect &Roots) {
434    using const_iterator = NodeVect::const_iterator;
435
436    for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
437      GepNode *N = *I;
438      if (N->Flags & GepNode::Root) {
439        Roots.push_back(N);
440        continue;
441      }
442      GepNode *PN = N->Parent;
443      NCM[PN].push_back(N);
444    }
445}
446
447static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM,
448                           NodeSet &Nodes) {
449    NodeVect Work;
450    Work.push_back(Root);
451    Nodes.insert(Root);
452
453    while (!Work.empty()) {
454      NodeVect::iterator First = Work.begin();
455      GepNode *N = *First;
456      Work.erase(First);
457      NodeChildrenMap::iterator CF = NCM.find(N);
458      if (CF != NCM.end()) {
459        Work.insert(Work.end(), CF->second.begin(), CF->second.end());
460        Nodes.insert(CF->second.begin(), CF->second.end());
461      }
462    }
463}
464
465namespace {
466
467  using NodeSymRel = std::set<NodeSet>;
468  using NodePair = std::pair<GepNode *, GepNode *>;
469  using NodePairSet = std::set<NodePair>;
470
471} // end anonymous namespace
472
473static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
474    for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I)
475      if (I->count(N))
476        return &*I;
477    return nullptr;
478}
479
480  // Create an ordered pair of GepNode pointers. The pair will be used in
481  // determining equality. The only purpose of the ordering is to eliminate
482  // duplication due to the commutativity of equality/non-equality.
483static NodePair node_pair(GepNode *N1, GepNode *N2) {
484    uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2);
485    if (P1 <= P2)
486      return std::make_pair(N1, N2);
487    return std::make_pair(N2, N1);
488}
489
490static unsigned node_hash(GepNode *N) {
491    // Include everything except flags and parent.
492    FoldingSetNodeID ID;
493    ID.AddPointer(N->Idx);
494    ID.AddPointer(N->PTy);
495    return ID.ComputeHash();
496}
497
498static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq,
499                    NodePairSet &Ne) {
500    // Don't cache the result for nodes with different hashes. The hash
501    // comparison is fast enough.
502    if (node_hash(N1) != node_hash(N2))
503      return false;
504
505    NodePair NP = node_pair(N1, N2);
506    NodePairSet::iterator FEq = Eq.find(NP);
507    if (FEq != Eq.end())
508      return true;
509    NodePairSet::iterator FNe = Ne.find(NP);
510    if (FNe != Ne.end())
511      return false;
512    // Not previously compared.
513    bool Root1 = N1->Flags & GepNode::Root;
514    bool Root2 = N2->Flags & GepNode::Root;
515    NodePair P = node_pair(N1, N2);
516    // If the Root flag has different values, the nodes are different.
517    // If both nodes are root nodes, but their base pointers differ,
518    // they are different.
519    if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) {
520      Ne.insert(P);
521      return false;
522    }
523    // Here the root flags are identical, and for root nodes the
524    // base pointers are equal, so the root nodes are equal.
525    // For non-root nodes, compare their parent nodes.
526    if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
527      Eq.insert(P);
528      return true;
529    }
530    return false;
531}
532
533void HexagonCommonGEP::common() {
534  // The essence of this commoning is finding gep nodes that are equal.
535  // To do this we need to compare all pairs of nodes. To save time,
536  // first, partition the set of all nodes into sets of potentially equal
537  // nodes, and then compare pairs from within each partition.
538  using NodeSetMap = std::map<unsigned, NodeSet>;
539  NodeSetMap MaybeEq;
540
541  for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
542    GepNode *N = *I;
543    unsigned H = node_hash(N);
544    MaybeEq[H].insert(N);
545  }
546
547  // Compute the equivalence relation for the gep nodes.  Use two caches,
548  // one for equality and the other for non-equality.
549  NodeSymRel EqRel;  // Equality relation (as set of equivalence classes).
550  NodePairSet Eq, Ne;  // Caches.
551  for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end();
552       I != E; ++I) {
553    NodeSet &S = I->second;
554    for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
555      GepNode *N = *NI;
556      // If node already has a class, then the class must have been created
557      // in a prior iteration of this loop. Since equality is transitive,
558      // nothing more will be added to that class, so skip it.
559      if (node_class(N, EqRel))
560        continue;
561
562      // Create a new class candidate now.
563      NodeSet C;
564      for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
565        if (node_eq(N, *NJ, Eq, Ne))
566          C.insert(*NJ);
567      // If Tmp is empty, N would be the only element in it. Don't bother
568      // creating a class for it then.
569      if (!C.empty()) {
570        C.insert(N);  // Finalize the set before adding it to the relation.
571        std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
572        (void)Ins;
573        assert(Ins.second && "Cannot add a class");
574      }
575    }
576  }
577
578  LLVM_DEBUG({
579    dbgs() << "Gep node equality:\n";
580    for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
581      dbgs() << "{ " << I->first << ", " << I->second << " }\n";
582
583    dbgs() << "Gep equivalence classes:\n";
584    for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
585      dbgs() << '{';
586      const NodeSet &S = *I;
587      for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
588        if (J != S.begin())
589          dbgs() << ',';
590        dbgs() << ' ' << *J;
591      }
592      dbgs() << " }\n";
593    }
594  });
595
596  // Create a projection from a NodeSet to the minimal element in it.
597  using ProjMap = std::map<const NodeSet *, GepNode *>;
598  ProjMap PM;
599  for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
600    const NodeSet &S = *I;
601    GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
602    std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
603    (void)Ins;
604    assert(Ins.second && "Cannot add minimal element");
605
606    // Update the min element's flags, and user list.
607    uint32_t Flags = 0;
608    UseSet &MinUs = Uses[Min];
609    for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) {
610      GepNode *N = *J;
611      uint32_t NF = N->Flags;
612      // If N is used, append all original values of N to the list of
613      // original values of Min.
614      if (NF & GepNode::Used)
615        MinUs.insert(Uses[N].begin(), Uses[N].end());
616      Flags |= NF;
617    }
618    if (MinUs.empty())
619      Uses.erase(Min);
620
621    // The collected flags should include all the flags from the min element.
622    assert((Min->Flags & Flags) == Min->Flags);
623    Min->Flags = Flags;
624  }
625
626  // Commoning: for each non-root gep node, replace "Parent" with the
627  // selected (minimum) node from the corresponding equivalence class.
628  // If a given parent does not have an equivalence class, leave it
629  // unchanged (it means that it's the only element in its class).
630  for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
631    GepNode *N = *I;
632    if (N->Flags & GepNode::Root)
633      continue;
634    const NodeSet *PC = node_class(N->Parent, EqRel);
635    if (!PC)
636      continue;
637    ProjMap::iterator F = PM.find(PC);
638    if (F == PM.end())
639      continue;
640    // Found a replacement, use it.
641    GepNode *Rep = F->second;
642    N->Parent = Rep;
643  }
644
645  LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
646
647  // Finally, erase the nodes that are no longer used.
648  NodeSet Erase;
649  for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
650    GepNode *N = *I;
651    const NodeSet *PC = node_class(N, EqRel);
652    if (!PC)
653      continue;
654    ProjMap::iterator F = PM.find(PC);
655    if (F == PM.end())
656      continue;
657    if (N == F->second)
658      continue;
659    // Node for removal.
660    Erase.insert(*I);
661  }
662  NodeVect::iterator NewE = remove_if(Nodes, in_set(Erase));
663  Nodes.resize(std::distance(Nodes.begin(), NewE));
664
665  LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
666}
667
668template <typename T>
669static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
670  LLVM_DEBUG({
671    dbgs() << "NCD of {";
672    for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E;
673         ++I) {
674      if (!*I)
675        continue;
676      BasicBlock *B = cast<BasicBlock>(*I);
677      dbgs() << ' ' << B->getName();
678    }
679    dbgs() << " }\n";
680  });
681
682  // Allow null basic blocks in Blocks.  In such cases, return nullptr.
683  typename T::iterator I = Blocks.begin(), E = Blocks.end();
684  if (I == E || !*I)
685    return nullptr;
686  BasicBlock *Dom = cast<BasicBlock>(*I);
687  while (++I != E) {
688    BasicBlock *B = cast_or_null<BasicBlock>(*I);
689    Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr;
690    if (!Dom)
691      return nullptr;
692    }
693    LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
694    return Dom;
695}
696
697template <typename T>
698static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
699    // If two blocks, A and B, dominate a block C, then A dominates B,
700    // or B dominates A.
701    typename T::iterator I = Blocks.begin(), E = Blocks.end();
702    // Find the first non-null block.
703    while (I != E && !*I)
704      ++I;
705    if (I == E)
706      return DT->getRoot();
707    BasicBlock *DomB = cast<BasicBlock>(*I);
708    while (++I != E) {
709      if (!*I)
710        continue;
711      BasicBlock *B = cast<BasicBlock>(*I);
712      if (DT->dominates(B, DomB))
713        continue;
714      if (!DT->dominates(DomB, B))
715        return nullptr;
716      DomB = B;
717    }
718    return DomB;
719}
720
721// Find the first use in B of any value from Values. If no such use,
722// return B->end().
723template <typename T>
724static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
725    BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
726
727    using iterator = typename T::iterator;
728
729    for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
730      Value *V = *I;
731      // If V is used in a PHI node, the use belongs to the incoming block,
732      // not the block with the PHI node. In the incoming block, the use
733      // would be considered as being at the end of it, so it cannot
734      // influence the position of the first use (which is assumed to be
735      // at the end to start with).
736      if (isa<PHINode>(V))
737        continue;
738      if (!isa<Instruction>(V))
739        continue;
740      Instruction *In = cast<Instruction>(V);
741      if (In->getParent() != B)
742        continue;
743      BasicBlock::iterator It = In->getIterator();
744      if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
745        FirstUse = It;
746    }
747    return FirstUse;
748}
749
750static bool is_empty(const BasicBlock *B) {
751    return B->empty() || (&*B->begin() == B->getTerminator());
752}
753
754BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
755      NodeChildrenMap &NCM, NodeToValueMap &Loc) {
756  LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n');
757  // Recalculate the placement for Node, assuming that the locations of
758  // its children in Loc are valid.
759  // Return nullptr if there is no valid placement for Node (for example, it
760  // uses an index value that is not available at the location required
761  // to dominate all children, etc.).
762
763  // Find the nearest common dominator for:
764  // - all users, if the node is used, and
765  // - all children.
766  ValueVect Bs;
767  if (Node->Flags & GepNode::Used) {
768    // Append all blocks with uses of the original values to the
769    // block vector Bs.
770    NodeToUsesMap::iterator UF = Uses.find(Node);
771    assert(UF != Uses.end() && "Used node with no use information");
772    UseSet &Us = UF->second;
773    for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
774      Use *U = *I;
775      User *R = U->getUser();
776      if (!isa<Instruction>(R))
777        continue;
778      BasicBlock *PB = isa<PHINode>(R)
779          ? cast<PHINode>(R)->getIncomingBlock(*U)
780          : cast<Instruction>(R)->getParent();
781      Bs.push_back(PB);
782    }
783  }
784  // Append the location of each child.
785  NodeChildrenMap::iterator CF = NCM.find(Node);
786  if (CF != NCM.end()) {
787    NodeVect &Cs = CF->second;
788    for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
789      GepNode *CN = *I;
790      NodeToValueMap::iterator LF = Loc.find(CN);
791      // If the child is only used in GEP instructions (i.e. is not used in
792      // non-GEP instructions), the nearest dominator computed for it may
793      // have been null. In such case it won't have a location available.
794      if (LF == Loc.end())
795        continue;
796      Bs.push_back(LF->second);
797    }
798  }
799
800  BasicBlock *DomB = nearest_common_dominator(DT, Bs);
801  if (!DomB)
802    return nullptr;
803  // Check if the index used by Node dominates the computed dominator.
804  Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
805  if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
806    return nullptr;
807
808  // Avoid putting nodes into empty blocks.
809  while (is_empty(DomB)) {
810    DomTreeNode *N = (*DT)[DomB]->getIDom();
811    if (!N)
812      break;
813    DomB = N->getBlock();
814  }
815
816  // Otherwise, DomB is fine. Update the location map.
817  Loc[Node] = DomB;
818  return DomB;
819}
820
821BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
822      NodeChildrenMap &NCM, NodeToValueMap &Loc) {
823  LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
824  // Recalculate the placement of Node, after recursively recalculating the
825  // placements of all its children.
826  NodeChildrenMap::iterator CF = NCM.find(Node);
827  if (CF != NCM.end()) {
828    NodeVect &Cs = CF->second;
829    for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
830      recalculatePlacementRec(*I, NCM, Loc);
831  }
832  BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
833  LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
834  return LB;
835}
836
837bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
838  if (isa<Constant>(Val) || isa<Argument>(Val))
839    return true;
840  Instruction *In = dyn_cast<Instruction>(Val);
841  if (!In)
842    return false;
843  BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
844  return DT->properlyDominates(DefB, HdrB);
845}
846
847bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
848  if (Node->Flags & GepNode::Root)
849    if (!isInvariantIn(Node->BaseVal, L))
850      return false;
851  return isInvariantIn(Node->Idx, L);
852}
853
854bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
855  BasicBlock *HB = L->getHeader();
856  BasicBlock *LB = L->getLoopLatch();
857  // B must post-dominate the loop header or dominate the loop latch.
858  if (PDT->dominates(B, HB))
859    return true;
860  if (LB && DT->dominates(B, LB))
861    return true;
862  return false;
863}
864
865static BasicBlock *preheader(DominatorTree *DT, Loop *L) {
866  if (BasicBlock *PH = L->getLoopPreheader())
867    return PH;
868  if (!OptSpeculate)
869    return nullptr;
870  DomTreeNode *DN = DT->getNode(L->getHeader());
871  if (!DN)
872    return nullptr;
873  return DN->getIDom()->getBlock();
874}
875
876BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
877      NodeChildrenMap &NCM, NodeToValueMap &Loc) {
878  // Find the "topmost" location for Node: it must be dominated by both,
879  // its parent (or the BaseVal, if it's a root node), and by the index
880  // value.
881  ValueVect Bs;
882  if (Node->Flags & GepNode::Root) {
883    if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
884      Bs.push_back(PIn->getParent());
885  } else {
886    Bs.push_back(Loc[Node->Parent]);
887  }
888  if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
889    Bs.push_back(IIn->getParent());
890  BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
891
892  // Traverse the loop nest upwards until we find a loop in which Node
893  // is no longer invariant, or until we get to the upper limit of Node's
894  // placement. The traversal will also stop when a suitable "preheader"
895  // cannot be found for a given loop. The "preheader" may actually be
896  // a regular block outside of the loop (i.e. not guarded), in which case
897  // the Node will be speculated.
898  // For nodes that are not in the main path of the containing loop (i.e.
899  // are not executed in each iteration), do not move them out of the loop.
900  BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
901  if (LocB) {
902    Loop *Lp = LI->getLoopFor(LocB);
903    while (Lp) {
904      if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
905        break;
906      BasicBlock *NewLoc = preheader(DT, Lp);
907      if (!NewLoc || !DT->dominates(TopB, NewLoc))
908        break;
909      Lp = Lp->getParentLoop();
910      LocB = NewLoc;
911    }
912  }
913  Loc[Node] = LocB;
914
915  // Recursively compute the locations of all children nodes.
916  NodeChildrenMap::iterator CF = NCM.find(Node);
917  if (CF != NCM.end()) {
918    NodeVect &Cs = CF->second;
919    for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
920      adjustForInvariance(*I, NCM, Loc);
921  }
922  return LocB;
923}
924
925namespace {
926
927  struct LocationAsBlock {
928    LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
929
930    const NodeToValueMap &Map;
931  };
932
933  raw_ostream &operator<< (raw_ostream &OS,
934                           const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
935  raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
936    for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end();
937         I != E; ++I) {
938      OS << I->first << " -> ";
939      BasicBlock *B = cast<BasicBlock>(I->second);
940      OS << B->getName() << '(' << B << ')';
941      OS << '\n';
942    }
943    return OS;
944  }
945
946  inline bool is_constant(GepNode *N) {
947    return isa<ConstantInt>(N->Idx);
948  }
949
950} // end anonymous namespace
951
952void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
953      NodeToValueMap &Loc) {
954  User *R = U->getUser();
955  LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R
956                    << '\n');
957  BasicBlock *PB = cast<Instruction>(R)->getParent();
958
959  GepNode *N = Node;
960  GepNode *C = nullptr, *NewNode = nullptr;
961  while (is_constant(N) && !(N->Flags & GepNode::Root)) {
962    // XXX if (single-use) dont-replicate;
963    GepNode *NewN = new (*Mem) GepNode(N);
964    Nodes.push_back(NewN);
965    Loc[NewN] = PB;
966
967    if (N == Node)
968      NewNode = NewN;
969    NewN->Flags &= ~GepNode::Used;
970    if (C)
971      C->Parent = NewN;
972    C = NewN;
973    N = N->Parent;
974  }
975  if (!NewNode)
976    return;
977
978  // Move over all uses that share the same user as U from Node to NewNode.
979  NodeToUsesMap::iterator UF = Uses.find(Node);
980  assert(UF != Uses.end());
981  UseSet &Us = UF->second;
982  UseSet NewUs;
983  for (Use *U : Us) {
984    if (U->getUser() == R)
985      NewUs.insert(U);
986  }
987  for (Use *U : NewUs)
988    Us.remove(U); // erase takes an iterator.
989
990  if (Us.empty()) {
991    Node->Flags &= ~GepNode::Used;
992    Uses.erase(UF);
993  }
994
995  // Should at least have U in NewUs.
996  NewNode->Flags |= GepNode::Used;
997  LLVM_DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n');
998  assert(!NewUs.empty());
999  Uses[NewNode] = NewUs;
1000}
1001
1002void HexagonCommonGEP::separateConstantChains(GepNode *Node,
1003      NodeChildrenMap &NCM, NodeToValueMap &Loc) {
1004  // First approximation: extract all chains.
1005  NodeSet Ns;
1006  nodes_for_root(Node, NCM, Ns);
1007
1008  LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
1009  // Collect all used nodes together with the uses from loads and stores,
1010  // where the GEP node could be folded into the load/store instruction.
1011  NodeToUsesMap FNs; // Foldable nodes.
1012  for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) {
1013    GepNode *N = *I;
1014    if (!(N->Flags & GepNode::Used))
1015      continue;
1016    NodeToUsesMap::iterator UF = Uses.find(N);
1017    assert(UF != Uses.end());
1018    UseSet &Us = UF->second;
1019    // Loads/stores that use the node N.
1020    UseSet LSs;
1021    for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
1022      Use *U = *J;
1023      User *R = U->getUser();
1024      // We're interested in uses that provide the address. It can happen
1025      // that the value may also be provided via GEP, but we won't handle
1026      // those cases here for now.
1027      if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1028        unsigned PtrX = LoadInst::getPointerOperandIndex();
1029        if (&Ld->getOperandUse(PtrX) == U)
1030          LSs.insert(U);
1031      } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1032        unsigned PtrX = StoreInst::getPointerOperandIndex();
1033        if (&St->getOperandUse(PtrX) == U)
1034          LSs.insert(U);
1035      }
1036    }
1037    // Even if the total use count is 1, separating the chain may still be
1038    // beneficial, since the constant chain may be longer than the GEP alone
1039    // would be (e.g. if the parent node has a constant index and also has
1040    // other children).
1041    if (!LSs.empty())
1042      FNs.insert(std::make_pair(N, LSs));
1043  }
1044
1045  LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1046
1047  for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) {
1048    GepNode *N = I->first;
1049    UseSet &Us = I->second;
1050    for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J)
1051      separateChainForNode(N, *J, Loc);
1052  }
1053}
1054
1055void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1056  // Compute the inverse of the Node.Parent links. Also, collect the set
1057  // of root nodes.
1058  NodeChildrenMap NCM;
1059  NodeVect Roots;
1060  invert_find_roots(Nodes, NCM, Roots);
1061
1062  // Compute the initial placement determined by the users' locations, and
1063  // the locations of the child nodes.
1064  for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1065    recalculatePlacementRec(*I, NCM, Loc);
1066
1067  LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1068
1069  if (OptEnableInv) {
1070    for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1071      adjustForInvariance(*I, NCM, Loc);
1072
1073    LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1074                      << LocationAsBlock(Loc));
1075  }
1076  if (OptEnableConst) {
1077    for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1078      separateConstantChains(*I, NCM, Loc);
1079  }
1080  LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses);
1081
1082  // At the moment, there is no further refinement of the initial placement.
1083  // Such a refinement could include splitting the nodes if they are placed
1084  // too far from some of its users.
1085
1086  LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1087}
1088
1089Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1090      BasicBlock *LocB) {
1091  LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1092                    << " for nodes:\n"
1093                    << NA);
1094  unsigned Num = NA.size();
1095  GepNode *RN = NA[0];
1096  assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1097
1098  GetElementPtrInst *NewInst = nullptr;
1099  Value *Input = RN->BaseVal;
1100  Value **IdxList = new Value*[Num+1];
1101  unsigned nax = 0;
1102  do {
1103    unsigned IdxC = 0;
1104    // If the type of the input of the first node is not a pointer,
1105    // we need to add an artificial i32 0 to the indices (because the
1106    // actual input in the IR will be a pointer).
1107    if (!NA[nax]->PTy->isPointerTy()) {
1108      Type *Int32Ty = Type::getInt32Ty(*Ctx);
1109      IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0);
1110    }
1111
1112    // Keep adding indices from NA until we have to stop and generate
1113    // an "intermediate" GEP.
1114    while (++nax <= Num) {
1115      GepNode *N = NA[nax-1];
1116      IdxList[IdxC++] = N->Idx;
1117      if (nax < Num) {
1118        // We have to stop, if the expected type of the output of this node
1119        // is not the same as the input type of the next node.
1120        Type *NextTy = next_type(N->PTy, N->Idx);
1121        if (NextTy != NA[nax]->PTy)
1122          break;
1123      }
1124    }
1125    ArrayRef<Value*> A(IdxList, IdxC);
1126    Type *InpTy = Input->getType();
1127    Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType();
1128    NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At);
1129    NewInst->setIsInBounds(RN->Flags & GepNode::InBounds);
1130    LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1131    Input = NewInst;
1132  } while (nax <= Num);
1133
1134  delete[] IdxList;
1135  return NewInst;
1136}
1137
1138void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1139      NodeChildrenMap &NCM) {
1140  NodeVect Work;
1141  Work.push_back(Node);
1142
1143  while (!Work.empty()) {
1144    NodeVect::iterator First = Work.begin();
1145    GepNode *N = *First;
1146    Work.erase(First);
1147    if (N->Flags & GepNode::Used) {
1148      NodeToUsesMap::iterator UF = Uses.find(N);
1149      assert(UF != Uses.end() && "No use information for used node");
1150      UseSet &Us = UF->second;
1151      for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I)
1152        Values.push_back((*I)->getUser());
1153    }
1154    NodeChildrenMap::iterator CF = NCM.find(N);
1155    if (CF != NCM.end()) {
1156      NodeVect &Cs = CF->second;
1157      Work.insert(Work.end(), Cs.begin(), Cs.end());
1158    }
1159  }
1160}
1161
1162void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1163  LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1164  NodeChildrenMap NCM;
1165  NodeVect Roots;
1166  // Compute the inversion again, since computing placement could alter
1167  // "parent" relation between nodes.
1168  invert_find_roots(Nodes, NCM, Roots);
1169
1170  while (!Roots.empty()) {
1171    NodeVect::iterator First = Roots.begin();
1172    GepNode *Root = *First, *Last = *First;
1173    Roots.erase(First);
1174
1175    NodeVect NA;  // Nodes to assemble.
1176    // Append to NA all child nodes up to (and including) the first child
1177    // that:
1178    // (1) has more than 1 child, or
1179    // (2) is used, or
1180    // (3) has a child located in a different block.
1181    bool LastUsed = false;
1182    unsigned LastCN = 0;
1183    // The location may be null if the computation failed (it can legitimately
1184    // happen for nodes created from dead GEPs).
1185    Value *LocV = Loc[Last];
1186    if (!LocV)
1187      continue;
1188    BasicBlock *LastB = cast<BasicBlock>(LocV);
1189    do {
1190      NA.push_back(Last);
1191      LastUsed = (Last->Flags & GepNode::Used);
1192      if (LastUsed)
1193        break;
1194      NodeChildrenMap::iterator CF = NCM.find(Last);
1195      LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1196      if (LastCN != 1)
1197        break;
1198      GepNode *Child = CF->second.front();
1199      BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1200      if (ChildB != nullptr && LastB != ChildB)
1201        break;
1202      Last = Child;
1203    } while (true);
1204
1205    BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
1206    if (LastUsed || LastCN > 0) {
1207      ValueVect Urs;
1208      getAllUsersForNode(Root, Urs, NCM);
1209      BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1210      if (FirstUse != LastB->end())
1211        InsertAt = FirstUse;
1212    }
1213
1214    // Generate a new instruction for NA.
1215    Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1216
1217    // Convert all the children of Last node into roots, and append them
1218    // to the Roots list.
1219    if (LastCN > 0) {
1220      NodeVect &Cs = NCM[Last];
1221      for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
1222        GepNode *CN = *I;
1223        CN->Flags &= ~GepNode::Internal;
1224        CN->Flags |= GepNode::Root;
1225        CN->BaseVal = NewInst;
1226        Roots.push_back(CN);
1227      }
1228    }
1229
1230    // Lastly, if the Last node was used, replace all uses with the new GEP.
1231    // The uses reference the original GEP values.
1232    if (LastUsed) {
1233      NodeToUsesMap::iterator UF = Uses.find(Last);
1234      assert(UF != Uses.end() && "No use information found");
1235      UseSet &Us = UF->second;
1236      for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
1237        Use *U = *I;
1238        U->set(NewInst);
1239      }
1240    }
1241  }
1242}
1243
1244void HexagonCommonGEP::removeDeadCode() {
1245  ValueVect BO;
1246  BO.push_back(&Fn->front());
1247
1248  for (unsigned i = 0; i < BO.size(); ++i) {
1249    BasicBlock *B = cast<BasicBlock>(BO[i]);
1250    for (auto DTN : children<DomTreeNode*>(DT->getNode(B)))
1251      BO.push_back(DTN->getBlock());
1252  }
1253
1254  for (unsigned i = BO.size(); i > 0; --i) {
1255    BasicBlock *B = cast<BasicBlock>(BO[i-1]);
1256    BasicBlock::InstListType &IL = B->getInstList();
1257
1258    using reverse_iterator = BasicBlock::InstListType::reverse_iterator;
1259
1260    ValueVect Ins;
1261    for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I)
1262      Ins.push_back(&*I);
1263    for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) {
1264      Instruction *In = cast<Instruction>(*I);
1265      if (isInstructionTriviallyDead(In))
1266        In->eraseFromParent();
1267    }
1268  }
1269}
1270
1271bool HexagonCommonGEP::runOnFunction(Function &F) {
1272  if (skipFunction(F))
1273    return false;
1274
1275  // For now bail out on C++ exception handling.
1276  for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A)
1277    for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I)
1278      if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1279        return false;
1280
1281  Fn = &F;
1282  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1283  PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1284  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1285  Ctx = &F.getContext();
1286
1287  Nodes.clear();
1288  Uses.clear();
1289  NodeOrder.clear();
1290
1291  SpecificBumpPtrAllocator<GepNode> Allocator;
1292  Mem = &Allocator;
1293
1294  collect();
1295  common();
1296
1297  NodeToValueMap Loc;
1298  computeNodePlacement(Loc);
1299  materialize(Loc);
1300  removeDeadCode();
1301
1302#ifdef EXPENSIVE_CHECKS
1303  // Run this only when expensive checks are enabled.
1304  verifyFunction(F);
1305#endif
1306  return true;
1307}
1308
1309namespace llvm {
1310
1311  FunctionPass *createHexagonCommonGEP() {
1312    return new HexagonCommonGEP();
1313  }
1314
1315} // end namespace llvm
1316