1//===- HexagonCommonGEP.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/ADT/ArrayRef.h"
10#include "llvm/ADT/FoldingSet.h"
11#include "llvm/ADT/GraphTraits.h"
12#include "llvm/ADT/STLExtras.h"
13#include "llvm/ADT/SetVector.h"
14#include "llvm/ADT/StringRef.h"
15#include "llvm/Analysis/LoopInfo.h"
16#include "llvm/Analysis/PostDominators.h"
17#include "llvm/IR/BasicBlock.h"
18#include "llvm/IR/Constant.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DerivedTypes.h"
21#include "llvm/IR/Dominators.h"
22#include "llvm/IR/Function.h"
23#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/Type.h"
26#include "llvm/IR/Use.h"
27#include "llvm/IR/User.h"
28#include "llvm/IR/Value.h"
29#include "llvm/IR/Verifier.h"
30#include "llvm/InitializePasses.h"
31#include "llvm/Pass.h"
32#include "llvm/Support/Allocator.h"
33#include "llvm/Support/Casting.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/Transforms/Utils/Local.h"
39#include <algorithm>
40#include <cassert>
41#include <cstddef>
42#include <cstdint>
43#include <iterator>
44#include <map>
45#include <set>
46#include <utility>
47#include <vector>
48
49#define DEBUG_TYPE "commgep"
50
51using namespace llvm;
52
53static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
54  cl::Hidden, cl::ZeroOrMore);
55
56static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden,
57  cl::ZeroOrMore);
58
59static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
60  cl::Hidden, cl::ZeroOrMore);
61
62namespace llvm {
63
64  void initializeHexagonCommonGEPPass(PassRegistry&);
65
66} // end namespace llvm
67
68namespace {
69
70  struct GepNode;
71  using NodeSet = std::set<GepNode *>;
72  using NodeToValueMap = std::map<GepNode *, Value *>;
73  using NodeVect = std::vector<GepNode *>;
74  using NodeChildrenMap = std::map<GepNode *, NodeVect>;
75  using UseSet = SetVector<Use *>;
76  using NodeToUsesMap = std::map<GepNode *, UseSet>;
77
78  // Numbering map for gep nodes. Used to keep track of ordering for
79  // gep nodes.
80  struct NodeOrdering {
81    NodeOrdering() = default;
82
83    void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
84    void clear() { Map.clear(); }
85
86    bool operator()(const GepNode *N1, const GepNode *N2) const {
87      auto F1 = Map.find(N1), F2 = Map.find(N2);
88      assert(F1 != Map.end() && F2 != Map.end());
89      return F1->second < F2->second;
90    }
91
92  private:
93    std::map<const GepNode *, unsigned> Map;
94    unsigned LastNum = 0;
95  };
96
97  class HexagonCommonGEP : public FunctionPass {
98  public:
99    static char ID;
100
101    HexagonCommonGEP() : FunctionPass(ID) {
102      initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
103    }
104
105    bool runOnFunction(Function &F) override;
106    StringRef getPassName() const override { return "Hexagon Common GEP"; }
107
108    void getAnalysisUsage(AnalysisUsage &AU) const override {
109      AU.addRequired<DominatorTreeWrapperPass>();
110      AU.addPreserved<DominatorTreeWrapperPass>();
111      AU.addRequired<PostDominatorTreeWrapperPass>();
112      AU.addPreserved<PostDominatorTreeWrapperPass>();
113      AU.addRequired<LoopInfoWrapperPass>();
114      AU.addPreserved<LoopInfoWrapperPass>();
115      FunctionPass::getAnalysisUsage(AU);
116    }
117
118  private:
119    using ValueToNodeMap = std::map<Value *, GepNode *>;
120    using ValueVect = std::vector<Value *>;
121    using NodeToValuesMap = std::map<GepNode *, ValueVect>;
122
123    void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
124    bool isHandledGepForm(GetElementPtrInst *GepI);
125    void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
126    void collect();
127    void common();
128
129    BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
130                                     NodeToValueMap &Loc);
131    BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
132                                        NodeToValueMap &Loc);
133    bool isInvariantIn(Value *Val, Loop *L);
134    bool isInvariantIn(GepNode *Node, Loop *L);
135    bool isInMainPath(BasicBlock *B, Loop *L);
136    BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
137                                    NodeToValueMap &Loc);
138    void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
139    void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
140                                NodeToValueMap &Loc);
141    void computeNodePlacement(NodeToValueMap &Loc);
142
143    Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
144                        BasicBlock *LocB);
145    void getAllUsersForNode(GepNode *Node, ValueVect &Values,
146                            NodeChildrenMap &NCM);
147    void materialize(NodeToValueMap &Loc);
148
149    void removeDeadCode();
150
151    NodeVect Nodes;
152    NodeToUsesMap Uses;
153    NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior.
154    SpecificBumpPtrAllocator<GepNode> *Mem;
155    LLVMContext *Ctx;
156    LoopInfo *LI;
157    DominatorTree *DT;
158    PostDominatorTree *PDT;
159    Function *Fn;
160  };
161
162} // end anonymous namespace
163
164char HexagonCommonGEP::ID = 0;
165
166INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
167      false, false)
168INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
169INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
170INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
171INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
172      false, false)
173
174namespace {
175
176  struct GepNode {
177    enum {
178      None      = 0,
179      Root      = 0x01,
180      Internal  = 0x02,
181      Used      = 0x04,
182      InBounds  = 0x08
183    };
184
185    uint32_t Flags = 0;
186    union {
187      GepNode *Parent;
188      Value *BaseVal;
189    };
190    Value *Idx = nullptr;
191    Type *PTy = nullptr;  // Type of the pointer operand.
192
193    GepNode() : Parent(nullptr) {}
194    GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
195      if (Flags & Root)
196        BaseVal = N->BaseVal;
197      else
198        Parent = N->Parent;
199    }
200
201    friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
202  };
203
204  Type *next_type(Type *Ty, Value *Idx) {
205    if (auto *PTy = dyn_cast<PointerType>(Ty))
206      return PTy->getElementType();
207    // Advance the type.
208    if (!Ty->isStructTy()) {
209      Type *NexTy = cast<SequentialType>(Ty)->getElementType();
210      return NexTy;
211    }
212    // Otherwise it is a struct type.
213    ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
214    assert(CI && "Struct type with non-constant index");
215    int64_t i = CI->getValue().getSExtValue();
216    Type *NextTy = cast<StructType>(Ty)->getElementType(i);
217    return NextTy;
218  }
219
220  raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
221    OS << "{ {";
222    bool Comma = false;
223    if (GN.Flags & GepNode::Root) {
224      OS << "root";
225      Comma = true;
226    }
227    if (GN.Flags & GepNode::Internal) {
228      if (Comma)
229        OS << ',';
230      OS << "internal";
231      Comma = true;
232    }
233    if (GN.Flags & GepNode::Used) {
234      if (Comma)
235        OS << ',';
236      OS << "used";
237    }
238    if (GN.Flags & GepNode::InBounds) {
239      if (Comma)
240        OS << ',';
241      OS << "inbounds";
242    }
243    OS << "} ";
244    if (GN.Flags & GepNode::Root)
245      OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
246    else
247      OS << "Parent:" << GN.Parent;
248
249    OS << " Idx:";
250    if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
251      OS << CI->getValue().getSExtValue();
252    else if (GN.Idx->hasName())
253      OS << GN.Idx->getName();
254    else
255      OS << "<anon> =" << *GN.Idx;
256
257    OS << " PTy:";
258    if (GN.PTy->isStructTy()) {
259      StructType *STy = cast<StructType>(GN.PTy);
260      if (!STy->isLiteral())
261        OS << GN.PTy->getStructName();
262      else
263        OS << "<anon-struct>:" << *STy;
264    }
265    else
266      OS << *GN.PTy;
267    OS << " }";
268    return OS;
269  }
270
271  template <typename NodeContainer>
272  void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
273    using const_iterator = typename NodeContainer::const_iterator;
274
275    for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
276      OS << *I << ' ' << **I << '\n';
277  }
278
279  raw_ostream &operator<< (raw_ostream &OS,
280                           const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
281  raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
282    dump_node_container(OS, S);
283    return OS;
284  }
285
286  raw_ostream &operator<< (raw_ostream &OS,
287                           const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
288  raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
289    using const_iterator = NodeToUsesMap::const_iterator;
290
291    for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
292      const UseSet &Us = I->second;
293      OS << I->first << " -> #" << Us.size() << '{';
294      for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
295        User *R = (*J)->getUser();
296        if (R->hasName())
297          OS << ' ' << R->getName();
298        else
299          OS << " <?>(" << *R << ')';
300      }
301      OS << " }\n";
302    }
303    return OS;
304  }
305
306  struct in_set {
307    in_set(const NodeSet &S) : NS(S) {}
308
309    bool operator() (GepNode *N) const {
310      return NS.find(N) != NS.end();
311    }
312
313  private:
314    const NodeSet &NS;
315  };
316
317} // end anonymous namespace
318
319inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
320  return A.Allocate();
321}
322
323void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
324      ValueVect &Order) {
325  // Compute block ordering for a typical DT-based traversal of the flow
326  // graph: "before visiting a block, all of its dominators must have been
327  // visited".
328
329  Order.push_back(Root);
330  for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root)))
331    getBlockTraversalOrder(DTN->getBlock(), Order);
332}
333
334bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
335  // No vector GEPs.
336  if (!GepI->getType()->isPointerTy())
337    return false;
338  // No GEPs without any indices.  (Is this possible?)
339  if (GepI->idx_begin() == GepI->idx_end())
340    return false;
341  return true;
342}
343
344void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
345      ValueToNodeMap &NM) {
346  LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
347  GepNode *N = new (*Mem) GepNode;
348  Value *PtrOp = GepI->getPointerOperand();
349  uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0;
350  ValueToNodeMap::iterator F = NM.find(PtrOp);
351  if (F == NM.end()) {
352    N->BaseVal = PtrOp;
353    N->Flags |= GepNode::Root | InBounds;
354  } else {
355    // If PtrOp was a GEP instruction, it must have already been processed.
356    // The ValueToNodeMap entry for it is the last gep node in the generated
357    // chain. Link to it here.
358    N->Parent = F->second;
359  }
360  N->PTy = PtrOp->getType();
361  N->Idx = *GepI->idx_begin();
362
363  // Collect the list of users of this GEP instruction. Will add it to the
364  // last node created for it.
365  UseSet Us;
366  for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
367       UI != UE; ++UI) {
368    // Check if this gep is used by anything other than other geps that
369    // we will process.
370    if (isa<GetElementPtrInst>(*UI)) {
371      GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
372      if (isHandledGepForm(UserG))
373        continue;
374    }
375    Us.insert(&UI.getUse());
376  }
377  Nodes.push_back(N);
378  NodeOrder.insert(N);
379
380  // Skip the first index operand, since we only handle 0. This dereferences
381  // the pointer operand.
382  GepNode *PN = N;
383  Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType();
384  for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end();
385       OI != OE; ++OI) {
386    Value *Op = *OI;
387    GepNode *Nx = new (*Mem) GepNode;
388    Nx->Parent = PN;  // Link Nx to the previous node.
389    Nx->Flags |= GepNode::Internal | InBounds;
390    Nx->PTy = PtrTy;
391    Nx->Idx = Op;
392    Nodes.push_back(Nx);
393    NodeOrder.insert(Nx);
394    PN = Nx;
395
396    PtrTy = next_type(PtrTy, Op);
397  }
398
399  // After last node has been created, update the use information.
400  if (!Us.empty()) {
401    PN->Flags |= GepNode::Used;
402    Uses[PN].insert(Us.begin(), Us.end());
403  }
404
405  // Link the last node with the originating GEP instruction. This is to
406  // help with linking chained GEP instructions.
407  NM.insert(std::make_pair(GepI, PN));
408}
409
410void HexagonCommonGEP::collect() {
411  // Establish depth-first traversal order of the dominator tree.
412  ValueVect BO;
413  getBlockTraversalOrder(&Fn->front(), BO);
414
415  // The creation of gep nodes requires DT-traversal. When processing a GEP
416  // instruction that uses another GEP instruction as the base pointer, the
417  // gep node for the base pointer should already exist.
418  ValueToNodeMap NM;
419  for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) {
420    BasicBlock *B = cast<BasicBlock>(*I);
421    for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) {
422      if (!isa<GetElementPtrInst>(J))
423        continue;
424      GetElementPtrInst *GepI = cast<GetElementPtrInst>(J);
425      if (isHandledGepForm(GepI))
426        processGepInst(GepI, NM);
427    }
428  }
429
430  LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
431}
432
433static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
434                              NodeVect &Roots) {
435    using const_iterator = NodeVect::const_iterator;
436
437    for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
438      GepNode *N = *I;
439      if (N->Flags & GepNode::Root) {
440        Roots.push_back(N);
441        continue;
442      }
443      GepNode *PN = N->Parent;
444      NCM[PN].push_back(N);
445    }
446}
447
448static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM,
449                           NodeSet &Nodes) {
450    NodeVect Work;
451    Work.push_back(Root);
452    Nodes.insert(Root);
453
454    while (!Work.empty()) {
455      NodeVect::iterator First = Work.begin();
456      GepNode *N = *First;
457      Work.erase(First);
458      NodeChildrenMap::iterator CF = NCM.find(N);
459      if (CF != NCM.end()) {
460        Work.insert(Work.end(), CF->second.begin(), CF->second.end());
461        Nodes.insert(CF->second.begin(), CF->second.end());
462      }
463    }
464}
465
466namespace {
467
468  using NodeSymRel = std::set<NodeSet>;
469  using NodePair = std::pair<GepNode *, GepNode *>;
470  using NodePairSet = std::set<NodePair>;
471
472} // end anonymous namespace
473
474static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
475    for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I)
476      if (I->count(N))
477        return &*I;
478    return nullptr;
479}
480
481  // Create an ordered pair of GepNode pointers. The pair will be used in
482  // determining equality. The only purpose of the ordering is to eliminate
483  // duplication due to the commutativity of equality/non-equality.
484static NodePair node_pair(GepNode *N1, GepNode *N2) {
485    uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2);
486    if (P1 <= P2)
487      return std::make_pair(N1, N2);
488    return std::make_pair(N2, N1);
489}
490
491static unsigned node_hash(GepNode *N) {
492    // Include everything except flags and parent.
493    FoldingSetNodeID ID;
494    ID.AddPointer(N->Idx);
495    ID.AddPointer(N->PTy);
496    return ID.ComputeHash();
497}
498
499static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq,
500                    NodePairSet &Ne) {
501    // Don't cache the result for nodes with different hashes. The hash
502    // comparison is fast enough.
503    if (node_hash(N1) != node_hash(N2))
504      return false;
505
506    NodePair NP = node_pair(N1, N2);
507    NodePairSet::iterator FEq = Eq.find(NP);
508    if (FEq != Eq.end())
509      return true;
510    NodePairSet::iterator FNe = Ne.find(NP);
511    if (FNe != Ne.end())
512      return false;
513    // Not previously compared.
514    bool Root1 = N1->Flags & GepNode::Root;
515    bool Root2 = N2->Flags & GepNode::Root;
516    NodePair P = node_pair(N1, N2);
517    // If the Root flag has different values, the nodes are different.
518    // If both nodes are root nodes, but their base pointers differ,
519    // they are different.
520    if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) {
521      Ne.insert(P);
522      return false;
523    }
524    // Here the root flags are identical, and for root nodes the
525    // base pointers are equal, so the root nodes are equal.
526    // For non-root nodes, compare their parent nodes.
527    if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
528      Eq.insert(P);
529      return true;
530    }
531    return false;
532}
533
534void HexagonCommonGEP::common() {
535  // The essence of this commoning is finding gep nodes that are equal.
536  // To do this we need to compare all pairs of nodes. To save time,
537  // first, partition the set of all nodes into sets of potentially equal
538  // nodes, and then compare pairs from within each partition.
539  using NodeSetMap = std::map<unsigned, NodeSet>;
540  NodeSetMap MaybeEq;
541
542  for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
543    GepNode *N = *I;
544    unsigned H = node_hash(N);
545    MaybeEq[H].insert(N);
546  }
547
548  // Compute the equivalence relation for the gep nodes.  Use two caches,
549  // one for equality and the other for non-equality.
550  NodeSymRel EqRel;  // Equality relation (as set of equivalence classes).
551  NodePairSet Eq, Ne;  // Caches.
552  for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end();
553       I != E; ++I) {
554    NodeSet &S = I->second;
555    for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
556      GepNode *N = *NI;
557      // If node already has a class, then the class must have been created
558      // in a prior iteration of this loop. Since equality is transitive,
559      // nothing more will be added to that class, so skip it.
560      if (node_class(N, EqRel))
561        continue;
562
563      // Create a new class candidate now.
564      NodeSet C;
565      for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
566        if (node_eq(N, *NJ, Eq, Ne))
567          C.insert(*NJ);
568      // If Tmp is empty, N would be the only element in it. Don't bother
569      // creating a class for it then.
570      if (!C.empty()) {
571        C.insert(N);  // Finalize the set before adding it to the relation.
572        std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
573        (void)Ins;
574        assert(Ins.second && "Cannot add a class");
575      }
576    }
577  }
578
579  LLVM_DEBUG({
580    dbgs() << "Gep node equality:\n";
581    for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
582      dbgs() << "{ " << I->first << ", " << I->second << " }\n";
583
584    dbgs() << "Gep equivalence classes:\n";
585    for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
586      dbgs() << '{';
587      const NodeSet &S = *I;
588      for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
589        if (J != S.begin())
590          dbgs() << ',';
591        dbgs() << ' ' << *J;
592      }
593      dbgs() << " }\n";
594    }
595  });
596
597  // Create a projection from a NodeSet to the minimal element in it.
598  using ProjMap = std::map<const NodeSet *, GepNode *>;
599  ProjMap PM;
600  for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
601    const NodeSet &S = *I;
602    GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
603    std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
604    (void)Ins;
605    assert(Ins.second && "Cannot add minimal element");
606
607    // Update the min element's flags, and user list.
608    uint32_t Flags = 0;
609    UseSet &MinUs = Uses[Min];
610    for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) {
611      GepNode *N = *J;
612      uint32_t NF = N->Flags;
613      // If N is used, append all original values of N to the list of
614      // original values of Min.
615      if (NF & GepNode::Used)
616        MinUs.insert(Uses[N].begin(), Uses[N].end());
617      Flags |= NF;
618    }
619    if (MinUs.empty())
620      Uses.erase(Min);
621
622    // The collected flags should include all the flags from the min element.
623    assert((Min->Flags & Flags) == Min->Flags);
624    Min->Flags = Flags;
625  }
626
627  // Commoning: for each non-root gep node, replace "Parent" with the
628  // selected (minimum) node from the corresponding equivalence class.
629  // If a given parent does not have an equivalence class, leave it
630  // unchanged (it means that it's the only element in its class).
631  for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
632    GepNode *N = *I;
633    if (N->Flags & GepNode::Root)
634      continue;
635    const NodeSet *PC = node_class(N->Parent, EqRel);
636    if (!PC)
637      continue;
638    ProjMap::iterator F = PM.find(PC);
639    if (F == PM.end())
640      continue;
641    // Found a replacement, use it.
642    GepNode *Rep = F->second;
643    N->Parent = Rep;
644  }
645
646  LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
647
648  // Finally, erase the nodes that are no longer used.
649  NodeSet Erase;
650  for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
651    GepNode *N = *I;
652    const NodeSet *PC = node_class(N, EqRel);
653    if (!PC)
654      continue;
655    ProjMap::iterator F = PM.find(PC);
656    if (F == PM.end())
657      continue;
658    if (N == F->second)
659      continue;
660    // Node for removal.
661    Erase.insert(*I);
662  }
663  NodeVect::iterator NewE = remove_if(Nodes, in_set(Erase));
664  Nodes.resize(std::distance(Nodes.begin(), NewE));
665
666  LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
667}
668
669template <typename T>
670static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
671  LLVM_DEBUG({
672    dbgs() << "NCD of {";
673    for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E;
674         ++I) {
675      if (!*I)
676        continue;
677      BasicBlock *B = cast<BasicBlock>(*I);
678      dbgs() << ' ' << B->getName();
679    }
680    dbgs() << " }\n";
681  });
682
683  // Allow null basic blocks in Blocks.  In such cases, return nullptr.
684  typename T::iterator I = Blocks.begin(), E = Blocks.end();
685  if (I == E || !*I)
686    return nullptr;
687  BasicBlock *Dom = cast<BasicBlock>(*I);
688  while (++I != E) {
689    BasicBlock *B = cast_or_null<BasicBlock>(*I);
690    Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr;
691    if (!Dom)
692      return nullptr;
693    }
694    LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
695    return Dom;
696}
697
698template <typename T>
699static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
700    // If two blocks, A and B, dominate a block C, then A dominates B,
701    // or B dominates A.
702    typename T::iterator I = Blocks.begin(), E = Blocks.end();
703    // Find the first non-null block.
704    while (I != E && !*I)
705      ++I;
706    if (I == E)
707      return DT->getRoot();
708    BasicBlock *DomB = cast<BasicBlock>(*I);
709    while (++I != E) {
710      if (!*I)
711        continue;
712      BasicBlock *B = cast<BasicBlock>(*I);
713      if (DT->dominates(B, DomB))
714        continue;
715      if (!DT->dominates(DomB, B))
716        return nullptr;
717      DomB = B;
718    }
719    return DomB;
720}
721
722// Find the first use in B of any value from Values. If no such use,
723// return B->end().
724template <typename T>
725static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
726    BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
727
728    using iterator = typename T::iterator;
729
730    for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
731      Value *V = *I;
732      // If V is used in a PHI node, the use belongs to the incoming block,
733      // not the block with the PHI node. In the incoming block, the use
734      // would be considered as being at the end of it, so it cannot
735      // influence the position of the first use (which is assumed to be
736      // at the end to start with).
737      if (isa<PHINode>(V))
738        continue;
739      if (!isa<Instruction>(V))
740        continue;
741      Instruction *In = cast<Instruction>(V);
742      if (In->getParent() != B)
743        continue;
744      BasicBlock::iterator It = In->getIterator();
745      if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
746        FirstUse = It;
747    }
748    return FirstUse;
749}
750
751static bool is_empty(const BasicBlock *B) {
752    return B->empty() || (&*B->begin() == B->getTerminator());
753}
754
755BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
756      NodeChildrenMap &NCM, NodeToValueMap &Loc) {
757  LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n');
758  // Recalculate the placement for Node, assuming that the locations of
759  // its children in Loc are valid.
760  // Return nullptr if there is no valid placement for Node (for example, it
761  // uses an index value that is not available at the location required
762  // to dominate all children, etc.).
763
764  // Find the nearest common dominator for:
765  // - all users, if the node is used, and
766  // - all children.
767  ValueVect Bs;
768  if (Node->Flags & GepNode::Used) {
769    // Append all blocks with uses of the original values to the
770    // block vector Bs.
771    NodeToUsesMap::iterator UF = Uses.find(Node);
772    assert(UF != Uses.end() && "Used node with no use information");
773    UseSet &Us = UF->second;
774    for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
775      Use *U = *I;
776      User *R = U->getUser();
777      if (!isa<Instruction>(R))
778        continue;
779      BasicBlock *PB = isa<PHINode>(R)
780          ? cast<PHINode>(R)->getIncomingBlock(*U)
781          : cast<Instruction>(R)->getParent();
782      Bs.push_back(PB);
783    }
784  }
785  // Append the location of each child.
786  NodeChildrenMap::iterator CF = NCM.find(Node);
787  if (CF != NCM.end()) {
788    NodeVect &Cs = CF->second;
789    for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
790      GepNode *CN = *I;
791      NodeToValueMap::iterator LF = Loc.find(CN);
792      // If the child is only used in GEP instructions (i.e. is not used in
793      // non-GEP instructions), the nearest dominator computed for it may
794      // have been null. In such case it won't have a location available.
795      if (LF == Loc.end())
796        continue;
797      Bs.push_back(LF->second);
798    }
799  }
800
801  BasicBlock *DomB = nearest_common_dominator(DT, Bs);
802  if (!DomB)
803    return nullptr;
804  // Check if the index used by Node dominates the computed dominator.
805  Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
806  if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
807    return nullptr;
808
809  // Avoid putting nodes into empty blocks.
810  while (is_empty(DomB)) {
811    DomTreeNode *N = (*DT)[DomB]->getIDom();
812    if (!N)
813      break;
814    DomB = N->getBlock();
815  }
816
817  // Otherwise, DomB is fine. Update the location map.
818  Loc[Node] = DomB;
819  return DomB;
820}
821
822BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
823      NodeChildrenMap &NCM, NodeToValueMap &Loc) {
824  LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
825  // Recalculate the placement of Node, after recursively recalculating the
826  // placements of all its children.
827  NodeChildrenMap::iterator CF = NCM.find(Node);
828  if (CF != NCM.end()) {
829    NodeVect &Cs = CF->second;
830    for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
831      recalculatePlacementRec(*I, NCM, Loc);
832  }
833  BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
834  LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
835  return LB;
836}
837
838bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
839  if (isa<Constant>(Val) || isa<Argument>(Val))
840    return true;
841  Instruction *In = dyn_cast<Instruction>(Val);
842  if (!In)
843    return false;
844  BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
845  return DT->properlyDominates(DefB, HdrB);
846}
847
848bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
849  if (Node->Flags & GepNode::Root)
850    if (!isInvariantIn(Node->BaseVal, L))
851      return false;
852  return isInvariantIn(Node->Idx, L);
853}
854
855bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
856  BasicBlock *HB = L->getHeader();
857  BasicBlock *LB = L->getLoopLatch();
858  // B must post-dominate the loop header or dominate the loop latch.
859  if (PDT->dominates(B, HB))
860    return true;
861  if (LB && DT->dominates(B, LB))
862    return true;
863  return false;
864}
865
866static BasicBlock *preheader(DominatorTree *DT, Loop *L) {
867  if (BasicBlock *PH = L->getLoopPreheader())
868    return PH;
869  if (!OptSpeculate)
870    return nullptr;
871  DomTreeNode *DN = DT->getNode(L->getHeader());
872  if (!DN)
873    return nullptr;
874  return DN->getIDom()->getBlock();
875}
876
877BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
878      NodeChildrenMap &NCM, NodeToValueMap &Loc) {
879  // Find the "topmost" location for Node: it must be dominated by both,
880  // its parent (or the BaseVal, if it's a root node), and by the index
881  // value.
882  ValueVect Bs;
883  if (Node->Flags & GepNode::Root) {
884    if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
885      Bs.push_back(PIn->getParent());
886  } else {
887    Bs.push_back(Loc[Node->Parent]);
888  }
889  if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
890    Bs.push_back(IIn->getParent());
891  BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
892
893  // Traverse the loop nest upwards until we find a loop in which Node
894  // is no longer invariant, or until we get to the upper limit of Node's
895  // placement. The traversal will also stop when a suitable "preheader"
896  // cannot be found for a given loop. The "preheader" may actually be
897  // a regular block outside of the loop (i.e. not guarded), in which case
898  // the Node will be speculated.
899  // For nodes that are not in the main path of the containing loop (i.e.
900  // are not executed in each iteration), do not move them out of the loop.
901  BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
902  if (LocB) {
903    Loop *Lp = LI->getLoopFor(LocB);
904    while (Lp) {
905      if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
906        break;
907      BasicBlock *NewLoc = preheader(DT, Lp);
908      if (!NewLoc || !DT->dominates(TopB, NewLoc))
909        break;
910      Lp = Lp->getParentLoop();
911      LocB = NewLoc;
912    }
913  }
914  Loc[Node] = LocB;
915
916  // Recursively compute the locations of all children nodes.
917  NodeChildrenMap::iterator CF = NCM.find(Node);
918  if (CF != NCM.end()) {
919    NodeVect &Cs = CF->second;
920    for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
921      adjustForInvariance(*I, NCM, Loc);
922  }
923  return LocB;
924}
925
926namespace {
927
928  struct LocationAsBlock {
929    LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
930
931    const NodeToValueMap &Map;
932  };
933
934  raw_ostream &operator<< (raw_ostream &OS,
935                           const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
936  raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
937    for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end();
938         I != E; ++I) {
939      OS << I->first << " -> ";
940      BasicBlock *B = cast<BasicBlock>(I->second);
941      OS << B->getName() << '(' << B << ')';
942      OS << '\n';
943    }
944    return OS;
945  }
946
947  inline bool is_constant(GepNode *N) {
948    return isa<ConstantInt>(N->Idx);
949  }
950
951} // end anonymous namespace
952
953void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
954      NodeToValueMap &Loc) {
955  User *R = U->getUser();
956  LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R
957                    << '\n');
958  BasicBlock *PB = cast<Instruction>(R)->getParent();
959
960  GepNode *N = Node;
961  GepNode *C = nullptr, *NewNode = nullptr;
962  while (is_constant(N) && !(N->Flags & GepNode::Root)) {
963    // XXX if (single-use) dont-replicate;
964    GepNode *NewN = new (*Mem) GepNode(N);
965    Nodes.push_back(NewN);
966    Loc[NewN] = PB;
967
968    if (N == Node)
969      NewNode = NewN;
970    NewN->Flags &= ~GepNode::Used;
971    if (C)
972      C->Parent = NewN;
973    C = NewN;
974    N = N->Parent;
975  }
976  if (!NewNode)
977    return;
978
979  // Move over all uses that share the same user as U from Node to NewNode.
980  NodeToUsesMap::iterator UF = Uses.find(Node);
981  assert(UF != Uses.end());
982  UseSet &Us = UF->second;
983  UseSet NewUs;
984  for (Use *U : Us) {
985    if (U->getUser() == R)
986      NewUs.insert(U);
987  }
988  for (Use *U : NewUs)
989    Us.remove(U); // erase takes an iterator.
990
991  if (Us.empty()) {
992    Node->Flags &= ~GepNode::Used;
993    Uses.erase(UF);
994  }
995
996  // Should at least have U in NewUs.
997  NewNode->Flags |= GepNode::Used;
998  LLVM_DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n');
999  assert(!NewUs.empty());
1000  Uses[NewNode] = NewUs;
1001}
1002
1003void HexagonCommonGEP::separateConstantChains(GepNode *Node,
1004      NodeChildrenMap &NCM, NodeToValueMap &Loc) {
1005  // First approximation: extract all chains.
1006  NodeSet Ns;
1007  nodes_for_root(Node, NCM, Ns);
1008
1009  LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
1010  // Collect all used nodes together with the uses from loads and stores,
1011  // where the GEP node could be folded into the load/store instruction.
1012  NodeToUsesMap FNs; // Foldable nodes.
1013  for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) {
1014    GepNode *N = *I;
1015    if (!(N->Flags & GepNode::Used))
1016      continue;
1017    NodeToUsesMap::iterator UF = Uses.find(N);
1018    assert(UF != Uses.end());
1019    UseSet &Us = UF->second;
1020    // Loads/stores that use the node N.
1021    UseSet LSs;
1022    for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
1023      Use *U = *J;
1024      User *R = U->getUser();
1025      // We're interested in uses that provide the address. It can happen
1026      // that the value may also be provided via GEP, but we won't handle
1027      // those cases here for now.
1028      if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1029        unsigned PtrX = LoadInst::getPointerOperandIndex();
1030        if (&Ld->getOperandUse(PtrX) == U)
1031          LSs.insert(U);
1032      } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1033        unsigned PtrX = StoreInst::getPointerOperandIndex();
1034        if (&St->getOperandUse(PtrX) == U)
1035          LSs.insert(U);
1036      }
1037    }
1038    // Even if the total use count is 1, separating the chain may still be
1039    // beneficial, since the constant chain may be longer than the GEP alone
1040    // would be (e.g. if the parent node has a constant index and also has
1041    // other children).
1042    if (!LSs.empty())
1043      FNs.insert(std::make_pair(N, LSs));
1044  }
1045
1046  LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1047
1048  for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) {
1049    GepNode *N = I->first;
1050    UseSet &Us = I->second;
1051    for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J)
1052      separateChainForNode(N, *J, Loc);
1053  }
1054}
1055
1056void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1057  // Compute the inverse of the Node.Parent links. Also, collect the set
1058  // of root nodes.
1059  NodeChildrenMap NCM;
1060  NodeVect Roots;
1061  invert_find_roots(Nodes, NCM, Roots);
1062
1063  // Compute the initial placement determined by the users' locations, and
1064  // the locations of the child nodes.
1065  for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1066    recalculatePlacementRec(*I, NCM, Loc);
1067
1068  LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1069
1070  if (OptEnableInv) {
1071    for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1072      adjustForInvariance(*I, NCM, Loc);
1073
1074    LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1075                      << LocationAsBlock(Loc));
1076  }
1077  if (OptEnableConst) {
1078    for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1079      separateConstantChains(*I, NCM, Loc);
1080  }
1081  LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses);
1082
1083  // At the moment, there is no further refinement of the initial placement.
1084  // Such a refinement could include splitting the nodes if they are placed
1085  // too far from some of its users.
1086
1087  LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1088}
1089
1090Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1091      BasicBlock *LocB) {
1092  LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1093                    << " for nodes:\n"
1094                    << NA);
1095  unsigned Num = NA.size();
1096  GepNode *RN = NA[0];
1097  assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1098
1099  GetElementPtrInst *NewInst = nullptr;
1100  Value *Input = RN->BaseVal;
1101  Value **IdxList = new Value*[Num+1];
1102  unsigned nax = 0;
1103  do {
1104    unsigned IdxC = 0;
1105    // If the type of the input of the first node is not a pointer,
1106    // we need to add an artificial i32 0 to the indices (because the
1107    // actual input in the IR will be a pointer).
1108    if (!NA[nax]->PTy->isPointerTy()) {
1109      Type *Int32Ty = Type::getInt32Ty(*Ctx);
1110      IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0);
1111    }
1112
1113    // Keep adding indices from NA until we have to stop and generate
1114    // an "intermediate" GEP.
1115    while (++nax <= Num) {
1116      GepNode *N = NA[nax-1];
1117      IdxList[IdxC++] = N->Idx;
1118      if (nax < Num) {
1119        // We have to stop, if the expected type of the output of this node
1120        // is not the same as the input type of the next node.
1121        Type *NextTy = next_type(N->PTy, N->Idx);
1122        if (NextTy != NA[nax]->PTy)
1123          break;
1124      }
1125    }
1126    ArrayRef<Value*> A(IdxList, IdxC);
1127    Type *InpTy = Input->getType();
1128    Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType();
1129    NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At);
1130    NewInst->setIsInBounds(RN->Flags & GepNode::InBounds);
1131    LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1132    Input = NewInst;
1133  } while (nax <= Num);
1134
1135  delete[] IdxList;
1136  return NewInst;
1137}
1138
1139void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1140      NodeChildrenMap &NCM) {
1141  NodeVect Work;
1142  Work.push_back(Node);
1143
1144  while (!Work.empty()) {
1145    NodeVect::iterator First = Work.begin();
1146    GepNode *N = *First;
1147    Work.erase(First);
1148    if (N->Flags & GepNode::Used) {
1149      NodeToUsesMap::iterator UF = Uses.find(N);
1150      assert(UF != Uses.end() && "No use information for used node");
1151      UseSet &Us = UF->second;
1152      for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I)
1153        Values.push_back((*I)->getUser());
1154    }
1155    NodeChildrenMap::iterator CF = NCM.find(N);
1156    if (CF != NCM.end()) {
1157      NodeVect &Cs = CF->second;
1158      Work.insert(Work.end(), Cs.begin(), Cs.end());
1159    }
1160  }
1161}
1162
1163void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1164  LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1165  NodeChildrenMap NCM;
1166  NodeVect Roots;
1167  // Compute the inversion again, since computing placement could alter
1168  // "parent" relation between nodes.
1169  invert_find_roots(Nodes, NCM, Roots);
1170
1171  while (!Roots.empty()) {
1172    NodeVect::iterator First = Roots.begin();
1173    GepNode *Root = *First, *Last = *First;
1174    Roots.erase(First);
1175
1176    NodeVect NA;  // Nodes to assemble.
1177    // Append to NA all child nodes up to (and including) the first child
1178    // that:
1179    // (1) has more than 1 child, or
1180    // (2) is used, or
1181    // (3) has a child located in a different block.
1182    bool LastUsed = false;
1183    unsigned LastCN = 0;
1184    // The location may be null if the computation failed (it can legitimately
1185    // happen for nodes created from dead GEPs).
1186    Value *LocV = Loc[Last];
1187    if (!LocV)
1188      continue;
1189    BasicBlock *LastB = cast<BasicBlock>(LocV);
1190    do {
1191      NA.push_back(Last);
1192      LastUsed = (Last->Flags & GepNode::Used);
1193      if (LastUsed)
1194        break;
1195      NodeChildrenMap::iterator CF = NCM.find(Last);
1196      LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1197      if (LastCN != 1)
1198        break;
1199      GepNode *Child = CF->second.front();
1200      BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1201      if (ChildB != nullptr && LastB != ChildB)
1202        break;
1203      Last = Child;
1204    } while (true);
1205
1206    BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
1207    if (LastUsed || LastCN > 0) {
1208      ValueVect Urs;
1209      getAllUsersForNode(Root, Urs, NCM);
1210      BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1211      if (FirstUse != LastB->end())
1212        InsertAt = FirstUse;
1213    }
1214
1215    // Generate a new instruction for NA.
1216    Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1217
1218    // Convert all the children of Last node into roots, and append them
1219    // to the Roots list.
1220    if (LastCN > 0) {
1221      NodeVect &Cs = NCM[Last];
1222      for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
1223        GepNode *CN = *I;
1224        CN->Flags &= ~GepNode::Internal;
1225        CN->Flags |= GepNode::Root;
1226        CN->BaseVal = NewInst;
1227        Roots.push_back(CN);
1228      }
1229    }
1230
1231    // Lastly, if the Last node was used, replace all uses with the new GEP.
1232    // The uses reference the original GEP values.
1233    if (LastUsed) {
1234      NodeToUsesMap::iterator UF = Uses.find(Last);
1235      assert(UF != Uses.end() && "No use information found");
1236      UseSet &Us = UF->second;
1237      for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
1238        Use *U = *I;
1239        U->set(NewInst);
1240      }
1241    }
1242  }
1243}
1244
1245void HexagonCommonGEP::removeDeadCode() {
1246  ValueVect BO;
1247  BO.push_back(&Fn->front());
1248
1249  for (unsigned i = 0; i < BO.size(); ++i) {
1250    BasicBlock *B = cast<BasicBlock>(BO[i]);
1251    for (auto DTN : children<DomTreeNode*>(DT->getNode(B)))
1252      BO.push_back(DTN->getBlock());
1253  }
1254
1255  for (unsigned i = BO.size(); i > 0; --i) {
1256    BasicBlock *B = cast<BasicBlock>(BO[i-1]);
1257    BasicBlock::InstListType &IL = B->getInstList();
1258
1259    using reverse_iterator = BasicBlock::InstListType::reverse_iterator;
1260
1261    ValueVect Ins;
1262    for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I)
1263      Ins.push_back(&*I);
1264    for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) {
1265      Instruction *In = cast<Instruction>(*I);
1266      if (isInstructionTriviallyDead(In))
1267        In->eraseFromParent();
1268    }
1269  }
1270}
1271
1272bool HexagonCommonGEP::runOnFunction(Function &F) {
1273  if (skipFunction(F))
1274    return false;
1275
1276  // For now bail out on C++ exception handling.
1277  for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A)
1278    for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I)
1279      if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1280        return false;
1281
1282  Fn = &F;
1283  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1284  PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1285  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1286  Ctx = &F.getContext();
1287
1288  Nodes.clear();
1289  Uses.clear();
1290  NodeOrder.clear();
1291
1292  SpecificBumpPtrAllocator<GepNode> Allocator;
1293  Mem = &Allocator;
1294
1295  collect();
1296  common();
1297
1298  NodeToValueMap Loc;
1299  computeNodePlacement(Loc);
1300  materialize(Loc);
1301  removeDeadCode();
1302
1303#ifdef EXPENSIVE_CHECKS
1304  // Run this only when expensive checks are enabled.
1305  verifyFunction(F);
1306#endif
1307  return true;
1308}
1309
1310namespace llvm {
1311
1312  FunctionPass *createHexagonCommonGEP() {
1313    return new HexagonCommonGEP();
1314  }
1315
1316} // end namespace llvm
1317