HexagonCommonGEP.cpp revision 286425
1//===--- HexagonCommonGEP.cpp ---------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "commgep"
11
12#include "llvm/Pass.h"
13#include "llvm/ADT/FoldingSet.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/Analysis/LoopInfo.h"
16#include "llvm/Analysis/PostDominators.h"
17#include "llvm/CodeGen/MachineFunctionAnalysis.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/Dominators.h"
20#include "llvm/IR/Function.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/Verifier.h"
23#include "llvm/Support/Allocator.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/Transforms/Utils/Local.h"
29
30#include <map>
31#include <set>
32#include <vector>
33
34#include "HexagonTargetMachine.h"
35
36using namespace llvm;
37
38static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
39  cl::Hidden, cl::ZeroOrMore);
40
41static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden,
42  cl::ZeroOrMore);
43
44static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
45  cl::Hidden, cl::ZeroOrMore);
46
47namespace llvm {
48  void initializeHexagonCommonGEPPass(PassRegistry&);
49}
50
51namespace {
52  struct GepNode;
53  typedef std::set<GepNode*> NodeSet;
54  typedef std::map<GepNode*,Value*> NodeToValueMap;
55  typedef std::vector<GepNode*> NodeVect;
56  typedef std::map<GepNode*,NodeVect> NodeChildrenMap;
57  typedef std::set<Use*> UseSet;
58  typedef std::map<GepNode*,UseSet> NodeToUsesMap;
59
60  // Numbering map for gep nodes. Used to keep track of ordering for
61  // gep nodes.
62  struct NodeNumbering : public std::map<const GepNode*,unsigned> {
63  };
64
65  struct NodeOrdering : public NodeNumbering {
66    NodeOrdering() : LastNum(0) {}
67#ifdef _MSC_VER
68    void special_insert_for_special_msvc(const GepNode *N)
69#else
70    using NodeNumbering::insert;
71    void insert(const GepNode* N)
72#endif
73    {
74      insert(std::make_pair(N, ++LastNum));
75    }
76    bool operator() (const GepNode* N1, const GepNode *N2) const {
77      const_iterator F1 = find(N1), F2 = find(N2);
78      assert(F1 != end() && F2 != end());
79      return F1->second < F2->second;
80    }
81  private:
82    unsigned LastNum;
83  };
84
85
86  class HexagonCommonGEP : public FunctionPass {
87  public:
88    static char ID;
89    HexagonCommonGEP() : FunctionPass(ID) {
90      initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
91    }
92    virtual bool runOnFunction(Function &F);
93    virtual const char *getPassName() const {
94      return "Hexagon Common GEP";
95    }
96
97    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
98      AU.addRequired<DominatorTreeWrapperPass>();
99      AU.addPreserved<DominatorTreeWrapperPass>();
100      AU.addRequired<PostDominatorTree>();
101      AU.addPreserved<PostDominatorTree>();
102      AU.addRequired<LoopInfoWrapperPass>();
103      AU.addPreserved<LoopInfoWrapperPass>();
104      FunctionPass::getAnalysisUsage(AU);
105    }
106
107  private:
108    typedef std::map<Value*,GepNode*> ValueToNodeMap;
109    typedef std::vector<Value*> ValueVect;
110    typedef std::map<GepNode*,ValueVect> NodeToValuesMap;
111
112    void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
113    bool isHandledGepForm(GetElementPtrInst *GepI);
114    void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
115    void collect();
116    void common();
117
118    BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
119                                     NodeToValueMap &Loc);
120    BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
121                                        NodeToValueMap &Loc);
122    bool isInvariantIn(Value *Val, Loop *L);
123    bool isInvariantIn(GepNode *Node, Loop *L);
124    bool isInMainPath(BasicBlock *B, Loop *L);
125    BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
126                                    NodeToValueMap &Loc);
127    void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
128    void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
129                                NodeToValueMap &Loc);
130    void computeNodePlacement(NodeToValueMap &Loc);
131
132    Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
133                        BasicBlock *LocB);
134    void getAllUsersForNode(GepNode *Node, ValueVect &Values,
135                            NodeChildrenMap &NCM);
136    void materialize(NodeToValueMap &Loc);
137
138    void removeDeadCode();
139
140    NodeVect Nodes;
141    NodeToUsesMap Uses;
142    NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior.
143    SpecificBumpPtrAllocator<GepNode> *Mem;
144    LLVMContext *Ctx;
145    LoopInfo *LI;
146    DominatorTree *DT;
147    PostDominatorTree *PDT;
148    Function *Fn;
149  };
150}
151
152
153char HexagonCommonGEP::ID = 0;
154INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
155      false, false)
156INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
157INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
158INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
159INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
160      false, false)
161
162namespace {
163  struct GepNode {
164    enum {
165      None      = 0,
166      Root      = 0x01,
167      Internal  = 0x02,
168      Used      = 0x04
169    };
170
171    uint32_t Flags;
172    union {
173      GepNode *Parent;
174      Value *BaseVal;
175    };
176    Value *Idx;
177    Type *PTy;  // Type of the pointer operand.
178
179    GepNode() : Flags(0), Parent(0), Idx(0), PTy(0) {}
180    GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
181      if (Flags & Root)
182        BaseVal = N->BaseVal;
183      else
184        Parent = N->Parent;
185    }
186    friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
187  };
188
189
190  Type *next_type(Type *Ty, Value *Idx) {
191    // Advance the type.
192    if (!Ty->isStructTy()) {
193      Type *NexTy = cast<SequentialType>(Ty)->getElementType();
194      return NexTy;
195    }
196    // Otherwise it is a struct type.
197    ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
198    assert(CI && "Struct type with non-constant index");
199    int64_t i = CI->getValue().getSExtValue();
200    Type *NextTy = cast<StructType>(Ty)->getElementType(i);
201    return NextTy;
202  }
203
204
205  raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
206    OS << "{ {";
207    bool Comma = false;
208    if (GN.Flags & GepNode::Root) {
209      OS << "root";
210      Comma = true;
211    }
212    if (GN.Flags & GepNode::Internal) {
213      if (Comma)
214        OS << ',';
215      OS << "internal";
216      Comma = true;
217    }
218    if (GN.Flags & GepNode::Used) {
219      if (Comma)
220        OS << ',';
221      OS << "used";
222      Comma = true;
223    }
224    OS << "} ";
225    if (GN.Flags & GepNode::Root)
226      OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
227    else
228      OS << "Parent:" << GN.Parent;
229
230    OS << " Idx:";
231    if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
232      OS << CI->getValue().getSExtValue();
233    else if (GN.Idx->hasName())
234      OS << GN.Idx->getName();
235    else
236      OS << "<anon> =" << *GN.Idx;
237
238    OS << " PTy:";
239    if (GN.PTy->isStructTy()) {
240      StructType *STy = cast<StructType>(GN.PTy);
241      if (!STy->isLiteral())
242        OS << GN.PTy->getStructName();
243      else
244        OS << "<anon-struct>:" << *STy;
245    }
246    else
247      OS << *GN.PTy;
248    OS << " }";
249    return OS;
250  }
251
252
253  template <typename NodeContainer>
254  void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
255    typedef typename NodeContainer::const_iterator const_iterator;
256    for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
257      OS << *I << ' ' << **I << '\n';
258  }
259
260  raw_ostream &operator<< (raw_ostream &OS,
261                           const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
262  raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
263    dump_node_container(OS, S);
264    return OS;
265  }
266
267
268  raw_ostream &operator<< (raw_ostream &OS,
269                           const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
270  raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
271    typedef NodeToUsesMap::const_iterator const_iterator;
272    for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
273      const UseSet &Us = I->second;
274      OS << I->first << " -> #" << Us.size() << '{';
275      for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
276        User *R = (*J)->getUser();
277        if (R->hasName())
278          OS << ' ' << R->getName();
279        else
280          OS << " <?>(" << *R << ')';
281      }
282      OS << " }\n";
283    }
284    return OS;
285  }
286
287
288  struct in_set {
289    in_set(const NodeSet &S) : NS(S) {}
290    bool operator() (GepNode *N) const {
291      return NS.find(N) != NS.end();
292    }
293  private:
294    const NodeSet &NS;
295  };
296}
297
298
299inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
300  return A.Allocate();
301}
302
303
304void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
305      ValueVect &Order) {
306  // Compute block ordering for a typical DT-based traversal of the flow
307  // graph: "before visiting a block, all of its dominators must have been
308  // visited".
309
310  Order.push_back(Root);
311  DomTreeNode *DTN = DT->getNode(Root);
312  typedef GraphTraits<DomTreeNode*> GTN;
313  typedef GTN::ChildIteratorType Iter;
314  for (Iter I = GTN::child_begin(DTN), E = GTN::child_end(DTN); I != E; ++I)
315    getBlockTraversalOrder((*I)->getBlock(), Order);
316}
317
318
319bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
320  // No vector GEPs.
321  if (!GepI->getType()->isPointerTy())
322    return false;
323  // No GEPs without any indices.  (Is this possible?)
324  if (GepI->idx_begin() == GepI->idx_end())
325    return false;
326  return true;
327}
328
329
330void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
331      ValueToNodeMap &NM) {
332  DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
333  GepNode *N = new (*Mem) GepNode;
334  Value *PtrOp = GepI->getPointerOperand();
335  ValueToNodeMap::iterator F = NM.find(PtrOp);
336  if (F == NM.end()) {
337    N->BaseVal = PtrOp;
338    N->Flags |= GepNode::Root;
339  } else {
340    // If PtrOp was a GEP instruction, it must have already been processed.
341    // The ValueToNodeMap entry for it is the last gep node in the generated
342    // chain. Link to it here.
343    N->Parent = F->second;
344  }
345  N->PTy = PtrOp->getType();
346  N->Idx = *GepI->idx_begin();
347
348  // Collect the list of users of this GEP instruction. Will add it to the
349  // last node created for it.
350  UseSet Us;
351  for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
352       UI != UE; ++UI) {
353    // Check if this gep is used by anything other than other geps that
354    // we will process.
355    if (isa<GetElementPtrInst>(*UI)) {
356      GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
357      if (isHandledGepForm(UserG))
358        continue;
359    }
360    Us.insert(&UI.getUse());
361  }
362  Nodes.push_back(N);
363#ifdef _MSC_VER
364  NodeOrder.special_insert_for_special_msvc(N);
365#else
366  NodeOrder.insert(N);
367#endif
368
369  // Skip the first index operand, since we only handle 0. This dereferences
370  // the pointer operand.
371  GepNode *PN = N;
372  Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType();
373  for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end();
374       OI != OE; ++OI) {
375    Value *Op = *OI;
376    GepNode *Nx = new (*Mem) GepNode;
377    Nx->Parent = PN;  // Link Nx to the previous node.
378    Nx->Flags |= GepNode::Internal;
379    Nx->PTy = PtrTy;
380    Nx->Idx = Op;
381    Nodes.push_back(Nx);
382#ifdef _MSC_VER
383    NodeOrder.special_insert_for_special_msvc(Nx);
384#else
385    NodeOrder.insert(Nx);
386#endif
387    PN = Nx;
388
389    PtrTy = next_type(PtrTy, Op);
390  }
391
392  // After last node has been created, update the use information.
393  if (!Us.empty()) {
394    PN->Flags |= GepNode::Used;
395    Uses[PN].insert(Us.begin(), Us.end());
396  }
397
398  // Link the last node with the originating GEP instruction. This is to
399  // help with linking chained GEP instructions.
400  NM.insert(std::make_pair(GepI, PN));
401}
402
403
404void HexagonCommonGEP::collect() {
405  // Establish depth-first traversal order of the dominator tree.
406  ValueVect BO;
407  getBlockTraversalOrder(Fn->begin(), BO);
408
409  // The creation of gep nodes requires DT-traversal. When processing a GEP
410  // instruction that uses another GEP instruction as the base pointer, the
411  // gep node for the base pointer should already exist.
412  ValueToNodeMap NM;
413  for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) {
414    BasicBlock *B = cast<BasicBlock>(*I);
415    for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) {
416      if (!isa<GetElementPtrInst>(J))
417        continue;
418      GetElementPtrInst *GepI = cast<GetElementPtrInst>(J);
419      if (isHandledGepForm(GepI))
420        processGepInst(GepI, NM);
421    }
422  }
423
424  DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
425}
426
427
428namespace {
429  void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
430        NodeVect &Roots) {
431    typedef NodeVect::const_iterator const_iterator;
432    for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
433      GepNode *N = *I;
434      if (N->Flags & GepNode::Root) {
435        Roots.push_back(N);
436        continue;
437      }
438      GepNode *PN = N->Parent;
439      NCM[PN].push_back(N);
440    }
441  }
442
443  void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, NodeSet &Nodes) {
444    NodeVect Work;
445    Work.push_back(Root);
446    Nodes.insert(Root);
447
448    while (!Work.empty()) {
449      NodeVect::iterator First = Work.begin();
450      GepNode *N = *First;
451      Work.erase(First);
452      NodeChildrenMap::iterator CF = NCM.find(N);
453      if (CF != NCM.end()) {
454        Work.insert(Work.end(), CF->second.begin(), CF->second.end());
455        Nodes.insert(CF->second.begin(), CF->second.end());
456      }
457    }
458  }
459}
460
461
462namespace {
463  typedef std::set<NodeSet> NodeSymRel;
464  typedef std::pair<GepNode*,GepNode*> NodePair;
465  typedef std::set<NodePair> NodePairSet;
466
467  const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
468    for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I)
469      if (I->count(N))
470        return &*I;
471    return 0;
472  }
473
474  // Create an ordered pair of GepNode pointers. The pair will be used in
475  // determining equality. The only purpose of the ordering is to eliminate
476  // duplication due to the commutativity of equality/non-equality.
477  NodePair node_pair(GepNode *N1, GepNode *N2) {
478    uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2);
479    if (P1 <= P2)
480      return std::make_pair(N1, N2);
481    return std::make_pair(N2, N1);
482  }
483
484  unsigned node_hash(GepNode *N) {
485    // Include everything except flags and parent.
486    FoldingSetNodeID ID;
487    ID.AddPointer(N->Idx);
488    ID.AddPointer(N->PTy);
489    return ID.ComputeHash();
490  }
491
492  bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, NodePairSet &Ne) {
493    // Don't cache the result for nodes with different hashes. The hash
494    // comparison is fast enough.
495    if (node_hash(N1) != node_hash(N2))
496      return false;
497
498    NodePair NP = node_pair(N1, N2);
499    NodePairSet::iterator FEq = Eq.find(NP);
500    if (FEq != Eq.end())
501      return true;
502    NodePairSet::iterator FNe = Ne.find(NP);
503    if (FNe != Ne.end())
504      return false;
505    // Not previously compared.
506    bool Root1 = N1->Flags & GepNode::Root;
507    bool Root2 = N2->Flags & GepNode::Root;
508    NodePair P = node_pair(N1, N2);
509    // If the Root flag has different values, the nodes are different.
510    // If both nodes are root nodes, but their base pointers differ,
511    // they are different.
512    if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) {
513      Ne.insert(P);
514      return false;
515    }
516    // Here the root flags are identical, and for root nodes the
517    // base pointers are equal, so the root nodes are equal.
518    // For non-root nodes, compare their parent nodes.
519    if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
520      Eq.insert(P);
521      return true;
522    }
523    return false;
524  }
525}
526
527
528void HexagonCommonGEP::common() {
529  // The essence of this commoning is finding gep nodes that are equal.
530  // To do this we need to compare all pairs of nodes. To save time,
531  // first, partition the set of all nodes into sets of potentially equal
532  // nodes, and then compare pairs from within each partition.
533  typedef std::map<unsigned,NodeSet> NodeSetMap;
534  NodeSetMap MaybeEq;
535
536  for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
537    GepNode *N = *I;
538    unsigned H = node_hash(N);
539    MaybeEq[H].insert(N);
540  }
541
542  // Compute the equivalence relation for the gep nodes.  Use two caches,
543  // one for equality and the other for non-equality.
544  NodeSymRel EqRel;  // Equality relation (as set of equivalence classes).
545  NodePairSet Eq, Ne;  // Caches.
546  for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end();
547       I != E; ++I) {
548    NodeSet &S = I->second;
549    for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
550      GepNode *N = *NI;
551      // If node already has a class, then the class must have been created
552      // in a prior iteration of this loop. Since equality is transitive,
553      // nothing more will be added to that class, so skip it.
554      if (node_class(N, EqRel))
555        continue;
556
557      // Create a new class candidate now.
558      NodeSet C;
559      for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
560        if (node_eq(N, *NJ, Eq, Ne))
561          C.insert(*NJ);
562      // If Tmp is empty, N would be the only element in it. Don't bother
563      // creating a class for it then.
564      if (!C.empty()) {
565        C.insert(N);  // Finalize the set before adding it to the relation.
566        std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
567        (void)Ins;
568        assert(Ins.second && "Cannot add a class");
569      }
570    }
571  }
572
573  DEBUG({
574    dbgs() << "Gep node equality:\n";
575    for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
576      dbgs() << "{ " << I->first << ", " << I->second << " }\n";
577
578    dbgs() << "Gep equivalence classes:\n";
579    for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
580      dbgs() << '{';
581      const NodeSet &S = *I;
582      for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
583        if (J != S.begin())
584          dbgs() << ',';
585        dbgs() << ' ' << *J;
586      }
587      dbgs() << " }\n";
588    }
589  });
590
591
592  // Create a projection from a NodeSet to the minimal element in it.
593  typedef std::map<const NodeSet*,GepNode*> ProjMap;
594  ProjMap PM;
595  for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
596    const NodeSet &S = *I;
597    GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
598    std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
599    (void)Ins;
600    assert(Ins.second && "Cannot add minimal element");
601
602    // Update the min element's flags, and user list.
603    uint32_t Flags = 0;
604    UseSet &MinUs = Uses[Min];
605    for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) {
606      GepNode *N = *J;
607      uint32_t NF = N->Flags;
608      // If N is used, append all original values of N to the list of
609      // original values of Min.
610      if (NF & GepNode::Used)
611        MinUs.insert(Uses[N].begin(), Uses[N].end());
612      Flags |= NF;
613    }
614    if (MinUs.empty())
615      Uses.erase(Min);
616
617    // The collected flags should include all the flags from the min element.
618    assert((Min->Flags & Flags) == Min->Flags);
619    Min->Flags = Flags;
620  }
621
622  // Commoning: for each non-root gep node, replace "Parent" with the
623  // selected (minimum) node from the corresponding equivalence class.
624  // If a given parent does not have an equivalence class, leave it
625  // unchanged (it means that it's the only element in its class).
626  for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
627    GepNode *N = *I;
628    if (N->Flags & GepNode::Root)
629      continue;
630    const NodeSet *PC = node_class(N->Parent, EqRel);
631    if (!PC)
632      continue;
633    ProjMap::iterator F = PM.find(PC);
634    if (F == PM.end())
635      continue;
636    // Found a replacement, use it.
637    GepNode *Rep = F->second;
638    N->Parent = Rep;
639  }
640
641  DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
642
643  // Finally, erase the nodes that are no longer used.
644  NodeSet Erase;
645  for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
646    GepNode *N = *I;
647    const NodeSet *PC = node_class(N, EqRel);
648    if (!PC)
649      continue;
650    ProjMap::iterator F = PM.find(PC);
651    if (F == PM.end())
652      continue;
653    if (N == F->second)
654      continue;
655    // Node for removal.
656    Erase.insert(*I);
657  }
658  NodeVect::iterator NewE = std::remove_if(Nodes.begin(), Nodes.end(),
659                                           in_set(Erase));
660  Nodes.resize(std::distance(Nodes.begin(), NewE));
661
662  DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
663}
664
665
666namespace {
667  template <typename T>
668  BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
669    DEBUG({
670      dbgs() << "NCD of {";
671      for (typename T::iterator I = Blocks.begin(), E = Blocks.end();
672           I != E; ++I) {
673        if (!*I)
674          continue;
675        BasicBlock *B = cast<BasicBlock>(*I);
676        dbgs() << ' ' << B->getName();
677      }
678      dbgs() << " }\n";
679    });
680
681    // Allow null basic blocks in Blocks.  In such cases, return 0.
682    typename T::iterator I = Blocks.begin(), E = Blocks.end();
683    if (I == E || !*I)
684      return 0;
685    BasicBlock *Dom = cast<BasicBlock>(*I);
686    while (++I != E) {
687      BasicBlock *B = cast_or_null<BasicBlock>(*I);
688      Dom = B ? DT->findNearestCommonDominator(Dom, B) : 0;
689      if (!Dom)
690        return 0;
691    }
692    DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
693    return Dom;
694  }
695
696  template <typename T>
697  BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
698    // If two blocks, A and B, dominate a block C, then A dominates B,
699    // or B dominates A.
700    typename T::iterator I = Blocks.begin(), E = Blocks.end();
701    // Find the first non-null block.
702    while (I != E && !*I)
703      ++I;
704    if (I == E)
705      return DT->getRoot();
706    BasicBlock *DomB = cast<BasicBlock>(*I);
707    while (++I != E) {
708      if (!*I)
709        continue;
710      BasicBlock *B = cast<BasicBlock>(*I);
711      if (DT->dominates(B, DomB))
712        continue;
713      if (!DT->dominates(DomB, B))
714        return 0;
715      DomB = B;
716    }
717    return DomB;
718  }
719
720  // Find the first use in B of any value from Values. If no such use,
721  // return B->end().
722  template <typename T>
723  BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
724    BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
725    typedef typename T::iterator iterator;
726    for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
727      Value *V = *I;
728      // If V is used in a PHI node, the use belongs to the incoming block,
729      // not the block with the PHI node. In the incoming block, the use
730      // would be considered as being at the end of it, so it cannot
731      // influence the position of the first use (which is assumed to be
732      // at the end to start with).
733      if (isa<PHINode>(V))
734        continue;
735      if (!isa<Instruction>(V))
736        continue;
737      Instruction *In = cast<Instruction>(V);
738      if (In->getParent() != B)
739        continue;
740      BasicBlock::iterator It = In;
741      if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
742        FirstUse = It;
743    }
744    return FirstUse;
745  }
746
747  bool is_empty(const BasicBlock *B) {
748    return B->empty() || (&*B->begin() == B->getTerminator());
749  }
750}
751
752
753BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
754      NodeChildrenMap &NCM, NodeToValueMap &Loc) {
755  DEBUG(dbgs() << "Loc for node:" << Node << '\n');
756  // Recalculate the placement for Node, assuming that the locations of
757  // its children in Loc are valid.
758  // Return 0 if there is no valid placement for Node (for example, it
759  // uses an index value that is not available at the location required
760  // to dominate all children, etc.).
761
762  // Find the nearest common dominator for:
763  // - all users, if the node is used, and
764  // - all children.
765  ValueVect Bs;
766  if (Node->Flags & GepNode::Used) {
767    // Append all blocks with uses of the original values to the
768    // block vector Bs.
769    NodeToUsesMap::iterator UF = Uses.find(Node);
770    assert(UF != Uses.end() && "Used node with no use information");
771    UseSet &Us = UF->second;
772    for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
773      Use *U = *I;
774      User *R = U->getUser();
775      if (!isa<Instruction>(R))
776        continue;
777      BasicBlock *PB = isa<PHINode>(R)
778          ? cast<PHINode>(R)->getIncomingBlock(*U)
779          : cast<Instruction>(R)->getParent();
780      Bs.push_back(PB);
781    }
782  }
783  // Append the location of each child.
784  NodeChildrenMap::iterator CF = NCM.find(Node);
785  if (CF != NCM.end()) {
786    NodeVect &Cs = CF->second;
787    for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
788      GepNode *CN = *I;
789      NodeToValueMap::iterator LF = Loc.find(CN);
790      // If the child is only used in GEP instructions (i.e. is not used in
791      // non-GEP instructions), the nearest dominator computed for it may
792      // have been null. In such case it won't have a location available.
793      if (LF == Loc.end())
794        continue;
795      Bs.push_back(LF->second);
796    }
797  }
798
799  BasicBlock *DomB = nearest_common_dominator(DT, Bs);
800  if (!DomB)
801    return 0;
802  // Check if the index used by Node dominates the computed dominator.
803  Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
804  if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
805    return 0;
806
807  // Avoid putting nodes into empty blocks.
808  while (is_empty(DomB)) {
809    DomTreeNode *N = (*DT)[DomB]->getIDom();
810    if (!N)
811      break;
812    DomB = N->getBlock();
813  }
814
815  // Otherwise, DomB is fine. Update the location map.
816  Loc[Node] = DomB;
817  return DomB;
818}
819
820
821BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
822      NodeChildrenMap &NCM, NodeToValueMap &Loc) {
823  DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
824  // Recalculate the placement of Node, after recursively recalculating the
825  // placements of all its children.
826  NodeChildrenMap::iterator CF = NCM.find(Node);
827  if (CF != NCM.end()) {
828    NodeVect &Cs = CF->second;
829    for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
830      recalculatePlacementRec(*I, NCM, Loc);
831  }
832  BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
833  DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
834  return LB;
835}
836
837
838bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
839  if (isa<Constant>(Val) || isa<Argument>(Val))
840    return true;
841  Instruction *In = dyn_cast<Instruction>(Val);
842  if (!In)
843    return false;
844  BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
845  return DT->properlyDominates(DefB, HdrB);
846}
847
848
849bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
850  if (Node->Flags & GepNode::Root)
851    if (!isInvariantIn(Node->BaseVal, L))
852      return false;
853  return isInvariantIn(Node->Idx, L);
854}
855
856
857bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
858  BasicBlock *HB = L->getHeader();
859  BasicBlock *LB = L->getLoopLatch();
860  // B must post-dominate the loop header or dominate the loop latch.
861  if (PDT->dominates(B, HB))
862    return true;
863  if (LB && DT->dominates(B, LB))
864    return true;
865  return false;
866}
867
868
869namespace {
870  BasicBlock *preheader(DominatorTree *DT, Loop *L) {
871    if (BasicBlock *PH = L->getLoopPreheader())
872      return PH;
873    if (!OptSpeculate)
874      return 0;
875    DomTreeNode *DN = DT->getNode(L->getHeader());
876    if (!DN)
877      return 0;
878    return DN->getIDom()->getBlock();
879  }
880}
881
882
883BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
884      NodeChildrenMap &NCM, NodeToValueMap &Loc) {
885  // Find the "topmost" location for Node: it must be dominated by both,
886  // its parent (or the BaseVal, if it's a root node), and by the index
887  // value.
888  ValueVect Bs;
889  if (Node->Flags & GepNode::Root) {
890    if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
891      Bs.push_back(PIn->getParent());
892  } else {
893    Bs.push_back(Loc[Node->Parent]);
894  }
895  if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
896    Bs.push_back(IIn->getParent());
897  BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
898
899  // Traverse the loop nest upwards until we find a loop in which Node
900  // is no longer invariant, or until we get to the upper limit of Node's
901  // placement. The traversal will also stop when a suitable "preheader"
902  // cannot be found for a given loop. The "preheader" may actually be
903  // a regular block outside of the loop (i.e. not guarded), in which case
904  // the Node will be speculated.
905  // For nodes that are not in the main path of the containing loop (i.e.
906  // are not executed in each iteration), do not move them out of the loop.
907  BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
908  if (LocB) {
909    Loop *Lp = LI->getLoopFor(LocB);
910    while (Lp) {
911      if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
912        break;
913      BasicBlock *NewLoc = preheader(DT, Lp);
914      if (!NewLoc || !DT->dominates(TopB, NewLoc))
915        break;
916      Lp = Lp->getParentLoop();
917      LocB = NewLoc;
918    }
919  }
920  Loc[Node] = LocB;
921
922  // Recursively compute the locations of all children nodes.
923  NodeChildrenMap::iterator CF = NCM.find(Node);
924  if (CF != NCM.end()) {
925    NodeVect &Cs = CF->second;
926    for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
927      adjustForInvariance(*I, NCM, Loc);
928  }
929  return LocB;
930}
931
932
933namespace {
934  struct LocationAsBlock {
935    LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
936    const NodeToValueMap &Map;
937  };
938
939  raw_ostream &operator<< (raw_ostream &OS,
940                           const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
941  raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
942    for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end();
943         I != E; ++I) {
944      OS << I->first << " -> ";
945      BasicBlock *B = cast<BasicBlock>(I->second);
946      OS << B->getName() << '(' << B << ')';
947      OS << '\n';
948    }
949    return OS;
950  }
951
952  inline bool is_constant(GepNode *N) {
953    return isa<ConstantInt>(N->Idx);
954  }
955}
956
957
958void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
959      NodeToValueMap &Loc) {
960  User *R = U->getUser();
961  DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: "
962               << *R << '\n');
963  BasicBlock *PB = cast<Instruction>(R)->getParent();
964
965  GepNode *N = Node;
966  GepNode *C = 0, *NewNode = 0;
967  while (is_constant(N) && !(N->Flags & GepNode::Root)) {
968    // XXX if (single-use) dont-replicate;
969    GepNode *NewN = new (*Mem) GepNode(N);
970    Nodes.push_back(NewN);
971    Loc[NewN] = PB;
972
973    if (N == Node)
974      NewNode = NewN;
975    NewN->Flags &= ~GepNode::Used;
976    if (C)
977      C->Parent = NewN;
978    C = NewN;
979    N = N->Parent;
980  }
981  if (!NewNode)
982    return;
983
984  // Move over all uses that share the same user as U from Node to NewNode.
985  NodeToUsesMap::iterator UF = Uses.find(Node);
986  assert(UF != Uses.end());
987  UseSet &Us = UF->second;
988  UseSet NewUs;
989  for (UseSet::iterator I = Us.begin(); I != Us.end(); ) {
990    User *S = (*I)->getUser();
991    UseSet::iterator Nx = std::next(I);
992    if (S == R) {
993      NewUs.insert(*I);
994      Us.erase(I);
995    }
996    I = Nx;
997  }
998  if (Us.empty()) {
999    Node->Flags &= ~GepNode::Used;
1000    Uses.erase(UF);
1001  }
1002
1003  // Should at least have U in NewUs.
1004  NewNode->Flags |= GepNode::Used;
1005  DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n');
1006  assert(!NewUs.empty());
1007  Uses[NewNode] = NewUs;
1008}
1009
1010
1011void HexagonCommonGEP::separateConstantChains(GepNode *Node,
1012      NodeChildrenMap &NCM, NodeToValueMap &Loc) {
1013  // First approximation: extract all chains.
1014  NodeSet Ns;
1015  nodes_for_root(Node, NCM, Ns);
1016
1017  DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
1018  // Collect all used nodes together with the uses from loads and stores,
1019  // where the GEP node could be folded into the load/store instruction.
1020  NodeToUsesMap FNs; // Foldable nodes.
1021  for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) {
1022    GepNode *N = *I;
1023    if (!(N->Flags & GepNode::Used))
1024      continue;
1025    NodeToUsesMap::iterator UF = Uses.find(N);
1026    assert(UF != Uses.end());
1027    UseSet &Us = UF->second;
1028    // Loads/stores that use the node N.
1029    UseSet LSs;
1030    for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
1031      Use *U = *J;
1032      User *R = U->getUser();
1033      // We're interested in uses that provide the address. It can happen
1034      // that the value may also be provided via GEP, but we won't handle
1035      // those cases here for now.
1036      if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1037        unsigned PtrX = LoadInst::getPointerOperandIndex();
1038        if (&Ld->getOperandUse(PtrX) == U)
1039          LSs.insert(U);
1040      } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1041        unsigned PtrX = StoreInst::getPointerOperandIndex();
1042        if (&St->getOperandUse(PtrX) == U)
1043          LSs.insert(U);
1044      }
1045    }
1046    // Even if the total use count is 1, separating the chain may still be
1047    // beneficial, since the constant chain may be longer than the GEP alone
1048    // would be (e.g. if the parent node has a constant index and also has
1049    // other children).
1050    if (!LSs.empty())
1051      FNs.insert(std::make_pair(N, LSs));
1052  }
1053
1054  DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1055
1056  for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) {
1057    GepNode *N = I->first;
1058    UseSet &Us = I->second;
1059    for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J)
1060      separateChainForNode(N, *J, Loc);
1061  }
1062}
1063
1064
1065void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1066  // Compute the inverse of the Node.Parent links. Also, collect the set
1067  // of root nodes.
1068  NodeChildrenMap NCM;
1069  NodeVect Roots;
1070  invert_find_roots(Nodes, NCM, Roots);
1071
1072  // Compute the initial placement determined by the users' locations, and
1073  // the locations of the child nodes.
1074  for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1075    recalculatePlacementRec(*I, NCM, Loc);
1076
1077  DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1078
1079  if (OptEnableInv) {
1080    for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1081      adjustForInvariance(*I, NCM, Loc);
1082
1083    DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1084                 << LocationAsBlock(Loc));
1085  }
1086  if (OptEnableConst) {
1087    for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1088      separateConstantChains(*I, NCM, Loc);
1089  }
1090  DEBUG(dbgs() << "Node use information:\n" << Uses);
1091
1092  // At the moment, there is no further refinement of the initial placement.
1093  // Such a refinement could include splitting the nodes if they are placed
1094  // too far from some of its users.
1095
1096  DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1097}
1098
1099
1100Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1101      BasicBlock *LocB) {
1102  DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1103               << " for nodes:\n" << NA);
1104  unsigned Num = NA.size();
1105  GepNode *RN = NA[0];
1106  assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1107
1108  Value *NewInst = 0;
1109  Value *Input = RN->BaseVal;
1110  Value **IdxList = new Value*[Num+1];
1111  unsigned nax = 0;
1112  do {
1113    unsigned IdxC = 0;
1114    // If the type of the input of the first node is not a pointer,
1115    // we need to add an artificial i32 0 to the indices (because the
1116    // actual input in the IR will be a pointer).
1117    if (!NA[nax]->PTy->isPointerTy()) {
1118      Type *Int32Ty = Type::getInt32Ty(*Ctx);
1119      IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0);
1120    }
1121
1122    // Keep adding indices from NA until we have to stop and generate
1123    // an "intermediate" GEP.
1124    while (++nax <= Num) {
1125      GepNode *N = NA[nax-1];
1126      IdxList[IdxC++] = N->Idx;
1127      if (nax < Num) {
1128        // We have to stop, if the expected type of the output of this node
1129        // is not the same as the input type of the next node.
1130        Type *NextTy = next_type(N->PTy, N->Idx);
1131        if (NextTy != NA[nax]->PTy)
1132          break;
1133      }
1134    }
1135    ArrayRef<Value*> A(IdxList, IdxC);
1136    Type *InpTy = Input->getType();
1137    Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType();
1138    NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", At);
1139    DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1140    Input = NewInst;
1141  } while (nax <= Num);
1142
1143  delete[] IdxList;
1144  return NewInst;
1145}
1146
1147
1148void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1149      NodeChildrenMap &NCM) {
1150  NodeVect Work;
1151  Work.push_back(Node);
1152
1153  while (!Work.empty()) {
1154    NodeVect::iterator First = Work.begin();
1155    GepNode *N = *First;
1156    Work.erase(First);
1157    if (N->Flags & GepNode::Used) {
1158      NodeToUsesMap::iterator UF = Uses.find(N);
1159      assert(UF != Uses.end() && "No use information for used node");
1160      UseSet &Us = UF->second;
1161      for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I)
1162        Values.push_back((*I)->getUser());
1163    }
1164    NodeChildrenMap::iterator CF = NCM.find(N);
1165    if (CF != NCM.end()) {
1166      NodeVect &Cs = CF->second;
1167      Work.insert(Work.end(), Cs.begin(), Cs.end());
1168    }
1169  }
1170}
1171
1172
1173void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1174  DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1175  NodeChildrenMap NCM;
1176  NodeVect Roots;
1177  // Compute the inversion again, since computing placement could alter
1178  // "parent" relation between nodes.
1179  invert_find_roots(Nodes, NCM, Roots);
1180
1181  while (!Roots.empty()) {
1182    NodeVect::iterator First = Roots.begin();
1183    GepNode *Root = *First, *Last = *First;
1184    Roots.erase(First);
1185
1186    NodeVect NA;  // Nodes to assemble.
1187    // Append to NA all child nodes up to (and including) the first child
1188    // that:
1189    // (1) has more than 1 child, or
1190    // (2) is used, or
1191    // (3) has a child located in a different block.
1192    bool LastUsed = false;
1193    unsigned LastCN = 0;
1194    // The location may be null if the computation failed (it can legitimately
1195    // happen for nodes created from dead GEPs).
1196    Value *LocV = Loc[Last];
1197    if (!LocV)
1198      continue;
1199    BasicBlock *LastB = cast<BasicBlock>(LocV);
1200    do {
1201      NA.push_back(Last);
1202      LastUsed = (Last->Flags & GepNode::Used);
1203      if (LastUsed)
1204        break;
1205      NodeChildrenMap::iterator CF = NCM.find(Last);
1206      LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1207      if (LastCN != 1)
1208        break;
1209      GepNode *Child = CF->second.front();
1210      BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1211      if (ChildB != 0 && LastB != ChildB)
1212        break;
1213      Last = Child;
1214    } while (true);
1215
1216    BasicBlock::iterator InsertAt = LastB->getTerminator();
1217    if (LastUsed || LastCN > 0) {
1218      ValueVect Urs;
1219      getAllUsersForNode(Root, Urs, NCM);
1220      BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1221      if (FirstUse != LastB->end())
1222        InsertAt = FirstUse;
1223    }
1224
1225    // Generate a new instruction for NA.
1226    Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1227
1228    // Convert all the children of Last node into roots, and append them
1229    // to the Roots list.
1230    if (LastCN > 0) {
1231      NodeVect &Cs = NCM[Last];
1232      for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
1233        GepNode *CN = *I;
1234        CN->Flags &= ~GepNode::Internal;
1235        CN->Flags |= GepNode::Root;
1236        CN->BaseVal = NewInst;
1237        Roots.push_back(CN);
1238      }
1239    }
1240
1241    // Lastly, if the Last node was used, replace all uses with the new GEP.
1242    // The uses reference the original GEP values.
1243    if (LastUsed) {
1244      NodeToUsesMap::iterator UF = Uses.find(Last);
1245      assert(UF != Uses.end() && "No use information found");
1246      UseSet &Us = UF->second;
1247      for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
1248        Use *U = *I;
1249        U->set(NewInst);
1250      }
1251    }
1252  }
1253}
1254
1255
1256void HexagonCommonGEP::removeDeadCode() {
1257  ValueVect BO;
1258  BO.push_back(&Fn->front());
1259
1260  for (unsigned i = 0; i < BO.size(); ++i) {
1261    BasicBlock *B = cast<BasicBlock>(BO[i]);
1262    DomTreeNode *N = DT->getNode(B);
1263    typedef GraphTraits<DomTreeNode*> GTN;
1264    typedef GTN::ChildIteratorType Iter;
1265    for (Iter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
1266      BO.push_back((*I)->getBlock());
1267  }
1268
1269  for (unsigned i = BO.size(); i > 0; --i) {
1270    BasicBlock *B = cast<BasicBlock>(BO[i-1]);
1271    BasicBlock::InstListType &IL = B->getInstList();
1272    typedef BasicBlock::InstListType::reverse_iterator reverse_iterator;
1273    ValueVect Ins;
1274    for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I)
1275      Ins.push_back(&*I);
1276    for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) {
1277      Instruction *In = cast<Instruction>(*I);
1278      if (isInstructionTriviallyDead(In))
1279        In->eraseFromParent();
1280    }
1281  }
1282}
1283
1284
1285bool HexagonCommonGEP::runOnFunction(Function &F) {
1286  // For now bail out on C++ exception handling.
1287  for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A)
1288    for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I)
1289      if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1290        return false;
1291
1292  Fn = &F;
1293  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1294  PDT = &getAnalysis<PostDominatorTree>();
1295  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1296  Ctx = &F.getContext();
1297
1298  Nodes.clear();
1299  Uses.clear();
1300  NodeOrder.clear();
1301
1302  SpecificBumpPtrAllocator<GepNode> Allocator;
1303  Mem = &Allocator;
1304
1305  collect();
1306  common();
1307
1308  NodeToValueMap Loc;
1309  computeNodePlacement(Loc);
1310  materialize(Loc);
1311  removeDeadCode();
1312
1313#ifdef XDEBUG
1314  // Run this only when expensive checks are enabled.
1315  verifyFunction(F);
1316#endif
1317  return true;
1318}
1319
1320
1321namespace llvm {
1322  FunctionPass *createHexagonCommonGEP() {
1323    return new HexagonCommonGEP();
1324  }
1325}
1326