1//===- BitTracker.cpp -----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9// SSA-based bit propagation.
10//
11// The purpose of this code is, for a given virtual register, to provide
12// information about the value of each bit in the register. The values
13// of bits are represented by the class BitValue, and take one of four
14// cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
15// "ref" value means that the bit is a copy of another bit (which itself
16// cannot be a copy of yet another bit---such chains are not allowed).
17// A "ref" value is associated with a BitRef structure, which indicates
18// which virtual register, and which bit in that register is the origin
19// of the value. For example, given an instruction
20//   %2 = ASL %1, 1
21// assuming that nothing is known about bits of %1, bit 1 of %2
22// will be a "ref" to (%1, 0). If there is a subsequent instruction
23//   %3 = ASL %2, 2
24// then bit 3 of %3 will be a "ref" to (%1, 0) as well.
25// The "bottom" case means that the bit's value cannot be determined,
26// and that this virtual register actually defines it. The "bottom" case
27// is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
28// to self", so for the %1 above, the bit 0 of it will be a "ref" to
29// (%1, 0), bit 1 will be a "ref" to (%1, 1), etc.
30//
31// The tracker implements the Wegman-Zadeck algorithm, originally developed
32// for SSA-based constant propagation. Each register is represented as
33// a sequence of bits, with the convention that bit 0 is the least signi-
34// ficant bit. Each bit is propagated individually. The class RegisterCell
35// implements the register's representation, and is also the subject of
36// the lattice operations in the tracker.
37//
38// The intended usage of the bit tracker is to create a target-specific
39// machine instruction evaluator, pass the evaluator to the BitTracker
40// object, and run the tracker. The tracker will then collect the bit
41// value information for a given machine function. After that, it can be
42// queried for the cells for each virtual register.
43// Sample code:
44//   const TargetSpecificEvaluator TSE(TRI, MRI);
45//   BitTracker BT(TSE, MF);
46//   BT.run();
47//   ...
48//   unsigned Reg = interestingRegister();
49//   RegisterCell RC = BT.get(Reg);
50//   if (RC[3].is(1))
51//      Reg0bit3 = 1;
52//
53// The code below is intended to be fully target-independent.
54
55#include "BitTracker.h"
56#include "llvm/ADT/APInt.h"
57#include "llvm/ADT/BitVector.h"
58#include "llvm/CodeGen/MachineBasicBlock.h"
59#include "llvm/CodeGen/MachineFunction.h"
60#include "llvm/CodeGen/MachineInstr.h"
61#include "llvm/CodeGen/MachineOperand.h"
62#include "llvm/CodeGen/MachineRegisterInfo.h"
63#include "llvm/CodeGen/TargetRegisterInfo.h"
64#include "llvm/IR/Constants.h"
65#include "llvm/Support/Debug.h"
66#include "llvm/Support/raw_ostream.h"
67#include <cassert>
68#include <cstdint>
69#include <iterator>
70
71using namespace llvm;
72
73using BT = BitTracker;
74
75namespace {
76
77  // Local trickery to pretty print a register (without the whole "%number"
78  // business).
79  struct printv {
80    printv(unsigned r) : R(r) {}
81
82    unsigned R;
83  };
84
85  raw_ostream &operator<< (raw_ostream &OS, const printv &PV) {
86    if (PV.R)
87      OS << 'v' << Register::virtReg2Index(PV.R);
88    else
89      OS << 's';
90    return OS;
91  }
92
93} // end anonymous namespace
94
95namespace llvm {
96
97  raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) {
98    switch (BV.Type) {
99      case BT::BitValue::Top:
100        OS << 'T';
101        break;
102      case BT::BitValue::Zero:
103        OS << '0';
104        break;
105      case BT::BitValue::One:
106        OS << '1';
107        break;
108      case BT::BitValue::Ref:
109        OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']';
110        break;
111    }
112    return OS;
113  }
114
115  raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) {
116    unsigned n = RC.Bits.size();
117    OS << "{ w:" << n;
118    // Instead of printing each bit value individually, try to group them
119    // into logical segments, such as sequences of 0 or 1 bits or references
120    // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
121    // "Start" will be the index of the beginning of the most recent segment.
122    unsigned Start = 0;
123    bool SeqRef = false;    // A sequence of refs to consecutive bits.
124    bool ConstRef = false;  // A sequence of refs to the same bit.
125
126    for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) {
127      const BT::BitValue &V = RC[i];
128      const BT::BitValue &SV = RC[Start];
129      bool IsRef = (V.Type == BT::BitValue::Ref);
130      // If the current value is the same as Start, skip to the next one.
131      if (!IsRef && V == SV)
132        continue;
133      if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) {
134        if (Start+1 == i) {
135          SeqRef = (V.RefI.Pos == SV.RefI.Pos+1);
136          ConstRef = (V.RefI.Pos == SV.RefI.Pos);
137        }
138        if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start))
139          continue;
140        if (ConstRef && V.RefI.Pos == SV.RefI.Pos)
141          continue;
142      }
143
144      // The current value is different. Print the previous one and reset
145      // the Start.
146      OS << " [" << Start;
147      unsigned Count = i - Start;
148      if (Count == 1) {
149        OS << "]:" << SV;
150      } else {
151        OS << '-' << i-1 << "]:";
152        if (SV.Type == BT::BitValue::Ref && SeqRef)
153          OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
154             << SV.RefI.Pos+(Count-1) << ']';
155        else
156          OS << SV;
157      }
158      Start = i;
159      SeqRef = ConstRef = false;
160    }
161
162    OS << " [" << Start;
163    unsigned Count = n - Start;
164    if (n-Start == 1) {
165      OS << "]:" << RC[Start];
166    } else {
167      OS << '-' << n-1 << "]:";
168      const BT::BitValue &SV = RC[Start];
169      if (SV.Type == BT::BitValue::Ref && SeqRef)
170        OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
171           << SV.RefI.Pos+(Count-1) << ']';
172      else
173        OS << SV;
174    }
175    OS << " }";
176
177    return OS;
178  }
179
180} // end namespace llvm
181
182void BitTracker::print_cells(raw_ostream &OS) const {
183  for (const std::pair<unsigned, RegisterCell> P : Map)
184    dbgs() << printReg(P.first, &ME.TRI) << " -> " << P.second << "\n";
185}
186
187BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F)
188    : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) {
189}
190
191BitTracker::~BitTracker() {
192  delete &Map;
193}
194
195// If we were allowed to update a cell for a part of a register, the meet
196// operation would need to be parametrized by the register number and the
197// exact part of the register, so that the computer BitRefs correspond to
198// the actual bits of the "self" register.
199// While this cannot happen in the current implementation, I'm not sure
200// if this should be ruled out in the future.
201bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) {
202  // An example when "meet" can be invoked with SelfR == 0 is a phi node
203  // with a physical register as an operand.
204  assert(SelfR == 0 || Register::isVirtualRegister(SelfR));
205  bool Changed = false;
206  for (uint16_t i = 0, n = Bits.size(); i < n; ++i) {
207    const BitValue &RCV = RC[i];
208    Changed |= Bits[i].meet(RCV, BitRef(SelfR, i));
209  }
210  return Changed;
211}
212
213// Insert the entire cell RC into the current cell at position given by M.
214BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC,
215      const BitMask &M) {
216  uint16_t B = M.first(), E = M.last(), W = width();
217  // Sanity: M must be a valid mask for *this.
218  assert(B < W && E < W);
219  // Sanity: the masked part of *this must have the same number of bits
220  // as the source.
221  assert(B > E || E-B+1 == RC.width());      // B <= E  =>  E-B+1 = |RC|.
222  assert(B <= E || E+(W-B)+1 == RC.width()); // E < B   =>  E+(W-B)+1 = |RC|.
223  if (B <= E) {
224    for (uint16_t i = 0; i <= E-B; ++i)
225      Bits[i+B] = RC[i];
226  } else {
227    for (uint16_t i = 0; i < W-B; ++i)
228      Bits[i+B] = RC[i];
229    for (uint16_t i = 0; i <= E; ++i)
230      Bits[i] = RC[i+(W-B)];
231  }
232  return *this;
233}
234
235BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const {
236  uint16_t B = M.first(), E = M.last(), W = width();
237  assert(B < W && E < W);
238  if (B <= E) {
239    RegisterCell RC(E-B+1);
240    for (uint16_t i = B; i <= E; ++i)
241      RC.Bits[i-B] = Bits[i];
242    return RC;
243  }
244
245  RegisterCell RC(E+(W-B)+1);
246  for (uint16_t i = 0; i < W-B; ++i)
247    RC.Bits[i] = Bits[i+B];
248  for (uint16_t i = 0; i <= E; ++i)
249    RC.Bits[i+(W-B)] = Bits[i];
250  return RC;
251}
252
253BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) {
254  // Rotate left (i.e. towards increasing bit indices).
255  // Swap the two parts:  [0..W-Sh-1] [W-Sh..W-1]
256  uint16_t W = width();
257  Sh = Sh % W;
258  if (Sh == 0)
259    return *this;
260
261  RegisterCell Tmp(W-Sh);
262  // Tmp = [0..W-Sh-1].
263  for (uint16_t i = 0; i < W-Sh; ++i)
264    Tmp[i] = Bits[i];
265  // Shift [W-Sh..W-1] to [0..Sh-1].
266  for (uint16_t i = 0; i < Sh; ++i)
267    Bits[i] = Bits[W-Sh+i];
268  // Copy Tmp to [Sh..W-1].
269  for (uint16_t i = 0; i < W-Sh; ++i)
270    Bits[i+Sh] = Tmp.Bits[i];
271  return *this;
272}
273
274BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E,
275      const BitValue &V) {
276  assert(B <= E);
277  while (B < E)
278    Bits[B++] = V;
279  return *this;
280}
281
282BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) {
283  // Append the cell given as the argument to the "this" cell.
284  // Bit 0 of RC becomes bit W of the result, where W is this->width().
285  uint16_t W = width(), WRC = RC.width();
286  Bits.resize(W+WRC);
287  for (uint16_t i = 0; i < WRC; ++i)
288    Bits[i+W] = RC.Bits[i];
289  return *this;
290}
291
292uint16_t BT::RegisterCell::ct(bool B) const {
293  uint16_t W = width();
294  uint16_t C = 0;
295  BitValue V = B;
296  while (C < W && Bits[C] == V)
297    C++;
298  return C;
299}
300
301uint16_t BT::RegisterCell::cl(bool B) const {
302  uint16_t W = width();
303  uint16_t C = 0;
304  BitValue V = B;
305  while (C < W && Bits[W-(C+1)] == V)
306    C++;
307  return C;
308}
309
310bool BT::RegisterCell::operator== (const RegisterCell &RC) const {
311  uint16_t W = Bits.size();
312  if (RC.Bits.size() != W)
313    return false;
314  for (uint16_t i = 0; i < W; ++i)
315    if (Bits[i] != RC[i])
316      return false;
317  return true;
318}
319
320BT::RegisterCell &BT::RegisterCell::regify(unsigned R) {
321  for (unsigned i = 0, n = width(); i < n; ++i) {
322    const BitValue &V = Bits[i];
323    if (V.Type == BitValue::Ref && V.RefI.Reg == 0)
324      Bits[i].RefI = BitRef(R, i);
325  }
326  return *this;
327}
328
329uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const {
330  // The general problem is with finding a register class that corresponds
331  // to a given reference reg:sub. There can be several such classes, and
332  // since we only care about the register size, it does not matter which
333  // such class we would find.
334  // The easiest way to accomplish what we want is to
335  // 1. find a physical register PhysR from the same class as RR.Reg,
336  // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
337  // 3. find a register class that contains PhysS.
338  if (Register::isVirtualRegister(RR.Reg)) {
339    const auto &VC = composeWithSubRegIndex(*MRI.getRegClass(RR.Reg), RR.Sub);
340    return TRI.getRegSizeInBits(VC);
341  }
342  assert(Register::isPhysicalRegister(RR.Reg));
343  Register PhysR =
344      (RR.Sub == 0) ? Register(RR.Reg) : TRI.getSubReg(RR.Reg, RR.Sub);
345  return getPhysRegBitWidth(PhysR);
346}
347
348BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR,
349      const CellMapType &M) const {
350  uint16_t BW = getRegBitWidth(RR);
351
352  // Physical registers are assumed to be present in the map with an unknown
353  // value. Don't actually insert anything in the map, just return the cell.
354  if (Register::isPhysicalRegister(RR.Reg))
355    return RegisterCell::self(0, BW);
356
357  assert(Register::isVirtualRegister(RR.Reg));
358  // For virtual registers that belong to a class that is not tracked,
359  // generate an "unknown" value as well.
360  const TargetRegisterClass *C = MRI.getRegClass(RR.Reg);
361  if (!track(C))
362    return RegisterCell::self(0, BW);
363
364  CellMapType::const_iterator F = M.find(RR.Reg);
365  if (F != M.end()) {
366    if (!RR.Sub)
367      return F->second;
368    BitMask M = mask(RR.Reg, RR.Sub);
369    return F->second.extract(M);
370  }
371  // If not found, create a "top" entry, but do not insert it in the map.
372  return RegisterCell::top(BW);
373}
374
375void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC,
376      CellMapType &M) const {
377  // While updating the cell map can be done in a meaningful way for
378  // a part of a register, it makes little sense to implement it as the
379  // SSA representation would never contain such "partial definitions".
380  if (!Register::isVirtualRegister(RR.Reg))
381    return;
382  assert(RR.Sub == 0 && "Unexpected sub-register in definition");
383  // Eliminate all ref-to-reg-0 bit values: replace them with "self".
384  M[RR.Reg] = RC.regify(RR.Reg);
385}
386
387// Check if the cell represents a compile-time integer value.
388bool BT::MachineEvaluator::isInt(const RegisterCell &A) const {
389  uint16_t W = A.width();
390  for (uint16_t i = 0; i < W; ++i)
391    if (!A[i].is(0) && !A[i].is(1))
392      return false;
393  return true;
394}
395
396// Convert a cell to the integer value. The result must fit in uint64_t.
397uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const {
398  assert(isInt(A));
399  uint64_t Val = 0;
400  uint16_t W = A.width();
401  for (uint16_t i = 0; i < W; ++i) {
402    Val <<= 1;
403    Val |= A[i].is(1);
404  }
405  return Val;
406}
407
408// Evaluator helper functions. These implement some common operation on
409// register cells that can be used to implement target-specific instructions
410// in a target-specific evaluator.
411
412BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const {
413  RegisterCell Res(W);
414  // For bits beyond the 63rd, this will generate the sign bit of V.
415  for (uint16_t i = 0; i < W; ++i) {
416    Res[i] = BitValue(V & 1);
417    V >>= 1;
418  }
419  return Res;
420}
421
422BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const {
423  const APInt &A = CI->getValue();
424  uint16_t BW = A.getBitWidth();
425  assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow");
426  RegisterCell Res(BW);
427  for (uint16_t i = 0; i < BW; ++i)
428    Res[i] = A[i];
429  return Res;
430}
431
432BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1,
433      const RegisterCell &A2) const {
434  uint16_t W = A1.width();
435  assert(W == A2.width());
436  RegisterCell Res(W);
437  bool Carry = false;
438  uint16_t I;
439  for (I = 0; I < W; ++I) {
440    const BitValue &V1 = A1[I];
441    const BitValue &V2 = A2[I];
442    if (!V1.num() || !V2.num())
443      break;
444    unsigned S = bool(V1) + bool(V2) + Carry;
445    Res[I] = BitValue(S & 1);
446    Carry = (S > 1);
447  }
448  for (; I < W; ++I) {
449    const BitValue &V1 = A1[I];
450    const BitValue &V2 = A2[I];
451    // If the next bit is same as Carry, the result will be 0 plus the
452    // other bit. The Carry bit will remain unchanged.
453    if (V1.is(Carry))
454      Res[I] = BitValue::ref(V2);
455    else if (V2.is(Carry))
456      Res[I] = BitValue::ref(V1);
457    else
458      break;
459  }
460  for (; I < W; ++I)
461    Res[I] = BitValue::self();
462  return Res;
463}
464
465BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1,
466      const RegisterCell &A2) const {
467  uint16_t W = A1.width();
468  assert(W == A2.width());
469  RegisterCell Res(W);
470  bool Borrow = false;
471  uint16_t I;
472  for (I = 0; I < W; ++I) {
473    const BitValue &V1 = A1[I];
474    const BitValue &V2 = A2[I];
475    if (!V1.num() || !V2.num())
476      break;
477    unsigned S = bool(V1) - bool(V2) - Borrow;
478    Res[I] = BitValue(S & 1);
479    Borrow = (S > 1);
480  }
481  for (; I < W; ++I) {
482    const BitValue &V1 = A1[I];
483    const BitValue &V2 = A2[I];
484    if (V1.is(Borrow)) {
485      Res[I] = BitValue::ref(V2);
486      break;
487    }
488    if (V2.is(Borrow))
489      Res[I] = BitValue::ref(V1);
490    else
491      break;
492  }
493  for (; I < W; ++I)
494    Res[I] = BitValue::self();
495  return Res;
496}
497
498BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1,
499      const RegisterCell &A2) const {
500  uint16_t W = A1.width() + A2.width();
501  uint16_t Z = A1.ct(false) + A2.ct(false);
502  RegisterCell Res(W);
503  Res.fill(0, Z, BitValue::Zero);
504  Res.fill(Z, W, BitValue::self());
505  return Res;
506}
507
508BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1,
509      const RegisterCell &A2) const {
510  uint16_t W = A1.width() + A2.width();
511  uint16_t Z = A1.ct(false) + A2.ct(false);
512  RegisterCell Res(W);
513  Res.fill(0, Z, BitValue::Zero);
514  Res.fill(Z, W, BitValue::self());
515  return Res;
516}
517
518BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1,
519      uint16_t Sh) const {
520  assert(Sh <= A1.width());
521  RegisterCell Res = RegisterCell::ref(A1);
522  Res.rol(Sh);
523  Res.fill(0, Sh, BitValue::Zero);
524  return Res;
525}
526
527BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1,
528      uint16_t Sh) const {
529  uint16_t W = A1.width();
530  assert(Sh <= W);
531  RegisterCell Res = RegisterCell::ref(A1);
532  Res.rol(W-Sh);
533  Res.fill(W-Sh, W, BitValue::Zero);
534  return Res;
535}
536
537BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1,
538      uint16_t Sh) const {
539  uint16_t W = A1.width();
540  assert(Sh <= W);
541  RegisterCell Res = RegisterCell::ref(A1);
542  BitValue Sign = Res[W-1];
543  Res.rol(W-Sh);
544  Res.fill(W-Sh, W, Sign);
545  return Res;
546}
547
548BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1,
549      const RegisterCell &A2) const {
550  uint16_t W = A1.width();
551  assert(W == A2.width());
552  RegisterCell Res(W);
553  for (uint16_t i = 0; i < W; ++i) {
554    const BitValue &V1 = A1[i];
555    const BitValue &V2 = A2[i];
556    if (V1.is(1))
557      Res[i] = BitValue::ref(V2);
558    else if (V2.is(1))
559      Res[i] = BitValue::ref(V1);
560    else if (V1.is(0) || V2.is(0))
561      Res[i] = BitValue::Zero;
562    else if (V1 == V2)
563      Res[i] = V1;
564    else
565      Res[i] = BitValue::self();
566  }
567  return Res;
568}
569
570BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1,
571      const RegisterCell &A2) const {
572  uint16_t W = A1.width();
573  assert(W == A2.width());
574  RegisterCell Res(W);
575  for (uint16_t i = 0; i < W; ++i) {
576    const BitValue &V1 = A1[i];
577    const BitValue &V2 = A2[i];
578    if (V1.is(1) || V2.is(1))
579      Res[i] = BitValue::One;
580    else if (V1.is(0))
581      Res[i] = BitValue::ref(V2);
582    else if (V2.is(0))
583      Res[i] = BitValue::ref(V1);
584    else if (V1 == V2)
585      Res[i] = V1;
586    else
587      Res[i] = BitValue::self();
588  }
589  return Res;
590}
591
592BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1,
593      const RegisterCell &A2) const {
594  uint16_t W = A1.width();
595  assert(W == A2.width());
596  RegisterCell Res(W);
597  for (uint16_t i = 0; i < W; ++i) {
598    const BitValue &V1 = A1[i];
599    const BitValue &V2 = A2[i];
600    if (V1.is(0))
601      Res[i] = BitValue::ref(V2);
602    else if (V2.is(0))
603      Res[i] = BitValue::ref(V1);
604    else if (V1 == V2)
605      Res[i] = BitValue::Zero;
606    else
607      Res[i] = BitValue::self();
608  }
609  return Res;
610}
611
612BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const {
613  uint16_t W = A1.width();
614  RegisterCell Res(W);
615  for (uint16_t i = 0; i < W; ++i) {
616    const BitValue &V = A1[i];
617    if (V.is(0))
618      Res[i] = BitValue::One;
619    else if (V.is(1))
620      Res[i] = BitValue::Zero;
621    else
622      Res[i] = BitValue::self();
623  }
624  return Res;
625}
626
627BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1,
628      uint16_t BitN) const {
629  assert(BitN < A1.width());
630  RegisterCell Res = RegisterCell::ref(A1);
631  Res[BitN] = BitValue::One;
632  return Res;
633}
634
635BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1,
636      uint16_t BitN) const {
637  assert(BitN < A1.width());
638  RegisterCell Res = RegisterCell::ref(A1);
639  Res[BitN] = BitValue::Zero;
640  return Res;
641}
642
643BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B,
644      uint16_t W) const {
645  uint16_t C = A1.cl(B), AW = A1.width();
646  // If the last leading non-B bit is not a constant, then we don't know
647  // the real count.
648  if ((C < AW && A1[AW-1-C].num()) || C == AW)
649    return eIMM(C, W);
650  return RegisterCell::self(0, W);
651}
652
653BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B,
654      uint16_t W) const {
655  uint16_t C = A1.ct(B), AW = A1.width();
656  // If the last trailing non-B bit is not a constant, then we don't know
657  // the real count.
658  if ((C < AW && A1[C].num()) || C == AW)
659    return eIMM(C, W);
660  return RegisterCell::self(0, W);
661}
662
663BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1,
664      uint16_t FromN) const {
665  uint16_t W = A1.width();
666  assert(FromN <= W);
667  RegisterCell Res = RegisterCell::ref(A1);
668  BitValue Sign = Res[FromN-1];
669  // Sign-extend "inreg".
670  Res.fill(FromN, W, Sign);
671  return Res;
672}
673
674BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1,
675      uint16_t FromN) const {
676  uint16_t W = A1.width();
677  assert(FromN <= W);
678  RegisterCell Res = RegisterCell::ref(A1);
679  Res.fill(FromN, W, BitValue::Zero);
680  return Res;
681}
682
683BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1,
684      uint16_t B, uint16_t E) const {
685  uint16_t W = A1.width();
686  assert(B < W && E <= W);
687  if (B == E)
688    return RegisterCell(0);
689  uint16_t Last = (E > 0) ? E-1 : W-1;
690  RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last));
691  // Return shorter cell.
692  return Res;
693}
694
695BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1,
696      const RegisterCell &A2, uint16_t AtN) const {
697  uint16_t W1 = A1.width(), W2 = A2.width();
698  (void)W1;
699  assert(AtN < W1 && AtN+W2 <= W1);
700  // Copy bits from A1, insert A2 at position AtN.
701  RegisterCell Res = RegisterCell::ref(A1);
702  if (W2 > 0)
703    Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1));
704  return Res;
705}
706
707BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const {
708  assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0");
709  uint16_t W = getRegBitWidth(Reg);
710  assert(W > 0 && "Cannot generate mask for empty register");
711  return BitMask(0, W-1);
712}
713
714uint16_t BT::MachineEvaluator::getPhysRegBitWidth(unsigned Reg) const {
715  assert(Register::isPhysicalRegister(Reg));
716  const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg);
717  return TRI.getRegSizeInBits(PC);
718}
719
720bool BT::MachineEvaluator::evaluate(const MachineInstr &MI,
721                                    const CellMapType &Inputs,
722                                    CellMapType &Outputs) const {
723  unsigned Opc = MI.getOpcode();
724  switch (Opc) {
725    case TargetOpcode::REG_SEQUENCE: {
726      RegisterRef RD = MI.getOperand(0);
727      assert(RD.Sub == 0);
728      RegisterRef RS = MI.getOperand(1);
729      unsigned SS = MI.getOperand(2).getImm();
730      RegisterRef RT = MI.getOperand(3);
731      unsigned ST = MI.getOperand(4).getImm();
732      assert(SS != ST);
733
734      uint16_t W = getRegBitWidth(RD);
735      RegisterCell Res(W);
736      Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS));
737      Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST));
738      putCell(RD, Res, Outputs);
739      break;
740    }
741
742    case TargetOpcode::COPY: {
743      // COPY can transfer a smaller register into a wider one.
744      // If that is the case, fill the remaining high bits with 0.
745      RegisterRef RD = MI.getOperand(0);
746      RegisterRef RS = MI.getOperand(1);
747      assert(RD.Sub == 0);
748      uint16_t WD = getRegBitWidth(RD);
749      uint16_t WS = getRegBitWidth(RS);
750      assert(WD >= WS);
751      RegisterCell Src = getCell(RS, Inputs);
752      RegisterCell Res(WD);
753      Res.insert(Src, BitMask(0, WS-1));
754      Res.fill(WS, WD, BitValue::Zero);
755      putCell(RD, Res, Outputs);
756      break;
757    }
758
759    default:
760      return false;
761  }
762
763  return true;
764}
765
766bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA,
767                                       const MachineInstr *InstB) const {
768  // This is a comparison function for a priority queue: give higher priority
769  // to earlier instructions.
770  // This operator is used as "less", so returning "true" gives InstB higher
771  // priority (because then InstA < InstB).
772  if (InstA == InstB)
773    return false;
774  const MachineBasicBlock *BA = InstA->getParent();
775  const MachineBasicBlock *BB = InstB->getParent();
776  if (BA != BB) {
777    // If the blocks are different, ideally the dominating block would
778    // have a higher priority, but it may be too expensive to check.
779    return BA->getNumber() > BB->getNumber();
780  }
781
782  auto getDist = [this] (const MachineInstr *MI) {
783    auto F = Dist.find(MI);
784    if (F != Dist.end())
785      return F->second;
786    MachineBasicBlock::const_iterator I = MI->getParent()->begin();
787    MachineBasicBlock::const_iterator E = MI->getIterator();
788    unsigned D = std::distance(I, E);
789    Dist.insert(std::make_pair(MI, D));
790    return D;
791  };
792
793  return getDist(InstA) > getDist(InstB);
794}
795
796// Main W-Z implementation.
797
798void BT::visitPHI(const MachineInstr &PI) {
799  int ThisN = PI.getParent()->getNumber();
800  if (Trace)
801    dbgs() << "Visit FI(" << printMBBReference(*PI.getParent()) << "): " << PI;
802
803  const MachineOperand &MD = PI.getOperand(0);
804  assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition");
805  RegisterRef DefRR(MD);
806  uint16_t DefBW = ME.getRegBitWidth(DefRR);
807
808  RegisterCell DefC = ME.getCell(DefRR, Map);
809  if (DefC == RegisterCell::self(DefRR.Reg, DefBW))    // XXX slow
810    return;
811
812  bool Changed = false;
813
814  for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) {
815    const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB();
816    int PredN = PB->getNumber();
817    if (Trace)
818      dbgs() << "  edge " << printMBBReference(*PB) << "->"
819             << printMBBReference(*PI.getParent());
820    if (!EdgeExec.count(CFGEdge(PredN, ThisN))) {
821      if (Trace)
822        dbgs() << " not executable\n";
823      continue;
824    }
825
826    RegisterRef RU = PI.getOperand(i);
827    RegisterCell ResC = ME.getCell(RU, Map);
828    if (Trace)
829      dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
830             << " cell: " << ResC << "\n";
831    Changed |= DefC.meet(ResC, DefRR.Reg);
832  }
833
834  if (Changed) {
835    if (Trace)
836      dbgs() << "Output: " << printReg(DefRR.Reg, &ME.TRI, DefRR.Sub)
837             << " cell: " << DefC << "\n";
838    ME.putCell(DefRR, DefC, Map);
839    visitUsesOf(DefRR.Reg);
840  }
841}
842
843void BT::visitNonBranch(const MachineInstr &MI) {
844  if (Trace)
845    dbgs() << "Visit MI(" << printMBBReference(*MI.getParent()) << "): " << MI;
846  if (MI.isDebugInstr())
847    return;
848  assert(!MI.isBranch() && "Unexpected branch instruction");
849
850  CellMapType ResMap;
851  bool Eval = ME.evaluate(MI, Map, ResMap);
852
853  if (Trace && Eval) {
854    for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
855      const MachineOperand &MO = MI.getOperand(i);
856      if (!MO.isReg() || !MO.isUse())
857        continue;
858      RegisterRef RU(MO);
859      dbgs() << "  input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
860             << " cell: " << ME.getCell(RU, Map) << "\n";
861    }
862    dbgs() << "Outputs:\n";
863    for (const std::pair<const unsigned, RegisterCell> &P : ResMap) {
864      RegisterRef RD(P.first);
865      dbgs() << "  " << printReg(P.first, &ME.TRI) << " cell: "
866             << ME.getCell(RD, ResMap) << "\n";
867    }
868  }
869
870  // Iterate over all definitions of the instruction, and update the
871  // cells accordingly.
872  for (const MachineOperand &MO : MI.operands()) {
873    // Visit register defs only.
874    if (!MO.isReg() || !MO.isDef())
875      continue;
876    RegisterRef RD(MO);
877    assert(RD.Sub == 0 && "Unexpected sub-register in definition");
878    if (!Register::isVirtualRegister(RD.Reg))
879      continue;
880
881    bool Changed = false;
882    if (!Eval || ResMap.count(RD.Reg) == 0) {
883      // Set to "ref" (aka "bottom").
884      uint16_t DefBW = ME.getRegBitWidth(RD);
885      RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW);
886      if (RefC != ME.getCell(RD, Map)) {
887        ME.putCell(RD, RefC, Map);
888        Changed = true;
889      }
890    } else {
891      RegisterCell DefC = ME.getCell(RD, Map);
892      RegisterCell ResC = ME.getCell(RD, ResMap);
893      // This is a non-phi instruction, so the values of the inputs come
894      // from the same registers each time this instruction is evaluated.
895      // During the propagation, the values of the inputs can become lowered
896      // in the sense of the lattice operation, which may cause different
897      // results to be calculated in subsequent evaluations. This should
898      // not cause the bottoming of the result in the map, since the new
899      // result is already reflecting the lowered inputs.
900      for (uint16_t i = 0, w = DefC.width(); i < w; ++i) {
901        BitValue &V = DefC[i];
902        // Bits that are already "bottom" should not be updated.
903        if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg)
904          continue;
905        // Same for those that are identical in DefC and ResC.
906        if (V == ResC[i])
907          continue;
908        V = ResC[i];
909        Changed = true;
910      }
911      if (Changed)
912        ME.putCell(RD, DefC, Map);
913    }
914    if (Changed)
915      visitUsesOf(RD.Reg);
916  }
917}
918
919void BT::visitBranchesFrom(const MachineInstr &BI) {
920  const MachineBasicBlock &B = *BI.getParent();
921  MachineBasicBlock::const_iterator It = BI, End = B.end();
922  BranchTargetList Targets, BTs;
923  bool FallsThrough = true, DefaultToAll = false;
924  int ThisN = B.getNumber();
925
926  do {
927    BTs.clear();
928    const MachineInstr &MI = *It;
929    if (Trace)
930      dbgs() << "Visit BR(" << printMBBReference(B) << "): " << MI;
931    assert(MI.isBranch() && "Expecting branch instruction");
932    InstrExec.insert(&MI);
933    bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough);
934    if (!Eval) {
935      // If the evaluation failed, we will add all targets. Keep going in
936      // the loop to mark all executable branches as such.
937      DefaultToAll = true;
938      FallsThrough = true;
939      if (Trace)
940        dbgs() << "  failed to evaluate: will add all CFG successors\n";
941    } else if (!DefaultToAll) {
942      // If evaluated successfully add the targets to the cumulative list.
943      if (Trace) {
944        dbgs() << "  adding targets:";
945        for (unsigned i = 0, n = BTs.size(); i < n; ++i)
946          dbgs() << " " << printMBBReference(*BTs[i]);
947        if (FallsThrough)
948          dbgs() << "\n  falls through\n";
949        else
950          dbgs() << "\n  does not fall through\n";
951      }
952      Targets.insert(BTs.begin(), BTs.end());
953    }
954    ++It;
955  } while (FallsThrough && It != End);
956
957  if (!DefaultToAll) {
958    // Need to add all CFG successors that lead to EH landing pads.
959    // There won't be explicit branches to these blocks, but they must
960    // be processed.
961    for (const MachineBasicBlock *SB : B.successors()) {
962      if (SB->isEHPad())
963        Targets.insert(SB);
964    }
965    if (FallsThrough) {
966      MachineFunction::const_iterator BIt = B.getIterator();
967      MachineFunction::const_iterator Next = std::next(BIt);
968      if (Next != MF.end())
969        Targets.insert(&*Next);
970    }
971  } else {
972    for (const MachineBasicBlock *SB : B.successors())
973      Targets.insert(SB);
974  }
975
976  for (const MachineBasicBlock *TB : Targets)
977    FlowQ.push(CFGEdge(ThisN, TB->getNumber()));
978}
979
980void BT::visitUsesOf(unsigned Reg) {
981  if (Trace)
982    dbgs() << "queuing uses of modified reg " << printReg(Reg, &ME.TRI)
983           << " cell: " << ME.getCell(Reg, Map) << '\n';
984
985  for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg))
986    UseQ.push(&UseI);
987}
988
989BT::RegisterCell BT::get(RegisterRef RR) const {
990  return ME.getCell(RR, Map);
991}
992
993void BT::put(RegisterRef RR, const RegisterCell &RC) {
994  ME.putCell(RR, RC, Map);
995}
996
997// Replace all references to bits from OldRR with the corresponding bits
998// in NewRR.
999void BT::subst(RegisterRef OldRR, RegisterRef NewRR) {
1000  assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map");
1001  BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub);
1002  BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub);
1003  uint16_t OMB = OM.first(), OME = OM.last();
1004  uint16_t NMB = NM.first(), NME = NM.last();
1005  (void)NME;
1006  assert((OME-OMB == NME-NMB) &&
1007         "Substituting registers of different lengths");
1008  for (std::pair<const unsigned, RegisterCell> &P : Map) {
1009    RegisterCell &RC = P.second;
1010    for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
1011      BitValue &V = RC[i];
1012      if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg)
1013        continue;
1014      if (V.RefI.Pos < OMB || V.RefI.Pos > OME)
1015        continue;
1016      V.RefI.Reg = NewRR.Reg;
1017      V.RefI.Pos += NMB-OMB;
1018    }
1019  }
1020}
1021
1022// Check if the block has been "executed" during propagation. (If not, the
1023// block is dead, but it may still appear to be reachable.)
1024bool BT::reached(const MachineBasicBlock *B) const {
1025  int BN = B->getNumber();
1026  assert(BN >= 0);
1027  return ReachedBB.count(BN);
1028}
1029
1030// Visit an individual instruction. This could be a newly added instruction,
1031// or one that has been modified by an optimization.
1032void BT::visit(const MachineInstr &MI) {
1033  assert(!MI.isBranch() && "Only non-branches are allowed");
1034  InstrExec.insert(&MI);
1035  visitNonBranch(MI);
1036  // Make sure to flush all the pending use updates.
1037  runUseQueue();
1038  // The call to visitNonBranch could propagate the changes until a branch
1039  // is actually visited. This could result in adding CFG edges to the flow
1040  // queue. Since the queue won't be processed, clear it.
1041  while (!FlowQ.empty())
1042    FlowQ.pop();
1043}
1044
1045void BT::reset() {
1046  EdgeExec.clear();
1047  InstrExec.clear();
1048  Map.clear();
1049  ReachedBB.clear();
1050  ReachedBB.reserve(MF.size());
1051}
1052
1053void BT::runEdgeQueue(BitVector &BlockScanned) {
1054  while (!FlowQ.empty()) {
1055    CFGEdge Edge = FlowQ.front();
1056    FlowQ.pop();
1057
1058    if (EdgeExec.count(Edge))
1059      return;
1060    EdgeExec.insert(Edge);
1061    ReachedBB.insert(Edge.second);
1062
1063    const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
1064    MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
1065    // Visit PHI nodes first.
1066    while (It != End && It->isPHI()) {
1067      const MachineInstr &PI = *It++;
1068      InstrExec.insert(&PI);
1069      visitPHI(PI);
1070    }
1071
1072    // If this block has already been visited through a flow graph edge,
1073    // then the instructions have already been processed. Any updates to
1074    // the cells would now only happen through visitUsesOf...
1075    if (BlockScanned[Edge.second])
1076      return;
1077    BlockScanned[Edge.second] = true;
1078
1079    // Visit non-branch instructions.
1080    while (It != End && !It->isBranch()) {
1081      const MachineInstr &MI = *It++;
1082      InstrExec.insert(&MI);
1083      visitNonBranch(MI);
1084    }
1085    // If block end has been reached, add the fall-through edge to the queue.
1086    if (It == End) {
1087      MachineFunction::const_iterator BIt = B.getIterator();
1088      MachineFunction::const_iterator Next = std::next(BIt);
1089      if (Next != MF.end() && B.isSuccessor(&*Next)) {
1090        int ThisN = B.getNumber();
1091        int NextN = Next->getNumber();
1092        FlowQ.push(CFGEdge(ThisN, NextN));
1093      }
1094    } else {
1095      // Handle the remaining sequence of branches. This function will update
1096      // the work queue.
1097      visitBranchesFrom(*It);
1098    }
1099  } // while (!FlowQ->empty())
1100}
1101
1102void BT::runUseQueue() {
1103  while (!UseQ.empty()) {
1104    MachineInstr &UseI = *UseQ.front();
1105    UseQ.pop();
1106
1107    if (!InstrExec.count(&UseI))
1108      continue;
1109    if (UseI.isPHI())
1110      visitPHI(UseI);
1111    else if (!UseI.isBranch())
1112      visitNonBranch(UseI);
1113    else
1114      visitBranchesFrom(UseI);
1115  }
1116}
1117
1118void BT::run() {
1119  reset();
1120  assert(FlowQ.empty());
1121
1122  using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>;
1123  const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF);
1124
1125  unsigned MaxBN = 0;
1126  for (const MachineBasicBlock &B : MF) {
1127    assert(B.getNumber() >= 0 && "Disconnected block");
1128    unsigned BN = B.getNumber();
1129    if (BN > MaxBN)
1130      MaxBN = BN;
1131  }
1132
1133  // Keep track of visited blocks.
1134  BitVector BlockScanned(MaxBN+1);
1135
1136  int EntryN = Entry->getNumber();
1137  // Generate a fake edge to get something to start with.
1138  FlowQ.push(CFGEdge(-1, EntryN));
1139
1140  while (!FlowQ.empty() || !UseQ.empty()) {
1141    runEdgeQueue(BlockScanned);
1142    runUseQueue();
1143  }
1144  UseQ.reset();
1145
1146  if (Trace)
1147    print_cells(dbgs() << "Cells after propagation:\n");
1148}
1149