ARMDisassembler.cpp revision 206274
1//===- ARMDisassembler.cpp - Disassembler for ARM/Thumb ISA -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is part of the ARM Disassembler.
11// It contains code to implement the public interfaces of ARMDisassembler and
12// ThumbDisassembler, both of which are instances of MCDisassembler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "arm-disassembler"
17
18#include "ARMDisassembler.h"
19#include "ARMDisassemblerCore.h"
20
21#include "llvm/MC/MCInst.h"
22#include "llvm/Target/TargetRegistry.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/MemoryObject.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27
28/// ARMGenDecoderTables.inc - ARMDecoderTables.inc is tblgen'ed from
29/// ARMDecoderEmitter.cpp TableGen backend.  It contains:
30///
31/// o Mappings from opcode to ARM/Thumb instruction format
32///
33/// o static uint16_t decodeInstruction(uint32_t insn) - the decoding function
34/// for an ARM instruction.
35///
36/// o static uint16_t decodeThumbInstruction(field_t insn) - the decoding
37/// function for a Thumb instruction.
38///
39#include "../ARMGenDecoderTables.inc"
40
41namespace llvm {
42
43/// showBitVector - Use the raw_ostream to log a diagnostic message describing
44/// the inidividual bits of the instruction.
45///
46static inline void showBitVector(raw_ostream &os, const uint32_t &insn) {
47  // Split the bit position markers into more than one lines to fit 80 columns.
48  os << " 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11"
49     << " 10  9  8  7  6  5  4  3  2  1  0 \n";
50  os << "---------------------------------------------------------------"
51     << "----------------------------------\n";
52  os << '|';
53  for (unsigned i = 32; i != 0; --i) {
54    if (insn >> (i - 1) & 0x01)
55      os << " 1";
56    else
57      os << " 0";
58    os << (i%4 == 1 ? '|' : ':');
59  }
60  os << '\n';
61  // Split the bit position markers into more than one lines to fit 80 columns.
62  os << "---------------------------------------------------------------"
63     << "----------------------------------\n";
64  os << '\n';
65}
66
67/// decodeARMInstruction is a decorator function which tries special cases of
68/// instruction matching before calling the auto-generated decoder function.
69static unsigned decodeARMInstruction(uint32_t &insn) {
70  if (slice(insn, 31, 28) == 15)
71    goto AutoGenedDecoder;
72
73  // Special case processing, if any, goes here....
74
75  // LLVM combines the offset mode of A8.6.197 & A8.6.198 into STRB.
76  // The insufficient encoding information of the combined instruction confuses
77  // the decoder wrt BFC/BFI.  Therefore, we try to recover here.
78  // For BFC, Inst{27-21} = 0b0111110 & Inst{6-0} = 0b0011111.
79  // For BFI, Inst{27-21} = 0b0111110 & Inst{6-4} = 0b001 & Inst{3-0} =! 0b1111.
80  if (slice(insn, 27, 21) == 0x3e && slice(insn, 6, 4) == 1) {
81    if (slice(insn, 3, 0) == 15)
82      return ARM::BFC;
83    else
84      return ARM::BFI;
85  }
86
87  // Ditto for ADDSrs, which is a super-instruction for A8.6.7 & A8.6.8.
88  // As a result, the decoder fails to decode UMULL properly.
89  if (slice(insn, 27, 21) == 0x04 && slice(insn, 7, 4) == 9) {
90    return ARM::UMULL;
91  }
92
93  // Ditto for STR_PRE, which is a super-instruction for A8.6.194 & A8.6.195.
94  // As a result, the decoder fails to decode SBFX properly.
95  if (slice(insn, 27, 21) == 0x3d && slice(insn, 6, 4) == 5)
96    return ARM::SBFX;
97
98  // And STRB_PRE, which is a super-instruction for A8.6.197 & A8.6.198.
99  // As a result, the decoder fails to decode UBFX properly.
100  if (slice(insn, 27, 21) == 0x3f && slice(insn, 6, 4) == 5)
101    return ARM::UBFX;
102
103  // Ditto for STRT, which is a super-instruction for A8.6.210 Encoding A1 & A2.
104  // As a result, the decoder fails to deocode SSAT properly.
105  if (slice(insn, 27, 21) == 0x35 && slice(insn, 5, 4) == 1)
106    return slice(insn, 6, 6) == 0 ? ARM::SSATlsl : ARM::SSATasr;
107
108  // Ditto for RSCrs, which is a super-instruction for A8.6.146 & A8.6.147.
109  // As a result, the decoder fails to decode STRHT/LDRHT/LDRSHT/LDRSBT.
110  if (slice(insn, 27, 24) == 0) {
111    switch (slice(insn, 21, 20)) {
112    case 2:
113      switch (slice(insn, 7, 4)) {
114      case 11:
115        return ARM::STRHT;
116      default:
117        break; // fallthrough
118      }
119      break;
120    case 3:
121      switch (slice(insn, 7, 4)) {
122      case 11:
123        return ARM::LDRHT;
124      case 13:
125        return ARM::LDRSBT;
126      case 15:
127        return ARM::LDRSHT;
128      default:
129        break; // fallthrough
130      }
131      break;
132    default:
133      break;   // fallthrough
134    }
135  }
136
137  // Ditto for SBCrs, which is a super-instruction for A8.6.152 & A8.6.153.
138  // As a result, the decoder fails to decode STRH_Post/LDRD_POST/STRD_POST
139  // properly.
140  if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 0) {
141    unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21);
142    switch (slice(insn, 7, 4)) {
143    case 11:
144      switch (PW) {
145      case 2: // Offset
146        return ARM::STRH;
147      case 3: // Pre-indexed
148        return ARM::STRH_PRE;
149      case 0: // Post-indexed
150        return ARM::STRH_POST;
151      default:
152        break; // fallthrough
153      }
154      break;
155    case 13:
156      switch (PW) {
157      case 2: // Offset
158        return ARM::LDRD;
159      case 3: // Pre-indexed
160        return ARM::LDRD_PRE;
161      case 0: // Post-indexed
162        return ARM::LDRD_POST;
163      default:
164        break; // fallthrough
165      }
166      break;
167    case 15:
168      switch (PW) {
169      case 2: // Offset
170        return ARM::STRD;
171      case 3: // Pre-indexed
172        return ARM::STRD_PRE;
173      case 0: // Post-indexed
174        return ARM::STRD_POST;
175      default:
176        break; // fallthrough
177      }
178      break;
179    default:
180      break; // fallthrough
181    }
182  }
183
184  // Ditto for SBCSSrs, which is a super-instruction for A8.6.152 & A8.6.153.
185  // As a result, the decoder fails to decode LDRH_POST/LDRSB_POST/LDRSH_POST
186  // properly.
187  if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 1) {
188    unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21);
189    switch (slice(insn, 7, 4)) {
190    case 11:
191      switch (PW) {
192      case 2: // Offset
193        return ARM::LDRH;
194      case 3: // Pre-indexed
195        return ARM::LDRH_PRE;
196      case 0: // Post-indexed
197        return ARM::LDRH_POST;
198      default:
199        break; // fallthrough
200      }
201      break;
202    case 13:
203      switch (PW) {
204      case 2: // Offset
205        return ARM::LDRSB;
206      case 3: // Pre-indexed
207        return ARM::LDRSB_PRE;
208      case 0: // Post-indexed
209        return ARM::LDRSB_POST;
210      default:
211        break; // fallthrough
212      }
213      break;
214    case 15:
215      switch (PW) {
216      case 2: // Offset
217        return ARM::LDRSH;
218      case 3: // Pre-indexed
219        return ARM::LDRSH_PRE;
220      case 0: // Post-indexed
221        return ARM::LDRSH_POST;
222      default:
223        break; // fallthrough
224      }
225      break;
226    default:
227      break; // fallthrough
228    }
229  }
230
231AutoGenedDecoder:
232  // Calling the auto-generated decoder function.
233  return decodeInstruction(insn);
234}
235
236// Helper function for special case handling of LDR (literal) and friends.
237// See, for example, A6.3.7 Load word: Table A6-18 Load word.
238// See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode
239// before returning it.
240static unsigned T2Morph2LoadLiteral(unsigned Opcode) {
241  switch (Opcode) {
242  default:
243    return Opcode; // Return unmorphed opcode.
244
245  case ARM::t2LDRDi8:
246    return ARM::t2LDRDpci;
247
248  case ARM::t2LDR_POST:   case ARM::t2LDR_PRE:
249  case ARM::t2LDRi12:     case ARM::t2LDRi8:
250  case ARM::t2LDRs:
251    return ARM::t2LDRpci;
252
253  case ARM::t2LDRB_POST:  case ARM::t2LDRB_PRE:
254  case ARM::t2LDRBi12:    case ARM::t2LDRBi8:
255  case ARM::t2LDRBs:
256    return ARM::t2LDRBpci;
257
258  case ARM::t2LDRH_POST:  case ARM::t2LDRH_PRE:
259  case ARM::t2LDRHi12:    case ARM::t2LDRHi8:
260  case ARM::t2LDRHs:
261    return ARM::t2LDRHpci;
262
263  case ARM::t2LDRSB_POST:  case ARM::t2LDRSB_PRE:
264  case ARM::t2LDRSBi12:    case ARM::t2LDRSBi8:
265  case ARM::t2LDRSBs:
266    return ARM::t2LDRSBpci;
267
268  case ARM::t2LDRSH_POST:  case ARM::t2LDRSH_PRE:
269  case ARM::t2LDRSHi12:    case ARM::t2LDRSHi8:
270  case ARM::t2LDRSHs:
271    return ARM::t2LDRSHpci;
272  }
273}
274
275/// decodeThumbSideEffect is a decorator function which can potentially twiddle
276/// the instruction or morph the returned opcode under Thumb2.
277///
278/// First it checks whether the insn is a NEON or VFP instr; if true, bit
279/// twiddling could be performed on insn to turn it into an ARM NEON/VFP
280/// equivalent instruction and decodeInstruction is called with the transformed
281/// insn.
282///
283/// Next, there is special handling for Load byte/halfword/word instruction by
284/// checking whether Rn=0b1111 and call T2Morph2LoadLiteral() on the decoded
285/// Thumb2 instruction.  See comments below for further details.
286///
287/// Finally, one last check is made to see whether the insn is a NEON/VFP and
288/// decodeInstruction(insn) is invoked on the original insn.
289///
290/// Otherwise, decodeThumbInstruction is called with the original insn.
291static unsigned decodeThumbSideEffect(bool IsThumb2, uint32_t &insn) {
292  if (IsThumb2) {
293    uint16_t op1 = slice(insn, 28, 27);
294    uint16_t op2 = slice(insn, 26, 20);
295
296    // A6.3 32-bit Thumb instruction encoding
297    // Table A6-9 32-bit Thumb instruction encoding
298
299    // The coprocessor instructions of interest are transformed to their ARM
300    // equivalents.
301
302    // --------- Transform Begin Marker ---------
303    if ((op1 == 1 || op1 == 3) && slice(op2, 6, 4) == 7) {
304      // A7.4 Advanced SIMD data-processing instructions
305      // U bit of Thumb corresponds to Inst{24} of ARM.
306      uint16_t U = slice(op1, 1, 1);
307
308      // Inst{28-24} of ARM = {1,0,0,1,U};
309      uint16_t bits28_24 = 9 << 1 | U;
310      DEBUG(showBitVector(errs(), insn));
311      setSlice(insn, 28, 24, bits28_24);
312      return decodeInstruction(insn);
313    }
314
315    if (op1 == 3 && slice(op2, 6, 4) == 1 && slice(op2, 0, 0) == 0) {
316      // A7.7 Advanced SIMD element or structure load/store instructions
317      // Inst{27-24} of Thumb = 0b1001
318      // Inst{27-24} of ARM   = 0b0100
319      DEBUG(showBitVector(errs(), insn));
320      setSlice(insn, 27, 24, 4);
321      return decodeInstruction(insn);
322    }
323    // --------- Transform End Marker ---------
324
325    // See, for example, A6.3.7 Load word: Table A6-18 Load word.
326    // See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode
327    // before returning it to our caller.
328    if (op1 == 3 && slice(op2, 6, 5) == 0 && slice(op2, 0, 0) == 1
329        && slice(insn, 19, 16) == 15)
330      return T2Morph2LoadLiteral(decodeThumbInstruction(insn));
331
332    // One last check for NEON/VFP instructions.
333    if ((op1 == 1 || op1 == 3) && slice(op2, 6, 6) == 1)
334      return decodeInstruction(insn);
335
336    // Fall through.
337  }
338
339  return decodeThumbInstruction(insn);
340}
341
342static inline bool Thumb2PreloadOpcodeNoPCI(unsigned Opcode) {
343  switch (Opcode) {
344  default:
345    return false;
346  case ARM::t2PLDi12:   case ARM::t2PLDi8:
347  case ARM::t2PLDr:     case ARM::t2PLDs:
348  case ARM::t2PLDWi12:  case ARM::t2PLDWi8:
349  case ARM::t2PLDWr:    case ARM::t2PLDWs:
350  case ARM::t2PLIi12:   case ARM::t2PLIi8:
351  case ARM::t2PLIr:     case ARM::t2PLIs:
352    return true;
353  }
354}
355
356static inline unsigned T2Morph2Preload2PCI(unsigned Opcode) {
357  switch (Opcode) {
358  default:
359    return 0;
360  case ARM::t2PLDi12:   case ARM::t2PLDi8:
361  case ARM::t2PLDr:     case ARM::t2PLDs:
362    return ARM::t2PLDpci;
363  case ARM::t2PLDWi12:  case ARM::t2PLDWi8:
364  case ARM::t2PLDWr:    case ARM::t2PLDWs:
365    return ARM::t2PLDWpci;
366  case ARM::t2PLIi12:   case ARM::t2PLIi8:
367  case ARM::t2PLIr:     case ARM::t2PLIs:
368    return ARM::t2PLIpci;
369  }
370}
371
372//
373// Public interface for the disassembler
374//
375
376bool ARMDisassembler::getInstruction(MCInst &MI,
377                                     uint64_t &Size,
378                                     const MemoryObject &Region,
379                                     uint64_t Address,
380                                     raw_ostream &os) const {
381  // The machine instruction.
382  uint32_t insn;
383  uint8_t bytes[4];
384
385  // We want to read exactly 4 bytes of data.
386  if (Region.readBytes(Address, 4, (uint8_t*)bytes, NULL) == -1)
387    return false;
388
389  // Encoded as a small-endian 32-bit word in the stream.
390  insn = (bytes[3] << 24) |
391         (bytes[2] << 16) |
392         (bytes[1] <<  8) |
393         (bytes[0] <<  0);
394
395  unsigned Opcode = decodeARMInstruction(insn);
396  ARMFormat Format = ARMFormats[Opcode];
397  Size = 4;
398
399  DEBUG({
400      errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode)
401             << " Format=" << stringForARMFormat(Format) << '(' << (int)Format
402             << ")\n";
403      showBitVector(errs(), insn);
404    });
405
406  ARMBasicMCBuilder *Builder = CreateMCBuilder(Opcode, Format);
407
408  if (!Builder)
409    return false;
410
411  if (!Builder->Build(MI, insn))
412    return false;
413
414  delete Builder;
415
416  return true;
417}
418
419bool ThumbDisassembler::getInstruction(MCInst &MI,
420                                       uint64_t &Size,
421                                       const MemoryObject &Region,
422                                       uint64_t Address,
423                                       raw_ostream &os) const {
424  // The Thumb instruction stream is a sequence of halhwords.
425
426  // This represents the first halfword as well as the machine instruction
427  // passed to decodeThumbInstruction().  For 16-bit Thumb instruction, the top
428  // halfword of insn is 0x00 0x00; otherwise, the first halfword is moved to
429  // the top half followed by the second halfword.
430  uint32_t insn = 0;
431  // Possible second halfword.
432  uint16_t insn1 = 0;
433
434  // A6.1 Thumb instruction set encoding
435  //
436  // If bits [15:11] of the halfword being decoded take any of the following
437  // values, the halfword is the first halfword of a 32-bit instruction:
438  // o 0b11101
439  // o 0b11110
440  // o 0b11111.
441  //
442  // Otherwise, the halfword is a 16-bit instruction.
443
444  // Read 2 bytes of data first.
445  uint8_t bytes[2];
446  if (Region.readBytes(Address, 2, (uint8_t*)bytes, NULL) == -1)
447    return false;
448
449  // Encoded as a small-endian 16-bit halfword in the stream.
450  insn = (bytes[1] << 8) | bytes[0];
451  unsigned bits15_11 = slice(insn, 15, 11);
452  bool IsThumb2 = false;
453
454  // 32-bit instructions if the bits [15:11] of the halfword matches
455  // { 0b11101 /* 0x1D */, 0b11110 /* 0x1E */, ob11111 /* 0x1F */ }.
456  if (bits15_11 == 0x1D || bits15_11 == 0x1E || bits15_11 == 0x1F) {
457    IsThumb2 = true;
458    if (Region.readBytes(Address + 2, 2, (uint8_t*)bytes, NULL) == -1)
459      return false;
460    // Encoded as a small-endian 16-bit halfword in the stream.
461    insn1 = (bytes[1] << 8) | bytes[0];
462    insn = (insn << 16 | insn1);
463  }
464
465  // The insn could potentially be bit-twiddled in order to be decoded as an ARM
466  // NEON/VFP opcode.  In such case, the modified insn is later disassembled as
467  // an ARM NEON/VFP instruction.
468  //
469  // This is a short term solution for lack of encoding bits specified for the
470  // Thumb2 NEON/VFP instructions.  The long term solution could be adding some
471  // infrastructure to have each instruction support more than one encodings.
472  // Which encoding is used would be based on which subtarget the compiler/
473  // disassembler is working with at the time.  This would allow the sharing of
474  // the NEON patterns between ARM and Thumb2, as well as potential greater
475  // sharing between the regular ARM instructions and the 32-bit wide Thumb2
476  // instructions as well.
477  unsigned Opcode = decodeThumbSideEffect(IsThumb2, insn);
478
479  // A8.6.117/119/120/121.
480  // PLD/PLDW/PLI instructions with Rn==15 is transformed to the pci variant.
481  if (Thumb2PreloadOpcodeNoPCI(Opcode) && slice(insn, 19, 16) == 15)
482    Opcode = T2Morph2Preload2PCI(Opcode);
483
484  ARMFormat Format = ARMFormats[Opcode];
485  Size = IsThumb2 ? 4 : 2;
486
487  DEBUG({
488      errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode)
489             << " Format=" << stringForARMFormat(Format) << '(' << (int)Format
490             << ")\n";
491      showBitVector(errs(), insn);
492    });
493
494  ARMBasicMCBuilder *Builder = CreateMCBuilder(Opcode, Format);
495  Builder->setSession(const_cast<Session *>(&SO));
496
497  if (!Builder)
498    return false;
499
500  if (!Builder->Build(MI, insn))
501    return false;
502
503  delete Builder;
504
505  return true;
506}
507
508// A8.6.50
509static unsigned short CountITSize(unsigned ITMask) {
510  // First count the trailing zeros of the IT mask.
511  unsigned TZ = CountTrailingZeros_32(ITMask);
512  assert(TZ <= 3 && "Encoding error");
513  return (4 - TZ);
514}
515
516/// Init ITState.
517void Session::InitIT(unsigned short bits7_0) {
518  ITCounter = CountITSize(slice(bits7_0, 3, 0));
519  ITState = bits7_0;
520}
521
522/// Update ITState if necessary.
523void Session::UpdateIT() {
524  assert(ITCounter);
525  --ITCounter;
526  if (ITCounter == 0)
527    ITState = 0;
528  else {
529    unsigned short NewITState4_0 = slice(ITState, 4, 0) << 1;
530    setSlice(ITState, 4, 0, NewITState4_0);
531  }
532}
533
534static MCDisassembler *createARMDisassembler(const Target &T) {
535  return new ARMDisassembler;
536}
537
538static MCDisassembler *createThumbDisassembler(const Target &T) {
539  return new ThumbDisassembler;
540}
541
542extern "C" void LLVMInitializeARMDisassembler() {
543  // Register the disassembler.
544  TargetRegistry::RegisterMCDisassembler(TheARMTarget,
545                                         createARMDisassembler);
546  TargetRegistry::RegisterMCDisassembler(TheThumbTarget,
547                                         createThumbDisassembler);
548}
549
550} // namespace llvm
551