1//===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// For best-case performance on Cortex-A57, we should try to use a balanced
9// mix of odd and even D-registers when performing a critical sequence of
10// independent, non-quadword FP/ASIMD floating-point multiply or
11// multiply-accumulate operations.
12//
13// This pass attempts to detect situations where the register allocation may
14// adversely affect this load balancing and to change the registers used so as
15// to better utilize the CPU.
16//
17// Ideally we'd just take each multiply or multiply-accumulate in turn and
18// allocate it alternating even or odd registers. However, multiply-accumulates
19// are most efficiently performed in the same functional unit as their
20// accumulation operand. Therefore this pass tries to find maximal sequences
21// ("Chains") of multiply-accumulates linked via their accumulation operand,
22// and assign them all the same "color" (oddness/evenness).
23//
24// This optimization affects S-register and D-register floating point
25// multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
26// FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
27// not affected.
28//===----------------------------------------------------------------------===//
29
30#include "AArch64.h"
31#include "AArch64InstrInfo.h"
32#include "AArch64Subtarget.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/EquivalenceClasses.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstr.h"
38#include "llvm/CodeGen/MachineInstrBuilder.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/CodeGen/RegisterClassInfo.h"
41#include "llvm/CodeGen/RegisterScavenging.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/raw_ostream.h"
45using namespace llvm;
46
47#define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
48
49// Enforce the algorithm to use the scavenged register even when the original
50// destination register is the correct color. Used for testing.
51static cl::opt<bool>
52TransformAll("aarch64-a57-fp-load-balancing-force-all",
53             cl::desc("Always modify dest registers regardless of color"),
54             cl::init(false), cl::Hidden);
55
56// Never use the balance information obtained from chains - return a specific
57// color always. Used for testing.
58static cl::opt<unsigned>
59OverrideBalance("aarch64-a57-fp-load-balancing-override",
60              cl::desc("Ignore balance information, always return "
61                       "(1: Even, 2: Odd)."),
62              cl::init(0), cl::Hidden);
63
64//===----------------------------------------------------------------------===//
65// Helper functions
66
67// Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
68static bool isMul(MachineInstr *MI) {
69  switch (MI->getOpcode()) {
70  case AArch64::FMULSrr:
71  case AArch64::FNMULSrr:
72  case AArch64::FMULDrr:
73  case AArch64::FNMULDrr:
74    return true;
75  default:
76    return false;
77  }
78}
79
80// Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
81static bool isMla(MachineInstr *MI) {
82  switch (MI->getOpcode()) {
83  case AArch64::FMSUBSrrr:
84  case AArch64::FMADDSrrr:
85  case AArch64::FNMSUBSrrr:
86  case AArch64::FNMADDSrrr:
87  case AArch64::FMSUBDrrr:
88  case AArch64::FMADDDrrr:
89  case AArch64::FNMSUBDrrr:
90  case AArch64::FNMADDDrrr:
91    return true;
92  default:
93    return false;
94  }
95}
96
97//===----------------------------------------------------------------------===//
98
99namespace {
100/// A "color", which is either even or odd. Yes, these aren't really colors
101/// but the algorithm is conceptually doing two-color graph coloring.
102enum class Color { Even, Odd };
103#ifndef NDEBUG
104static const char *ColorNames[2] = { "Even", "Odd" };
105#endif
106
107class Chain;
108
109class AArch64A57FPLoadBalancing : public MachineFunctionPass {
110  MachineRegisterInfo *MRI;
111  const TargetRegisterInfo *TRI;
112  RegisterClassInfo RCI;
113
114public:
115  static char ID;
116  explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
117    initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
118  }
119
120  bool runOnMachineFunction(MachineFunction &F) override;
121
122  MachineFunctionProperties getRequiredProperties() const override {
123    return MachineFunctionProperties().set(
124        MachineFunctionProperties::Property::NoVRegs);
125  }
126
127  StringRef getPassName() const override {
128    return "A57 FP Anti-dependency breaker";
129  }
130
131  void getAnalysisUsage(AnalysisUsage &AU) const override {
132    AU.setPreservesCFG();
133    MachineFunctionPass::getAnalysisUsage(AU);
134  }
135
136private:
137  bool runOnBasicBlock(MachineBasicBlock &MBB);
138  bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
139                     int &Balance);
140  bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
141  int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
142  void scanInstruction(MachineInstr *MI, unsigned Idx,
143                       std::map<unsigned, Chain*> &Active,
144                       std::vector<std::unique_ptr<Chain>> &AllChains);
145  void maybeKillChain(MachineOperand &MO, unsigned Idx,
146                      std::map<unsigned, Chain*> &RegChains);
147  Color getColor(unsigned Register);
148  Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
149};
150}
151
152char AArch64A57FPLoadBalancing::ID = 0;
153
154INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
155                      "AArch64 A57 FP Load-Balancing", false, false)
156INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
157                    "AArch64 A57 FP Load-Balancing", false, false)
158
159namespace {
160/// A Chain is a sequence of instructions that are linked together by
161/// an accumulation operand. For example:
162///
163///   fmul def d0, ?
164///   fmla def d1, ?, ?, killed d0
165///   fmla def d2, ?, ?, killed d1
166///
167/// There may be other instructions interleaved in the sequence that
168/// do not belong to the chain. These other instructions must not use
169/// the "chain" register at any point.
170///
171/// We currently only support chains where the "chain" operand is killed
172/// at each link in the chain for simplicity.
173/// A chain has three important instructions - Start, Last and Kill.
174///   * The start instruction is the first instruction in the chain.
175///   * Last is the final instruction in the chain.
176///   * Kill may or may not be defined. If defined, Kill is the instruction
177///     where the outgoing value of the Last instruction is killed.
178///     This information is important as if we know the outgoing value is
179///     killed with no intervening uses, we can safely change its register.
180///
181/// Without a kill instruction, we must assume the outgoing value escapes
182/// beyond our model and either must not change its register or must
183/// create a fixup FMOV to keep the old register value consistent.
184///
185class Chain {
186public:
187  /// The important (marker) instructions.
188  MachineInstr *StartInst, *LastInst, *KillInst;
189  /// The index, from the start of the basic block, that each marker
190  /// appears. These are stored so we can do quick interval tests.
191  unsigned StartInstIdx, LastInstIdx, KillInstIdx;
192  /// All instructions in the chain.
193  std::set<MachineInstr*> Insts;
194  /// True if KillInst cannot be modified. If this is true,
195  /// we cannot change LastInst's outgoing register.
196  /// This will be true for tied values and regmasks.
197  bool KillIsImmutable;
198  /// The "color" of LastInst. This will be the preferred chain color,
199  /// as changing intermediate nodes is easy but changing the last
200  /// instruction can be more tricky.
201  Color LastColor;
202
203  Chain(MachineInstr *MI, unsigned Idx, Color C)
204      : StartInst(MI), LastInst(MI), KillInst(nullptr),
205        StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
206        LastColor(C) {
207    Insts.insert(MI);
208  }
209
210  /// Add a new instruction into the chain. The instruction's dest operand
211  /// has the given color.
212  void add(MachineInstr *MI, unsigned Idx, Color C) {
213    LastInst = MI;
214    LastInstIdx = Idx;
215    LastColor = C;
216    assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
217           "Chain: broken invariant. A Chain can only be killed after its last "
218           "def");
219
220    Insts.insert(MI);
221  }
222
223  /// Return true if MI is a member of the chain.
224  bool contains(MachineInstr &MI) { return Insts.count(&MI) > 0; }
225
226  /// Return the number of instructions in the chain.
227  unsigned size() const {
228    return Insts.size();
229  }
230
231  /// Inform the chain that its last active register (the dest register of
232  /// LastInst) is killed by MI with no intervening uses or defs.
233  void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
234    KillInst = MI;
235    KillInstIdx = Idx;
236    KillIsImmutable = Immutable;
237    assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
238           "Chain: broken invariant. A Chain can only be killed after its last "
239           "def");
240  }
241
242  /// Return the first instruction in the chain.
243  MachineInstr *getStart() const { return StartInst; }
244  /// Return the last instruction in the chain.
245  MachineInstr *getLast() const { return LastInst; }
246  /// Return the "kill" instruction (as set with setKill()) or NULL.
247  MachineInstr *getKill() const { return KillInst; }
248  /// Return an instruction that can be used as an iterator for the end
249  /// of the chain. This is the maximum of KillInst (if set) and LastInst.
250  MachineBasicBlock::iterator end() const {
251    return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
252  }
253  MachineBasicBlock::iterator begin() const { return getStart(); }
254
255  /// Can the Kill instruction (assuming one exists) be modified?
256  bool isKillImmutable() const { return KillIsImmutable; }
257
258  /// Return the preferred color of this chain.
259  Color getPreferredColor() {
260    if (OverrideBalance != 0)
261      return OverrideBalance == 1 ? Color::Even : Color::Odd;
262    return LastColor;
263  }
264
265  /// Return true if this chain (StartInst..KillInst) overlaps with Other.
266  bool rangeOverlapsWith(const Chain &Other) const {
267    unsigned End = KillInst ? KillInstIdx : LastInstIdx;
268    unsigned OtherEnd = Other.KillInst ?
269      Other.KillInstIdx : Other.LastInstIdx;
270
271    return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
272  }
273
274  /// Return true if this chain starts before Other.
275  bool startsBefore(const Chain *Other) const {
276    return StartInstIdx < Other->StartInstIdx;
277  }
278
279  /// Return true if the group will require a fixup MOV at the end.
280  bool requiresFixup() const {
281    return (getKill() && isKillImmutable()) || !getKill();
282  }
283
284  /// Return a simple string representation of the chain.
285  std::string str() const {
286    std::string S;
287    raw_string_ostream OS(S);
288
289    OS << "{";
290    StartInst->print(OS, /* SkipOpers= */true);
291    OS << " -> ";
292    LastInst->print(OS, /* SkipOpers= */true);
293    if (KillInst) {
294      OS << " (kill @ ";
295      KillInst->print(OS, /* SkipOpers= */true);
296      OS << ")";
297    }
298    OS << "}";
299
300    return OS.str();
301  }
302
303};
304
305} // end anonymous namespace
306
307//===----------------------------------------------------------------------===//
308
309bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
310  if (skipFunction(F.getFunction()))
311    return false;
312
313  if (!F.getSubtarget<AArch64Subtarget>().balanceFPOps())
314    return false;
315
316  bool Changed = false;
317  LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
318
319  MRI = &F.getRegInfo();
320  TRI = F.getRegInfo().getTargetRegisterInfo();
321  RCI.runOnMachineFunction(F);
322
323  for (auto &MBB : F) {
324    Changed |= runOnBasicBlock(MBB);
325  }
326
327  return Changed;
328}
329
330bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
331  bool Changed = false;
332  LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB
333                    << " - scanning instructions...\n");
334
335  // First, scan the basic block producing a set of chains.
336
337  // The currently "active" chains - chains that can be added to and haven't
338  // been killed yet. This is keyed by register - all chains can only have one
339  // "link" register between each inst in the chain.
340  std::map<unsigned, Chain*> ActiveChains;
341  std::vector<std::unique_ptr<Chain>> AllChains;
342  unsigned Idx = 0;
343  for (auto &MI : MBB)
344    scanInstruction(&MI, Idx++, ActiveChains, AllChains);
345
346  LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains.size()
347                    << " chains created.\n");
348
349  // Group the chains into disjoint sets based on their liveness range. This is
350  // a poor-man's version of graph coloring. Ideally we'd create an interference
351  // graph and perform full-on graph coloring on that, but;
352  //   (a) That's rather heavyweight for only two colors.
353  //   (b) We expect multiple disjoint interference regions - in practice the live
354  //       range of chains is quite small and they are clustered between loads
355  //       and stores.
356  EquivalenceClasses<Chain*> EC;
357  for (auto &I : AllChains)
358    EC.insert(I.get());
359
360  for (auto &I : AllChains)
361    for (auto &J : AllChains)
362      if (I != J && I->rangeOverlapsWith(*J))
363        EC.unionSets(I.get(), J.get());
364  LLVM_DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
365
366  // Now we assume that every member of an equivalence class interferes
367  // with every other member of that class, and with no members of other classes.
368
369  // Convert the EquivalenceClasses to a simpler set of sets.
370  std::vector<std::vector<Chain*> > V;
371  for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
372    std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
373    if (Cs.empty()) continue;
374    V.push_back(std::move(Cs));
375  }
376
377  // Now we have a set of sets, order them by start address so
378  // we can iterate over them sequentially.
379  llvm::sort(V,
380             [](const std::vector<Chain *> &A, const std::vector<Chain *> &B) {
381               return A.front()->startsBefore(B.front());
382             });
383
384  // As we only have two colors, we can track the global (BB-level) balance of
385  // odds versus evens. We aim to keep this near zero to keep both execution
386  // units fed.
387  // Positive means we're even-heavy, negative we're odd-heavy.
388  //
389  // FIXME: If chains have interdependencies, for example:
390  //   mul r0, r1, r2
391  //   mul r3, r0, r1
392  // We do not model this and may color each one differently, assuming we'll
393  // get ILP when we obviously can't. This hasn't been seen to be a problem
394  // in practice so far, so we simplify the algorithm by ignoring it.
395  int Parity = 0;
396
397  for (auto &I : V)
398    Changed |= colorChainSet(std::move(I), MBB, Parity);
399
400  return Changed;
401}
402
403Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
404                                                  std::vector<Chain*> &L) {
405  if (L.empty())
406    return nullptr;
407
408  // We try and get the best candidate from L to color next, given that our
409  // preferred color is "PreferredColor". L is ordered from larger to smaller
410  // chains. It is beneficial to color the large chains before the small chains,
411  // but if we can't find a chain of the maximum length with the preferred color,
412  // we fuzz the size and look for slightly smaller chains before giving up and
413  // returning a chain that must be recolored.
414
415  // FIXME: Does this need to be configurable?
416  const unsigned SizeFuzz = 1;
417  unsigned MinSize = L.front()->size() - SizeFuzz;
418  for (auto I = L.begin(), E = L.end(); I != E; ++I) {
419    if ((*I)->size() <= MinSize) {
420      // We've gone past the size limit. Return the previous item.
421      Chain *Ch = *--I;
422      L.erase(I);
423      return Ch;
424    }
425
426    if ((*I)->getPreferredColor() == PreferredColor) {
427      Chain *Ch = *I;
428      L.erase(I);
429      return Ch;
430    }
431  }
432
433  // Bailout case - just return the first item.
434  Chain *Ch = L.front();
435  L.erase(L.begin());
436  return Ch;
437}
438
439bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
440                                              MachineBasicBlock &MBB,
441                                              int &Parity) {
442  bool Changed = false;
443  LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
444
445  // Sort by descending size order so that we allocate the most important
446  // sets first.
447  // Tie-break equivalent sizes by sorting chains requiring fixups before
448  // those without fixups. The logic here is that we should look at the
449  // chains that we cannot change before we look at those we can,
450  // so the parity counter is updated and we know what color we should
451  // change them to!
452  // Final tie-break with instruction order so pass output is stable (i.e. not
453  // dependent on malloc'd pointer values).
454  llvm::sort(GV, [](const Chain *G1, const Chain *G2) {
455    if (G1->size() != G2->size())
456      return G1->size() > G2->size();
457    if (G1->requiresFixup() != G2->requiresFixup())
458      return G1->requiresFixup() > G2->requiresFixup();
459    // Make sure startsBefore() produces a stable final order.
460    assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
461           "Starts before not total order!");
462    return G1->startsBefore(G2);
463  });
464
465  Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
466  while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
467    // Start off by assuming we'll color to our own preferred color.
468    Color C = PreferredColor;
469    if (Parity == 0)
470      // But if we really don't care, use the chain's preferred color.
471      C = G->getPreferredColor();
472
473    LLVM_DEBUG(dbgs() << " - Parity=" << Parity
474                      << ", Color=" << ColorNames[(int)C] << "\n");
475
476    // If we'll need a fixup FMOV, don't bother. Testing has shown that this
477    // happens infrequently and when it does it has at least a 50% chance of
478    // slowing code down instead of speeding it up.
479    if (G->requiresFixup() && C != G->getPreferredColor()) {
480      C = G->getPreferredColor();
481      LLVM_DEBUG(dbgs() << " - " << G->str()
482                        << " - not worthwhile changing; "
483                           "color remains "
484                        << ColorNames[(int)C] << "\n");
485    }
486
487    Changed |= colorChain(G, C, MBB);
488
489    Parity += (C == Color::Even) ? G->size() : -G->size();
490    PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
491  }
492
493  return Changed;
494}
495
496int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
497                                                MachineBasicBlock &MBB) {
498  // Can we find an appropriate register that is available throughout the life
499  // of the chain? Simulate liveness backwards until the end of the chain.
500  LiveRegUnits Units(*TRI);
501  Units.addLiveOuts(MBB);
502  MachineBasicBlock::iterator I = MBB.end();
503  MachineBasicBlock::iterator ChainEnd = G->end();
504  while (I != ChainEnd) {
505    --I;
506    Units.stepBackward(*I);
507  }
508
509  // Check which register units are alive throughout the chain.
510  MachineBasicBlock::iterator ChainBegin = G->begin();
511  assert(ChainBegin != ChainEnd && "Chain should contain instructions");
512  do {
513    --I;
514    Units.accumulate(*I);
515  } while (I != ChainBegin);
516
517  // Make sure we allocate in-order, to get the cheapest registers first.
518  unsigned RegClassID = ChainBegin->getDesc().OpInfo[0].RegClass;
519  auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
520  for (auto Reg : Ord) {
521    if (!Units.available(Reg))
522      continue;
523    if (C == getColor(Reg))
524      return Reg;
525  }
526
527  return -1;
528}
529
530bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
531                                           MachineBasicBlock &MBB) {
532  bool Changed = false;
533  LLVM_DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
534                    << ColorNames[(int)C] << ")\n");
535
536  // Try and obtain a free register of the right class. Without a register
537  // to play with we cannot continue.
538  int Reg = scavengeRegister(G, C, MBB);
539  if (Reg == -1) {
540    LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
541    return false;
542  }
543  LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg, TRI) << "\n");
544
545  std::map<unsigned, unsigned> Substs;
546  for (MachineInstr &I : *G) {
547    if (!G->contains(I) && (&I != G->getKill() || G->isKillImmutable()))
548      continue;
549
550    // I is a member of G, or I is a mutable instruction that kills G.
551
552    std::vector<unsigned> ToErase;
553    for (auto &U : I.operands()) {
554      if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
555        Register OrigReg = U.getReg();
556        U.setReg(Substs[OrigReg]);
557        if (U.isKill())
558          // Don't erase straight away, because there may be other operands
559          // that also reference this substitution!
560          ToErase.push_back(OrigReg);
561      } else if (U.isRegMask()) {
562        for (auto J : Substs) {
563          if (U.clobbersPhysReg(J.first))
564            ToErase.push_back(J.first);
565        }
566      }
567    }
568    // Now it's safe to remove the substs identified earlier.
569    for (auto J : ToErase)
570      Substs.erase(J);
571
572    // Only change the def if this isn't the last instruction.
573    if (&I != G->getKill()) {
574      MachineOperand &MO = I.getOperand(0);
575
576      bool Change = TransformAll || getColor(MO.getReg()) != C;
577      if (G->requiresFixup() && &I == G->getLast())
578        Change = false;
579
580      if (Change) {
581        Substs[MO.getReg()] = Reg;
582        MO.setReg(Reg);
583
584        Changed = true;
585      }
586    }
587  }
588  assert(Substs.size() == 0 && "No substitutions should be left active!");
589
590  if (G->getKill()) {
591    LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n");
592  } else {
593    // We didn't have a kill instruction, but we didn't seem to need to change
594    // the destination register anyway.
595    LLVM_DEBUG(dbgs() << " - Destination register not changed.\n");
596  }
597  return Changed;
598}
599
600void AArch64A57FPLoadBalancing::scanInstruction(
601    MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
602    std::vector<std::unique_ptr<Chain>> &AllChains) {
603  // Inspect "MI", updating ActiveChains and AllChains.
604
605  if (isMul(MI)) {
606
607    for (auto &I : MI->uses())
608      maybeKillChain(I, Idx, ActiveChains);
609    for (auto &I : MI->defs())
610      maybeKillChain(I, Idx, ActiveChains);
611
612    // Create a new chain. Multiplies don't require forwarding so can go on any
613    // unit.
614    Register DestReg = MI->getOperand(0).getReg();
615
616    LLVM_DEBUG(dbgs() << "New chain started for register "
617                      << printReg(DestReg, TRI) << " at " << *MI);
618
619    auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg));
620    ActiveChains[DestReg] = G.get();
621    AllChains.push_back(std::move(G));
622
623  } else if (isMla(MI)) {
624
625    // It is beneficial to keep MLAs on the same functional unit as their
626    // accumulator operand.
627    Register DestReg = MI->getOperand(0).getReg();
628    Register AccumReg = MI->getOperand(3).getReg();
629
630    maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
631    maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
632    if (DestReg != AccumReg)
633      maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
634
635    if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
636      LLVM_DEBUG(dbgs() << "Chain found for accumulator register "
637                        << printReg(AccumReg, TRI) << " in MI " << *MI);
638
639      // For simplicity we only chain together sequences of MULs/MLAs where the
640      // accumulator register is killed on each instruction. This means we don't
641      // need to track other uses of the registers we want to rewrite.
642      //
643      // FIXME: We could extend to handle the non-kill cases for more coverage.
644      if (MI->getOperand(3).isKill()) {
645        // Add to chain.
646        LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
647        ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
648        // Handle cases where the destination is not the same as the accumulator.
649        if (DestReg != AccumReg) {
650          ActiveChains[DestReg] = ActiveChains[AccumReg];
651          ActiveChains.erase(AccumReg);
652        }
653        return;
654      }
655
656      LLVM_DEBUG(
657          dbgs() << "Cannot add to chain because accumulator operand wasn't "
658                 << "marked <kill>!\n");
659      maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
660    }
661
662    LLVM_DEBUG(dbgs() << "Creating new chain for dest register "
663                      << printReg(DestReg, TRI) << "\n");
664    auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg));
665    ActiveChains[DestReg] = G.get();
666    AllChains.push_back(std::move(G));
667
668  } else {
669
670    // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
671    // lists.
672    for (auto &I : MI->uses())
673      maybeKillChain(I, Idx, ActiveChains);
674    for (auto &I : MI->defs())
675      maybeKillChain(I, Idx, ActiveChains);
676
677  }
678}
679
680void AArch64A57FPLoadBalancing::
681maybeKillChain(MachineOperand &MO, unsigned Idx,
682               std::map<unsigned, Chain*> &ActiveChains) {
683  // Given an operand and the set of active chains (keyed by register),
684  // determine if a chain should be ended and remove from ActiveChains.
685  MachineInstr *MI = MO.getParent();
686
687  if (MO.isReg()) {
688
689    // If this is a KILL of a current chain, record it.
690    if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
691      LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO.getReg(), TRI)
692                        << "\n");
693      ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
694    }
695    ActiveChains.erase(MO.getReg());
696
697  } else if (MO.isRegMask()) {
698
699    for (auto I = ActiveChains.begin(), E = ActiveChains.end();
700         I != E;) {
701      if (MO.clobbersPhysReg(I->first)) {
702        LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain "
703                          << printReg(I->first, TRI) << "\n");
704        I->second->setKill(MI, Idx, /*Immutable=*/true);
705        ActiveChains.erase(I++);
706      } else
707        ++I;
708    }
709
710  }
711}
712
713Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
714  if ((TRI->getEncodingValue(Reg) % 2) == 0)
715    return Color::Even;
716  else
717    return Color::Odd;
718}
719
720// Factory function used by AArch64TargetMachine to add the pass to the passmanager.
721FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
722  return new AArch64A57FPLoadBalancing();
723}
724