1//===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the COFFObjectFile class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/ArrayRef.h"
14#include "llvm/ADT/StringRef.h"
15#include "llvm/ADT/Triple.h"
16#include "llvm/ADT/iterator_range.h"
17#include "llvm/BinaryFormat/COFF.h"
18#include "llvm/Object/Binary.h"
19#include "llvm/Object/COFF.h"
20#include "llvm/Object/Error.h"
21#include "llvm/Object/ObjectFile.h"
22#include "llvm/Support/BinaryStreamReader.h"
23#include "llvm/Support/Endian.h"
24#include "llvm/Support/Error.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include <algorithm>
29#include <cassert>
30#include <cstddef>
31#include <cstdint>
32#include <cstring>
33#include <limits>
34#include <memory>
35#include <system_error>
36
37using namespace llvm;
38using namespace object;
39
40using support::ulittle16_t;
41using support::ulittle32_t;
42using support::ulittle64_t;
43using support::little16_t;
44
45// Returns false if size is greater than the buffer size. And sets ec.
46static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
47  if (M.getBufferSize() < Size) {
48    EC = object_error::unexpected_eof;
49    return false;
50  }
51  return true;
52}
53
54// Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
55// Returns unexpected_eof if error.
56template <typename T>
57static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
58                                 const void *Ptr,
59                                 const uint64_t Size = sizeof(T)) {
60  uintptr_t Addr = uintptr_t(Ptr);
61  if (std::error_code EC = Binary::checkOffset(M, Addr, Size))
62    return EC;
63  Obj = reinterpret_cast<const T *>(Addr);
64  return std::error_code();
65}
66
67// Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
68// prefixed slashes.
69static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
70  assert(Str.size() <= 6 && "String too long, possible overflow.");
71  if (Str.size() > 6)
72    return true;
73
74  uint64_t Value = 0;
75  while (!Str.empty()) {
76    unsigned CharVal;
77    if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
78      CharVal = Str[0] - 'A';
79    else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
80      CharVal = Str[0] - 'a' + 26;
81    else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
82      CharVal = Str[0] - '0' + 52;
83    else if (Str[0] == '+') // 62
84      CharVal = 62;
85    else if (Str[0] == '/') // 63
86      CharVal = 63;
87    else
88      return true;
89
90    Value = (Value * 64) + CharVal;
91    Str = Str.substr(1);
92  }
93
94  if (Value > std::numeric_limits<uint32_t>::max())
95    return true;
96
97  Result = static_cast<uint32_t>(Value);
98  return false;
99}
100
101template <typename coff_symbol_type>
102const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
103  const coff_symbol_type *Addr =
104      reinterpret_cast<const coff_symbol_type *>(Ref.p);
105
106  assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
107#ifndef NDEBUG
108  // Verify that the symbol points to a valid entry in the symbol table.
109  uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
110
111  assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
112         "Symbol did not point to the beginning of a symbol");
113#endif
114
115  return Addr;
116}
117
118const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
119  const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
120
121#ifndef NDEBUG
122  // Verify that the section points to a valid entry in the section table.
123  if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
124    report_fatal_error("Section was outside of section table.");
125
126  uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
127  assert(Offset % sizeof(coff_section) == 0 &&
128         "Section did not point to the beginning of a section");
129#endif
130
131  return Addr;
132}
133
134void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
135  auto End = reinterpret_cast<uintptr_t>(StringTable);
136  if (SymbolTable16) {
137    const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
138    Symb += 1 + Symb->NumberOfAuxSymbols;
139    Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
140  } else if (SymbolTable32) {
141    const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
142    Symb += 1 + Symb->NumberOfAuxSymbols;
143    Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
144  } else {
145    llvm_unreachable("no symbol table pointer!");
146  }
147}
148
149Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
150  COFFSymbolRef Symb = getCOFFSymbol(Ref);
151  StringRef Result;
152  if (std::error_code EC = getSymbolName(Symb, Result))
153    return errorCodeToError(EC);
154  return Result;
155}
156
157uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
158  return getCOFFSymbol(Ref).getValue();
159}
160
161uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
162  // MSVC/link.exe seems to align symbols to the next-power-of-2
163  // up to 32 bytes.
164  COFFSymbolRef Symb = getCOFFSymbol(Ref);
165  return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
166}
167
168Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
169  uint64_t Result = getSymbolValue(Ref);
170  COFFSymbolRef Symb = getCOFFSymbol(Ref);
171  int32_t SectionNumber = Symb.getSectionNumber();
172
173  if (Symb.isAnyUndefined() || Symb.isCommon() ||
174      COFF::isReservedSectionNumber(SectionNumber))
175    return Result;
176
177  const coff_section *Section = nullptr;
178  if (std::error_code EC = getSection(SectionNumber, Section))
179    return errorCodeToError(EC);
180  Result += Section->VirtualAddress;
181
182  // The section VirtualAddress does not include ImageBase, and we want to
183  // return virtual addresses.
184  Result += getImageBase();
185
186  return Result;
187}
188
189Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
190  COFFSymbolRef Symb = getCOFFSymbol(Ref);
191  int32_t SectionNumber = Symb.getSectionNumber();
192
193  if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
194    return SymbolRef::ST_Function;
195  if (Symb.isAnyUndefined())
196    return SymbolRef::ST_Unknown;
197  if (Symb.isCommon())
198    return SymbolRef::ST_Data;
199  if (Symb.isFileRecord())
200    return SymbolRef::ST_File;
201
202  // TODO: perhaps we need a new symbol type ST_Section.
203  if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
204    return SymbolRef::ST_Debug;
205
206  if (!COFF::isReservedSectionNumber(SectionNumber))
207    return SymbolRef::ST_Data;
208
209  return SymbolRef::ST_Other;
210}
211
212uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
213  COFFSymbolRef Symb = getCOFFSymbol(Ref);
214  uint32_t Result = SymbolRef::SF_None;
215
216  if (Symb.isExternal() || Symb.isWeakExternal())
217    Result |= SymbolRef::SF_Global;
218
219  if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
220    Result |= SymbolRef::SF_Weak;
221    if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
222      Result |= SymbolRef::SF_Undefined;
223  }
224
225  if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
226    Result |= SymbolRef::SF_Absolute;
227
228  if (Symb.isFileRecord())
229    Result |= SymbolRef::SF_FormatSpecific;
230
231  if (Symb.isSectionDefinition())
232    Result |= SymbolRef::SF_FormatSpecific;
233
234  if (Symb.isCommon())
235    Result |= SymbolRef::SF_Common;
236
237  if (Symb.isUndefined())
238    Result |= SymbolRef::SF_Undefined;
239
240  return Result;
241}
242
243uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
244  COFFSymbolRef Symb = getCOFFSymbol(Ref);
245  return Symb.getValue();
246}
247
248Expected<section_iterator>
249COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
250  COFFSymbolRef Symb = getCOFFSymbol(Ref);
251  if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
252    return section_end();
253  const coff_section *Sec = nullptr;
254  if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
255    return errorCodeToError(EC);
256  DataRefImpl Ret;
257  Ret.p = reinterpret_cast<uintptr_t>(Sec);
258  return section_iterator(SectionRef(Ret, this));
259}
260
261unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
262  COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
263  return Symb.getSectionNumber();
264}
265
266void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
267  const coff_section *Sec = toSec(Ref);
268  Sec += 1;
269  Ref.p = reinterpret_cast<uintptr_t>(Sec);
270}
271
272Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const {
273  const coff_section *Sec = toSec(Ref);
274  return getSectionName(Sec);
275}
276
277uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
278  const coff_section *Sec = toSec(Ref);
279  uint64_t Result = Sec->VirtualAddress;
280
281  // The section VirtualAddress does not include ImageBase, and we want to
282  // return virtual addresses.
283  Result += getImageBase();
284  return Result;
285}
286
287uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
288  return toSec(Sec) - SectionTable;
289}
290
291uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
292  return getSectionSize(toSec(Ref));
293}
294
295Expected<ArrayRef<uint8_t>>
296COFFObjectFile::getSectionContents(DataRefImpl Ref) const {
297  const coff_section *Sec = toSec(Ref);
298  ArrayRef<uint8_t> Res;
299  if (Error E = getSectionContents(Sec, Res))
300    return std::move(E);
301  return Res;
302}
303
304uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
305  const coff_section *Sec = toSec(Ref);
306  return Sec->getAlignment();
307}
308
309bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
310  return false;
311}
312
313bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
314  const coff_section *Sec = toSec(Ref);
315  return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
316}
317
318bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
319  const coff_section *Sec = toSec(Ref);
320  return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
321}
322
323bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
324  const coff_section *Sec = toSec(Ref);
325  const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
326                            COFF::IMAGE_SCN_MEM_READ |
327                            COFF::IMAGE_SCN_MEM_WRITE;
328  return (Sec->Characteristics & BssFlags) == BssFlags;
329}
330
331unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
332  uintptr_t Offset =
333      uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
334  assert((Offset % sizeof(coff_section)) == 0);
335  return (Offset / sizeof(coff_section)) + 1;
336}
337
338bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
339  const coff_section *Sec = toSec(Ref);
340  // In COFF, a virtual section won't have any in-file
341  // content, so the file pointer to the content will be zero.
342  return Sec->PointerToRawData == 0;
343}
344
345static uint32_t getNumberOfRelocations(const coff_section *Sec,
346                                       MemoryBufferRef M, const uint8_t *base) {
347  // The field for the number of relocations in COFF section table is only
348  // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
349  // NumberOfRelocations field, and the actual relocation count is stored in the
350  // VirtualAddress field in the first relocation entry.
351  if (Sec->hasExtendedRelocations()) {
352    const coff_relocation *FirstReloc;
353    if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
354        base + Sec->PointerToRelocations)))
355      return 0;
356    // -1 to exclude this first relocation entry.
357    return FirstReloc->VirtualAddress - 1;
358  }
359  return Sec->NumberOfRelocations;
360}
361
362static const coff_relocation *
363getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
364  uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
365  if (!NumRelocs)
366    return nullptr;
367  auto begin = reinterpret_cast<const coff_relocation *>(
368      Base + Sec->PointerToRelocations);
369  if (Sec->hasExtendedRelocations()) {
370    // Skip the first relocation entry repurposed to store the number of
371    // relocations.
372    begin++;
373  }
374  if (Binary::checkOffset(M, uintptr_t(begin),
375                          sizeof(coff_relocation) * NumRelocs))
376    return nullptr;
377  return begin;
378}
379
380relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
381  const coff_section *Sec = toSec(Ref);
382  const coff_relocation *begin = getFirstReloc(Sec, Data, base());
383  if (begin && Sec->VirtualAddress != 0)
384    report_fatal_error("Sections with relocations should have an address of 0");
385  DataRefImpl Ret;
386  Ret.p = reinterpret_cast<uintptr_t>(begin);
387  return relocation_iterator(RelocationRef(Ret, this));
388}
389
390relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
391  const coff_section *Sec = toSec(Ref);
392  const coff_relocation *I = getFirstReloc(Sec, Data, base());
393  if (I)
394    I += getNumberOfRelocations(Sec, Data, base());
395  DataRefImpl Ret;
396  Ret.p = reinterpret_cast<uintptr_t>(I);
397  return relocation_iterator(RelocationRef(Ret, this));
398}
399
400// Initialize the pointer to the symbol table.
401std::error_code COFFObjectFile::initSymbolTablePtr() {
402  if (COFFHeader)
403    if (std::error_code EC = getObject(
404            SymbolTable16, Data, base() + getPointerToSymbolTable(),
405            (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
406      return EC;
407
408  if (COFFBigObjHeader)
409    if (std::error_code EC = getObject(
410            SymbolTable32, Data, base() + getPointerToSymbolTable(),
411            (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
412      return EC;
413
414  // Find string table. The first four byte of the string table contains the
415  // total size of the string table, including the size field itself. If the
416  // string table is empty, the value of the first four byte would be 4.
417  uint32_t StringTableOffset = getPointerToSymbolTable() +
418                               getNumberOfSymbols() * getSymbolTableEntrySize();
419  const uint8_t *StringTableAddr = base() + StringTableOffset;
420  const ulittle32_t *StringTableSizePtr;
421  if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
422    return EC;
423  StringTableSize = *StringTableSizePtr;
424  if (std::error_code EC =
425          getObject(StringTable, Data, StringTableAddr, StringTableSize))
426    return EC;
427
428  // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
429  // tools like cvtres write a size of 0 for an empty table instead of 4.
430  if (StringTableSize < 4)
431      StringTableSize = 4;
432
433  // Check that the string table is null terminated if has any in it.
434  if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
435    return  object_error::parse_failed;
436  return std::error_code();
437}
438
439uint64_t COFFObjectFile::getImageBase() const {
440  if (PE32Header)
441    return PE32Header->ImageBase;
442  else if (PE32PlusHeader)
443    return PE32PlusHeader->ImageBase;
444  // This actually comes up in practice.
445  return 0;
446}
447
448// Returns the file offset for the given VA.
449std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
450  uint64_t ImageBase = getImageBase();
451  uint64_t Rva = Addr - ImageBase;
452  assert(Rva <= UINT32_MAX);
453  return getRvaPtr((uint32_t)Rva, Res);
454}
455
456// Returns the file offset for the given RVA.
457std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
458  for (const SectionRef &S : sections()) {
459    const coff_section *Section = getCOFFSection(S);
460    uint32_t SectionStart = Section->VirtualAddress;
461    uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
462    if (SectionStart <= Addr && Addr < SectionEnd) {
463      uint32_t Offset = Addr - SectionStart;
464      Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
465      return std::error_code();
466    }
467  }
468  return object_error::parse_failed;
469}
470
471std::error_code
472COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
473                                     ArrayRef<uint8_t> &Contents) const {
474  for (const SectionRef &S : sections()) {
475    const coff_section *Section = getCOFFSection(S);
476    uint32_t SectionStart = Section->VirtualAddress;
477    // Check if this RVA is within the section bounds. Be careful about integer
478    // overflow.
479    uint32_t OffsetIntoSection = RVA - SectionStart;
480    if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
481        Size <= Section->VirtualSize - OffsetIntoSection) {
482      uintptr_t Begin =
483          uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection;
484      Contents =
485          ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
486      return std::error_code();
487    }
488  }
489  return object_error::parse_failed;
490}
491
492// Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
493// table entry.
494std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
495                                            StringRef &Name) const {
496  uintptr_t IntPtr = 0;
497  if (std::error_code EC = getRvaPtr(Rva, IntPtr))
498    return EC;
499  const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
500  Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
501  Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
502  return std::error_code();
503}
504
505std::error_code
506COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
507                                const codeview::DebugInfo *&PDBInfo,
508                                StringRef &PDBFileName) const {
509  ArrayRef<uint8_t> InfoBytes;
510  if (std::error_code EC = getRvaAndSizeAsBytes(
511          DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes))
512    return EC;
513  if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
514    return object_error::parse_failed;
515  PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
516  InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
517  PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
518                          InfoBytes.size());
519  // Truncate the name at the first null byte. Ignore any padding.
520  PDBFileName = PDBFileName.split('\0').first;
521  return std::error_code();
522}
523
524std::error_code
525COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
526                                StringRef &PDBFileName) const {
527  for (const debug_directory &D : debug_directories())
528    if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
529      return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
530  // If we get here, there is no PDB info to return.
531  PDBInfo = nullptr;
532  PDBFileName = StringRef();
533  return std::error_code();
534}
535
536// Find the import table.
537std::error_code COFFObjectFile::initImportTablePtr() {
538  // First, we get the RVA of the import table. If the file lacks a pointer to
539  // the import table, do nothing.
540  const data_directory *DataEntry;
541  if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
542    return std::error_code();
543
544  // Do nothing if the pointer to import table is NULL.
545  if (DataEntry->RelativeVirtualAddress == 0)
546    return std::error_code();
547
548  uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
549
550  // Find the section that contains the RVA. This is needed because the RVA is
551  // the import table's memory address which is different from its file offset.
552  uintptr_t IntPtr = 0;
553  if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
554    return EC;
555  if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size))
556    return EC;
557  ImportDirectory = reinterpret_cast<
558      const coff_import_directory_table_entry *>(IntPtr);
559  return std::error_code();
560}
561
562// Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
563std::error_code COFFObjectFile::initDelayImportTablePtr() {
564  const data_directory *DataEntry;
565  if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
566    return std::error_code();
567  if (DataEntry->RelativeVirtualAddress == 0)
568    return std::error_code();
569
570  uint32_t RVA = DataEntry->RelativeVirtualAddress;
571  NumberOfDelayImportDirectory = DataEntry->Size /
572      sizeof(delay_import_directory_table_entry) - 1;
573
574  uintptr_t IntPtr = 0;
575  if (std::error_code EC = getRvaPtr(RVA, IntPtr))
576    return EC;
577  DelayImportDirectory = reinterpret_cast<
578      const delay_import_directory_table_entry *>(IntPtr);
579  return std::error_code();
580}
581
582// Find the export table.
583std::error_code COFFObjectFile::initExportTablePtr() {
584  // First, we get the RVA of the export table. If the file lacks a pointer to
585  // the export table, do nothing.
586  const data_directory *DataEntry;
587  if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
588    return std::error_code();
589
590  // Do nothing if the pointer to export table is NULL.
591  if (DataEntry->RelativeVirtualAddress == 0)
592    return std::error_code();
593
594  uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
595  uintptr_t IntPtr = 0;
596  if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
597    return EC;
598  ExportDirectory =
599      reinterpret_cast<const export_directory_table_entry *>(IntPtr);
600  return std::error_code();
601}
602
603std::error_code COFFObjectFile::initBaseRelocPtr() {
604  const data_directory *DataEntry;
605  if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
606    return std::error_code();
607  if (DataEntry->RelativeVirtualAddress == 0)
608    return std::error_code();
609
610  uintptr_t IntPtr = 0;
611  if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
612    return EC;
613  BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
614      IntPtr);
615  BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
616      IntPtr + DataEntry->Size);
617  // FIXME: Verify the section containing BaseRelocHeader has at least
618  // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
619  return std::error_code();
620}
621
622std::error_code COFFObjectFile::initDebugDirectoryPtr() {
623  // Get the RVA of the debug directory. Do nothing if it does not exist.
624  const data_directory *DataEntry;
625  if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry))
626    return std::error_code();
627
628  // Do nothing if the RVA is NULL.
629  if (DataEntry->RelativeVirtualAddress == 0)
630    return std::error_code();
631
632  // Check that the size is a multiple of the entry size.
633  if (DataEntry->Size % sizeof(debug_directory) != 0)
634    return object_error::parse_failed;
635
636  uintptr_t IntPtr = 0;
637  if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
638    return EC;
639  DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
640  DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
641      IntPtr + DataEntry->Size);
642  // FIXME: Verify the section containing DebugDirectoryBegin has at least
643  // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
644  return std::error_code();
645}
646
647std::error_code COFFObjectFile::initLoadConfigPtr() {
648  // Get the RVA of the debug directory. Do nothing if it does not exist.
649  const data_directory *DataEntry;
650  if (getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataEntry))
651    return std::error_code();
652
653  // Do nothing if the RVA is NULL.
654  if (DataEntry->RelativeVirtualAddress == 0)
655    return std::error_code();
656  uintptr_t IntPtr = 0;
657  if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
658    return EC;
659
660  LoadConfig = (const void *)IntPtr;
661  return std::error_code();
662}
663
664COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
665    : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
666      COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
667      DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
668      SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
669      ImportDirectory(nullptr),
670      DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
671      ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
672      DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) {
673  // Check that we at least have enough room for a header.
674  if (!checkSize(Data, EC, sizeof(coff_file_header)))
675    return;
676
677  // The current location in the file where we are looking at.
678  uint64_t CurPtr = 0;
679
680  // PE header is optional and is present only in executables. If it exists,
681  // it is placed right after COFF header.
682  bool HasPEHeader = false;
683
684  // Check if this is a PE/COFF file.
685  if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
686    // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
687    // PE signature to find 'normal' COFF header.
688    const auto *DH = reinterpret_cast<const dos_header *>(base());
689    if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
690      CurPtr = DH->AddressOfNewExeHeader;
691      // Check the PE magic bytes. ("PE\0\0")
692      if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
693        EC = object_error::parse_failed;
694        return;
695      }
696      CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
697      HasPEHeader = true;
698    }
699  }
700
701  if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
702    return;
703
704  // It might be a bigobj file, let's check.  Note that COFF bigobj and COFF
705  // import libraries share a common prefix but bigobj is more restrictive.
706  if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
707      COFFHeader->NumberOfSections == uint16_t(0xffff) &&
708      checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
709    if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
710      return;
711
712    // Verify that we are dealing with bigobj.
713    if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
714        std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
715                    sizeof(COFF::BigObjMagic)) == 0) {
716      COFFHeader = nullptr;
717      CurPtr += sizeof(coff_bigobj_file_header);
718    } else {
719      // It's not a bigobj.
720      COFFBigObjHeader = nullptr;
721    }
722  }
723  if (COFFHeader) {
724    // The prior checkSize call may have failed.  This isn't a hard error
725    // because we were just trying to sniff out bigobj.
726    EC = std::error_code();
727    CurPtr += sizeof(coff_file_header);
728
729    if (COFFHeader->isImportLibrary())
730      return;
731  }
732
733  if (HasPEHeader) {
734    const pe32_header *Header;
735    if ((EC = getObject(Header, Data, base() + CurPtr)))
736      return;
737
738    const uint8_t *DataDirAddr;
739    uint64_t DataDirSize;
740    if (Header->Magic == COFF::PE32Header::PE32) {
741      PE32Header = Header;
742      DataDirAddr = base() + CurPtr + sizeof(pe32_header);
743      DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
744    } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
745      PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
746      DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
747      DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
748    } else {
749      // It's neither PE32 nor PE32+.
750      EC = object_error::parse_failed;
751      return;
752    }
753    if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
754      return;
755  }
756
757  if (COFFHeader)
758    CurPtr += COFFHeader->SizeOfOptionalHeader;
759
760  if ((EC = getObject(SectionTable, Data, base() + CurPtr,
761                      (uint64_t)getNumberOfSections() * sizeof(coff_section))))
762    return;
763
764  // Initialize the pointer to the symbol table.
765  if (getPointerToSymbolTable() != 0) {
766    if ((EC = initSymbolTablePtr())) {
767      SymbolTable16 = nullptr;
768      SymbolTable32 = nullptr;
769      StringTable = nullptr;
770      StringTableSize = 0;
771    }
772  } else {
773    // We had better not have any symbols if we don't have a symbol table.
774    if (getNumberOfSymbols() != 0) {
775      EC = object_error::parse_failed;
776      return;
777    }
778  }
779
780  // Initialize the pointer to the beginning of the import table.
781  if ((EC = initImportTablePtr()))
782    return;
783  if ((EC = initDelayImportTablePtr()))
784    return;
785
786  // Initialize the pointer to the export table.
787  if ((EC = initExportTablePtr()))
788    return;
789
790  // Initialize the pointer to the base relocation table.
791  if ((EC = initBaseRelocPtr()))
792    return;
793
794  // Initialize the pointer to the export table.
795  if ((EC = initDebugDirectoryPtr()))
796    return;
797
798  if ((EC = initLoadConfigPtr()))
799    return;
800
801  EC = std::error_code();
802}
803
804basic_symbol_iterator COFFObjectFile::symbol_begin() const {
805  DataRefImpl Ret;
806  Ret.p = getSymbolTable();
807  return basic_symbol_iterator(SymbolRef(Ret, this));
808}
809
810basic_symbol_iterator COFFObjectFile::symbol_end() const {
811  // The symbol table ends where the string table begins.
812  DataRefImpl Ret;
813  Ret.p = reinterpret_cast<uintptr_t>(StringTable);
814  return basic_symbol_iterator(SymbolRef(Ret, this));
815}
816
817import_directory_iterator COFFObjectFile::import_directory_begin() const {
818  if (!ImportDirectory)
819    return import_directory_end();
820  if (ImportDirectory->isNull())
821    return import_directory_end();
822  return import_directory_iterator(
823      ImportDirectoryEntryRef(ImportDirectory, 0, this));
824}
825
826import_directory_iterator COFFObjectFile::import_directory_end() const {
827  return import_directory_iterator(
828      ImportDirectoryEntryRef(nullptr, -1, this));
829}
830
831delay_import_directory_iterator
832COFFObjectFile::delay_import_directory_begin() const {
833  return delay_import_directory_iterator(
834      DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
835}
836
837delay_import_directory_iterator
838COFFObjectFile::delay_import_directory_end() const {
839  return delay_import_directory_iterator(
840      DelayImportDirectoryEntryRef(
841          DelayImportDirectory, NumberOfDelayImportDirectory, this));
842}
843
844export_directory_iterator COFFObjectFile::export_directory_begin() const {
845  return export_directory_iterator(
846      ExportDirectoryEntryRef(ExportDirectory, 0, this));
847}
848
849export_directory_iterator COFFObjectFile::export_directory_end() const {
850  if (!ExportDirectory)
851    return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
852  ExportDirectoryEntryRef Ref(ExportDirectory,
853                              ExportDirectory->AddressTableEntries, this);
854  return export_directory_iterator(Ref);
855}
856
857section_iterator COFFObjectFile::section_begin() const {
858  DataRefImpl Ret;
859  Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
860  return section_iterator(SectionRef(Ret, this));
861}
862
863section_iterator COFFObjectFile::section_end() const {
864  DataRefImpl Ret;
865  int NumSections =
866      COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
867  Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
868  return section_iterator(SectionRef(Ret, this));
869}
870
871base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
872  return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
873}
874
875base_reloc_iterator COFFObjectFile::base_reloc_end() const {
876  return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
877}
878
879uint8_t COFFObjectFile::getBytesInAddress() const {
880  return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
881}
882
883StringRef COFFObjectFile::getFileFormatName() const {
884  switch(getMachine()) {
885  case COFF::IMAGE_FILE_MACHINE_I386:
886    return "COFF-i386";
887  case COFF::IMAGE_FILE_MACHINE_AMD64:
888    return "COFF-x86-64";
889  case COFF::IMAGE_FILE_MACHINE_ARMNT:
890    return "COFF-ARM";
891  case COFF::IMAGE_FILE_MACHINE_ARM64:
892    return "COFF-ARM64";
893  default:
894    return "COFF-<unknown arch>";
895  }
896}
897
898Triple::ArchType COFFObjectFile::getArch() const {
899  switch (getMachine()) {
900  case COFF::IMAGE_FILE_MACHINE_I386:
901    return Triple::x86;
902  case COFF::IMAGE_FILE_MACHINE_AMD64:
903    return Triple::x86_64;
904  case COFF::IMAGE_FILE_MACHINE_ARMNT:
905    return Triple::thumb;
906  case COFF::IMAGE_FILE_MACHINE_ARM64:
907    return Triple::aarch64;
908  default:
909    return Triple::UnknownArch;
910  }
911}
912
913Expected<uint64_t> COFFObjectFile::getStartAddress() const {
914  if (PE32Header)
915    return PE32Header->AddressOfEntryPoint;
916  return 0;
917}
918
919iterator_range<import_directory_iterator>
920COFFObjectFile::import_directories() const {
921  return make_range(import_directory_begin(), import_directory_end());
922}
923
924iterator_range<delay_import_directory_iterator>
925COFFObjectFile::delay_import_directories() const {
926  return make_range(delay_import_directory_begin(),
927                    delay_import_directory_end());
928}
929
930iterator_range<export_directory_iterator>
931COFFObjectFile::export_directories() const {
932  return make_range(export_directory_begin(), export_directory_end());
933}
934
935iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
936  return make_range(base_reloc_begin(), base_reloc_end());
937}
938
939std::error_code
940COFFObjectFile::getDataDirectory(uint32_t Index,
941                                 const data_directory *&Res) const {
942  // Error if there's no data directory or the index is out of range.
943  if (!DataDirectory) {
944    Res = nullptr;
945    return object_error::parse_failed;
946  }
947  assert(PE32Header || PE32PlusHeader);
948  uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
949                               : PE32PlusHeader->NumberOfRvaAndSize;
950  if (Index >= NumEnt) {
951    Res = nullptr;
952    return object_error::parse_failed;
953  }
954  Res = &DataDirectory[Index];
955  return std::error_code();
956}
957
958std::error_code COFFObjectFile::getSection(int32_t Index,
959                                           const coff_section *&Result) const {
960  Result = nullptr;
961  if (COFF::isReservedSectionNumber(Index))
962    return std::error_code();
963  if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
964    // We already verified the section table data, so no need to check again.
965    Result = SectionTable + (Index - 1);
966    return std::error_code();
967  }
968  return object_error::parse_failed;
969}
970
971std::error_code COFFObjectFile::getSection(StringRef SectionName,
972                                           const coff_section *&Result) const {
973  Result = nullptr;
974  for (const SectionRef &Section : sections()) {
975    auto NameOrErr = Section.getName();
976    if (!NameOrErr)
977      return errorToErrorCode(NameOrErr.takeError());
978
979    if (*NameOrErr == SectionName) {
980      Result = getCOFFSection(Section);
981      return std::error_code();
982    }
983  }
984  return object_error::parse_failed;
985}
986
987std::error_code COFFObjectFile::getString(uint32_t Offset,
988                                          StringRef &Result) const {
989  if (StringTableSize <= 4)
990    // Tried to get a string from an empty string table.
991    return object_error::parse_failed;
992  if (Offset >= StringTableSize)
993    return object_error::unexpected_eof;
994  Result = StringRef(StringTable + Offset);
995  return std::error_code();
996}
997
998std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
999                                              StringRef &Res) const {
1000  return getSymbolName(Symbol.getGeneric(), Res);
1001}
1002
1003std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
1004                                              StringRef &Res) const {
1005  // Check for string table entry. First 4 bytes are 0.
1006  if (Symbol->Name.Offset.Zeroes == 0) {
1007    if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
1008      return EC;
1009    return std::error_code();
1010  }
1011
1012  if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1013    // Null terminated, let ::strlen figure out the length.
1014    Res = StringRef(Symbol->Name.ShortName);
1015  else
1016    // Not null terminated, use all 8 bytes.
1017    Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
1018  return std::error_code();
1019}
1020
1021ArrayRef<uint8_t>
1022COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1023  const uint8_t *Aux = nullptr;
1024
1025  size_t SymbolSize = getSymbolTableEntrySize();
1026  if (Symbol.getNumberOfAuxSymbols() > 0) {
1027    // AUX data comes immediately after the symbol in COFF
1028    Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1029#ifndef NDEBUG
1030    // Verify that the Aux symbol points to a valid entry in the symbol table.
1031    uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1032    if (Offset < getPointerToSymbolTable() ||
1033        Offset >=
1034            getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1035      report_fatal_error("Aux Symbol data was outside of symbol table.");
1036
1037    assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1038           "Aux Symbol data did not point to the beginning of a symbol");
1039#endif
1040  }
1041  return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1042}
1043
1044uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const {
1045  uintptr_t Offset =
1046      reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable();
1047  assert(Offset % getSymbolTableEntrySize() == 0 &&
1048         "Symbol did not point to the beginning of a symbol");
1049  size_t Index = Offset / getSymbolTableEntrySize();
1050  assert(Index < getNumberOfSymbols());
1051  return Index;
1052}
1053
1054Expected<StringRef>
1055COFFObjectFile::getSectionName(const coff_section *Sec) const {
1056  StringRef Name;
1057  if (Sec->Name[COFF::NameSize - 1] == 0)
1058    // Null terminated, let ::strlen figure out the length.
1059    Name = Sec->Name;
1060  else
1061    // Not null terminated, use all 8 bytes.
1062    Name = StringRef(Sec->Name, COFF::NameSize);
1063
1064  // Check for string table entry. First byte is '/'.
1065  if (Name.startswith("/")) {
1066    uint32_t Offset;
1067    if (Name.startswith("//")) {
1068      if (decodeBase64StringEntry(Name.substr(2), Offset))
1069        return createStringError(object_error::parse_failed,
1070                                 "inalid section name");
1071    } else {
1072      if (Name.substr(1).getAsInteger(10, Offset))
1073        return createStringError(object_error::parse_failed,
1074                                 "invalid section name");
1075    }
1076    if (std::error_code EC = getString(Offset, Name))
1077      return errorCodeToError(EC);
1078  }
1079
1080  return Name;
1081}
1082
1083uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1084  // SizeOfRawData and VirtualSize change what they represent depending on
1085  // whether or not we have an executable image.
1086  //
1087  // For object files, SizeOfRawData contains the size of section's data;
1088  // VirtualSize should be zero but isn't due to buggy COFF writers.
1089  //
1090  // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1091  // actual section size is in VirtualSize.  It is possible for VirtualSize to
1092  // be greater than SizeOfRawData; the contents past that point should be
1093  // considered to be zero.
1094  if (getDOSHeader())
1095    return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1096  return Sec->SizeOfRawData;
1097}
1098
1099Error COFFObjectFile::getSectionContents(const coff_section *Sec,
1100                                         ArrayRef<uint8_t> &Res) const {
1101  // In COFF, a virtual section won't have any in-file
1102  // content, so the file pointer to the content will be zero.
1103  if (Sec->PointerToRawData == 0)
1104    return Error::success();
1105  // The only thing that we need to verify is that the contents is contained
1106  // within the file bounds. We don't need to make sure it doesn't cover other
1107  // data, as there's nothing that says that is not allowed.
1108  uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
1109  uint32_t SectionSize = getSectionSize(Sec);
1110  if (checkOffset(Data, ConStart, SectionSize))
1111    return make_error<BinaryError>();
1112  Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1113  return Error::success();
1114}
1115
1116const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1117  return reinterpret_cast<const coff_relocation*>(Rel.p);
1118}
1119
1120void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1121  Rel.p = reinterpret_cast<uintptr_t>(
1122            reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1123}
1124
1125uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1126  const coff_relocation *R = toRel(Rel);
1127  return R->VirtualAddress;
1128}
1129
1130symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1131  const coff_relocation *R = toRel(Rel);
1132  DataRefImpl Ref;
1133  if (R->SymbolTableIndex >= getNumberOfSymbols())
1134    return symbol_end();
1135  if (SymbolTable16)
1136    Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1137  else if (SymbolTable32)
1138    Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1139  else
1140    llvm_unreachable("no symbol table pointer!");
1141  return symbol_iterator(SymbolRef(Ref, this));
1142}
1143
1144uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1145  const coff_relocation* R = toRel(Rel);
1146  return R->Type;
1147}
1148
1149const coff_section *
1150COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1151  return toSec(Section.getRawDataRefImpl());
1152}
1153
1154COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1155  if (SymbolTable16)
1156    return toSymb<coff_symbol16>(Ref);
1157  if (SymbolTable32)
1158    return toSymb<coff_symbol32>(Ref);
1159  llvm_unreachable("no symbol table pointer!");
1160}
1161
1162COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1163  return getCOFFSymbol(Symbol.getRawDataRefImpl());
1164}
1165
1166const coff_relocation *
1167COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1168  return toRel(Reloc.getRawDataRefImpl());
1169}
1170
1171ArrayRef<coff_relocation>
1172COFFObjectFile::getRelocations(const coff_section *Sec) const {
1173  return {getFirstReloc(Sec, Data, base()),
1174          getNumberOfRelocations(Sec, Data, base())};
1175}
1176
1177#define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type)                           \
1178  case COFF::reloc_type:                                                       \
1179    return #reloc_type;
1180
1181StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1182  switch (getMachine()) {
1183  case COFF::IMAGE_FILE_MACHINE_AMD64:
1184    switch (Type) {
1185    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1186    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1187    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1188    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1189    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1190    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1191    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1192    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1193    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1194    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1195    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1196    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1197    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1198    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1199    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1200    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1201    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1202    default:
1203      return "Unknown";
1204    }
1205    break;
1206  case COFF::IMAGE_FILE_MACHINE_ARMNT:
1207    switch (Type) {
1208    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1209    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1210    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1211    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1212    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1213    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1214    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1215    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1216    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32);
1217    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1218    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1219    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1220    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1221    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1222    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1223    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1224    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR);
1225    default:
1226      return "Unknown";
1227    }
1228    break;
1229  case COFF::IMAGE_FILE_MACHINE_ARM64:
1230    switch (Type) {
1231    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1232    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1233    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1234    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1235    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1236    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1237    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1238    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1239    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1240    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1241    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1242    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1243    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1244    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1245    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1246    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1247    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1248    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32);
1249    default:
1250      return "Unknown";
1251    }
1252    break;
1253  case COFF::IMAGE_FILE_MACHINE_I386:
1254    switch (Type) {
1255    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1256    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1257    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1258    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1259    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1260    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1261    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1262    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1263    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1264    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1265    LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1266    default:
1267      return "Unknown";
1268    }
1269    break;
1270  default:
1271    return "Unknown";
1272  }
1273}
1274
1275#undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1276
1277void COFFObjectFile::getRelocationTypeName(
1278    DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1279  const coff_relocation *Reloc = toRel(Rel);
1280  StringRef Res = getRelocationTypeName(Reloc->Type);
1281  Result.append(Res.begin(), Res.end());
1282}
1283
1284bool COFFObjectFile::isRelocatableObject() const {
1285  return !DataDirectory;
1286}
1287
1288StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1289  return StringSwitch<StringRef>(Name)
1290      .Case("eh_fram", "eh_frame")
1291      .Default(Name);
1292}
1293
1294bool ImportDirectoryEntryRef::
1295operator==(const ImportDirectoryEntryRef &Other) const {
1296  return ImportTable == Other.ImportTable && Index == Other.Index;
1297}
1298
1299void ImportDirectoryEntryRef::moveNext() {
1300  ++Index;
1301  if (ImportTable[Index].isNull()) {
1302    Index = -1;
1303    ImportTable = nullptr;
1304  }
1305}
1306
1307std::error_code ImportDirectoryEntryRef::getImportTableEntry(
1308    const coff_import_directory_table_entry *&Result) const {
1309  return getObject(Result, OwningObject->Data, ImportTable + Index);
1310}
1311
1312static imported_symbol_iterator
1313makeImportedSymbolIterator(const COFFObjectFile *Object,
1314                           uintptr_t Ptr, int Index) {
1315  if (Object->getBytesInAddress() == 4) {
1316    auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1317    return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1318  }
1319  auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1320  return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1321}
1322
1323static imported_symbol_iterator
1324importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1325  uintptr_t IntPtr = 0;
1326  Object->getRvaPtr(RVA, IntPtr);
1327  return makeImportedSymbolIterator(Object, IntPtr, 0);
1328}
1329
1330static imported_symbol_iterator
1331importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1332  uintptr_t IntPtr = 0;
1333  Object->getRvaPtr(RVA, IntPtr);
1334  // Forward the pointer to the last entry which is null.
1335  int Index = 0;
1336  if (Object->getBytesInAddress() == 4) {
1337    auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1338    while (*Entry++)
1339      ++Index;
1340  } else {
1341    auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1342    while (*Entry++)
1343      ++Index;
1344  }
1345  return makeImportedSymbolIterator(Object, IntPtr, Index);
1346}
1347
1348imported_symbol_iterator
1349ImportDirectoryEntryRef::imported_symbol_begin() const {
1350  return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1351                             OwningObject);
1352}
1353
1354imported_symbol_iterator
1355ImportDirectoryEntryRef::imported_symbol_end() const {
1356  return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1357                           OwningObject);
1358}
1359
1360iterator_range<imported_symbol_iterator>
1361ImportDirectoryEntryRef::imported_symbols() const {
1362  return make_range(imported_symbol_begin(), imported_symbol_end());
1363}
1364
1365imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1366  return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1367                             OwningObject);
1368}
1369
1370imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1371  return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1372                           OwningObject);
1373}
1374
1375iterator_range<imported_symbol_iterator>
1376ImportDirectoryEntryRef::lookup_table_symbols() const {
1377  return make_range(lookup_table_begin(), lookup_table_end());
1378}
1379
1380std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
1381  uintptr_t IntPtr = 0;
1382  if (std::error_code EC =
1383          OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1384    return EC;
1385  Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1386  return std::error_code();
1387}
1388
1389std::error_code
1390ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t  &Result) const {
1391  Result = ImportTable[Index].ImportLookupTableRVA;
1392  return std::error_code();
1393}
1394
1395std::error_code
1396ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
1397  Result = ImportTable[Index].ImportAddressTableRVA;
1398  return std::error_code();
1399}
1400
1401bool DelayImportDirectoryEntryRef::
1402operator==(const DelayImportDirectoryEntryRef &Other) const {
1403  return Table == Other.Table && Index == Other.Index;
1404}
1405
1406void DelayImportDirectoryEntryRef::moveNext() {
1407  ++Index;
1408}
1409
1410imported_symbol_iterator
1411DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1412  return importedSymbolBegin(Table[Index].DelayImportNameTable,
1413                             OwningObject);
1414}
1415
1416imported_symbol_iterator
1417DelayImportDirectoryEntryRef::imported_symbol_end() const {
1418  return importedSymbolEnd(Table[Index].DelayImportNameTable,
1419                           OwningObject);
1420}
1421
1422iterator_range<imported_symbol_iterator>
1423DelayImportDirectoryEntryRef::imported_symbols() const {
1424  return make_range(imported_symbol_begin(), imported_symbol_end());
1425}
1426
1427std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1428  uintptr_t IntPtr = 0;
1429  if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1430    return EC;
1431  Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1432  return std::error_code();
1433}
1434
1435std::error_code DelayImportDirectoryEntryRef::
1436getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
1437  Result = &Table[Index];
1438  return std::error_code();
1439}
1440
1441std::error_code DelayImportDirectoryEntryRef::
1442getImportAddress(int AddrIndex, uint64_t &Result) const {
1443  uint32_t RVA = Table[Index].DelayImportAddressTable +
1444      AddrIndex * (OwningObject->is64() ? 8 : 4);
1445  uintptr_t IntPtr = 0;
1446  if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1447    return EC;
1448  if (OwningObject->is64())
1449    Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1450  else
1451    Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1452  return std::error_code();
1453}
1454
1455bool ExportDirectoryEntryRef::
1456operator==(const ExportDirectoryEntryRef &Other) const {
1457  return ExportTable == Other.ExportTable && Index == Other.Index;
1458}
1459
1460void ExportDirectoryEntryRef::moveNext() {
1461  ++Index;
1462}
1463
1464// Returns the name of the current export symbol. If the symbol is exported only
1465// by ordinal, the empty string is set as a result.
1466std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1467  uintptr_t IntPtr = 0;
1468  if (std::error_code EC =
1469          OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1470    return EC;
1471  Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1472  return std::error_code();
1473}
1474
1475// Returns the starting ordinal number.
1476std::error_code
1477ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1478  Result = ExportTable->OrdinalBase;
1479  return std::error_code();
1480}
1481
1482// Returns the export ordinal of the current export symbol.
1483std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1484  Result = ExportTable->OrdinalBase + Index;
1485  return std::error_code();
1486}
1487
1488// Returns the address of the current export symbol.
1489std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1490  uintptr_t IntPtr = 0;
1491  if (std::error_code EC =
1492          OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1493    return EC;
1494  const export_address_table_entry *entry =
1495      reinterpret_cast<const export_address_table_entry *>(IntPtr);
1496  Result = entry[Index].ExportRVA;
1497  return std::error_code();
1498}
1499
1500// Returns the name of the current export symbol. If the symbol is exported only
1501// by ordinal, the empty string is set as a result.
1502std::error_code
1503ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1504  uintptr_t IntPtr = 0;
1505  if (std::error_code EC =
1506          OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1507    return EC;
1508  const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1509
1510  uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1511  int Offset = 0;
1512  for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1513       I < E; ++I, ++Offset) {
1514    if (*I != Index)
1515      continue;
1516    if (std::error_code EC =
1517            OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1518      return EC;
1519    const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1520    if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1521      return EC;
1522    Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1523    return std::error_code();
1524  }
1525  Result = "";
1526  return std::error_code();
1527}
1528
1529std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1530  const data_directory *DataEntry;
1531  if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
1532    return EC;
1533  uint32_t RVA;
1534  if (auto EC = getExportRVA(RVA))
1535    return EC;
1536  uint32_t Begin = DataEntry->RelativeVirtualAddress;
1537  uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1538  Result = (Begin <= RVA && RVA < End);
1539  return std::error_code();
1540}
1541
1542std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1543  uint32_t RVA;
1544  if (auto EC = getExportRVA(RVA))
1545    return EC;
1546  uintptr_t IntPtr = 0;
1547  if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
1548    return EC;
1549  Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1550  return std::error_code();
1551}
1552
1553bool ImportedSymbolRef::
1554operator==(const ImportedSymbolRef &Other) const {
1555  return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1556      && Index == Other.Index;
1557}
1558
1559void ImportedSymbolRef::moveNext() {
1560  ++Index;
1561}
1562
1563std::error_code
1564ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1565  uint32_t RVA;
1566  if (Entry32) {
1567    // If a symbol is imported only by ordinal, it has no name.
1568    if (Entry32[Index].isOrdinal())
1569      return std::error_code();
1570    RVA = Entry32[Index].getHintNameRVA();
1571  } else {
1572    if (Entry64[Index].isOrdinal())
1573      return std::error_code();
1574    RVA = Entry64[Index].getHintNameRVA();
1575  }
1576  uintptr_t IntPtr = 0;
1577  if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1578    return EC;
1579  // +2 because the first two bytes is hint.
1580  Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1581  return std::error_code();
1582}
1583
1584std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const {
1585  if (Entry32)
1586    Result = Entry32[Index].isOrdinal();
1587  else
1588    Result = Entry64[Index].isOrdinal();
1589  return std::error_code();
1590}
1591
1592std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1593  if (Entry32)
1594    Result = Entry32[Index].getHintNameRVA();
1595  else
1596    Result = Entry64[Index].getHintNameRVA();
1597  return std::error_code();
1598}
1599
1600std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1601  uint32_t RVA;
1602  if (Entry32) {
1603    if (Entry32[Index].isOrdinal()) {
1604      Result = Entry32[Index].getOrdinal();
1605      return std::error_code();
1606    }
1607    RVA = Entry32[Index].getHintNameRVA();
1608  } else {
1609    if (Entry64[Index].isOrdinal()) {
1610      Result = Entry64[Index].getOrdinal();
1611      return std::error_code();
1612    }
1613    RVA = Entry64[Index].getHintNameRVA();
1614  }
1615  uintptr_t IntPtr = 0;
1616  if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1617    return EC;
1618  Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1619  return std::error_code();
1620}
1621
1622Expected<std::unique_ptr<COFFObjectFile>>
1623ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1624  std::error_code EC;
1625  std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
1626  if (EC)
1627    return errorCodeToError(EC);
1628  return std::move(Ret);
1629}
1630
1631bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1632  return Header == Other.Header && Index == Other.Index;
1633}
1634
1635void BaseRelocRef::moveNext() {
1636  // Header->BlockSize is the size of the current block, including the
1637  // size of the header itself.
1638  uint32_t Size = sizeof(*Header) +
1639      sizeof(coff_base_reloc_block_entry) * (Index + 1);
1640  if (Size == Header->BlockSize) {
1641    // .reloc contains a list of base relocation blocks. Each block
1642    // consists of the header followed by entries. The header contains
1643    // how many entories will follow. When we reach the end of the
1644    // current block, proceed to the next block.
1645    Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1646        reinterpret_cast<const uint8_t *>(Header) + Size);
1647    Index = 0;
1648  } else {
1649    ++Index;
1650  }
1651}
1652
1653std::error_code BaseRelocRef::getType(uint8_t &Type) const {
1654  auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1655  Type = Entry[Index].getType();
1656  return std::error_code();
1657}
1658
1659std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
1660  auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1661  Result = Header->PageRVA + Entry[Index].getOffset();
1662  return std::error_code();
1663}
1664
1665#define RETURN_IF_ERROR(Expr)                                                  \
1666  do {                                                                         \
1667    Error E = (Expr);                                                          \
1668    if (E)                                                                     \
1669      return std::move(E);                                                     \
1670  } while (0)
1671
1672Expected<ArrayRef<UTF16>>
1673ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1674  BinaryStreamReader Reader = BinaryStreamReader(BBS);
1675  Reader.setOffset(Offset);
1676  uint16_t Length;
1677  RETURN_IF_ERROR(Reader.readInteger(Length));
1678  ArrayRef<UTF16> RawDirString;
1679  RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1680  return RawDirString;
1681}
1682
1683Expected<ArrayRef<UTF16>>
1684ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1685  return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1686}
1687
1688Expected<const coff_resource_dir_table &>
1689ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1690  const coff_resource_dir_table *Table = nullptr;
1691
1692  BinaryStreamReader Reader(BBS);
1693  Reader.setOffset(Offset);
1694  RETURN_IF_ERROR(Reader.readObject(Table));
1695  assert(Table != nullptr);
1696  return *Table;
1697}
1698
1699Expected<const coff_resource_dir_entry &>
1700ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) {
1701  const coff_resource_dir_entry *Entry = nullptr;
1702
1703  BinaryStreamReader Reader(BBS);
1704  Reader.setOffset(Offset);
1705  RETURN_IF_ERROR(Reader.readObject(Entry));
1706  assert(Entry != nullptr);
1707  return *Entry;
1708}
1709
1710Expected<const coff_resource_data_entry &>
1711ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) {
1712  const coff_resource_data_entry *Entry = nullptr;
1713
1714  BinaryStreamReader Reader(BBS);
1715  Reader.setOffset(Offset);
1716  RETURN_IF_ERROR(Reader.readObject(Entry));
1717  assert(Entry != nullptr);
1718  return *Entry;
1719}
1720
1721Expected<const coff_resource_dir_table &>
1722ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1723  assert(Entry.Offset.isSubDir());
1724  return getTableAtOffset(Entry.Offset.value());
1725}
1726
1727Expected<const coff_resource_data_entry &>
1728ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) {
1729  assert(!Entry.Offset.isSubDir());
1730  return getDataEntryAtOffset(Entry.Offset.value());
1731}
1732
1733Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1734  return getTableAtOffset(0);
1735}
1736
1737Expected<const coff_resource_dir_entry &>
1738ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table,
1739                                  uint32_t Index) {
1740  if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries))
1741    return createStringError(object_error::parse_failed, "index out of range");
1742  const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table);
1743  ptrdiff_t TableOffset = TablePtr - BBS.data().data();
1744  return getTableEntryAtOffset(TableOffset + sizeof(Table) +
1745                               Index * sizeof(coff_resource_dir_entry));
1746}
1747
1748Error ResourceSectionRef::load(const COFFObjectFile *O) {
1749  for (const SectionRef &S : O->sections()) {
1750    Expected<StringRef> Name = S.getName();
1751    if (!Name)
1752      return Name.takeError();
1753
1754    if (*Name == ".rsrc" || *Name == ".rsrc$01")
1755      return load(O, S);
1756  }
1757  return createStringError(object_error::parse_failed,
1758                           "no resource section found");
1759}
1760
1761Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) {
1762  Obj = O;
1763  Section = S;
1764  Expected<StringRef> Contents = Section.getContents();
1765  if (!Contents)
1766    return Contents.takeError();
1767  BBS = BinaryByteStream(*Contents, support::little);
1768  const coff_section *COFFSect = Obj->getCOFFSection(Section);
1769  ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect);
1770  Relocs.reserve(OrigRelocs.size());
1771  for (const coff_relocation &R : OrigRelocs)
1772    Relocs.push_back(&R);
1773  std::sort(Relocs.begin(), Relocs.end(),
1774            [](const coff_relocation *A, const coff_relocation *B) {
1775              return A->VirtualAddress < B->VirtualAddress;
1776            });
1777  return Error::success();
1778}
1779
1780Expected<StringRef>
1781ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) {
1782  if (!Obj)
1783    return createStringError(object_error::parse_failed, "no object provided");
1784
1785  // Find a potential relocation at the DataRVA field (first member of
1786  // the coff_resource_data_entry struct).
1787  const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry);
1788  ptrdiff_t EntryOffset = EntryPtr - BBS.data().data();
1789  coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0),
1790                              ulittle16_t(0)};
1791  auto RelocsForOffset =
1792      std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget,
1793                       [](const coff_relocation *A, const coff_relocation *B) {
1794                         return A->VirtualAddress < B->VirtualAddress;
1795                       });
1796
1797  if (RelocsForOffset.first != RelocsForOffset.second) {
1798    // We found a relocation with the right offset. Check that it does have
1799    // the expected type.
1800    const coff_relocation &R = **RelocsForOffset.first;
1801    uint16_t RVAReloc;
1802    switch (Obj->getMachine()) {
1803    case COFF::IMAGE_FILE_MACHINE_I386:
1804      RVAReloc = COFF::IMAGE_REL_I386_DIR32NB;
1805      break;
1806    case COFF::IMAGE_FILE_MACHINE_AMD64:
1807      RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB;
1808      break;
1809    case COFF::IMAGE_FILE_MACHINE_ARMNT:
1810      RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB;
1811      break;
1812    case COFF::IMAGE_FILE_MACHINE_ARM64:
1813      RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB;
1814      break;
1815    default:
1816      return createStringError(object_error::parse_failed,
1817                               "unsupported architecture");
1818    }
1819    if (R.Type != RVAReloc)
1820      return createStringError(object_error::parse_failed,
1821                               "unexpected relocation type");
1822    // Get the relocation's symbol
1823    Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex);
1824    if (!Sym)
1825      return Sym.takeError();
1826    const coff_section *Section = nullptr;
1827    // And the symbol's section
1828    if (std::error_code EC = Obj->getSection(Sym->getSectionNumber(), Section))
1829      return errorCodeToError(EC);
1830    // Add the initial value of DataRVA to the symbol's offset to find the
1831    // data it points at.
1832    uint64_t Offset = Entry.DataRVA + Sym->getValue();
1833    ArrayRef<uint8_t> Contents;
1834    if (Error E = Obj->getSectionContents(Section, Contents))
1835      return std::move(E);
1836    if (Offset + Entry.DataSize > Contents.size())
1837      return createStringError(object_error::parse_failed,
1838                               "data outside of section");
1839    // Return a reference to the data inside the section.
1840    return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset,
1841                     Entry.DataSize);
1842  } else {
1843    // Relocatable objects need a relocation for the DataRVA field.
1844    if (Obj->isRelocatableObject())
1845      return createStringError(object_error::parse_failed,
1846                               "no relocation found for DataRVA");
1847
1848    // Locate the section that contains the address that DataRVA points at.
1849    uint64_t VA = Entry.DataRVA + Obj->getImageBase();
1850    for (const SectionRef &S : Obj->sections()) {
1851      if (VA >= S.getAddress() &&
1852          VA + Entry.DataSize <= S.getAddress() + S.getSize()) {
1853        uint64_t Offset = VA - S.getAddress();
1854        Expected<StringRef> Contents = S.getContents();
1855        if (!Contents)
1856          return Contents.takeError();
1857        return Contents->slice(Offset, Offset + Entry.DataSize);
1858      }
1859    }
1860    return createStringError(object_error::parse_failed,
1861                             "address not found in image");
1862  }
1863}
1864