Verifier.cpp revision 353358
1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the function verifier interface, that can be used for some
10// sanity checking of input to the system.
11//
12// Note that this does not provide full `Java style' security and verifications,
13// instead it just tries to ensure that code is well-formed.
14//
15//  * Both of a binary operator's parameters are of the same type
16//  * Verify that the indices of mem access instructions match other operands
17//  * Verify that arithmetic and other things are only performed on first-class
18//    types.  Verify that shifts & logicals only happen on integrals f.e.
19//  * All of the constants in a switch statement are of the correct type
20//  * The code is in valid SSA form
21//  * It should be illegal to put a label into any other type (like a structure)
22//    or to return one. [except constant arrays!]
23//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24//  * PHI nodes must have an entry for each predecessor, with no extras.
25//  * PHI nodes must be the first thing in a basic block, all grouped together
26//  * PHI nodes must have at least one entry
27//  * All basic blocks should only end with terminator insts, not contain them
28//  * The entry node to a function must not have predecessors
29//  * All Instructions must be embedded into a basic block
30//  * Functions cannot take a void-typed parameter
31//  * Verify that a function's argument list agrees with it's declared type.
32//  * It is illegal to specify a name for a void value.
33//  * It is illegal to have a internal global value with no initializer
34//  * It is illegal to have a ret instruction that returns a value that does not
35//    agree with the function return value type.
36//  * Function call argument types match the function prototype
37//  * A landing pad is defined by a landingpad instruction, and can be jumped to
38//    only by the unwind edge of an invoke instruction.
39//  * A landingpad instruction must be the first non-PHI instruction in the
40//    block.
41//  * Landingpad instructions must be in a function with a personality function.
42//  * All other things that are tested by asserts spread about the code...
43//
44//===----------------------------------------------------------------------===//
45
46#include "llvm/IR/Verifier.h"
47#include "llvm/ADT/APFloat.h"
48#include "llvm/ADT/APInt.h"
49#include "llvm/ADT/ArrayRef.h"
50#include "llvm/ADT/DenseMap.h"
51#include "llvm/ADT/MapVector.h"
52#include "llvm/ADT/Optional.h"
53#include "llvm/ADT/STLExtras.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/StringExtras.h"
58#include "llvm/ADT/StringMap.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/Twine.h"
61#include "llvm/ADT/ilist.h"
62#include "llvm/BinaryFormat/Dwarf.h"
63#include "llvm/IR/Argument.h"
64#include "llvm/IR/Attributes.h"
65#include "llvm/IR/BasicBlock.h"
66#include "llvm/IR/CFG.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/Dominators.h"
78#include "llvm/IR/Function.h"
79#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalValue.h"
81#include "llvm/IR/GlobalVariable.h"
82#include "llvm/IR/InlineAsm.h"
83#include "llvm/IR/InstVisitor.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/IntrinsicInst.h"
88#include "llvm/IR/Intrinsics.h"
89#include "llvm/IR/LLVMContext.h"
90#include "llvm/IR/Metadata.h"
91#include "llvm/IR/Module.h"
92#include "llvm/IR/ModuleSlotTracker.h"
93#include "llvm/IR/PassManager.h"
94#include "llvm/IR/Statepoint.h"
95#include "llvm/IR/Type.h"
96#include "llvm/IR/Use.h"
97#include "llvm/IR/User.h"
98#include "llvm/IR/Value.h"
99#include "llvm/Pass.h"
100#include "llvm/Support/AtomicOrdering.h"
101#include "llvm/Support/Casting.h"
102#include "llvm/Support/CommandLine.h"
103#include "llvm/Support/Debug.h"
104#include "llvm/Support/ErrorHandling.h"
105#include "llvm/Support/MathExtras.h"
106#include "llvm/Support/raw_ostream.h"
107#include <algorithm>
108#include <cassert>
109#include <cstdint>
110#include <memory>
111#include <string>
112#include <utility>
113
114using namespace llvm;
115
116namespace llvm {
117
118struct VerifierSupport {
119  raw_ostream *OS;
120  const Module &M;
121  ModuleSlotTracker MST;
122  const DataLayout &DL;
123  LLVMContext &Context;
124
125  /// Track the brokenness of the module while recursively visiting.
126  bool Broken = false;
127  /// Broken debug info can be "recovered" from by stripping the debug info.
128  bool BrokenDebugInfo = false;
129  /// Whether to treat broken debug info as an error.
130  bool TreatBrokenDebugInfoAsError = true;
131
132  explicit VerifierSupport(raw_ostream *OS, const Module &M)
133      : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
134
135private:
136  void Write(const Module *M) {
137    *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
138  }
139
140  void Write(const Value *V) {
141    if (V)
142      Write(*V);
143  }
144
145  void Write(const Value &V) {
146    if (isa<Instruction>(V)) {
147      V.print(*OS, MST);
148      *OS << '\n';
149    } else {
150      V.printAsOperand(*OS, true, MST);
151      *OS << '\n';
152    }
153  }
154
155  void Write(const Metadata *MD) {
156    if (!MD)
157      return;
158    MD->print(*OS, MST, &M);
159    *OS << '\n';
160  }
161
162  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
163    Write(MD.get());
164  }
165
166  void Write(const NamedMDNode *NMD) {
167    if (!NMD)
168      return;
169    NMD->print(*OS, MST);
170    *OS << '\n';
171  }
172
173  void Write(Type *T) {
174    if (!T)
175      return;
176    *OS << ' ' << *T;
177  }
178
179  void Write(const Comdat *C) {
180    if (!C)
181      return;
182    *OS << *C;
183  }
184
185  void Write(const APInt *AI) {
186    if (!AI)
187      return;
188    *OS << *AI << '\n';
189  }
190
191  void Write(const unsigned i) { *OS << i << '\n'; }
192
193  template <typename T> void Write(ArrayRef<T> Vs) {
194    for (const T &V : Vs)
195      Write(V);
196  }
197
198  template <typename T1, typename... Ts>
199  void WriteTs(const T1 &V1, const Ts &... Vs) {
200    Write(V1);
201    WriteTs(Vs...);
202  }
203
204  template <typename... Ts> void WriteTs() {}
205
206public:
207  /// A check failed, so printout out the condition and the message.
208  ///
209  /// This provides a nice place to put a breakpoint if you want to see why
210  /// something is not correct.
211  void CheckFailed(const Twine &Message) {
212    if (OS)
213      *OS << Message << '\n';
214    Broken = true;
215  }
216
217  /// A check failed (with values to print).
218  ///
219  /// This calls the Message-only version so that the above is easier to set a
220  /// breakpoint on.
221  template <typename T1, typename... Ts>
222  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
223    CheckFailed(Message);
224    if (OS)
225      WriteTs(V1, Vs...);
226  }
227
228  /// A debug info check failed.
229  void DebugInfoCheckFailed(const Twine &Message) {
230    if (OS)
231      *OS << Message << '\n';
232    Broken |= TreatBrokenDebugInfoAsError;
233    BrokenDebugInfo = true;
234  }
235
236  /// A debug info check failed (with values to print).
237  template <typename T1, typename... Ts>
238  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
239                            const Ts &... Vs) {
240    DebugInfoCheckFailed(Message);
241    if (OS)
242      WriteTs(V1, Vs...);
243  }
244};
245
246} // namespace llvm
247
248namespace {
249
250class Verifier : public InstVisitor<Verifier>, VerifierSupport {
251  friend class InstVisitor<Verifier>;
252
253  DominatorTree DT;
254
255  /// When verifying a basic block, keep track of all of the
256  /// instructions we have seen so far.
257  ///
258  /// This allows us to do efficient dominance checks for the case when an
259  /// instruction has an operand that is an instruction in the same block.
260  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
261
262  /// Keep track of the metadata nodes that have been checked already.
263  SmallPtrSet<const Metadata *, 32> MDNodes;
264
265  /// Keep track which DISubprogram is attached to which function.
266  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
267
268  /// Track all DICompileUnits visited.
269  SmallPtrSet<const Metadata *, 2> CUVisited;
270
271  /// The result type for a landingpad.
272  Type *LandingPadResultTy;
273
274  /// Whether we've seen a call to @llvm.localescape in this function
275  /// already.
276  bool SawFrameEscape;
277
278  /// Whether the current function has a DISubprogram attached to it.
279  bool HasDebugInfo = false;
280
281  /// Whether source was present on the first DIFile encountered in each CU.
282  DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
283
284  /// Stores the count of how many objects were passed to llvm.localescape for a
285  /// given function and the largest index passed to llvm.localrecover.
286  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
287
288  // Maps catchswitches and cleanuppads that unwind to siblings to the
289  // terminators that indicate the unwind, used to detect cycles therein.
290  MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
291
292  /// Cache of constants visited in search of ConstantExprs.
293  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294
295  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296  SmallVector<const Function *, 4> DeoptimizeDeclarations;
297
298  // Verify that this GlobalValue is only used in this module.
299  // This map is used to avoid visiting uses twice. We can arrive at a user
300  // twice, if they have multiple operands. In particular for very large
301  // constant expressions, we can arrive at a particular user many times.
302  SmallPtrSet<const Value *, 32> GlobalValueVisited;
303
304  // Keeps track of duplicate function argument debug info.
305  SmallVector<const DILocalVariable *, 16> DebugFnArgs;
306
307  TBAAVerifier TBAAVerifyHelper;
308
309  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310
311public:
312  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313                    const Module &M)
314      : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315        SawFrameEscape(false), TBAAVerifyHelper(this) {
316    TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317  }
318
319  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320
321  bool verify(const Function &F) {
322    assert(F.getParent() == &M &&
323           "An instance of this class only works with a specific module!");
324
325    // First ensure the function is well-enough formed to compute dominance
326    // information, and directly compute a dominance tree. We don't rely on the
327    // pass manager to provide this as it isolates us from a potentially
328    // out-of-date dominator tree and makes it significantly more complex to run
329    // this code outside of a pass manager.
330    // FIXME: It's really gross that we have to cast away constness here.
331    if (!F.empty())
332      DT.recalculate(const_cast<Function &>(F));
333
334    for (const BasicBlock &BB : F) {
335      if (!BB.empty() && BB.back().isTerminator())
336        continue;
337
338      if (OS) {
339        *OS << "Basic Block in function '" << F.getName()
340            << "' does not have terminator!\n";
341        BB.printAsOperand(*OS, true, MST);
342        *OS << "\n";
343      }
344      return false;
345    }
346
347    Broken = false;
348    // FIXME: We strip const here because the inst visitor strips const.
349    visit(const_cast<Function &>(F));
350    verifySiblingFuncletUnwinds();
351    InstsInThisBlock.clear();
352    DebugFnArgs.clear();
353    LandingPadResultTy = nullptr;
354    SawFrameEscape = false;
355    SiblingFuncletInfo.clear();
356
357    return !Broken;
358  }
359
360  /// Verify the module that this instance of \c Verifier was initialized with.
361  bool verify() {
362    Broken = false;
363
364    // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365    for (const Function &F : M)
366      if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367        DeoptimizeDeclarations.push_back(&F);
368
369    // Now that we've visited every function, verify that we never asked to
370    // recover a frame index that wasn't escaped.
371    verifyFrameRecoverIndices();
372    for (const GlobalVariable &GV : M.globals())
373      visitGlobalVariable(GV);
374
375    for (const GlobalAlias &GA : M.aliases())
376      visitGlobalAlias(GA);
377
378    for (const NamedMDNode &NMD : M.named_metadata())
379      visitNamedMDNode(NMD);
380
381    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382      visitComdat(SMEC.getValue());
383
384    visitModuleFlags(M);
385    visitModuleIdents(M);
386    visitModuleCommandLines(M);
387
388    verifyCompileUnits();
389
390    verifyDeoptimizeCallingConvs();
391    DISubprogramAttachments.clear();
392    return !Broken;
393  }
394
395private:
396  // Verification methods...
397  void visitGlobalValue(const GlobalValue &GV);
398  void visitGlobalVariable(const GlobalVariable &GV);
399  void visitGlobalAlias(const GlobalAlias &GA);
400  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
401  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
402                           const GlobalAlias &A, const Constant &C);
403  void visitNamedMDNode(const NamedMDNode &NMD);
404  void visitMDNode(const MDNode &MD);
405  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
406  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
407  void visitComdat(const Comdat &C);
408  void visitModuleIdents(const Module &M);
409  void visitModuleCommandLines(const Module &M);
410  void visitModuleFlags(const Module &M);
411  void visitModuleFlag(const MDNode *Op,
412                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
413                       SmallVectorImpl<const MDNode *> &Requirements);
414  void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
415  void visitFunction(const Function &F);
416  void visitBasicBlock(BasicBlock &BB);
417  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
418  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
419
420  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
421#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
422#include "llvm/IR/Metadata.def"
423  void visitDIScope(const DIScope &N);
424  void visitDIVariable(const DIVariable &N);
425  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
426  void visitDITemplateParameter(const DITemplateParameter &N);
427
428  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
429
430  // InstVisitor overrides...
431  using InstVisitor<Verifier>::visit;
432  void visit(Instruction &I);
433
434  void visitTruncInst(TruncInst &I);
435  void visitZExtInst(ZExtInst &I);
436  void visitSExtInst(SExtInst &I);
437  void visitFPTruncInst(FPTruncInst &I);
438  void visitFPExtInst(FPExtInst &I);
439  void visitFPToUIInst(FPToUIInst &I);
440  void visitFPToSIInst(FPToSIInst &I);
441  void visitUIToFPInst(UIToFPInst &I);
442  void visitSIToFPInst(SIToFPInst &I);
443  void visitIntToPtrInst(IntToPtrInst &I);
444  void visitPtrToIntInst(PtrToIntInst &I);
445  void visitBitCastInst(BitCastInst &I);
446  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
447  void visitPHINode(PHINode &PN);
448  void visitCallBase(CallBase &Call);
449  void visitUnaryOperator(UnaryOperator &U);
450  void visitBinaryOperator(BinaryOperator &B);
451  void visitICmpInst(ICmpInst &IC);
452  void visitFCmpInst(FCmpInst &FC);
453  void visitExtractElementInst(ExtractElementInst &EI);
454  void visitInsertElementInst(InsertElementInst &EI);
455  void visitShuffleVectorInst(ShuffleVectorInst &EI);
456  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
457  void visitCallInst(CallInst &CI);
458  void visitInvokeInst(InvokeInst &II);
459  void visitGetElementPtrInst(GetElementPtrInst &GEP);
460  void visitLoadInst(LoadInst &LI);
461  void visitStoreInst(StoreInst &SI);
462  void verifyDominatesUse(Instruction &I, unsigned i);
463  void visitInstruction(Instruction &I);
464  void visitTerminator(Instruction &I);
465  void visitBranchInst(BranchInst &BI);
466  void visitReturnInst(ReturnInst &RI);
467  void visitSwitchInst(SwitchInst &SI);
468  void visitIndirectBrInst(IndirectBrInst &BI);
469  void visitCallBrInst(CallBrInst &CBI);
470  void visitSelectInst(SelectInst &SI);
471  void visitUserOp1(Instruction &I);
472  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
473  void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
474  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
475  void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
476  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
477  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
478  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
479  void visitFenceInst(FenceInst &FI);
480  void visitAllocaInst(AllocaInst &AI);
481  void visitExtractValueInst(ExtractValueInst &EVI);
482  void visitInsertValueInst(InsertValueInst &IVI);
483  void visitEHPadPredecessors(Instruction &I);
484  void visitLandingPadInst(LandingPadInst &LPI);
485  void visitResumeInst(ResumeInst &RI);
486  void visitCatchPadInst(CatchPadInst &CPI);
487  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
488  void visitCleanupPadInst(CleanupPadInst &CPI);
489  void visitFuncletPadInst(FuncletPadInst &FPI);
490  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
491  void visitCleanupReturnInst(CleanupReturnInst &CRI);
492
493  void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
494  void verifySwiftErrorValue(const Value *SwiftErrorVal);
495  void verifyMustTailCall(CallInst &CI);
496  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
497                        unsigned ArgNo, std::string &Suffix);
498  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
499  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
500                            const Value *V);
501  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
502  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
503                           const Value *V, bool IsIntrinsic);
504  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
505
506  void visitConstantExprsRecursively(const Constant *EntryC);
507  void visitConstantExpr(const ConstantExpr *CE);
508  void verifyStatepoint(const CallBase &Call);
509  void verifyFrameRecoverIndices();
510  void verifySiblingFuncletUnwinds();
511
512  void verifyFragmentExpression(const DbgVariableIntrinsic &I);
513  template <typename ValueOrMetadata>
514  void verifyFragmentExpression(const DIVariable &V,
515                                DIExpression::FragmentInfo Fragment,
516                                ValueOrMetadata *Desc);
517  void verifyFnArgs(const DbgVariableIntrinsic &I);
518
519  /// Module-level debug info verification...
520  void verifyCompileUnits();
521
522  /// Module-level verification that all @llvm.experimental.deoptimize
523  /// declarations share the same calling convention.
524  void verifyDeoptimizeCallingConvs();
525
526  /// Verify all-or-nothing property of DIFile source attribute within a CU.
527  void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
528};
529
530} // end anonymous namespace
531
532/// We know that cond should be true, if not print an error message.
533#define Assert(C, ...) \
534  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
535
536/// We know that a debug info condition should be true, if not print
537/// an error message.
538#define AssertDI(C, ...) \
539  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
540
541void Verifier::visit(Instruction &I) {
542  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
543    Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
544  InstVisitor<Verifier>::visit(I);
545}
546
547// Helper to recursively iterate over indirect users. By
548// returning false, the callback can ask to stop recursing
549// further.
550static void forEachUser(const Value *User,
551                        SmallPtrSet<const Value *, 32> &Visited,
552                        llvm::function_ref<bool(const Value *)> Callback) {
553  if (!Visited.insert(User).second)
554    return;
555  for (const Value *TheNextUser : User->materialized_users())
556    if (Callback(TheNextUser))
557      forEachUser(TheNextUser, Visited, Callback);
558}
559
560void Verifier::visitGlobalValue(const GlobalValue &GV) {
561  Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
562         "Global is external, but doesn't have external or weak linkage!", &GV);
563
564  Assert(GV.getAlignment() <= Value::MaximumAlignment,
565         "huge alignment values are unsupported", &GV);
566  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
567         "Only global variables can have appending linkage!", &GV);
568
569  if (GV.hasAppendingLinkage()) {
570    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
571    Assert(GVar && GVar->getValueType()->isArrayTy(),
572           "Only global arrays can have appending linkage!", GVar);
573  }
574
575  if (GV.isDeclarationForLinker())
576    Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
577
578  if (GV.hasDLLImportStorageClass()) {
579    Assert(!GV.isDSOLocal(),
580           "GlobalValue with DLLImport Storage is dso_local!", &GV);
581
582    Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
583               GV.hasAvailableExternallyLinkage(),
584           "Global is marked as dllimport, but not external", &GV);
585  }
586
587  if (GV.hasLocalLinkage())
588    Assert(GV.isDSOLocal(),
589           "GlobalValue with private or internal linkage must be dso_local!",
590           &GV);
591
592  if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
593    Assert(GV.isDSOLocal(),
594           "GlobalValue with non default visibility must be dso_local!", &GV);
595
596  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
597    if (const Instruction *I = dyn_cast<Instruction>(V)) {
598      if (!I->getParent() || !I->getParent()->getParent())
599        CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
600                    I);
601      else if (I->getParent()->getParent()->getParent() != &M)
602        CheckFailed("Global is referenced in a different module!", &GV, &M, I,
603                    I->getParent()->getParent(),
604                    I->getParent()->getParent()->getParent());
605      return false;
606    } else if (const Function *F = dyn_cast<Function>(V)) {
607      if (F->getParent() != &M)
608        CheckFailed("Global is used by function in a different module", &GV, &M,
609                    F, F->getParent());
610      return false;
611    }
612    return true;
613  });
614}
615
616void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
617  if (GV.hasInitializer()) {
618    Assert(GV.getInitializer()->getType() == GV.getValueType(),
619           "Global variable initializer type does not match global "
620           "variable type!",
621           &GV);
622    // If the global has common linkage, it must have a zero initializer and
623    // cannot be constant.
624    if (GV.hasCommonLinkage()) {
625      Assert(GV.getInitializer()->isNullValue(),
626             "'common' global must have a zero initializer!", &GV);
627      Assert(!GV.isConstant(), "'common' global may not be marked constant!",
628             &GV);
629      Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
630    }
631  }
632
633  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
634                       GV.getName() == "llvm.global_dtors")) {
635    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
636           "invalid linkage for intrinsic global variable", &GV);
637    // Don't worry about emitting an error for it not being an array,
638    // visitGlobalValue will complain on appending non-array.
639    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
640      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
641      PointerType *FuncPtrTy =
642          FunctionType::get(Type::getVoidTy(Context), false)->
643          getPointerTo(DL.getProgramAddressSpace());
644      Assert(STy &&
645                 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
646                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
647                 STy->getTypeAtIndex(1) == FuncPtrTy,
648             "wrong type for intrinsic global variable", &GV);
649      Assert(STy->getNumElements() == 3,
650             "the third field of the element type is mandatory, "
651             "specify i8* null to migrate from the obsoleted 2-field form");
652      Type *ETy = STy->getTypeAtIndex(2);
653      Assert(ETy->isPointerTy() &&
654                 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
655             "wrong type for intrinsic global variable", &GV);
656    }
657  }
658
659  if (GV.hasName() && (GV.getName() == "llvm.used" ||
660                       GV.getName() == "llvm.compiler.used")) {
661    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
662           "invalid linkage for intrinsic global variable", &GV);
663    Type *GVType = GV.getValueType();
664    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
665      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
666      Assert(PTy, "wrong type for intrinsic global variable", &GV);
667      if (GV.hasInitializer()) {
668        const Constant *Init = GV.getInitializer();
669        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
670        Assert(InitArray, "wrong initalizer for intrinsic global variable",
671               Init);
672        for (Value *Op : InitArray->operands()) {
673          Value *V = Op->stripPointerCastsNoFollowAliases();
674          Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
675                     isa<GlobalAlias>(V),
676                 "invalid llvm.used member", V);
677          Assert(V->hasName(), "members of llvm.used must be named", V);
678        }
679      }
680    }
681  }
682
683  // Visit any debug info attachments.
684  SmallVector<MDNode *, 1> MDs;
685  GV.getMetadata(LLVMContext::MD_dbg, MDs);
686  for (auto *MD : MDs) {
687    if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
688      visitDIGlobalVariableExpression(*GVE);
689    else
690      AssertDI(false, "!dbg attachment of global variable must be a "
691                      "DIGlobalVariableExpression");
692  }
693
694  // Scalable vectors cannot be global variables, since we don't know
695  // the runtime size. If the global is a struct or an array containing
696  // scalable vectors, that will be caught by the isValidElementType methods
697  // in StructType or ArrayType instead.
698  if (auto *VTy = dyn_cast<VectorType>(GV.getValueType()))
699    Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV);
700
701  if (!GV.hasInitializer()) {
702    visitGlobalValue(GV);
703    return;
704  }
705
706  // Walk any aggregate initializers looking for bitcasts between address spaces
707  visitConstantExprsRecursively(GV.getInitializer());
708
709  visitGlobalValue(GV);
710}
711
712void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
713  SmallPtrSet<const GlobalAlias*, 4> Visited;
714  Visited.insert(&GA);
715  visitAliaseeSubExpr(Visited, GA, C);
716}
717
718void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
719                                   const GlobalAlias &GA, const Constant &C) {
720  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
721    Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
722           &GA);
723
724    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
725      Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
726
727      Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
728             &GA);
729    } else {
730      // Only continue verifying subexpressions of GlobalAliases.
731      // Do not recurse into global initializers.
732      return;
733    }
734  }
735
736  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
737    visitConstantExprsRecursively(CE);
738
739  for (const Use &U : C.operands()) {
740    Value *V = &*U;
741    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
742      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
743    else if (const auto *C2 = dyn_cast<Constant>(V))
744      visitAliaseeSubExpr(Visited, GA, *C2);
745  }
746}
747
748void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
749  Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
750         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
751         "weak_odr, or external linkage!",
752         &GA);
753  const Constant *Aliasee = GA.getAliasee();
754  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
755  Assert(GA.getType() == Aliasee->getType(),
756         "Alias and aliasee types should match!", &GA);
757
758  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
759         "Aliasee should be either GlobalValue or ConstantExpr", &GA);
760
761  visitAliaseeSubExpr(GA, *Aliasee);
762
763  visitGlobalValue(GA);
764}
765
766void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
767  // There used to be various other llvm.dbg.* nodes, but we don't support
768  // upgrading them and we want to reserve the namespace for future uses.
769  if (NMD.getName().startswith("llvm.dbg."))
770    AssertDI(NMD.getName() == "llvm.dbg.cu",
771             "unrecognized named metadata node in the llvm.dbg namespace",
772             &NMD);
773  for (const MDNode *MD : NMD.operands()) {
774    if (NMD.getName() == "llvm.dbg.cu")
775      AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
776
777    if (!MD)
778      continue;
779
780    visitMDNode(*MD);
781  }
782}
783
784void Verifier::visitMDNode(const MDNode &MD) {
785  // Only visit each node once.  Metadata can be mutually recursive, so this
786  // avoids infinite recursion here, as well as being an optimization.
787  if (!MDNodes.insert(&MD).second)
788    return;
789
790  switch (MD.getMetadataID()) {
791  default:
792    llvm_unreachable("Invalid MDNode subclass");
793  case Metadata::MDTupleKind:
794    break;
795#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
796  case Metadata::CLASS##Kind:                                                  \
797    visit##CLASS(cast<CLASS>(MD));                                             \
798    break;
799#include "llvm/IR/Metadata.def"
800  }
801
802  for (const Metadata *Op : MD.operands()) {
803    if (!Op)
804      continue;
805    Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
806           &MD, Op);
807    if (auto *N = dyn_cast<MDNode>(Op)) {
808      visitMDNode(*N);
809      continue;
810    }
811    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
812      visitValueAsMetadata(*V, nullptr);
813      continue;
814    }
815  }
816
817  // Check these last, so we diagnose problems in operands first.
818  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
819  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
820}
821
822void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
823  Assert(MD.getValue(), "Expected valid value", &MD);
824  Assert(!MD.getValue()->getType()->isMetadataTy(),
825         "Unexpected metadata round-trip through values", &MD, MD.getValue());
826
827  auto *L = dyn_cast<LocalAsMetadata>(&MD);
828  if (!L)
829    return;
830
831  Assert(F, "function-local metadata used outside a function", L);
832
833  // If this was an instruction, bb, or argument, verify that it is in the
834  // function that we expect.
835  Function *ActualF = nullptr;
836  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
837    Assert(I->getParent(), "function-local metadata not in basic block", L, I);
838    ActualF = I->getParent()->getParent();
839  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
840    ActualF = BB->getParent();
841  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
842    ActualF = A->getParent();
843  assert(ActualF && "Unimplemented function local metadata case!");
844
845  Assert(ActualF == F, "function-local metadata used in wrong function", L);
846}
847
848void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
849  Metadata *MD = MDV.getMetadata();
850  if (auto *N = dyn_cast<MDNode>(MD)) {
851    visitMDNode(*N);
852    return;
853  }
854
855  // Only visit each node once.  Metadata can be mutually recursive, so this
856  // avoids infinite recursion here, as well as being an optimization.
857  if (!MDNodes.insert(MD).second)
858    return;
859
860  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
861    visitValueAsMetadata(*V, F);
862}
863
864static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
865static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
866static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
867
868void Verifier::visitDILocation(const DILocation &N) {
869  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
870           "location requires a valid scope", &N, N.getRawScope());
871  if (auto *IA = N.getRawInlinedAt())
872    AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
873  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
874    AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
875}
876
877void Verifier::visitGenericDINode(const GenericDINode &N) {
878  AssertDI(N.getTag(), "invalid tag", &N);
879}
880
881void Verifier::visitDIScope(const DIScope &N) {
882  if (auto *F = N.getRawFile())
883    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
884}
885
886void Verifier::visitDISubrange(const DISubrange &N) {
887  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
888  auto Count = N.getCount();
889  AssertDI(Count, "Count must either be a signed constant or a DIVariable",
890           &N);
891  AssertDI(!Count.is<ConstantInt*>() ||
892               Count.get<ConstantInt*>()->getSExtValue() >= -1,
893           "invalid subrange count", &N);
894}
895
896void Verifier::visitDIEnumerator(const DIEnumerator &N) {
897  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
898}
899
900void Verifier::visitDIBasicType(const DIBasicType &N) {
901  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
902               N.getTag() == dwarf::DW_TAG_unspecified_type,
903           "invalid tag", &N);
904  AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
905            "has conflicting flags", &N);
906}
907
908void Verifier::visitDIDerivedType(const DIDerivedType &N) {
909  // Common scope checks.
910  visitDIScope(N);
911
912  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
913               N.getTag() == dwarf::DW_TAG_pointer_type ||
914               N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
915               N.getTag() == dwarf::DW_TAG_reference_type ||
916               N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
917               N.getTag() == dwarf::DW_TAG_const_type ||
918               N.getTag() == dwarf::DW_TAG_volatile_type ||
919               N.getTag() == dwarf::DW_TAG_restrict_type ||
920               N.getTag() == dwarf::DW_TAG_atomic_type ||
921               N.getTag() == dwarf::DW_TAG_member ||
922               N.getTag() == dwarf::DW_TAG_inheritance ||
923               N.getTag() == dwarf::DW_TAG_friend,
924           "invalid tag", &N);
925  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
926    AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
927             N.getRawExtraData());
928  }
929
930  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
931  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
932           N.getRawBaseType());
933
934  if (N.getDWARFAddressSpace()) {
935    AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
936                 N.getTag() == dwarf::DW_TAG_reference_type ||
937                 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
938             "DWARF address space only applies to pointer or reference types",
939             &N);
940  }
941}
942
943/// Detect mutually exclusive flags.
944static bool hasConflictingReferenceFlags(unsigned Flags) {
945  return ((Flags & DINode::FlagLValueReference) &&
946          (Flags & DINode::FlagRValueReference)) ||
947         ((Flags & DINode::FlagTypePassByValue) &&
948          (Flags & DINode::FlagTypePassByReference));
949}
950
951void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
952  auto *Params = dyn_cast<MDTuple>(&RawParams);
953  AssertDI(Params, "invalid template params", &N, &RawParams);
954  for (Metadata *Op : Params->operands()) {
955    AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
956             &N, Params, Op);
957  }
958}
959
960void Verifier::visitDICompositeType(const DICompositeType &N) {
961  // Common scope checks.
962  visitDIScope(N);
963
964  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
965               N.getTag() == dwarf::DW_TAG_structure_type ||
966               N.getTag() == dwarf::DW_TAG_union_type ||
967               N.getTag() == dwarf::DW_TAG_enumeration_type ||
968               N.getTag() == dwarf::DW_TAG_class_type ||
969               N.getTag() == dwarf::DW_TAG_variant_part,
970           "invalid tag", &N);
971
972  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
973  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
974           N.getRawBaseType());
975
976  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
977           "invalid composite elements", &N, N.getRawElements());
978  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
979           N.getRawVTableHolder());
980  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
981           "invalid reference flags", &N);
982
983  if (N.isVector()) {
984    const DINodeArray Elements = N.getElements();
985    AssertDI(Elements.size() == 1 &&
986             Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
987             "invalid vector, expected one element of type subrange", &N);
988  }
989
990  if (auto *Params = N.getRawTemplateParams())
991    visitTemplateParams(N, *Params);
992
993  if (N.getTag() == dwarf::DW_TAG_class_type ||
994      N.getTag() == dwarf::DW_TAG_union_type) {
995    AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
996             "class/union requires a filename", &N, N.getFile());
997  }
998
999  if (auto *D = N.getRawDiscriminator()) {
1000    AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1001             "discriminator can only appear on variant part");
1002  }
1003}
1004
1005void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1006  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1007  if (auto *Types = N.getRawTypeArray()) {
1008    AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1009    for (Metadata *Ty : N.getTypeArray()->operands()) {
1010      AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1011    }
1012  }
1013  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1014           "invalid reference flags", &N);
1015}
1016
1017void Verifier::visitDIFile(const DIFile &N) {
1018  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1019  Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1020  if (Checksum) {
1021    AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1022             "invalid checksum kind", &N);
1023    size_t Size;
1024    switch (Checksum->Kind) {
1025    case DIFile::CSK_MD5:
1026      Size = 32;
1027      break;
1028    case DIFile::CSK_SHA1:
1029      Size = 40;
1030      break;
1031    }
1032    AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1033    AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1034             "invalid checksum", &N);
1035  }
1036}
1037
1038void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1039  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1040  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1041
1042  // Don't bother verifying the compilation directory or producer string
1043  // as those could be empty.
1044  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1045           N.getRawFile());
1046  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1047           N.getFile());
1048
1049  verifySourceDebugInfo(N, *N.getFile());
1050
1051  AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1052           "invalid emission kind", &N);
1053
1054  if (auto *Array = N.getRawEnumTypes()) {
1055    AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1056    for (Metadata *Op : N.getEnumTypes()->operands()) {
1057      auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1058      AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1059               "invalid enum type", &N, N.getEnumTypes(), Op);
1060    }
1061  }
1062  if (auto *Array = N.getRawRetainedTypes()) {
1063    AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1064    for (Metadata *Op : N.getRetainedTypes()->operands()) {
1065      AssertDI(Op && (isa<DIType>(Op) ||
1066                      (isa<DISubprogram>(Op) &&
1067                       !cast<DISubprogram>(Op)->isDefinition())),
1068               "invalid retained type", &N, Op);
1069    }
1070  }
1071  if (auto *Array = N.getRawGlobalVariables()) {
1072    AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1073    for (Metadata *Op : N.getGlobalVariables()->operands()) {
1074      AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1075               "invalid global variable ref", &N, Op);
1076    }
1077  }
1078  if (auto *Array = N.getRawImportedEntities()) {
1079    AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1080    for (Metadata *Op : N.getImportedEntities()->operands()) {
1081      AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1082               &N, Op);
1083    }
1084  }
1085  if (auto *Array = N.getRawMacros()) {
1086    AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1087    for (Metadata *Op : N.getMacros()->operands()) {
1088      AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1089    }
1090  }
1091  CUVisited.insert(&N);
1092}
1093
1094void Verifier::visitDISubprogram(const DISubprogram &N) {
1095  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1096  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1097  if (auto *F = N.getRawFile())
1098    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1099  else
1100    AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1101  if (auto *T = N.getRawType())
1102    AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1103  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1104           N.getRawContainingType());
1105  if (auto *Params = N.getRawTemplateParams())
1106    visitTemplateParams(N, *Params);
1107  if (auto *S = N.getRawDeclaration())
1108    AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1109             "invalid subprogram declaration", &N, S);
1110  if (auto *RawNode = N.getRawRetainedNodes()) {
1111    auto *Node = dyn_cast<MDTuple>(RawNode);
1112    AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1113    for (Metadata *Op : Node->operands()) {
1114      AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1115               "invalid retained nodes, expected DILocalVariable or DILabel",
1116               &N, Node, Op);
1117    }
1118  }
1119  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1120           "invalid reference flags", &N);
1121
1122  auto *Unit = N.getRawUnit();
1123  if (N.isDefinition()) {
1124    // Subprogram definitions (not part of the type hierarchy).
1125    AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1126    AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1127    AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1128    if (N.getFile())
1129      verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1130  } else {
1131    // Subprogram declarations (part of the type hierarchy).
1132    AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1133  }
1134
1135  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1136    auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1137    AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1138    for (Metadata *Op : ThrownTypes->operands())
1139      AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1140               Op);
1141  }
1142
1143  if (N.areAllCallsDescribed())
1144    AssertDI(N.isDefinition(),
1145             "DIFlagAllCallsDescribed must be attached to a definition");
1146}
1147
1148void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1149  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1150  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1151           "invalid local scope", &N, N.getRawScope());
1152  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1153    AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1154}
1155
1156void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1157  visitDILexicalBlockBase(N);
1158
1159  AssertDI(N.getLine() || !N.getColumn(),
1160           "cannot have column info without line info", &N);
1161}
1162
1163void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1164  visitDILexicalBlockBase(N);
1165}
1166
1167void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1168  AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1169  if (auto *S = N.getRawScope())
1170    AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1171  if (auto *S = N.getRawDecl())
1172    AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1173}
1174
1175void Verifier::visitDINamespace(const DINamespace &N) {
1176  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1177  if (auto *S = N.getRawScope())
1178    AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1179}
1180
1181void Verifier::visitDIMacro(const DIMacro &N) {
1182  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1183               N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1184           "invalid macinfo type", &N);
1185  AssertDI(!N.getName().empty(), "anonymous macro", &N);
1186  if (!N.getValue().empty()) {
1187    assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1188  }
1189}
1190
1191void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1192  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1193           "invalid macinfo type", &N);
1194  if (auto *F = N.getRawFile())
1195    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1196
1197  if (auto *Array = N.getRawElements()) {
1198    AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1199    for (Metadata *Op : N.getElements()->operands()) {
1200      AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1201    }
1202  }
1203}
1204
1205void Verifier::visitDIModule(const DIModule &N) {
1206  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1207  AssertDI(!N.getName().empty(), "anonymous module", &N);
1208}
1209
1210void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1211  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1212}
1213
1214void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1215  visitDITemplateParameter(N);
1216
1217  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1218           &N);
1219}
1220
1221void Verifier::visitDITemplateValueParameter(
1222    const DITemplateValueParameter &N) {
1223  visitDITemplateParameter(N);
1224
1225  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1226               N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1227               N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1228           "invalid tag", &N);
1229}
1230
1231void Verifier::visitDIVariable(const DIVariable &N) {
1232  if (auto *S = N.getRawScope())
1233    AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1234  if (auto *F = N.getRawFile())
1235    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1236}
1237
1238void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1239  // Checks common to all variables.
1240  visitDIVariable(N);
1241
1242  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1243  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1244  AssertDI(N.getType(), "missing global variable type", &N);
1245  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1246    AssertDI(isa<DIDerivedType>(Member),
1247             "invalid static data member declaration", &N, Member);
1248  }
1249}
1250
1251void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1252  // Checks common to all variables.
1253  visitDIVariable(N);
1254
1255  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1256  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1257  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1258           "local variable requires a valid scope", &N, N.getRawScope());
1259  if (auto Ty = N.getType())
1260    AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1261}
1262
1263void Verifier::visitDILabel(const DILabel &N) {
1264  if (auto *S = N.getRawScope())
1265    AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1266  if (auto *F = N.getRawFile())
1267    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1268
1269  AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1270  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1271           "label requires a valid scope", &N, N.getRawScope());
1272}
1273
1274void Verifier::visitDIExpression(const DIExpression &N) {
1275  AssertDI(N.isValid(), "invalid expression", &N);
1276}
1277
1278void Verifier::visitDIGlobalVariableExpression(
1279    const DIGlobalVariableExpression &GVE) {
1280  AssertDI(GVE.getVariable(), "missing variable");
1281  if (auto *Var = GVE.getVariable())
1282    visitDIGlobalVariable(*Var);
1283  if (auto *Expr = GVE.getExpression()) {
1284    visitDIExpression(*Expr);
1285    if (auto Fragment = Expr->getFragmentInfo())
1286      verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1287  }
1288}
1289
1290void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1291  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1292  if (auto *T = N.getRawType())
1293    AssertDI(isType(T), "invalid type ref", &N, T);
1294  if (auto *F = N.getRawFile())
1295    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1296}
1297
1298void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1299  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1300               N.getTag() == dwarf::DW_TAG_imported_declaration,
1301           "invalid tag", &N);
1302  if (auto *S = N.getRawScope())
1303    AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1304  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1305           N.getRawEntity());
1306}
1307
1308void Verifier::visitComdat(const Comdat &C) {
1309  // The Module is invalid if the GlobalValue has private linkage.  Entities
1310  // with private linkage don't have entries in the symbol table.
1311  if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1312    Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1313           GV);
1314}
1315
1316void Verifier::visitModuleIdents(const Module &M) {
1317  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1318  if (!Idents)
1319    return;
1320
1321  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1322  // Scan each llvm.ident entry and make sure that this requirement is met.
1323  for (const MDNode *N : Idents->operands()) {
1324    Assert(N->getNumOperands() == 1,
1325           "incorrect number of operands in llvm.ident metadata", N);
1326    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1327           ("invalid value for llvm.ident metadata entry operand"
1328            "(the operand should be a string)"),
1329           N->getOperand(0));
1330  }
1331}
1332
1333void Verifier::visitModuleCommandLines(const Module &M) {
1334  const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1335  if (!CommandLines)
1336    return;
1337
1338  // llvm.commandline takes a list of metadata entry. Each entry has only one
1339  // string. Scan each llvm.commandline entry and make sure that this
1340  // requirement is met.
1341  for (const MDNode *N : CommandLines->operands()) {
1342    Assert(N->getNumOperands() == 1,
1343           "incorrect number of operands in llvm.commandline metadata", N);
1344    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1345           ("invalid value for llvm.commandline metadata entry operand"
1346            "(the operand should be a string)"),
1347           N->getOperand(0));
1348  }
1349}
1350
1351void Verifier::visitModuleFlags(const Module &M) {
1352  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1353  if (!Flags) return;
1354
1355  // Scan each flag, and track the flags and requirements.
1356  DenseMap<const MDString*, const MDNode*> SeenIDs;
1357  SmallVector<const MDNode*, 16> Requirements;
1358  for (const MDNode *MDN : Flags->operands())
1359    visitModuleFlag(MDN, SeenIDs, Requirements);
1360
1361  // Validate that the requirements in the module are valid.
1362  for (const MDNode *Requirement : Requirements) {
1363    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1364    const Metadata *ReqValue = Requirement->getOperand(1);
1365
1366    const MDNode *Op = SeenIDs.lookup(Flag);
1367    if (!Op) {
1368      CheckFailed("invalid requirement on flag, flag is not present in module",
1369                  Flag);
1370      continue;
1371    }
1372
1373    if (Op->getOperand(2) != ReqValue) {
1374      CheckFailed(("invalid requirement on flag, "
1375                   "flag does not have the required value"),
1376                  Flag);
1377      continue;
1378    }
1379  }
1380}
1381
1382void
1383Verifier::visitModuleFlag(const MDNode *Op,
1384                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
1385                          SmallVectorImpl<const MDNode *> &Requirements) {
1386  // Each module flag should have three arguments, the merge behavior (a
1387  // constant int), the flag ID (an MDString), and the value.
1388  Assert(Op->getNumOperands() == 3,
1389         "incorrect number of operands in module flag", Op);
1390  Module::ModFlagBehavior MFB;
1391  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1392    Assert(
1393        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1394        "invalid behavior operand in module flag (expected constant integer)",
1395        Op->getOperand(0));
1396    Assert(false,
1397           "invalid behavior operand in module flag (unexpected constant)",
1398           Op->getOperand(0));
1399  }
1400  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1401  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1402         Op->getOperand(1));
1403
1404  // Sanity check the values for behaviors with additional requirements.
1405  switch (MFB) {
1406  case Module::Error:
1407  case Module::Warning:
1408  case Module::Override:
1409    // These behavior types accept any value.
1410    break;
1411
1412  case Module::Max: {
1413    Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1414           "invalid value for 'max' module flag (expected constant integer)",
1415           Op->getOperand(2));
1416    break;
1417  }
1418
1419  case Module::Require: {
1420    // The value should itself be an MDNode with two operands, a flag ID (an
1421    // MDString), and a value.
1422    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1423    Assert(Value && Value->getNumOperands() == 2,
1424           "invalid value for 'require' module flag (expected metadata pair)",
1425           Op->getOperand(2));
1426    Assert(isa<MDString>(Value->getOperand(0)),
1427           ("invalid value for 'require' module flag "
1428            "(first value operand should be a string)"),
1429           Value->getOperand(0));
1430
1431    // Append it to the list of requirements, to check once all module flags are
1432    // scanned.
1433    Requirements.push_back(Value);
1434    break;
1435  }
1436
1437  case Module::Append:
1438  case Module::AppendUnique: {
1439    // These behavior types require the operand be an MDNode.
1440    Assert(isa<MDNode>(Op->getOperand(2)),
1441           "invalid value for 'append'-type module flag "
1442           "(expected a metadata node)",
1443           Op->getOperand(2));
1444    break;
1445  }
1446  }
1447
1448  // Unless this is a "requires" flag, check the ID is unique.
1449  if (MFB != Module::Require) {
1450    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1451    Assert(Inserted,
1452           "module flag identifiers must be unique (or of 'require' type)", ID);
1453  }
1454
1455  if (ID->getString() == "wchar_size") {
1456    ConstantInt *Value
1457      = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1458    Assert(Value, "wchar_size metadata requires constant integer argument");
1459  }
1460
1461  if (ID->getString() == "Linker Options") {
1462    // If the llvm.linker.options named metadata exists, we assume that the
1463    // bitcode reader has upgraded the module flag. Otherwise the flag might
1464    // have been created by a client directly.
1465    Assert(M.getNamedMetadata("llvm.linker.options"),
1466           "'Linker Options' named metadata no longer supported");
1467  }
1468
1469  if (ID->getString() == "CG Profile") {
1470    for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1471      visitModuleFlagCGProfileEntry(MDO);
1472  }
1473}
1474
1475void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1476  auto CheckFunction = [&](const MDOperand &FuncMDO) {
1477    if (!FuncMDO)
1478      return;
1479    auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1480    Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1481           FuncMDO);
1482  };
1483  auto Node = dyn_cast_or_null<MDNode>(MDO);
1484  Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1485  CheckFunction(Node->getOperand(0));
1486  CheckFunction(Node->getOperand(1));
1487  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1488  Assert(Count && Count->getType()->isIntegerTy(),
1489         "expected an integer constant", Node->getOperand(2));
1490}
1491
1492/// Return true if this attribute kind only applies to functions.
1493static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1494  switch (Kind) {
1495  case Attribute::NoReturn:
1496  case Attribute::NoSync:
1497  case Attribute::WillReturn:
1498  case Attribute::NoCfCheck:
1499  case Attribute::NoUnwind:
1500  case Attribute::NoInline:
1501  case Attribute::NoFree:
1502  case Attribute::AlwaysInline:
1503  case Attribute::OptimizeForSize:
1504  case Attribute::StackProtect:
1505  case Attribute::StackProtectReq:
1506  case Attribute::StackProtectStrong:
1507  case Attribute::SafeStack:
1508  case Attribute::ShadowCallStack:
1509  case Attribute::NoRedZone:
1510  case Attribute::NoImplicitFloat:
1511  case Attribute::Naked:
1512  case Attribute::InlineHint:
1513  case Attribute::StackAlignment:
1514  case Attribute::UWTable:
1515  case Attribute::NonLazyBind:
1516  case Attribute::ReturnsTwice:
1517  case Attribute::SanitizeAddress:
1518  case Attribute::SanitizeHWAddress:
1519  case Attribute::SanitizeMemTag:
1520  case Attribute::SanitizeThread:
1521  case Attribute::SanitizeMemory:
1522  case Attribute::MinSize:
1523  case Attribute::NoDuplicate:
1524  case Attribute::Builtin:
1525  case Attribute::NoBuiltin:
1526  case Attribute::Cold:
1527  case Attribute::OptForFuzzing:
1528  case Attribute::OptimizeNone:
1529  case Attribute::JumpTable:
1530  case Attribute::Convergent:
1531  case Attribute::ArgMemOnly:
1532  case Attribute::NoRecurse:
1533  case Attribute::InaccessibleMemOnly:
1534  case Attribute::InaccessibleMemOrArgMemOnly:
1535  case Attribute::AllocSize:
1536  case Attribute::SpeculativeLoadHardening:
1537  case Attribute::Speculatable:
1538  case Attribute::StrictFP:
1539    return true;
1540  default:
1541    break;
1542  }
1543  return false;
1544}
1545
1546/// Return true if this is a function attribute that can also appear on
1547/// arguments.
1548static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1549  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1550         Kind == Attribute::ReadNone;
1551}
1552
1553void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1554                                    const Value *V) {
1555  for (Attribute A : Attrs) {
1556    if (A.isStringAttribute())
1557      continue;
1558
1559    if (isFuncOnlyAttr(A.getKindAsEnum())) {
1560      if (!IsFunction) {
1561        CheckFailed("Attribute '" + A.getAsString() +
1562                        "' only applies to functions!",
1563                    V);
1564        return;
1565      }
1566    } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1567      CheckFailed("Attribute '" + A.getAsString() +
1568                      "' does not apply to functions!",
1569                  V);
1570      return;
1571    }
1572  }
1573}
1574
1575// VerifyParameterAttrs - Check the given attributes for an argument or return
1576// value of the specified type.  The value V is printed in error messages.
1577void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1578                                    const Value *V) {
1579  if (!Attrs.hasAttributes())
1580    return;
1581
1582  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1583
1584  if (Attrs.hasAttribute(Attribute::ImmArg)) {
1585    Assert(Attrs.getNumAttributes() == 1,
1586           "Attribute 'immarg' is incompatible with other attributes", V);
1587  }
1588
1589  // Check for mutually incompatible attributes.  Only inreg is compatible with
1590  // sret.
1591  unsigned AttrCount = 0;
1592  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1593  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1594  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1595               Attrs.hasAttribute(Attribute::InReg);
1596  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1597  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1598                         "and 'sret' are incompatible!",
1599         V);
1600
1601  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1602           Attrs.hasAttribute(Attribute::ReadOnly)),
1603         "Attributes "
1604         "'inalloca and readonly' are incompatible!",
1605         V);
1606
1607  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1608           Attrs.hasAttribute(Attribute::Returned)),
1609         "Attributes "
1610         "'sret and returned' are incompatible!",
1611         V);
1612
1613  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1614           Attrs.hasAttribute(Attribute::SExt)),
1615         "Attributes "
1616         "'zeroext and signext' are incompatible!",
1617         V);
1618
1619  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1620           Attrs.hasAttribute(Attribute::ReadOnly)),
1621         "Attributes "
1622         "'readnone and readonly' are incompatible!",
1623         V);
1624
1625  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1626           Attrs.hasAttribute(Attribute::WriteOnly)),
1627         "Attributes "
1628         "'readnone and writeonly' are incompatible!",
1629         V);
1630
1631  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1632           Attrs.hasAttribute(Attribute::WriteOnly)),
1633         "Attributes "
1634         "'readonly and writeonly' are incompatible!",
1635         V);
1636
1637  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1638           Attrs.hasAttribute(Attribute::AlwaysInline)),
1639         "Attributes "
1640         "'noinline and alwaysinline' are incompatible!",
1641         V);
1642
1643  if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1644    Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
1645           "Attribute 'byval' type does not match parameter!", V);
1646  }
1647
1648  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1649  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1650         "Wrong types for attribute: " +
1651             AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1652         V);
1653
1654  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1655    SmallPtrSet<Type*, 4> Visited;
1656    if (!PTy->getElementType()->isSized(&Visited)) {
1657      Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1658                 !Attrs.hasAttribute(Attribute::InAlloca),
1659             "Attributes 'byval' and 'inalloca' do not support unsized types!",
1660             V);
1661    }
1662    if (!isa<PointerType>(PTy->getElementType()))
1663      Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1664             "Attribute 'swifterror' only applies to parameters "
1665             "with pointer to pointer type!",
1666             V);
1667  } else {
1668    Assert(!Attrs.hasAttribute(Attribute::ByVal),
1669           "Attribute 'byval' only applies to parameters with pointer type!",
1670           V);
1671    Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1672           "Attribute 'swifterror' only applies to parameters "
1673           "with pointer type!",
1674           V);
1675  }
1676}
1677
1678// Check parameter attributes against a function type.
1679// The value V is printed in error messages.
1680void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1681                                   const Value *V, bool IsIntrinsic) {
1682  if (Attrs.isEmpty())
1683    return;
1684
1685  bool SawNest = false;
1686  bool SawReturned = false;
1687  bool SawSRet = false;
1688  bool SawSwiftSelf = false;
1689  bool SawSwiftError = false;
1690
1691  // Verify return value attributes.
1692  AttributeSet RetAttrs = Attrs.getRetAttributes();
1693  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1694          !RetAttrs.hasAttribute(Attribute::Nest) &&
1695          !RetAttrs.hasAttribute(Attribute::StructRet) &&
1696          !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1697          !RetAttrs.hasAttribute(Attribute::Returned) &&
1698          !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1699          !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1700          !RetAttrs.hasAttribute(Attribute::SwiftError)),
1701         "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1702         "'returned', 'swiftself', and 'swifterror' do not apply to return "
1703         "values!",
1704         V);
1705  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1706          !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1707          !RetAttrs.hasAttribute(Attribute::ReadNone)),
1708         "Attribute '" + RetAttrs.getAsString() +
1709             "' does not apply to function returns",
1710         V);
1711  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1712
1713  // Verify parameter attributes.
1714  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1715    Type *Ty = FT->getParamType(i);
1716    AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1717
1718    if (!IsIntrinsic) {
1719      Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1720             "immarg attribute only applies to intrinsics",V);
1721    }
1722
1723    verifyParameterAttrs(ArgAttrs, Ty, V);
1724
1725    if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1726      Assert(!SawNest, "More than one parameter has attribute nest!", V);
1727      SawNest = true;
1728    }
1729
1730    if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1731      Assert(!SawReturned, "More than one parameter has attribute returned!",
1732             V);
1733      Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1734             "Incompatible argument and return types for 'returned' attribute",
1735             V);
1736      SawReturned = true;
1737    }
1738
1739    if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1740      Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1741      Assert(i == 0 || i == 1,
1742             "Attribute 'sret' is not on first or second parameter!", V);
1743      SawSRet = true;
1744    }
1745
1746    if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1747      Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1748      SawSwiftSelf = true;
1749    }
1750
1751    if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1752      Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1753             V);
1754      SawSwiftError = true;
1755    }
1756
1757    if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1758      Assert(i == FT->getNumParams() - 1,
1759             "inalloca isn't on the last parameter!", V);
1760    }
1761  }
1762
1763  if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1764    return;
1765
1766  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1767
1768  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1769           Attrs.hasFnAttribute(Attribute::ReadOnly)),
1770         "Attributes 'readnone and readonly' are incompatible!", V);
1771
1772  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1773           Attrs.hasFnAttribute(Attribute::WriteOnly)),
1774         "Attributes 'readnone and writeonly' are incompatible!", V);
1775
1776  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1777           Attrs.hasFnAttribute(Attribute::WriteOnly)),
1778         "Attributes 'readonly and writeonly' are incompatible!", V);
1779
1780  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1781           Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1782         "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1783         "incompatible!",
1784         V);
1785
1786  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1787           Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1788         "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1789
1790  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1791           Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1792         "Attributes 'noinline and alwaysinline' are incompatible!", V);
1793
1794  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1795    Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1796           "Attribute 'optnone' requires 'noinline'!", V);
1797
1798    Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1799           "Attributes 'optsize and optnone' are incompatible!", V);
1800
1801    Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1802           "Attributes 'minsize and optnone' are incompatible!", V);
1803  }
1804
1805  if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1806    const GlobalValue *GV = cast<GlobalValue>(V);
1807    Assert(GV->hasGlobalUnnamedAddr(),
1808           "Attribute 'jumptable' requires 'unnamed_addr'", V);
1809  }
1810
1811  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1812    std::pair<unsigned, Optional<unsigned>> Args =
1813        Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1814
1815    auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1816      if (ParamNo >= FT->getNumParams()) {
1817        CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1818        return false;
1819      }
1820
1821      if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1822        CheckFailed("'allocsize' " + Name +
1823                        " argument must refer to an integer parameter",
1824                    V);
1825        return false;
1826      }
1827
1828      return true;
1829    };
1830
1831    if (!CheckParam("element size", Args.first))
1832      return;
1833
1834    if (Args.second && !CheckParam("number of elements", *Args.second))
1835      return;
1836  }
1837}
1838
1839void Verifier::verifyFunctionMetadata(
1840    ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1841  for (const auto &Pair : MDs) {
1842    if (Pair.first == LLVMContext::MD_prof) {
1843      MDNode *MD = Pair.second;
1844      Assert(MD->getNumOperands() >= 2,
1845             "!prof annotations should have no less than 2 operands", MD);
1846
1847      // Check first operand.
1848      Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1849             MD);
1850      Assert(isa<MDString>(MD->getOperand(0)),
1851             "expected string with name of the !prof annotation", MD);
1852      MDString *MDS = cast<MDString>(MD->getOperand(0));
1853      StringRef ProfName = MDS->getString();
1854      Assert(ProfName.equals("function_entry_count") ||
1855                 ProfName.equals("synthetic_function_entry_count"),
1856             "first operand should be 'function_entry_count'"
1857             " or 'synthetic_function_entry_count'",
1858             MD);
1859
1860      // Check second operand.
1861      Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1862             MD);
1863      Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1864             "expected integer argument to function_entry_count", MD);
1865    }
1866  }
1867}
1868
1869void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1870  if (!ConstantExprVisited.insert(EntryC).second)
1871    return;
1872
1873  SmallVector<const Constant *, 16> Stack;
1874  Stack.push_back(EntryC);
1875
1876  while (!Stack.empty()) {
1877    const Constant *C = Stack.pop_back_val();
1878
1879    // Check this constant expression.
1880    if (const auto *CE = dyn_cast<ConstantExpr>(C))
1881      visitConstantExpr(CE);
1882
1883    if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1884      // Global Values get visited separately, but we do need to make sure
1885      // that the global value is in the correct module
1886      Assert(GV->getParent() == &M, "Referencing global in another module!",
1887             EntryC, &M, GV, GV->getParent());
1888      continue;
1889    }
1890
1891    // Visit all sub-expressions.
1892    for (const Use &U : C->operands()) {
1893      const auto *OpC = dyn_cast<Constant>(U);
1894      if (!OpC)
1895        continue;
1896      if (!ConstantExprVisited.insert(OpC).second)
1897        continue;
1898      Stack.push_back(OpC);
1899    }
1900  }
1901}
1902
1903void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1904  if (CE->getOpcode() == Instruction::BitCast)
1905    Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1906                                 CE->getType()),
1907           "Invalid bitcast", CE);
1908
1909  if (CE->getOpcode() == Instruction::IntToPtr ||
1910      CE->getOpcode() == Instruction::PtrToInt) {
1911    auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1912                      ? CE->getType()
1913                      : CE->getOperand(0)->getType();
1914    StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1915                        ? "inttoptr not supported for non-integral pointers"
1916                        : "ptrtoint not supported for non-integral pointers";
1917    Assert(
1918        !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1919        Msg);
1920  }
1921}
1922
1923bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1924  // There shouldn't be more attribute sets than there are parameters plus the
1925  // function and return value.
1926  return Attrs.getNumAttrSets() <= Params + 2;
1927}
1928
1929/// Verify that statepoint intrinsic is well formed.
1930void Verifier::verifyStatepoint(const CallBase &Call) {
1931  assert(Call.getCalledFunction() &&
1932         Call.getCalledFunction()->getIntrinsicID() ==
1933             Intrinsic::experimental_gc_statepoint);
1934
1935  Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
1936             !Call.onlyAccessesArgMemory(),
1937         "gc.statepoint must read and write all memory to preserve "
1938         "reordering restrictions required by safepoint semantics",
1939         Call);
1940
1941  const int64_t NumPatchBytes =
1942      cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1943  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1944  Assert(NumPatchBytes >= 0,
1945         "gc.statepoint number of patchable bytes must be "
1946         "positive",
1947         Call);
1948
1949  const Value *Target = Call.getArgOperand(2);
1950  auto *PT = dyn_cast<PointerType>(Target->getType());
1951  Assert(PT && PT->getElementType()->isFunctionTy(),
1952         "gc.statepoint callee must be of function pointer type", Call, Target);
1953  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1954
1955  const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1956  Assert(NumCallArgs >= 0,
1957         "gc.statepoint number of arguments to underlying call "
1958         "must be positive",
1959         Call);
1960  const int NumParams = (int)TargetFuncType->getNumParams();
1961  if (TargetFuncType->isVarArg()) {
1962    Assert(NumCallArgs >= NumParams,
1963           "gc.statepoint mismatch in number of vararg call args", Call);
1964
1965    // TODO: Remove this limitation
1966    Assert(TargetFuncType->getReturnType()->isVoidTy(),
1967           "gc.statepoint doesn't support wrapping non-void "
1968           "vararg functions yet",
1969           Call);
1970  } else
1971    Assert(NumCallArgs == NumParams,
1972           "gc.statepoint mismatch in number of call args", Call);
1973
1974  const uint64_t Flags
1975    = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
1976  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1977         "unknown flag used in gc.statepoint flags argument", Call);
1978
1979  // Verify that the types of the call parameter arguments match
1980  // the type of the wrapped callee.
1981  AttributeList Attrs = Call.getAttributes();
1982  for (int i = 0; i < NumParams; i++) {
1983    Type *ParamType = TargetFuncType->getParamType(i);
1984    Type *ArgType = Call.getArgOperand(5 + i)->getType();
1985    Assert(ArgType == ParamType,
1986           "gc.statepoint call argument does not match wrapped "
1987           "function type",
1988           Call);
1989
1990    if (TargetFuncType->isVarArg()) {
1991      AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
1992      Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
1993             "Attribute 'sret' cannot be used for vararg call arguments!",
1994             Call);
1995    }
1996  }
1997
1998  const int EndCallArgsInx = 4 + NumCallArgs;
1999
2000  const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2001  Assert(isa<ConstantInt>(NumTransitionArgsV),
2002         "gc.statepoint number of transition arguments "
2003         "must be constant integer",
2004         Call);
2005  const int NumTransitionArgs =
2006      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2007  Assert(NumTransitionArgs >= 0,
2008         "gc.statepoint number of transition arguments must be positive", Call);
2009  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2010
2011  const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2012  Assert(isa<ConstantInt>(NumDeoptArgsV),
2013         "gc.statepoint number of deoptimization arguments "
2014         "must be constant integer",
2015         Call);
2016  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2017  Assert(NumDeoptArgs >= 0,
2018         "gc.statepoint number of deoptimization arguments "
2019         "must be positive",
2020         Call);
2021
2022  const int ExpectedNumArgs =
2023      7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2024  Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2025         "gc.statepoint too few arguments according to length fields", Call);
2026
2027  // Check that the only uses of this gc.statepoint are gc.result or
2028  // gc.relocate calls which are tied to this statepoint and thus part
2029  // of the same statepoint sequence
2030  for (const User *U : Call.users()) {
2031    const CallInst *UserCall = dyn_cast<const CallInst>(U);
2032    Assert(UserCall, "illegal use of statepoint token", Call, U);
2033    if (!UserCall)
2034      continue;
2035    Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2036           "gc.result or gc.relocate are the only value uses "
2037           "of a gc.statepoint",
2038           Call, U);
2039    if (isa<GCResultInst>(UserCall)) {
2040      Assert(UserCall->getArgOperand(0) == &Call,
2041             "gc.result connected to wrong gc.statepoint", Call, UserCall);
2042    } else if (isa<GCRelocateInst>(Call)) {
2043      Assert(UserCall->getArgOperand(0) == &Call,
2044             "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2045    }
2046  }
2047
2048  // Note: It is legal for a single derived pointer to be listed multiple
2049  // times.  It's non-optimal, but it is legal.  It can also happen after
2050  // insertion if we strip a bitcast away.
2051  // Note: It is really tempting to check that each base is relocated and
2052  // that a derived pointer is never reused as a base pointer.  This turns
2053  // out to be problematic since optimizations run after safepoint insertion
2054  // can recognize equality properties that the insertion logic doesn't know
2055  // about.  See example statepoint.ll in the verifier subdirectory
2056}
2057
2058void Verifier::verifyFrameRecoverIndices() {
2059  for (auto &Counts : FrameEscapeInfo) {
2060    Function *F = Counts.first;
2061    unsigned EscapedObjectCount = Counts.second.first;
2062    unsigned MaxRecoveredIndex = Counts.second.second;
2063    Assert(MaxRecoveredIndex <= EscapedObjectCount,
2064           "all indices passed to llvm.localrecover must be less than the "
2065           "number of arguments passed to llvm.localescape in the parent "
2066           "function",
2067           F);
2068  }
2069}
2070
2071static Instruction *getSuccPad(Instruction *Terminator) {
2072  BasicBlock *UnwindDest;
2073  if (auto *II = dyn_cast<InvokeInst>(Terminator))
2074    UnwindDest = II->getUnwindDest();
2075  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2076    UnwindDest = CSI->getUnwindDest();
2077  else
2078    UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2079  return UnwindDest->getFirstNonPHI();
2080}
2081
2082void Verifier::verifySiblingFuncletUnwinds() {
2083  SmallPtrSet<Instruction *, 8> Visited;
2084  SmallPtrSet<Instruction *, 8> Active;
2085  for (const auto &Pair : SiblingFuncletInfo) {
2086    Instruction *PredPad = Pair.first;
2087    if (Visited.count(PredPad))
2088      continue;
2089    Active.insert(PredPad);
2090    Instruction *Terminator = Pair.second;
2091    do {
2092      Instruction *SuccPad = getSuccPad(Terminator);
2093      if (Active.count(SuccPad)) {
2094        // Found a cycle; report error
2095        Instruction *CyclePad = SuccPad;
2096        SmallVector<Instruction *, 8> CycleNodes;
2097        do {
2098          CycleNodes.push_back(CyclePad);
2099          Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2100          if (CycleTerminator != CyclePad)
2101            CycleNodes.push_back(CycleTerminator);
2102          CyclePad = getSuccPad(CycleTerminator);
2103        } while (CyclePad != SuccPad);
2104        Assert(false, "EH pads can't handle each other's exceptions",
2105               ArrayRef<Instruction *>(CycleNodes));
2106      }
2107      // Don't re-walk a node we've already checked
2108      if (!Visited.insert(SuccPad).second)
2109        break;
2110      // Walk to this successor if it has a map entry.
2111      PredPad = SuccPad;
2112      auto TermI = SiblingFuncletInfo.find(PredPad);
2113      if (TermI == SiblingFuncletInfo.end())
2114        break;
2115      Terminator = TermI->second;
2116      Active.insert(PredPad);
2117    } while (true);
2118    // Each node only has one successor, so we've walked all the active
2119    // nodes' successors.
2120    Active.clear();
2121  }
2122}
2123
2124// visitFunction - Verify that a function is ok.
2125//
2126void Verifier::visitFunction(const Function &F) {
2127  visitGlobalValue(F);
2128
2129  // Check function arguments.
2130  FunctionType *FT = F.getFunctionType();
2131  unsigned NumArgs = F.arg_size();
2132
2133  Assert(&Context == &F.getContext(),
2134         "Function context does not match Module context!", &F);
2135
2136  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2137  Assert(FT->getNumParams() == NumArgs,
2138         "# formal arguments must match # of arguments for function type!", &F,
2139         FT);
2140  Assert(F.getReturnType()->isFirstClassType() ||
2141             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2142         "Functions cannot return aggregate values!", &F);
2143
2144  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2145         "Invalid struct return type!", &F);
2146
2147  AttributeList Attrs = F.getAttributes();
2148
2149  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2150         "Attribute after last parameter!", &F);
2151
2152  bool isLLVMdotName = F.getName().size() >= 5 &&
2153                       F.getName().substr(0, 5) == "llvm.";
2154
2155  // Check function attributes.
2156  verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2157
2158  // On function declarations/definitions, we do not support the builtin
2159  // attribute. We do not check this in VerifyFunctionAttrs since that is
2160  // checking for Attributes that can/can not ever be on functions.
2161  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2162         "Attribute 'builtin' can only be applied to a callsite.", &F);
2163
2164  // Check that this function meets the restrictions on this calling convention.
2165  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2166  // restrictions can be lifted.
2167  switch (F.getCallingConv()) {
2168  default:
2169  case CallingConv::C:
2170    break;
2171  case CallingConv::AMDGPU_KERNEL:
2172  case CallingConv::SPIR_KERNEL:
2173    Assert(F.getReturnType()->isVoidTy(),
2174           "Calling convention requires void return type", &F);
2175    LLVM_FALLTHROUGH;
2176  case CallingConv::AMDGPU_VS:
2177  case CallingConv::AMDGPU_HS:
2178  case CallingConv::AMDGPU_GS:
2179  case CallingConv::AMDGPU_PS:
2180  case CallingConv::AMDGPU_CS:
2181    Assert(!F.hasStructRetAttr(),
2182           "Calling convention does not allow sret", &F);
2183    LLVM_FALLTHROUGH;
2184  case CallingConv::Fast:
2185  case CallingConv::Cold:
2186  case CallingConv::Intel_OCL_BI:
2187  case CallingConv::PTX_Kernel:
2188  case CallingConv::PTX_Device:
2189    Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2190                          "perfect forwarding!",
2191           &F);
2192    break;
2193  }
2194
2195  // Check that the argument values match the function type for this function...
2196  unsigned i = 0;
2197  for (const Argument &Arg : F.args()) {
2198    Assert(Arg.getType() == FT->getParamType(i),
2199           "Argument value does not match function argument type!", &Arg,
2200           FT->getParamType(i));
2201    Assert(Arg.getType()->isFirstClassType(),
2202           "Function arguments must have first-class types!", &Arg);
2203    if (!isLLVMdotName) {
2204      Assert(!Arg.getType()->isMetadataTy(),
2205             "Function takes metadata but isn't an intrinsic", &Arg, &F);
2206      Assert(!Arg.getType()->isTokenTy(),
2207             "Function takes token but isn't an intrinsic", &Arg, &F);
2208    }
2209
2210    // Check that swifterror argument is only used by loads and stores.
2211    if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2212      verifySwiftErrorValue(&Arg);
2213    }
2214    ++i;
2215  }
2216
2217  if (!isLLVMdotName)
2218    Assert(!F.getReturnType()->isTokenTy(),
2219           "Functions returns a token but isn't an intrinsic", &F);
2220
2221  // Get the function metadata attachments.
2222  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2223  F.getAllMetadata(MDs);
2224  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2225  verifyFunctionMetadata(MDs);
2226
2227  // Check validity of the personality function
2228  if (F.hasPersonalityFn()) {
2229    auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2230    if (Per)
2231      Assert(Per->getParent() == F.getParent(),
2232             "Referencing personality function in another module!",
2233             &F, F.getParent(), Per, Per->getParent());
2234  }
2235
2236  if (F.isMaterializable()) {
2237    // Function has a body somewhere we can't see.
2238    Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2239           MDs.empty() ? nullptr : MDs.front().second);
2240  } else if (F.isDeclaration()) {
2241    for (const auto &I : MDs) {
2242      // This is used for call site debug information.
2243      AssertDI(I.first != LLVMContext::MD_dbg ||
2244                   !cast<DISubprogram>(I.second)->isDistinct(),
2245               "function declaration may only have a unique !dbg attachment",
2246               &F);
2247      Assert(I.first != LLVMContext::MD_prof,
2248             "function declaration may not have a !prof attachment", &F);
2249
2250      // Verify the metadata itself.
2251      visitMDNode(*I.second);
2252    }
2253    Assert(!F.hasPersonalityFn(),
2254           "Function declaration shouldn't have a personality routine", &F);
2255  } else {
2256    // Verify that this function (which has a body) is not named "llvm.*".  It
2257    // is not legal to define intrinsics.
2258    Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2259
2260    // Check the entry node
2261    const BasicBlock *Entry = &F.getEntryBlock();
2262    Assert(pred_empty(Entry),
2263           "Entry block to function must not have predecessors!", Entry);
2264
2265    // The address of the entry block cannot be taken, unless it is dead.
2266    if (Entry->hasAddressTaken()) {
2267      Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2268             "blockaddress may not be used with the entry block!", Entry);
2269    }
2270
2271    unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2272    // Visit metadata attachments.
2273    for (const auto &I : MDs) {
2274      // Verify that the attachment is legal.
2275      switch (I.first) {
2276      default:
2277        break;
2278      case LLVMContext::MD_dbg: {
2279        ++NumDebugAttachments;
2280        AssertDI(NumDebugAttachments == 1,
2281                 "function must have a single !dbg attachment", &F, I.second);
2282        AssertDI(isa<DISubprogram>(I.second),
2283                 "function !dbg attachment must be a subprogram", &F, I.second);
2284        auto *SP = cast<DISubprogram>(I.second);
2285        const Function *&AttachedTo = DISubprogramAttachments[SP];
2286        AssertDI(!AttachedTo || AttachedTo == &F,
2287                 "DISubprogram attached to more than one function", SP, &F);
2288        AttachedTo = &F;
2289        break;
2290      }
2291      case LLVMContext::MD_prof:
2292        ++NumProfAttachments;
2293        Assert(NumProfAttachments == 1,
2294               "function must have a single !prof attachment", &F, I.second);
2295        break;
2296      }
2297
2298      // Verify the metadata itself.
2299      visitMDNode(*I.second);
2300    }
2301  }
2302
2303  // If this function is actually an intrinsic, verify that it is only used in
2304  // direct call/invokes, never having its "address taken".
2305  // Only do this if the module is materialized, otherwise we don't have all the
2306  // uses.
2307  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2308    const User *U;
2309    if (F.hasAddressTaken(&U))
2310      Assert(false, "Invalid user of intrinsic instruction!", U);
2311  }
2312
2313  auto *N = F.getSubprogram();
2314  HasDebugInfo = (N != nullptr);
2315  if (!HasDebugInfo)
2316    return;
2317
2318  // Check that all !dbg attachments lead to back to N (or, at least, another
2319  // subprogram that describes the same function).
2320  //
2321  // FIXME: Check this incrementally while visiting !dbg attachments.
2322  // FIXME: Only check when N is the canonical subprogram for F.
2323  SmallPtrSet<const MDNode *, 32> Seen;
2324  auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2325    // Be careful about using DILocation here since we might be dealing with
2326    // broken code (this is the Verifier after all).
2327    const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2328    if (!DL)
2329      return;
2330    if (!Seen.insert(DL).second)
2331      return;
2332
2333    Metadata *Parent = DL->getRawScope();
2334    AssertDI(Parent && isa<DILocalScope>(Parent),
2335             "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2336             Parent);
2337    DILocalScope *Scope = DL->getInlinedAtScope();
2338    if (Scope && !Seen.insert(Scope).second)
2339      return;
2340
2341    DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2342
2343    // Scope and SP could be the same MDNode and we don't want to skip
2344    // validation in that case
2345    if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2346      return;
2347
2348    // FIXME: Once N is canonical, check "SP == &N".
2349    AssertDI(SP->describes(&F),
2350             "!dbg attachment points at wrong subprogram for function", N, &F,
2351             &I, DL, Scope, SP);
2352  };
2353  for (auto &BB : F)
2354    for (auto &I : BB) {
2355      VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2356      // The llvm.loop annotations also contain two DILocations.
2357      if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2358        for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2359          VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2360      if (BrokenDebugInfo)
2361        return;
2362    }
2363}
2364
2365// verifyBasicBlock - Verify that a basic block is well formed...
2366//
2367void Verifier::visitBasicBlock(BasicBlock &BB) {
2368  InstsInThisBlock.clear();
2369
2370  // Ensure that basic blocks have terminators!
2371  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2372
2373  // Check constraints that this basic block imposes on all of the PHI nodes in
2374  // it.
2375  if (isa<PHINode>(BB.front())) {
2376    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2377    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2378    llvm::sort(Preds);
2379    for (const PHINode &PN : BB.phis()) {
2380      // Ensure that PHI nodes have at least one entry!
2381      Assert(PN.getNumIncomingValues() != 0,
2382             "PHI nodes must have at least one entry.  If the block is dead, "
2383             "the PHI should be removed!",
2384             &PN);
2385      Assert(PN.getNumIncomingValues() == Preds.size(),
2386             "PHINode should have one entry for each predecessor of its "
2387             "parent basic block!",
2388             &PN);
2389
2390      // Get and sort all incoming values in the PHI node...
2391      Values.clear();
2392      Values.reserve(PN.getNumIncomingValues());
2393      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2394        Values.push_back(
2395            std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2396      llvm::sort(Values);
2397
2398      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2399        // Check to make sure that if there is more than one entry for a
2400        // particular basic block in this PHI node, that the incoming values are
2401        // all identical.
2402        //
2403        Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2404                   Values[i].second == Values[i - 1].second,
2405               "PHI node has multiple entries for the same basic block with "
2406               "different incoming values!",
2407               &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2408
2409        // Check to make sure that the predecessors and PHI node entries are
2410        // matched up.
2411        Assert(Values[i].first == Preds[i],
2412               "PHI node entries do not match predecessors!", &PN,
2413               Values[i].first, Preds[i]);
2414      }
2415    }
2416  }
2417
2418  // Check that all instructions have their parent pointers set up correctly.
2419  for (auto &I : BB)
2420  {
2421    Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2422  }
2423}
2424
2425void Verifier::visitTerminator(Instruction &I) {
2426  // Ensure that terminators only exist at the end of the basic block.
2427  Assert(&I == I.getParent()->getTerminator(),
2428         "Terminator found in the middle of a basic block!", I.getParent());
2429  visitInstruction(I);
2430}
2431
2432void Verifier::visitBranchInst(BranchInst &BI) {
2433  if (BI.isConditional()) {
2434    Assert(BI.getCondition()->getType()->isIntegerTy(1),
2435           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2436  }
2437  visitTerminator(BI);
2438}
2439
2440void Verifier::visitReturnInst(ReturnInst &RI) {
2441  Function *F = RI.getParent()->getParent();
2442  unsigned N = RI.getNumOperands();
2443  if (F->getReturnType()->isVoidTy())
2444    Assert(N == 0,
2445           "Found return instr that returns non-void in Function of void "
2446           "return type!",
2447           &RI, F->getReturnType());
2448  else
2449    Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2450           "Function return type does not match operand "
2451           "type of return inst!",
2452           &RI, F->getReturnType());
2453
2454  // Check to make sure that the return value has necessary properties for
2455  // terminators...
2456  visitTerminator(RI);
2457}
2458
2459void Verifier::visitSwitchInst(SwitchInst &SI) {
2460  // Check to make sure that all of the constants in the switch instruction
2461  // have the same type as the switched-on value.
2462  Type *SwitchTy = SI.getCondition()->getType();
2463  SmallPtrSet<ConstantInt*, 32> Constants;
2464  for (auto &Case : SI.cases()) {
2465    Assert(Case.getCaseValue()->getType() == SwitchTy,
2466           "Switch constants must all be same type as switch value!", &SI);
2467    Assert(Constants.insert(Case.getCaseValue()).second,
2468           "Duplicate integer as switch case", &SI, Case.getCaseValue());
2469  }
2470
2471  visitTerminator(SI);
2472}
2473
2474void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2475  Assert(BI.getAddress()->getType()->isPointerTy(),
2476         "Indirectbr operand must have pointer type!", &BI);
2477  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2478    Assert(BI.getDestination(i)->getType()->isLabelTy(),
2479           "Indirectbr destinations must all have pointer type!", &BI);
2480
2481  visitTerminator(BI);
2482}
2483
2484void Verifier::visitCallBrInst(CallBrInst &CBI) {
2485  Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2486         &CBI);
2487  Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
2488         &CBI);
2489  for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2490    Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2491           "Callbr successors must all have pointer type!", &CBI);
2492  for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2493    Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2494           "Using an unescaped label as a callbr argument!", &CBI);
2495    if (isa<BasicBlock>(CBI.getOperand(i)))
2496      for (unsigned j = i + 1; j != e; ++j)
2497        Assert(CBI.getOperand(i) != CBI.getOperand(j),
2498               "Duplicate callbr destination!", &CBI);
2499  }
2500
2501  visitTerminator(CBI);
2502}
2503
2504void Verifier::visitSelectInst(SelectInst &SI) {
2505  Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2506                                         SI.getOperand(2)),
2507         "Invalid operands for select instruction!", &SI);
2508
2509  Assert(SI.getTrueValue()->getType() == SI.getType(),
2510         "Select values must have same type as select instruction!", &SI);
2511  visitInstruction(SI);
2512}
2513
2514/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2515/// a pass, if any exist, it's an error.
2516///
2517void Verifier::visitUserOp1(Instruction &I) {
2518  Assert(false, "User-defined operators should not live outside of a pass!", &I);
2519}
2520
2521void Verifier::visitTruncInst(TruncInst &I) {
2522  // Get the source and destination types
2523  Type *SrcTy = I.getOperand(0)->getType();
2524  Type *DestTy = I.getType();
2525
2526  // Get the size of the types in bits, we'll need this later
2527  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2528  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2529
2530  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2531  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2532  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2533         "trunc source and destination must both be a vector or neither", &I);
2534  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2535
2536  visitInstruction(I);
2537}
2538
2539void Verifier::visitZExtInst(ZExtInst &I) {
2540  // Get the source and destination types
2541  Type *SrcTy = I.getOperand(0)->getType();
2542  Type *DestTy = I.getType();
2543
2544  // Get the size of the types in bits, we'll need this later
2545  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2546  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2547  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2548         "zext source and destination must both be a vector or neither", &I);
2549  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2550  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2551
2552  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2553
2554  visitInstruction(I);
2555}
2556
2557void Verifier::visitSExtInst(SExtInst &I) {
2558  // Get the source and destination types
2559  Type *SrcTy = I.getOperand(0)->getType();
2560  Type *DestTy = I.getType();
2561
2562  // Get the size of the types in bits, we'll need this later
2563  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2564  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2565
2566  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2567  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2568  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2569         "sext source and destination must both be a vector or neither", &I);
2570  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2571
2572  visitInstruction(I);
2573}
2574
2575void Verifier::visitFPTruncInst(FPTruncInst &I) {
2576  // Get the source and destination types
2577  Type *SrcTy = I.getOperand(0)->getType();
2578  Type *DestTy = I.getType();
2579  // Get the size of the types in bits, we'll need this later
2580  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2581  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2582
2583  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2584  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2585  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2586         "fptrunc source and destination must both be a vector or neither", &I);
2587  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2588
2589  visitInstruction(I);
2590}
2591
2592void Verifier::visitFPExtInst(FPExtInst &I) {
2593  // Get the source and destination types
2594  Type *SrcTy = I.getOperand(0)->getType();
2595  Type *DestTy = I.getType();
2596
2597  // Get the size of the types in bits, we'll need this later
2598  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2599  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2600
2601  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2602  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2603  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2604         "fpext source and destination must both be a vector or neither", &I);
2605  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2606
2607  visitInstruction(I);
2608}
2609
2610void Verifier::visitUIToFPInst(UIToFPInst &I) {
2611  // Get the source and destination types
2612  Type *SrcTy = I.getOperand(0)->getType();
2613  Type *DestTy = I.getType();
2614
2615  bool SrcVec = SrcTy->isVectorTy();
2616  bool DstVec = DestTy->isVectorTy();
2617
2618  Assert(SrcVec == DstVec,
2619         "UIToFP source and dest must both be vector or scalar", &I);
2620  Assert(SrcTy->isIntOrIntVectorTy(),
2621         "UIToFP source must be integer or integer vector", &I);
2622  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2623         &I);
2624
2625  if (SrcVec && DstVec)
2626    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2627               cast<VectorType>(DestTy)->getNumElements(),
2628           "UIToFP source and dest vector length mismatch", &I);
2629
2630  visitInstruction(I);
2631}
2632
2633void Verifier::visitSIToFPInst(SIToFPInst &I) {
2634  // Get the source and destination types
2635  Type *SrcTy = I.getOperand(0)->getType();
2636  Type *DestTy = I.getType();
2637
2638  bool SrcVec = SrcTy->isVectorTy();
2639  bool DstVec = DestTy->isVectorTy();
2640
2641  Assert(SrcVec == DstVec,
2642         "SIToFP source and dest must both be vector or scalar", &I);
2643  Assert(SrcTy->isIntOrIntVectorTy(),
2644         "SIToFP source must be integer or integer vector", &I);
2645  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2646         &I);
2647
2648  if (SrcVec && DstVec)
2649    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2650               cast<VectorType>(DestTy)->getNumElements(),
2651           "SIToFP source and dest vector length mismatch", &I);
2652
2653  visitInstruction(I);
2654}
2655
2656void Verifier::visitFPToUIInst(FPToUIInst &I) {
2657  // Get the source and destination types
2658  Type *SrcTy = I.getOperand(0)->getType();
2659  Type *DestTy = I.getType();
2660
2661  bool SrcVec = SrcTy->isVectorTy();
2662  bool DstVec = DestTy->isVectorTy();
2663
2664  Assert(SrcVec == DstVec,
2665         "FPToUI source and dest must both be vector or scalar", &I);
2666  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2667         &I);
2668  Assert(DestTy->isIntOrIntVectorTy(),
2669         "FPToUI result must be integer or integer vector", &I);
2670
2671  if (SrcVec && DstVec)
2672    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2673               cast<VectorType>(DestTy)->getNumElements(),
2674           "FPToUI source and dest vector length mismatch", &I);
2675
2676  visitInstruction(I);
2677}
2678
2679void Verifier::visitFPToSIInst(FPToSIInst &I) {
2680  // Get the source and destination types
2681  Type *SrcTy = I.getOperand(0)->getType();
2682  Type *DestTy = I.getType();
2683
2684  bool SrcVec = SrcTy->isVectorTy();
2685  bool DstVec = DestTy->isVectorTy();
2686
2687  Assert(SrcVec == DstVec,
2688         "FPToSI source and dest must both be vector or scalar", &I);
2689  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2690         &I);
2691  Assert(DestTy->isIntOrIntVectorTy(),
2692         "FPToSI result must be integer or integer vector", &I);
2693
2694  if (SrcVec && DstVec)
2695    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2696               cast<VectorType>(DestTy)->getNumElements(),
2697           "FPToSI source and dest vector length mismatch", &I);
2698
2699  visitInstruction(I);
2700}
2701
2702void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2703  // Get the source and destination types
2704  Type *SrcTy = I.getOperand(0)->getType();
2705  Type *DestTy = I.getType();
2706
2707  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2708
2709  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2710    Assert(!DL.isNonIntegralPointerType(PTy),
2711           "ptrtoint not supported for non-integral pointers");
2712
2713  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2714  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2715         &I);
2716
2717  if (SrcTy->isVectorTy()) {
2718    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2719    VectorType *VDest = dyn_cast<VectorType>(DestTy);
2720    Assert(VSrc->getNumElements() == VDest->getNumElements(),
2721           "PtrToInt Vector width mismatch", &I);
2722  }
2723
2724  visitInstruction(I);
2725}
2726
2727void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2728  // Get the source and destination types
2729  Type *SrcTy = I.getOperand(0)->getType();
2730  Type *DestTy = I.getType();
2731
2732  Assert(SrcTy->isIntOrIntVectorTy(),
2733         "IntToPtr source must be an integral", &I);
2734  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2735
2736  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2737    Assert(!DL.isNonIntegralPointerType(PTy),
2738           "inttoptr not supported for non-integral pointers");
2739
2740  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2741         &I);
2742  if (SrcTy->isVectorTy()) {
2743    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2744    VectorType *VDest = dyn_cast<VectorType>(DestTy);
2745    Assert(VSrc->getNumElements() == VDest->getNumElements(),
2746           "IntToPtr Vector width mismatch", &I);
2747  }
2748  visitInstruction(I);
2749}
2750
2751void Verifier::visitBitCastInst(BitCastInst &I) {
2752  Assert(
2753      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2754      "Invalid bitcast", &I);
2755  visitInstruction(I);
2756}
2757
2758void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2759  Type *SrcTy = I.getOperand(0)->getType();
2760  Type *DestTy = I.getType();
2761
2762  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2763         &I);
2764  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2765         &I);
2766  Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2767         "AddrSpaceCast must be between different address spaces", &I);
2768  if (SrcTy->isVectorTy())
2769    Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2770           "AddrSpaceCast vector pointer number of elements mismatch", &I);
2771  visitInstruction(I);
2772}
2773
2774/// visitPHINode - Ensure that a PHI node is well formed.
2775///
2776void Verifier::visitPHINode(PHINode &PN) {
2777  // Ensure that the PHI nodes are all grouped together at the top of the block.
2778  // This can be tested by checking whether the instruction before this is
2779  // either nonexistent (because this is begin()) or is a PHI node.  If not,
2780  // then there is some other instruction before a PHI.
2781  Assert(&PN == &PN.getParent()->front() ||
2782             isa<PHINode>(--BasicBlock::iterator(&PN)),
2783         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2784
2785  // Check that a PHI doesn't yield a Token.
2786  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2787
2788  // Check that all of the values of the PHI node have the same type as the
2789  // result, and that the incoming blocks are really basic blocks.
2790  for (Value *IncValue : PN.incoming_values()) {
2791    Assert(PN.getType() == IncValue->getType(),
2792           "PHI node operands are not the same type as the result!", &PN);
2793  }
2794
2795  // All other PHI node constraints are checked in the visitBasicBlock method.
2796
2797  visitInstruction(PN);
2798}
2799
2800void Verifier::visitCallBase(CallBase &Call) {
2801  Assert(Call.getCalledValue()->getType()->isPointerTy(),
2802         "Called function must be a pointer!", Call);
2803  PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2804
2805  Assert(FPTy->getElementType()->isFunctionTy(),
2806         "Called function is not pointer to function type!", Call);
2807
2808  Assert(FPTy->getElementType() == Call.getFunctionType(),
2809         "Called function is not the same type as the call!", Call);
2810
2811  FunctionType *FTy = Call.getFunctionType();
2812
2813  // Verify that the correct number of arguments are being passed
2814  if (FTy->isVarArg())
2815    Assert(Call.arg_size() >= FTy->getNumParams(),
2816           "Called function requires more parameters than were provided!",
2817           Call);
2818  else
2819    Assert(Call.arg_size() == FTy->getNumParams(),
2820           "Incorrect number of arguments passed to called function!", Call);
2821
2822  // Verify that all arguments to the call match the function type.
2823  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2824    Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2825           "Call parameter type does not match function signature!",
2826           Call.getArgOperand(i), FTy->getParamType(i), Call);
2827
2828  AttributeList Attrs = Call.getAttributes();
2829
2830  Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2831         "Attribute after last parameter!", Call);
2832
2833  bool IsIntrinsic = Call.getCalledFunction() &&
2834                     Call.getCalledFunction()->getName().startswith("llvm.");
2835
2836  Function *Callee
2837    = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
2838
2839  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2840    // Don't allow speculatable on call sites, unless the underlying function
2841    // declaration is also speculatable.
2842    Assert(Callee && Callee->isSpeculatable(),
2843           "speculatable attribute may not apply to call sites", Call);
2844  }
2845
2846  // Verify call attributes.
2847  verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2848
2849  // Conservatively check the inalloca argument.
2850  // We have a bug if we can find that there is an underlying alloca without
2851  // inalloca.
2852  if (Call.hasInAllocaArgument()) {
2853    Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2854    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2855      Assert(AI->isUsedWithInAlloca(),
2856             "inalloca argument for call has mismatched alloca", AI, Call);
2857  }
2858
2859  // For each argument of the callsite, if it has the swifterror argument,
2860  // make sure the underlying alloca/parameter it comes from has a swifterror as
2861  // well.
2862  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2863    if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2864      Value *SwiftErrorArg = Call.getArgOperand(i);
2865      if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2866        Assert(AI->isSwiftError(),
2867               "swifterror argument for call has mismatched alloca", AI, Call);
2868        continue;
2869      }
2870      auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2871      Assert(ArgI,
2872             "swifterror argument should come from an alloca or parameter",
2873             SwiftErrorArg, Call);
2874      Assert(ArgI->hasSwiftErrorAttr(),
2875             "swifterror argument for call has mismatched parameter", ArgI,
2876             Call);
2877    }
2878
2879    if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2880      // Don't allow immarg on call sites, unless the underlying declaration
2881      // also has the matching immarg.
2882      Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
2883             "immarg may not apply only to call sites",
2884             Call.getArgOperand(i), Call);
2885    }
2886
2887    if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2888      Value *ArgVal = Call.getArgOperand(i);
2889      Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
2890             "immarg operand has non-immediate parameter", ArgVal, Call);
2891    }
2892  }
2893
2894  if (FTy->isVarArg()) {
2895    // FIXME? is 'nest' even legal here?
2896    bool SawNest = false;
2897    bool SawReturned = false;
2898
2899    for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2900      if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2901        SawNest = true;
2902      if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2903        SawReturned = true;
2904    }
2905
2906    // Check attributes on the varargs part.
2907    for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2908      Type *Ty = Call.getArgOperand(Idx)->getType();
2909      AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2910      verifyParameterAttrs(ArgAttrs, Ty, &Call);
2911
2912      if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2913        Assert(!SawNest, "More than one parameter has attribute nest!", Call);
2914        SawNest = true;
2915      }
2916
2917      if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2918        Assert(!SawReturned, "More than one parameter has attribute returned!",
2919               Call);
2920        Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2921               "Incompatible argument and return types for 'returned' "
2922               "attribute",
2923               Call);
2924        SawReturned = true;
2925      }
2926
2927      // Statepoint intrinsic is vararg but the wrapped function may be not.
2928      // Allow sret here and check the wrapped function in verifyStatepoint.
2929      if (!Call.getCalledFunction() ||
2930          Call.getCalledFunction()->getIntrinsicID() !=
2931              Intrinsic::experimental_gc_statepoint)
2932        Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2933               "Attribute 'sret' cannot be used for vararg call arguments!",
2934               Call);
2935
2936      if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2937        Assert(Idx == Call.arg_size() - 1,
2938               "inalloca isn't on the last argument!", Call);
2939    }
2940  }
2941
2942  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2943  if (!IsIntrinsic) {
2944    for (Type *ParamTy : FTy->params()) {
2945      Assert(!ParamTy->isMetadataTy(),
2946             "Function has metadata parameter but isn't an intrinsic", Call);
2947      Assert(!ParamTy->isTokenTy(),
2948             "Function has token parameter but isn't an intrinsic", Call);
2949    }
2950  }
2951
2952  // Verify that indirect calls don't return tokens.
2953  if (!Call.getCalledFunction())
2954    Assert(!FTy->getReturnType()->isTokenTy(),
2955           "Return type cannot be token for indirect call!");
2956
2957  if (Function *F = Call.getCalledFunction())
2958    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2959      visitIntrinsicCall(ID, Call);
2960
2961  // Verify that a callsite has at most one "deopt", at most one "funclet" and
2962  // at most one "gc-transition" operand bundle.
2963  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2964       FoundGCTransitionBundle = false;
2965  for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
2966    OperandBundleUse BU = Call.getOperandBundleAt(i);
2967    uint32_t Tag = BU.getTagID();
2968    if (Tag == LLVMContext::OB_deopt) {
2969      Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
2970      FoundDeoptBundle = true;
2971    } else if (Tag == LLVMContext::OB_gc_transition) {
2972      Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2973             Call);
2974      FoundGCTransitionBundle = true;
2975    } else if (Tag == LLVMContext::OB_funclet) {
2976      Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
2977      FoundFuncletBundle = true;
2978      Assert(BU.Inputs.size() == 1,
2979             "Expected exactly one funclet bundle operand", Call);
2980      Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2981             "Funclet bundle operands should correspond to a FuncletPadInst",
2982             Call);
2983    }
2984  }
2985
2986  // Verify that each inlinable callsite of a debug-info-bearing function in a
2987  // debug-info-bearing function has a debug location attached to it. Failure to
2988  // do so causes assertion failures when the inliner sets up inline scope info.
2989  if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
2990      Call.getCalledFunction()->getSubprogram())
2991    AssertDI(Call.getDebugLoc(),
2992             "inlinable function call in a function with "
2993             "debug info must have a !dbg location",
2994             Call);
2995
2996  visitInstruction(Call);
2997}
2998
2999/// Two types are "congruent" if they are identical, or if they are both pointer
3000/// types with different pointee types and the same address space.
3001static bool isTypeCongruent(Type *L, Type *R) {
3002  if (L == R)
3003    return true;
3004  PointerType *PL = dyn_cast<PointerType>(L);
3005  PointerType *PR = dyn_cast<PointerType>(R);
3006  if (!PL || !PR)
3007    return false;
3008  return PL->getAddressSpace() == PR->getAddressSpace();
3009}
3010
3011static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3012  static const Attribute::AttrKind ABIAttrs[] = {
3013      Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3014      Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
3015      Attribute::SwiftError};
3016  AttrBuilder Copy;
3017  for (auto AK : ABIAttrs) {
3018    if (Attrs.hasParamAttribute(I, AK))
3019      Copy.addAttribute(AK);
3020  }
3021  if (Attrs.hasParamAttribute(I, Attribute::Alignment))
3022    Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3023  return Copy;
3024}
3025
3026void Verifier::verifyMustTailCall(CallInst &CI) {
3027  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3028
3029  // - The caller and callee prototypes must match.  Pointer types of
3030  //   parameters or return types may differ in pointee type, but not
3031  //   address space.
3032  Function *F = CI.getParent()->getParent();
3033  FunctionType *CallerTy = F->getFunctionType();
3034  FunctionType *CalleeTy = CI.getFunctionType();
3035  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3036    Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3037           "cannot guarantee tail call due to mismatched parameter counts",
3038           &CI);
3039    for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3040      Assert(
3041          isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3042          "cannot guarantee tail call due to mismatched parameter types", &CI);
3043    }
3044  }
3045  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3046         "cannot guarantee tail call due to mismatched varargs", &CI);
3047  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3048         "cannot guarantee tail call due to mismatched return types", &CI);
3049
3050  // - The calling conventions of the caller and callee must match.
3051  Assert(F->getCallingConv() == CI.getCallingConv(),
3052         "cannot guarantee tail call due to mismatched calling conv", &CI);
3053
3054  // - All ABI-impacting function attributes, such as sret, byval, inreg,
3055  //   returned, and inalloca, must match.
3056  AttributeList CallerAttrs = F->getAttributes();
3057  AttributeList CalleeAttrs = CI.getAttributes();
3058  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3059    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3060    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3061    Assert(CallerABIAttrs == CalleeABIAttrs,
3062           "cannot guarantee tail call due to mismatched ABI impacting "
3063           "function attributes",
3064           &CI, CI.getOperand(I));
3065  }
3066
3067  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3068  //   or a pointer bitcast followed by a ret instruction.
3069  // - The ret instruction must return the (possibly bitcasted) value
3070  //   produced by the call or void.
3071  Value *RetVal = &CI;
3072  Instruction *Next = CI.getNextNode();
3073
3074  // Handle the optional bitcast.
3075  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3076    Assert(BI->getOperand(0) == RetVal,
3077           "bitcast following musttail call must use the call", BI);
3078    RetVal = BI;
3079    Next = BI->getNextNode();
3080  }
3081
3082  // Check the return.
3083  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3084  Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3085         &CI);
3086  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3087         "musttail call result must be returned", Ret);
3088}
3089
3090void Verifier::visitCallInst(CallInst &CI) {
3091  visitCallBase(CI);
3092
3093  if (CI.isMustTailCall())
3094    verifyMustTailCall(CI);
3095}
3096
3097void Verifier::visitInvokeInst(InvokeInst &II) {
3098  visitCallBase(II);
3099
3100  // Verify that the first non-PHI instruction of the unwind destination is an
3101  // exception handling instruction.
3102  Assert(
3103      II.getUnwindDest()->isEHPad(),
3104      "The unwind destination does not have an exception handling instruction!",
3105      &II);
3106
3107  visitTerminator(II);
3108}
3109
3110/// visitUnaryOperator - Check the argument to the unary operator.
3111///
3112void Verifier::visitUnaryOperator(UnaryOperator &U) {
3113  Assert(U.getType() == U.getOperand(0)->getType(),
3114         "Unary operators must have same type for"
3115         "operands and result!",
3116         &U);
3117
3118  switch (U.getOpcode()) {
3119  // Check that floating-point arithmetic operators are only used with
3120  // floating-point operands.
3121  case Instruction::FNeg:
3122    Assert(U.getType()->isFPOrFPVectorTy(),
3123           "FNeg operator only works with float types!", &U);
3124    break;
3125  default:
3126    llvm_unreachable("Unknown UnaryOperator opcode!");
3127  }
3128
3129  visitInstruction(U);
3130}
3131
3132/// visitBinaryOperator - Check that both arguments to the binary operator are
3133/// of the same type!
3134///
3135void Verifier::visitBinaryOperator(BinaryOperator &B) {
3136  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3137         "Both operands to a binary operator are not of the same type!", &B);
3138
3139  switch (B.getOpcode()) {
3140  // Check that integer arithmetic operators are only used with
3141  // integral operands.
3142  case Instruction::Add:
3143  case Instruction::Sub:
3144  case Instruction::Mul:
3145  case Instruction::SDiv:
3146  case Instruction::UDiv:
3147  case Instruction::SRem:
3148  case Instruction::URem:
3149    Assert(B.getType()->isIntOrIntVectorTy(),
3150           "Integer arithmetic operators only work with integral types!", &B);
3151    Assert(B.getType() == B.getOperand(0)->getType(),
3152           "Integer arithmetic operators must have same type "
3153           "for operands and result!",
3154           &B);
3155    break;
3156  // Check that floating-point arithmetic operators are only used with
3157  // floating-point operands.
3158  case Instruction::FAdd:
3159  case Instruction::FSub:
3160  case Instruction::FMul:
3161  case Instruction::FDiv:
3162  case Instruction::FRem:
3163    Assert(B.getType()->isFPOrFPVectorTy(),
3164           "Floating-point arithmetic operators only work with "
3165           "floating-point types!",
3166           &B);
3167    Assert(B.getType() == B.getOperand(0)->getType(),
3168           "Floating-point arithmetic operators must have same type "
3169           "for operands and result!",
3170           &B);
3171    break;
3172  // Check that logical operators are only used with integral operands.
3173  case Instruction::And:
3174  case Instruction::Or:
3175  case Instruction::Xor:
3176    Assert(B.getType()->isIntOrIntVectorTy(),
3177           "Logical operators only work with integral types!", &B);
3178    Assert(B.getType() == B.getOperand(0)->getType(),
3179           "Logical operators must have same type for operands and result!",
3180           &B);
3181    break;
3182  case Instruction::Shl:
3183  case Instruction::LShr:
3184  case Instruction::AShr:
3185    Assert(B.getType()->isIntOrIntVectorTy(),
3186           "Shifts only work with integral types!", &B);
3187    Assert(B.getType() == B.getOperand(0)->getType(),
3188           "Shift return type must be same as operands!", &B);
3189    break;
3190  default:
3191    llvm_unreachable("Unknown BinaryOperator opcode!");
3192  }
3193
3194  visitInstruction(B);
3195}
3196
3197void Verifier::visitICmpInst(ICmpInst &IC) {
3198  // Check that the operands are the same type
3199  Type *Op0Ty = IC.getOperand(0)->getType();
3200  Type *Op1Ty = IC.getOperand(1)->getType();
3201  Assert(Op0Ty == Op1Ty,
3202         "Both operands to ICmp instruction are not of the same type!", &IC);
3203  // Check that the operands are the right type
3204  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3205         "Invalid operand types for ICmp instruction", &IC);
3206  // Check that the predicate is valid.
3207  Assert(IC.isIntPredicate(),
3208         "Invalid predicate in ICmp instruction!", &IC);
3209
3210  visitInstruction(IC);
3211}
3212
3213void Verifier::visitFCmpInst(FCmpInst &FC) {
3214  // Check that the operands are the same type
3215  Type *Op0Ty = FC.getOperand(0)->getType();
3216  Type *Op1Ty = FC.getOperand(1)->getType();
3217  Assert(Op0Ty == Op1Ty,
3218         "Both operands to FCmp instruction are not of the same type!", &FC);
3219  // Check that the operands are the right type
3220  Assert(Op0Ty->isFPOrFPVectorTy(),
3221         "Invalid operand types for FCmp instruction", &FC);
3222  // Check that the predicate is valid.
3223  Assert(FC.isFPPredicate(),
3224         "Invalid predicate in FCmp instruction!", &FC);
3225
3226  visitInstruction(FC);
3227}
3228
3229void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3230  Assert(
3231      ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3232      "Invalid extractelement operands!", &EI);
3233  visitInstruction(EI);
3234}
3235
3236void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3237  Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3238                                            IE.getOperand(2)),
3239         "Invalid insertelement operands!", &IE);
3240  visitInstruction(IE);
3241}
3242
3243void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3244  Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3245                                            SV.getOperand(2)),
3246         "Invalid shufflevector operands!", &SV);
3247  visitInstruction(SV);
3248}
3249
3250void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3251  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3252
3253  Assert(isa<PointerType>(TargetTy),
3254         "GEP base pointer is not a vector or a vector of pointers", &GEP);
3255  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3256
3257  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3258  Assert(all_of(
3259      Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3260      "GEP indexes must be integers", &GEP);
3261  Type *ElTy =
3262      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3263  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3264
3265  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3266             GEP.getResultElementType() == ElTy,
3267         "GEP is not of right type for indices!", &GEP, ElTy);
3268
3269  if (GEP.getType()->isVectorTy()) {
3270    // Additional checks for vector GEPs.
3271    unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3272    if (GEP.getPointerOperandType()->isVectorTy())
3273      Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3274             "Vector GEP result width doesn't match operand's", &GEP);
3275    for (Value *Idx : Idxs) {
3276      Type *IndexTy = Idx->getType();
3277      if (IndexTy->isVectorTy()) {
3278        unsigned IndexWidth = IndexTy->getVectorNumElements();
3279        Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3280      }
3281      Assert(IndexTy->isIntOrIntVectorTy(),
3282             "All GEP indices should be of integer type");
3283    }
3284  }
3285
3286  if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3287    Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3288           "GEP address space doesn't match type", &GEP);
3289  }
3290
3291  visitInstruction(GEP);
3292}
3293
3294static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3295  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3296}
3297
3298void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3299  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3300         "precondition violation");
3301
3302  unsigned NumOperands = Range->getNumOperands();
3303  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3304  unsigned NumRanges = NumOperands / 2;
3305  Assert(NumRanges >= 1, "It should have at least one range!", Range);
3306
3307  ConstantRange LastRange(1, true); // Dummy initial value
3308  for (unsigned i = 0; i < NumRanges; ++i) {
3309    ConstantInt *Low =
3310        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3311    Assert(Low, "The lower limit must be an integer!", Low);
3312    ConstantInt *High =
3313        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3314    Assert(High, "The upper limit must be an integer!", High);
3315    Assert(High->getType() == Low->getType() && High->getType() == Ty,
3316           "Range types must match instruction type!", &I);
3317
3318    APInt HighV = High->getValue();
3319    APInt LowV = Low->getValue();
3320    ConstantRange CurRange(LowV, HighV);
3321    Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3322           "Range must not be empty!", Range);
3323    if (i != 0) {
3324      Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3325             "Intervals are overlapping", Range);
3326      Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3327             Range);
3328      Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3329             Range);
3330    }
3331    LastRange = ConstantRange(LowV, HighV);
3332  }
3333  if (NumRanges > 2) {
3334    APInt FirstLow =
3335        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3336    APInt FirstHigh =
3337        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3338    ConstantRange FirstRange(FirstLow, FirstHigh);
3339    Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3340           "Intervals are overlapping", Range);
3341    Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3342           Range);
3343  }
3344}
3345
3346void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3347  unsigned Size = DL.getTypeSizeInBits(Ty);
3348  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3349  Assert(!(Size & (Size - 1)),
3350         "atomic memory access' operand must have a power-of-two size", Ty, I);
3351}
3352
3353void Verifier::visitLoadInst(LoadInst &LI) {
3354  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3355  Assert(PTy, "Load operand must be a pointer.", &LI);
3356  Type *ElTy = LI.getType();
3357  Assert(LI.getAlignment() <= Value::MaximumAlignment,
3358         "huge alignment values are unsupported", &LI);
3359  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3360  if (LI.isAtomic()) {
3361    Assert(LI.getOrdering() != AtomicOrdering::Release &&
3362               LI.getOrdering() != AtomicOrdering::AcquireRelease,
3363           "Load cannot have Release ordering", &LI);
3364    Assert(LI.getAlignment() != 0,
3365           "Atomic load must specify explicit alignment", &LI);
3366    Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3367           "atomic load operand must have integer, pointer, or floating point "
3368           "type!",
3369           ElTy, &LI);
3370    checkAtomicMemAccessSize(ElTy, &LI);
3371  } else {
3372    Assert(LI.getSyncScopeID() == SyncScope::System,
3373           "Non-atomic load cannot have SynchronizationScope specified", &LI);
3374  }
3375
3376  visitInstruction(LI);
3377}
3378
3379void Verifier::visitStoreInst(StoreInst &SI) {
3380  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3381  Assert(PTy, "Store operand must be a pointer.", &SI);
3382  Type *ElTy = PTy->getElementType();
3383  Assert(ElTy == SI.getOperand(0)->getType(),
3384         "Stored value type does not match pointer operand type!", &SI, ElTy);
3385  Assert(SI.getAlignment() <= Value::MaximumAlignment,
3386         "huge alignment values are unsupported", &SI);
3387  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3388  if (SI.isAtomic()) {
3389    Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3390               SI.getOrdering() != AtomicOrdering::AcquireRelease,
3391           "Store cannot have Acquire ordering", &SI);
3392    Assert(SI.getAlignment() != 0,
3393           "Atomic store must specify explicit alignment", &SI);
3394    Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3395           "atomic store operand must have integer, pointer, or floating point "
3396           "type!",
3397           ElTy, &SI);
3398    checkAtomicMemAccessSize(ElTy, &SI);
3399  } else {
3400    Assert(SI.getSyncScopeID() == SyncScope::System,
3401           "Non-atomic store cannot have SynchronizationScope specified", &SI);
3402  }
3403  visitInstruction(SI);
3404}
3405
3406/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3407void Verifier::verifySwiftErrorCall(CallBase &Call,
3408                                    const Value *SwiftErrorVal) {
3409  unsigned Idx = 0;
3410  for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3411    if (*I == SwiftErrorVal) {
3412      Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3413             "swifterror value when used in a callsite should be marked "
3414             "with swifterror attribute",
3415             SwiftErrorVal, Call);
3416    }
3417  }
3418}
3419
3420void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3421  // Check that swifterror value is only used by loads, stores, or as
3422  // a swifterror argument.
3423  for (const User *U : SwiftErrorVal->users()) {
3424    Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3425           isa<InvokeInst>(U),
3426           "swifterror value can only be loaded and stored from, or "
3427           "as a swifterror argument!",
3428           SwiftErrorVal, U);
3429    // If it is used by a store, check it is the second operand.
3430    if (auto StoreI = dyn_cast<StoreInst>(U))
3431      Assert(StoreI->getOperand(1) == SwiftErrorVal,
3432             "swifterror value should be the second operand when used "
3433             "by stores", SwiftErrorVal, U);
3434    if (auto *Call = dyn_cast<CallBase>(U))
3435      verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3436  }
3437}
3438
3439void Verifier::visitAllocaInst(AllocaInst &AI) {
3440  SmallPtrSet<Type*, 4> Visited;
3441  PointerType *PTy = AI.getType();
3442  // TODO: Relax this restriction?
3443  Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3444         "Allocation instruction pointer not in the stack address space!",
3445         &AI);
3446  Assert(AI.getAllocatedType()->isSized(&Visited),
3447         "Cannot allocate unsized type", &AI);
3448  Assert(AI.getArraySize()->getType()->isIntegerTy(),
3449         "Alloca array size must have integer type", &AI);
3450  Assert(AI.getAlignment() <= Value::MaximumAlignment,
3451         "huge alignment values are unsupported", &AI);
3452
3453  if (AI.isSwiftError()) {
3454    verifySwiftErrorValue(&AI);
3455  }
3456
3457  visitInstruction(AI);
3458}
3459
3460void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3461
3462  // FIXME: more conditions???
3463  Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3464         "cmpxchg instructions must be atomic.", &CXI);
3465  Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3466         "cmpxchg instructions must be atomic.", &CXI);
3467  Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3468         "cmpxchg instructions cannot be unordered.", &CXI);
3469  Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3470         "cmpxchg instructions cannot be unordered.", &CXI);
3471  Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3472         "cmpxchg instructions failure argument shall be no stronger than the "
3473         "success argument",
3474         &CXI);
3475  Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3476             CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3477         "cmpxchg failure ordering cannot include release semantics", &CXI);
3478
3479  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3480  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3481  Type *ElTy = PTy->getElementType();
3482  Assert(ElTy->isIntOrPtrTy(),
3483         "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3484  checkAtomicMemAccessSize(ElTy, &CXI);
3485  Assert(ElTy == CXI.getOperand(1)->getType(),
3486         "Expected value type does not match pointer operand type!", &CXI,
3487         ElTy);
3488  Assert(ElTy == CXI.getOperand(2)->getType(),
3489         "Stored value type does not match pointer operand type!", &CXI, ElTy);
3490  visitInstruction(CXI);
3491}
3492
3493void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3494  Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3495         "atomicrmw instructions must be atomic.", &RMWI);
3496  Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3497         "atomicrmw instructions cannot be unordered.", &RMWI);
3498  auto Op = RMWI.getOperation();
3499  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3500  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3501  Type *ElTy = PTy->getElementType();
3502  if (Op == AtomicRMWInst::Xchg) {
3503    Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3504           AtomicRMWInst::getOperationName(Op) +
3505           " operand must have integer or floating point type!",
3506           &RMWI, ElTy);
3507  } else if (AtomicRMWInst::isFPOperation(Op)) {
3508    Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3509           AtomicRMWInst::getOperationName(Op) +
3510           " operand must have floating point type!",
3511           &RMWI, ElTy);
3512  } else {
3513    Assert(ElTy->isIntegerTy(), "atomicrmw " +
3514           AtomicRMWInst::getOperationName(Op) +
3515           " operand must have integer type!",
3516           &RMWI, ElTy);
3517  }
3518  checkAtomicMemAccessSize(ElTy, &RMWI);
3519  Assert(ElTy == RMWI.getOperand(1)->getType(),
3520         "Argument value type does not match pointer operand type!", &RMWI,
3521         ElTy);
3522  Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3523         "Invalid binary operation!", &RMWI);
3524  visitInstruction(RMWI);
3525}
3526
3527void Verifier::visitFenceInst(FenceInst &FI) {
3528  const AtomicOrdering Ordering = FI.getOrdering();
3529  Assert(Ordering == AtomicOrdering::Acquire ||
3530             Ordering == AtomicOrdering::Release ||
3531             Ordering == AtomicOrdering::AcquireRelease ||
3532             Ordering == AtomicOrdering::SequentiallyConsistent,
3533         "fence instructions may only have acquire, release, acq_rel, or "
3534         "seq_cst ordering.",
3535         &FI);
3536  visitInstruction(FI);
3537}
3538
3539void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3540  Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3541                                          EVI.getIndices()) == EVI.getType(),
3542         "Invalid ExtractValueInst operands!", &EVI);
3543
3544  visitInstruction(EVI);
3545}
3546
3547void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3548  Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3549                                          IVI.getIndices()) ==
3550             IVI.getOperand(1)->getType(),
3551         "Invalid InsertValueInst operands!", &IVI);
3552
3553  visitInstruction(IVI);
3554}
3555
3556static Value *getParentPad(Value *EHPad) {
3557  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3558    return FPI->getParentPad();
3559
3560  return cast<CatchSwitchInst>(EHPad)->getParentPad();
3561}
3562
3563void Verifier::visitEHPadPredecessors(Instruction &I) {
3564  assert(I.isEHPad());
3565
3566  BasicBlock *BB = I.getParent();
3567  Function *F = BB->getParent();
3568
3569  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3570
3571  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3572    // The landingpad instruction defines its parent as a landing pad block. The
3573    // landing pad block may be branched to only by the unwind edge of an
3574    // invoke.
3575    for (BasicBlock *PredBB : predecessors(BB)) {
3576      const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3577      Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3578             "Block containing LandingPadInst must be jumped to "
3579             "only by the unwind edge of an invoke.",
3580             LPI);
3581    }
3582    return;
3583  }
3584  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3585    if (!pred_empty(BB))
3586      Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3587             "Block containg CatchPadInst must be jumped to "
3588             "only by its catchswitch.",
3589             CPI);
3590    Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3591           "Catchswitch cannot unwind to one of its catchpads",
3592           CPI->getCatchSwitch(), CPI);
3593    return;
3594  }
3595
3596  // Verify that each pred has a legal terminator with a legal to/from EH
3597  // pad relationship.
3598  Instruction *ToPad = &I;
3599  Value *ToPadParent = getParentPad(ToPad);
3600  for (BasicBlock *PredBB : predecessors(BB)) {
3601    Instruction *TI = PredBB->getTerminator();
3602    Value *FromPad;
3603    if (auto *II = dyn_cast<InvokeInst>(TI)) {
3604      Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3605             "EH pad must be jumped to via an unwind edge", ToPad, II);
3606      if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3607        FromPad = Bundle->Inputs[0];
3608      else
3609        FromPad = ConstantTokenNone::get(II->getContext());
3610    } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3611      FromPad = CRI->getOperand(0);
3612      Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3613    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3614      FromPad = CSI;
3615    } else {
3616      Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3617    }
3618
3619    // The edge may exit from zero or more nested pads.
3620    SmallSet<Value *, 8> Seen;
3621    for (;; FromPad = getParentPad(FromPad)) {
3622      Assert(FromPad != ToPad,
3623             "EH pad cannot handle exceptions raised within it", FromPad, TI);
3624      if (FromPad == ToPadParent) {
3625        // This is a legal unwind edge.
3626        break;
3627      }
3628      Assert(!isa<ConstantTokenNone>(FromPad),
3629             "A single unwind edge may only enter one EH pad", TI);
3630      Assert(Seen.insert(FromPad).second,
3631             "EH pad jumps through a cycle of pads", FromPad);
3632    }
3633  }
3634}
3635
3636void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3637  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3638  // isn't a cleanup.
3639  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3640         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3641
3642  visitEHPadPredecessors(LPI);
3643
3644  if (!LandingPadResultTy)
3645    LandingPadResultTy = LPI.getType();
3646  else
3647    Assert(LandingPadResultTy == LPI.getType(),
3648           "The landingpad instruction should have a consistent result type "
3649           "inside a function.",
3650           &LPI);
3651
3652  Function *F = LPI.getParent()->getParent();
3653  Assert(F->hasPersonalityFn(),
3654         "LandingPadInst needs to be in a function with a personality.", &LPI);
3655
3656  // The landingpad instruction must be the first non-PHI instruction in the
3657  // block.
3658  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3659         "LandingPadInst not the first non-PHI instruction in the block.",
3660         &LPI);
3661
3662  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3663    Constant *Clause = LPI.getClause(i);
3664    if (LPI.isCatch(i)) {
3665      Assert(isa<PointerType>(Clause->getType()),
3666             "Catch operand does not have pointer type!", &LPI);
3667    } else {
3668      Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3669      Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3670             "Filter operand is not an array of constants!", &LPI);
3671    }
3672  }
3673
3674  visitInstruction(LPI);
3675}
3676
3677void Verifier::visitResumeInst(ResumeInst &RI) {
3678  Assert(RI.getFunction()->hasPersonalityFn(),
3679         "ResumeInst needs to be in a function with a personality.", &RI);
3680
3681  if (!LandingPadResultTy)
3682    LandingPadResultTy = RI.getValue()->getType();
3683  else
3684    Assert(LandingPadResultTy == RI.getValue()->getType(),
3685           "The resume instruction should have a consistent result type "
3686           "inside a function.",
3687           &RI);
3688
3689  visitTerminator(RI);
3690}
3691
3692void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3693  BasicBlock *BB = CPI.getParent();
3694
3695  Function *F = BB->getParent();
3696  Assert(F->hasPersonalityFn(),
3697         "CatchPadInst needs to be in a function with a personality.", &CPI);
3698
3699  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3700         "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3701         CPI.getParentPad());
3702
3703  // The catchpad instruction must be the first non-PHI instruction in the
3704  // block.
3705  Assert(BB->getFirstNonPHI() == &CPI,
3706         "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3707
3708  visitEHPadPredecessors(CPI);
3709  visitFuncletPadInst(CPI);
3710}
3711
3712void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3713  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3714         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3715         CatchReturn.getOperand(0));
3716
3717  visitTerminator(CatchReturn);
3718}
3719
3720void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3721  BasicBlock *BB = CPI.getParent();
3722
3723  Function *F = BB->getParent();
3724  Assert(F->hasPersonalityFn(),
3725         "CleanupPadInst needs to be in a function with a personality.", &CPI);
3726
3727  // The cleanuppad instruction must be the first non-PHI instruction in the
3728  // block.
3729  Assert(BB->getFirstNonPHI() == &CPI,
3730         "CleanupPadInst not the first non-PHI instruction in the block.",
3731         &CPI);
3732
3733  auto *ParentPad = CPI.getParentPad();
3734  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3735         "CleanupPadInst has an invalid parent.", &CPI);
3736
3737  visitEHPadPredecessors(CPI);
3738  visitFuncletPadInst(CPI);
3739}
3740
3741void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3742  User *FirstUser = nullptr;
3743  Value *FirstUnwindPad = nullptr;
3744  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3745  SmallSet<FuncletPadInst *, 8> Seen;
3746
3747  while (!Worklist.empty()) {
3748    FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3749    Assert(Seen.insert(CurrentPad).second,
3750           "FuncletPadInst must not be nested within itself", CurrentPad);
3751    Value *UnresolvedAncestorPad = nullptr;
3752    for (User *U : CurrentPad->users()) {
3753      BasicBlock *UnwindDest;
3754      if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3755        UnwindDest = CRI->getUnwindDest();
3756      } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3757        // We allow catchswitch unwind to caller to nest
3758        // within an outer pad that unwinds somewhere else,
3759        // because catchswitch doesn't have a nounwind variant.
3760        // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3761        if (CSI->unwindsToCaller())
3762          continue;
3763        UnwindDest = CSI->getUnwindDest();
3764      } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3765        UnwindDest = II->getUnwindDest();
3766      } else if (isa<CallInst>(U)) {
3767        // Calls which don't unwind may be found inside funclet
3768        // pads that unwind somewhere else.  We don't *require*
3769        // such calls to be annotated nounwind.
3770        continue;
3771      } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3772        // The unwind dest for a cleanup can only be found by
3773        // recursive search.  Add it to the worklist, and we'll
3774        // search for its first use that determines where it unwinds.
3775        Worklist.push_back(CPI);
3776        continue;
3777      } else {
3778        Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3779        continue;
3780      }
3781
3782      Value *UnwindPad;
3783      bool ExitsFPI;
3784      if (UnwindDest) {
3785        UnwindPad = UnwindDest->getFirstNonPHI();
3786        if (!cast<Instruction>(UnwindPad)->isEHPad())
3787          continue;
3788        Value *UnwindParent = getParentPad(UnwindPad);
3789        // Ignore unwind edges that don't exit CurrentPad.
3790        if (UnwindParent == CurrentPad)
3791          continue;
3792        // Determine whether the original funclet pad is exited,
3793        // and if we are scanning nested pads determine how many
3794        // of them are exited so we can stop searching their
3795        // children.
3796        Value *ExitedPad = CurrentPad;
3797        ExitsFPI = false;
3798        do {
3799          if (ExitedPad == &FPI) {
3800            ExitsFPI = true;
3801            // Now we can resolve any ancestors of CurrentPad up to
3802            // FPI, but not including FPI since we need to make sure
3803            // to check all direct users of FPI for consistency.
3804            UnresolvedAncestorPad = &FPI;
3805            break;
3806          }
3807          Value *ExitedParent = getParentPad(ExitedPad);
3808          if (ExitedParent == UnwindParent) {
3809            // ExitedPad is the ancestor-most pad which this unwind
3810            // edge exits, so we can resolve up to it, meaning that
3811            // ExitedParent is the first ancestor still unresolved.
3812            UnresolvedAncestorPad = ExitedParent;
3813            break;
3814          }
3815          ExitedPad = ExitedParent;
3816        } while (!isa<ConstantTokenNone>(ExitedPad));
3817      } else {
3818        // Unwinding to caller exits all pads.
3819        UnwindPad = ConstantTokenNone::get(FPI.getContext());
3820        ExitsFPI = true;
3821        UnresolvedAncestorPad = &FPI;
3822      }
3823
3824      if (ExitsFPI) {
3825        // This unwind edge exits FPI.  Make sure it agrees with other
3826        // such edges.
3827        if (FirstUser) {
3828          Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3829                                              "pad must have the same unwind "
3830                                              "dest",
3831                 &FPI, U, FirstUser);
3832        } else {
3833          FirstUser = U;
3834          FirstUnwindPad = UnwindPad;
3835          // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3836          if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3837              getParentPad(UnwindPad) == getParentPad(&FPI))
3838            SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3839        }
3840      }
3841      // Make sure we visit all uses of FPI, but for nested pads stop as
3842      // soon as we know where they unwind to.
3843      if (CurrentPad != &FPI)
3844        break;
3845    }
3846    if (UnresolvedAncestorPad) {
3847      if (CurrentPad == UnresolvedAncestorPad) {
3848        // When CurrentPad is FPI itself, we don't mark it as resolved even if
3849        // we've found an unwind edge that exits it, because we need to verify
3850        // all direct uses of FPI.
3851        assert(CurrentPad == &FPI);
3852        continue;
3853      }
3854      // Pop off the worklist any nested pads that we've found an unwind
3855      // destination for.  The pads on the worklist are the uncles,
3856      // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3857      // for all ancestors of CurrentPad up to but not including
3858      // UnresolvedAncestorPad.
3859      Value *ResolvedPad = CurrentPad;
3860      while (!Worklist.empty()) {
3861        Value *UnclePad = Worklist.back();
3862        Value *AncestorPad = getParentPad(UnclePad);
3863        // Walk ResolvedPad up the ancestor list until we either find the
3864        // uncle's parent or the last resolved ancestor.
3865        while (ResolvedPad != AncestorPad) {
3866          Value *ResolvedParent = getParentPad(ResolvedPad);
3867          if (ResolvedParent == UnresolvedAncestorPad) {
3868            break;
3869          }
3870          ResolvedPad = ResolvedParent;
3871        }
3872        // If the resolved ancestor search didn't find the uncle's parent,
3873        // then the uncle is not yet resolved.
3874        if (ResolvedPad != AncestorPad)
3875          break;
3876        // This uncle is resolved, so pop it from the worklist.
3877        Worklist.pop_back();
3878      }
3879    }
3880  }
3881
3882  if (FirstUnwindPad) {
3883    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3884      BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3885      Value *SwitchUnwindPad;
3886      if (SwitchUnwindDest)
3887        SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3888      else
3889        SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3890      Assert(SwitchUnwindPad == FirstUnwindPad,
3891             "Unwind edges out of a catch must have the same unwind dest as "
3892             "the parent catchswitch",
3893             &FPI, FirstUser, CatchSwitch);
3894    }
3895  }
3896
3897  visitInstruction(FPI);
3898}
3899
3900void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3901  BasicBlock *BB = CatchSwitch.getParent();
3902
3903  Function *F = BB->getParent();
3904  Assert(F->hasPersonalityFn(),
3905         "CatchSwitchInst needs to be in a function with a personality.",
3906         &CatchSwitch);
3907
3908  // The catchswitch instruction must be the first non-PHI instruction in the
3909  // block.
3910  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3911         "CatchSwitchInst not the first non-PHI instruction in the block.",
3912         &CatchSwitch);
3913
3914  auto *ParentPad = CatchSwitch.getParentPad();
3915  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3916         "CatchSwitchInst has an invalid parent.", ParentPad);
3917
3918  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3919    Instruction *I = UnwindDest->getFirstNonPHI();
3920    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3921           "CatchSwitchInst must unwind to an EH block which is not a "
3922           "landingpad.",
3923           &CatchSwitch);
3924
3925    // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3926    if (getParentPad(I) == ParentPad)
3927      SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3928  }
3929
3930  Assert(CatchSwitch.getNumHandlers() != 0,
3931         "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3932
3933  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3934    Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3935           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3936  }
3937
3938  visitEHPadPredecessors(CatchSwitch);
3939  visitTerminator(CatchSwitch);
3940}
3941
3942void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3943  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3944         "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3945         CRI.getOperand(0));
3946
3947  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3948    Instruction *I = UnwindDest->getFirstNonPHI();
3949    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3950           "CleanupReturnInst must unwind to an EH block which is not a "
3951           "landingpad.",
3952           &CRI);
3953  }
3954
3955  visitTerminator(CRI);
3956}
3957
3958void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3959  Instruction *Op = cast<Instruction>(I.getOperand(i));
3960  // If the we have an invalid invoke, don't try to compute the dominance.
3961  // We already reject it in the invoke specific checks and the dominance
3962  // computation doesn't handle multiple edges.
3963  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3964    if (II->getNormalDest() == II->getUnwindDest())
3965      return;
3966  }
3967
3968  // Quick check whether the def has already been encountered in the same block.
3969  // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3970  // uses are defined to happen on the incoming edge, not at the instruction.
3971  //
3972  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3973  // wrapping an SSA value, assert that we've already encountered it.  See
3974  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3975  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3976    return;
3977
3978  const Use &U = I.getOperandUse(i);
3979  Assert(DT.dominates(Op, U),
3980         "Instruction does not dominate all uses!", Op, &I);
3981}
3982
3983void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3984  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3985         "apply only to pointer types", &I);
3986  Assert(isa<LoadInst>(I),
3987         "dereferenceable, dereferenceable_or_null apply only to load"
3988         " instructions, use attributes for calls or invokes", &I);
3989  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3990         "take one operand!", &I);
3991  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3992  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3993         "dereferenceable_or_null metadata value must be an i64!", &I);
3994}
3995
3996/// verifyInstruction - Verify that an instruction is well formed.
3997///
3998void Verifier::visitInstruction(Instruction &I) {
3999  BasicBlock *BB = I.getParent();
4000  Assert(BB, "Instruction not embedded in basic block!", &I);
4001
4002  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4003    for (User *U : I.users()) {
4004      Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4005             "Only PHI nodes may reference their own value!", &I);
4006    }
4007  }
4008
4009  // Check that void typed values don't have names
4010  Assert(!I.getType()->isVoidTy() || !I.hasName(),
4011         "Instruction has a name, but provides a void value!", &I);
4012
4013  // Check that the return value of the instruction is either void or a legal
4014  // value type.
4015  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4016         "Instruction returns a non-scalar type!", &I);
4017
4018  // Check that the instruction doesn't produce metadata. Calls are already
4019  // checked against the callee type.
4020  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4021         "Invalid use of metadata!", &I);
4022
4023  // Check that all uses of the instruction, if they are instructions
4024  // themselves, actually have parent basic blocks.  If the use is not an
4025  // instruction, it is an error!
4026  for (Use &U : I.uses()) {
4027    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4028      Assert(Used->getParent() != nullptr,
4029             "Instruction referencing"
4030             " instruction not embedded in a basic block!",
4031             &I, Used);
4032    else {
4033      CheckFailed("Use of instruction is not an instruction!", U);
4034      return;
4035    }
4036  }
4037
4038  // Get a pointer to the call base of the instruction if it is some form of
4039  // call.
4040  const CallBase *CBI = dyn_cast<CallBase>(&I);
4041
4042  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4043    Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4044
4045    // Check to make sure that only first-class-values are operands to
4046    // instructions.
4047    if (!I.getOperand(i)->getType()->isFirstClassType()) {
4048      Assert(false, "Instruction operands must be first-class values!", &I);
4049    }
4050
4051    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4052      // Check to make sure that the "address of" an intrinsic function is never
4053      // taken.
4054      Assert(!F->isIntrinsic() ||
4055                 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4056             "Cannot take the address of an intrinsic!", &I);
4057      Assert(
4058          !F->isIntrinsic() || isa<CallInst>(I) ||
4059              F->getIntrinsicID() == Intrinsic::donothing ||
4060              F->getIntrinsicID() == Intrinsic::coro_resume ||
4061              F->getIntrinsicID() == Intrinsic::coro_destroy ||
4062              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4063              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4064              F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4065              F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4066          "Cannot invoke an intrinsic other than donothing, patchpoint, "
4067          "statepoint, coro_resume or coro_destroy",
4068          &I);
4069      Assert(F->getParent() == &M, "Referencing function in another module!",
4070             &I, &M, F, F->getParent());
4071    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4072      Assert(OpBB->getParent() == BB->getParent(),
4073             "Referring to a basic block in another function!", &I);
4074    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4075      Assert(OpArg->getParent() == BB->getParent(),
4076             "Referring to an argument in another function!", &I);
4077    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4078      Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4079             &M, GV, GV->getParent());
4080    } else if (isa<Instruction>(I.getOperand(i))) {
4081      verifyDominatesUse(I, i);
4082    } else if (isa<InlineAsm>(I.getOperand(i))) {
4083      Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4084             "Cannot take the address of an inline asm!", &I);
4085    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4086      if (CE->getType()->isPtrOrPtrVectorTy() ||
4087          !DL.getNonIntegralAddressSpaces().empty()) {
4088        // If we have a ConstantExpr pointer, we need to see if it came from an
4089        // illegal bitcast.  If the datalayout string specifies non-integral
4090        // address spaces then we also need to check for illegal ptrtoint and
4091        // inttoptr expressions.
4092        visitConstantExprsRecursively(CE);
4093      }
4094    }
4095  }
4096
4097  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4098    Assert(I.getType()->isFPOrFPVectorTy(),
4099           "fpmath requires a floating point result!", &I);
4100    Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4101    if (ConstantFP *CFP0 =
4102            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4103      const APFloat &Accuracy = CFP0->getValueAPF();
4104      Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4105             "fpmath accuracy must have float type", &I);
4106      Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4107             "fpmath accuracy not a positive number!", &I);
4108    } else {
4109      Assert(false, "invalid fpmath accuracy!", &I);
4110    }
4111  }
4112
4113  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4114    Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4115           "Ranges are only for loads, calls and invokes!", &I);
4116    visitRangeMetadata(I, Range, I.getType());
4117  }
4118
4119  if (I.getMetadata(LLVMContext::MD_nonnull)) {
4120    Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4121           &I);
4122    Assert(isa<LoadInst>(I),
4123           "nonnull applies only to load instructions, use attributes"
4124           " for calls or invokes",
4125           &I);
4126  }
4127
4128  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4129    visitDereferenceableMetadata(I, MD);
4130
4131  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4132    visitDereferenceableMetadata(I, MD);
4133
4134  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4135    TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4136
4137  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4138    Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4139           &I);
4140    Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4141           "use attributes for calls or invokes", &I);
4142    Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4143    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4144    Assert(CI && CI->getType()->isIntegerTy(64),
4145           "align metadata value must be an i64!", &I);
4146    uint64_t Align = CI->getZExtValue();
4147    Assert(isPowerOf2_64(Align),
4148           "align metadata value must be a power of 2!", &I);
4149    Assert(Align <= Value::MaximumAlignment,
4150           "alignment is larger that implementation defined limit", &I);
4151  }
4152
4153  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4154    AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4155    visitMDNode(*N);
4156  }
4157
4158  if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
4159    verifyFragmentExpression(*DII);
4160
4161  InstsInThisBlock.insert(&I);
4162}
4163
4164/// Allow intrinsics to be verified in different ways.
4165void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4166  Function *IF = Call.getCalledFunction();
4167  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4168         IF);
4169
4170  // Verify that the intrinsic prototype lines up with what the .td files
4171  // describe.
4172  FunctionType *IFTy = IF->getFunctionType();
4173  bool IsVarArg = IFTy->isVarArg();
4174
4175  SmallVector<Intrinsic::IITDescriptor, 8> Table;
4176  getIntrinsicInfoTableEntries(ID, Table);
4177  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4178
4179  // Walk the descriptors to extract overloaded types.
4180  SmallVector<Type *, 4> ArgTys;
4181  Intrinsic::MatchIntrinsicTypesResult Res =
4182      Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4183  Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4184         "Intrinsic has incorrect return type!", IF);
4185  Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4186         "Intrinsic has incorrect argument type!", IF);
4187
4188  // Verify if the intrinsic call matches the vararg property.
4189  if (IsVarArg)
4190    Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4191           "Intrinsic was not defined with variable arguments!", IF);
4192  else
4193    Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4194           "Callsite was not defined with variable arguments!", IF);
4195
4196  // All descriptors should be absorbed by now.
4197  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4198
4199  // Now that we have the intrinsic ID and the actual argument types (and we
4200  // know they are legal for the intrinsic!) get the intrinsic name through the
4201  // usual means.  This allows us to verify the mangling of argument types into
4202  // the name.
4203  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4204  Assert(ExpectedName == IF->getName(),
4205         "Intrinsic name not mangled correctly for type arguments! "
4206         "Should be: " +
4207             ExpectedName,
4208         IF);
4209
4210  // If the intrinsic takes MDNode arguments, verify that they are either global
4211  // or are local to *this* function.
4212  for (Value *V : Call.args())
4213    if (auto *MD = dyn_cast<MetadataAsValue>(V))
4214      visitMetadataAsValue(*MD, Call.getCaller());
4215
4216  switch (ID) {
4217  default:
4218    break;
4219  case Intrinsic::coro_id: {
4220    auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4221    if (isa<ConstantPointerNull>(InfoArg))
4222      break;
4223    auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4224    Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4225      "info argument of llvm.coro.begin must refer to an initialized "
4226      "constant");
4227    Constant *Init = GV->getInitializer();
4228    Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4229      "info argument of llvm.coro.begin must refer to either a struct or "
4230      "an array");
4231    break;
4232  }
4233  case Intrinsic::experimental_constrained_fadd:
4234  case Intrinsic::experimental_constrained_fsub:
4235  case Intrinsic::experimental_constrained_fmul:
4236  case Intrinsic::experimental_constrained_fdiv:
4237  case Intrinsic::experimental_constrained_frem:
4238  case Intrinsic::experimental_constrained_fma:
4239  case Intrinsic::experimental_constrained_fptrunc:
4240  case Intrinsic::experimental_constrained_fpext:
4241  case Intrinsic::experimental_constrained_sqrt:
4242  case Intrinsic::experimental_constrained_pow:
4243  case Intrinsic::experimental_constrained_powi:
4244  case Intrinsic::experimental_constrained_sin:
4245  case Intrinsic::experimental_constrained_cos:
4246  case Intrinsic::experimental_constrained_exp:
4247  case Intrinsic::experimental_constrained_exp2:
4248  case Intrinsic::experimental_constrained_log:
4249  case Intrinsic::experimental_constrained_log10:
4250  case Intrinsic::experimental_constrained_log2:
4251  case Intrinsic::experimental_constrained_rint:
4252  case Intrinsic::experimental_constrained_nearbyint:
4253  case Intrinsic::experimental_constrained_maxnum:
4254  case Intrinsic::experimental_constrained_minnum:
4255  case Intrinsic::experimental_constrained_ceil:
4256  case Intrinsic::experimental_constrained_floor:
4257  case Intrinsic::experimental_constrained_round:
4258  case Intrinsic::experimental_constrained_trunc:
4259    visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4260    break;
4261  case Intrinsic::dbg_declare: // llvm.dbg.declare
4262    Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4263           "invalid llvm.dbg.declare intrinsic call 1", Call);
4264    visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4265    break;
4266  case Intrinsic::dbg_addr: // llvm.dbg.addr
4267    visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4268    break;
4269  case Intrinsic::dbg_value: // llvm.dbg.value
4270    visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4271    break;
4272  case Intrinsic::dbg_label: // llvm.dbg.label
4273    visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4274    break;
4275  case Intrinsic::memcpy:
4276  case Intrinsic::memmove:
4277  case Intrinsic::memset: {
4278    const auto *MI = cast<MemIntrinsic>(&Call);
4279    auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4280      return Alignment == 0 || isPowerOf2_32(Alignment);
4281    };
4282    Assert(IsValidAlignment(MI->getDestAlignment()),
4283           "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4284           Call);
4285    if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4286      Assert(IsValidAlignment(MTI->getSourceAlignment()),
4287             "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4288             Call);
4289    }
4290
4291    break;
4292  }
4293  case Intrinsic::memcpy_element_unordered_atomic:
4294  case Intrinsic::memmove_element_unordered_atomic:
4295  case Intrinsic::memset_element_unordered_atomic: {
4296    const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4297
4298    ConstantInt *ElementSizeCI =
4299        cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4300    const APInt &ElementSizeVal = ElementSizeCI->getValue();
4301    Assert(ElementSizeVal.isPowerOf2(),
4302           "element size of the element-wise atomic memory intrinsic "
4303           "must be a power of 2",
4304           Call);
4305
4306    if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4307      uint64_t Length = LengthCI->getZExtValue();
4308      uint64_t ElementSize = AMI->getElementSizeInBytes();
4309      Assert((Length % ElementSize) == 0,
4310             "constant length must be a multiple of the element size in the "
4311             "element-wise atomic memory intrinsic",
4312             Call);
4313    }
4314
4315    auto IsValidAlignment = [&](uint64_t Alignment) {
4316      return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4317    };
4318    uint64_t DstAlignment = AMI->getDestAlignment();
4319    Assert(IsValidAlignment(DstAlignment),
4320           "incorrect alignment of the destination argument", Call);
4321    if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4322      uint64_t SrcAlignment = AMT->getSourceAlignment();
4323      Assert(IsValidAlignment(SrcAlignment),
4324             "incorrect alignment of the source argument", Call);
4325    }
4326    break;
4327  }
4328  case Intrinsic::gcroot:
4329  case Intrinsic::gcwrite:
4330  case Intrinsic::gcread:
4331    if (ID == Intrinsic::gcroot) {
4332      AllocaInst *AI =
4333          dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4334      Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4335      Assert(isa<Constant>(Call.getArgOperand(1)),
4336             "llvm.gcroot parameter #2 must be a constant.", Call);
4337      if (!AI->getAllocatedType()->isPointerTy()) {
4338        Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4339               "llvm.gcroot parameter #1 must either be a pointer alloca, "
4340               "or argument #2 must be a non-null constant.",
4341               Call);
4342      }
4343    }
4344
4345    Assert(Call.getParent()->getParent()->hasGC(),
4346           "Enclosing function does not use GC.", Call);
4347    break;
4348  case Intrinsic::init_trampoline:
4349    Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4350           "llvm.init_trampoline parameter #2 must resolve to a function.",
4351           Call);
4352    break;
4353  case Intrinsic::prefetch:
4354    Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4355           cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4356           "invalid arguments to llvm.prefetch", Call);
4357    break;
4358  case Intrinsic::stackprotector:
4359    Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4360           "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4361    break;
4362  case Intrinsic::localescape: {
4363    BasicBlock *BB = Call.getParent();
4364    Assert(BB == &BB->getParent()->front(),
4365           "llvm.localescape used outside of entry block", Call);
4366    Assert(!SawFrameEscape,
4367           "multiple calls to llvm.localescape in one function", Call);
4368    for (Value *Arg : Call.args()) {
4369      if (isa<ConstantPointerNull>(Arg))
4370        continue; // Null values are allowed as placeholders.
4371      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4372      Assert(AI && AI->isStaticAlloca(),
4373             "llvm.localescape only accepts static allocas", Call);
4374    }
4375    FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4376    SawFrameEscape = true;
4377    break;
4378  }
4379  case Intrinsic::localrecover: {
4380    Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4381    Function *Fn = dyn_cast<Function>(FnArg);
4382    Assert(Fn && !Fn->isDeclaration(),
4383           "llvm.localrecover first "
4384           "argument must be function defined in this module",
4385           Call);
4386    auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4387    auto &Entry = FrameEscapeInfo[Fn];
4388    Entry.second = unsigned(
4389        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4390    break;
4391  }
4392
4393  case Intrinsic::experimental_gc_statepoint:
4394    if (auto *CI = dyn_cast<CallInst>(&Call))
4395      Assert(!CI->isInlineAsm(),
4396             "gc.statepoint support for inline assembly unimplemented", CI);
4397    Assert(Call.getParent()->getParent()->hasGC(),
4398           "Enclosing function does not use GC.", Call);
4399
4400    verifyStatepoint(Call);
4401    break;
4402  case Intrinsic::experimental_gc_result: {
4403    Assert(Call.getParent()->getParent()->hasGC(),
4404           "Enclosing function does not use GC.", Call);
4405    // Are we tied to a statepoint properly?
4406    const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4407    const Function *StatepointFn =
4408        StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4409    Assert(StatepointFn && StatepointFn->isDeclaration() &&
4410               StatepointFn->getIntrinsicID() ==
4411                   Intrinsic::experimental_gc_statepoint,
4412           "gc.result operand #1 must be from a statepoint", Call,
4413           Call.getArgOperand(0));
4414
4415    // Assert that result type matches wrapped callee.
4416    const Value *Target = StatepointCall->getArgOperand(2);
4417    auto *PT = cast<PointerType>(Target->getType());
4418    auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4419    Assert(Call.getType() == TargetFuncType->getReturnType(),
4420           "gc.result result type does not match wrapped callee", Call);
4421    break;
4422  }
4423  case Intrinsic::experimental_gc_relocate: {
4424    Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4425
4426    Assert(isa<PointerType>(Call.getType()->getScalarType()),
4427           "gc.relocate must return a pointer or a vector of pointers", Call);
4428
4429    // Check that this relocate is correctly tied to the statepoint
4430
4431    // This is case for relocate on the unwinding path of an invoke statepoint
4432    if (LandingPadInst *LandingPad =
4433            dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4434
4435      const BasicBlock *InvokeBB =
4436          LandingPad->getParent()->getUniquePredecessor();
4437
4438      // Landingpad relocates should have only one predecessor with invoke
4439      // statepoint terminator
4440      Assert(InvokeBB, "safepoints should have unique landingpads",
4441             LandingPad->getParent());
4442      Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4443             InvokeBB);
4444      Assert(isStatepoint(InvokeBB->getTerminator()),
4445             "gc relocate should be linked to a statepoint", InvokeBB);
4446    } else {
4447      // In all other cases relocate should be tied to the statepoint directly.
4448      // This covers relocates on a normal return path of invoke statepoint and
4449      // relocates of a call statepoint.
4450      auto Token = Call.getArgOperand(0);
4451      Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4452             "gc relocate is incorrectly tied to the statepoint", Call, Token);
4453    }
4454
4455    // Verify rest of the relocate arguments.
4456    const CallBase &StatepointCall =
4457        *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4458
4459    // Both the base and derived must be piped through the safepoint.
4460    Value *Base = Call.getArgOperand(1);
4461    Assert(isa<ConstantInt>(Base),
4462           "gc.relocate operand #2 must be integer offset", Call);
4463
4464    Value *Derived = Call.getArgOperand(2);
4465    Assert(isa<ConstantInt>(Derived),
4466           "gc.relocate operand #3 must be integer offset", Call);
4467
4468    const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4469    const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4470    // Check the bounds
4471    Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4472           "gc.relocate: statepoint base index out of bounds", Call);
4473    Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4474           "gc.relocate: statepoint derived index out of bounds", Call);
4475
4476    // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4477    // section of the statepoint's argument.
4478    Assert(StatepointCall.arg_size() > 0,
4479           "gc.statepoint: insufficient arguments");
4480    Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4481           "gc.statement: number of call arguments must be constant integer");
4482    const unsigned NumCallArgs =
4483        cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4484    Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4485           "gc.statepoint: mismatch in number of call arguments");
4486    Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4487           "gc.statepoint: number of transition arguments must be "
4488           "a constant integer");
4489    const int NumTransitionArgs =
4490        cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4491            ->getZExtValue();
4492    const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4493    Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4494           "gc.statepoint: number of deoptimization arguments must be "
4495           "a constant integer");
4496    const int NumDeoptArgs =
4497        cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4498            ->getZExtValue();
4499    const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4500    const int GCParamArgsEnd = StatepointCall.arg_size();
4501    Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4502           "gc.relocate: statepoint base index doesn't fall within the "
4503           "'gc parameters' section of the statepoint call",
4504           Call);
4505    Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4506           "gc.relocate: statepoint derived index doesn't fall within the "
4507           "'gc parameters' section of the statepoint call",
4508           Call);
4509
4510    // Relocated value must be either a pointer type or vector-of-pointer type,
4511    // but gc_relocate does not need to return the same pointer type as the
4512    // relocated pointer. It can be casted to the correct type later if it's
4513    // desired. However, they must have the same address space and 'vectorness'
4514    GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4515    Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4516           "gc.relocate: relocated value must be a gc pointer", Call);
4517
4518    auto ResultType = Call.getType();
4519    auto DerivedType = Relocate.getDerivedPtr()->getType();
4520    Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4521           "gc.relocate: vector relocates to vector and pointer to pointer",
4522           Call);
4523    Assert(
4524        ResultType->getPointerAddressSpace() ==
4525            DerivedType->getPointerAddressSpace(),
4526        "gc.relocate: relocating a pointer shouldn't change its address space",
4527        Call);
4528    break;
4529  }
4530  case Intrinsic::eh_exceptioncode:
4531  case Intrinsic::eh_exceptionpointer: {
4532    Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4533           "eh.exceptionpointer argument must be a catchpad", Call);
4534    break;
4535  }
4536  case Intrinsic::masked_load: {
4537    Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4538           Call);
4539
4540    Value *Ptr = Call.getArgOperand(0);
4541    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4542    Value *Mask = Call.getArgOperand(2);
4543    Value *PassThru = Call.getArgOperand(3);
4544    Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4545           Call);
4546    Assert(Alignment->getValue().isPowerOf2(),
4547           "masked_load: alignment must be a power of 2", Call);
4548
4549    // DataTy is the overloaded type
4550    Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4551    Assert(DataTy == Call.getType(),
4552           "masked_load: return must match pointer type", Call);
4553    Assert(PassThru->getType() == DataTy,
4554           "masked_load: pass through and data type must match", Call);
4555    Assert(Mask->getType()->getVectorNumElements() ==
4556               DataTy->getVectorNumElements(),
4557           "masked_load: vector mask must be same length as data", Call);
4558    break;
4559  }
4560  case Intrinsic::masked_store: {
4561    Value *Val = Call.getArgOperand(0);
4562    Value *Ptr = Call.getArgOperand(1);
4563    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4564    Value *Mask = Call.getArgOperand(3);
4565    Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4566           Call);
4567    Assert(Alignment->getValue().isPowerOf2(),
4568           "masked_store: alignment must be a power of 2", Call);
4569
4570    // DataTy is the overloaded type
4571    Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4572    Assert(DataTy == Val->getType(),
4573           "masked_store: storee must match pointer type", Call);
4574    Assert(Mask->getType()->getVectorNumElements() ==
4575               DataTy->getVectorNumElements(),
4576           "masked_store: vector mask must be same length as data", Call);
4577    break;
4578  }
4579
4580  case Intrinsic::experimental_guard: {
4581    Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4582    Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4583           "experimental_guard must have exactly one "
4584           "\"deopt\" operand bundle");
4585    break;
4586  }
4587
4588  case Intrinsic::experimental_deoptimize: {
4589    Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4590           Call);
4591    Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4592           "experimental_deoptimize must have exactly one "
4593           "\"deopt\" operand bundle");
4594    Assert(Call.getType() == Call.getFunction()->getReturnType(),
4595           "experimental_deoptimize return type must match caller return type");
4596
4597    if (isa<CallInst>(Call)) {
4598      auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4599      Assert(RI,
4600             "calls to experimental_deoptimize must be followed by a return");
4601
4602      if (!Call.getType()->isVoidTy() && RI)
4603        Assert(RI->getReturnValue() == &Call,
4604               "calls to experimental_deoptimize must be followed by a return "
4605               "of the value computed by experimental_deoptimize");
4606    }
4607
4608    break;
4609  }
4610  case Intrinsic::sadd_sat:
4611  case Intrinsic::uadd_sat:
4612  case Intrinsic::ssub_sat:
4613  case Intrinsic::usub_sat: {
4614    Value *Op1 = Call.getArgOperand(0);
4615    Value *Op2 = Call.getArgOperand(1);
4616    Assert(Op1->getType()->isIntOrIntVectorTy(),
4617           "first operand of [us][add|sub]_sat must be an int type or vector "
4618           "of ints");
4619    Assert(Op2->getType()->isIntOrIntVectorTy(),
4620           "second operand of [us][add|sub]_sat must be an int type or vector "
4621           "of ints");
4622    break;
4623  }
4624  case Intrinsic::smul_fix:
4625  case Intrinsic::smul_fix_sat:
4626  case Intrinsic::umul_fix: {
4627    Value *Op1 = Call.getArgOperand(0);
4628    Value *Op2 = Call.getArgOperand(1);
4629    Assert(Op1->getType()->isIntOrIntVectorTy(),
4630           "first operand of [us]mul_fix[_sat] must be an int type or vector "
4631           "of ints");
4632    Assert(Op2->getType()->isIntOrIntVectorTy(),
4633           "second operand of [us]mul_fix_[sat] must be an int type or vector "
4634           "of ints");
4635
4636    auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4637    Assert(Op3->getType()->getBitWidth() <= 32,
4638           "third argument of [us]mul_fix[_sat] must fit within 32 bits");
4639
4640    if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) {
4641      Assert(
4642          Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4643          "the scale of smul_fix[_sat] must be less than the width of the operands");
4644    } else {
4645      Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4646             "the scale of umul_fix[_sat] must be less than or equal to the width of "
4647             "the operands");
4648    }
4649    break;
4650  }
4651  case Intrinsic::lround:
4652  case Intrinsic::llround:
4653  case Intrinsic::lrint:
4654  case Intrinsic::llrint: {
4655    Type *ValTy = Call.getArgOperand(0)->getType();
4656    Type *ResultTy = Call.getType();
4657    Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4658           "Intrinsic does not support vectors", &Call);
4659    break;
4660  }
4661  };
4662}
4663
4664/// Carefully grab the subprogram from a local scope.
4665///
4666/// This carefully grabs the subprogram from a local scope, avoiding the
4667/// built-in assertions that would typically fire.
4668static DISubprogram *getSubprogram(Metadata *LocalScope) {
4669  if (!LocalScope)
4670    return nullptr;
4671
4672  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4673    return SP;
4674
4675  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4676    return getSubprogram(LB->getRawScope());
4677
4678  // Just return null; broken scope chains are checked elsewhere.
4679  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4680  return nullptr;
4681}
4682
4683void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4684  unsigned NumOperands = FPI.getNumArgOperands();
4685  bool HasExceptionMD = false;
4686  bool HasRoundingMD = false;
4687  switch (FPI.getIntrinsicID()) {
4688  case Intrinsic::experimental_constrained_sqrt:
4689  case Intrinsic::experimental_constrained_sin:
4690  case Intrinsic::experimental_constrained_cos:
4691  case Intrinsic::experimental_constrained_exp:
4692  case Intrinsic::experimental_constrained_exp2:
4693  case Intrinsic::experimental_constrained_log:
4694  case Intrinsic::experimental_constrained_log10:
4695  case Intrinsic::experimental_constrained_log2:
4696  case Intrinsic::experimental_constrained_rint:
4697  case Intrinsic::experimental_constrained_nearbyint:
4698  case Intrinsic::experimental_constrained_ceil:
4699  case Intrinsic::experimental_constrained_floor:
4700  case Intrinsic::experimental_constrained_round:
4701  case Intrinsic::experimental_constrained_trunc:
4702    Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4703           &FPI);
4704    HasExceptionMD = true;
4705    HasRoundingMD = true;
4706    break;
4707
4708  case Intrinsic::experimental_constrained_fma:
4709    Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic",
4710           &FPI);
4711    HasExceptionMD = true;
4712    HasRoundingMD = true;
4713    break;
4714
4715  case Intrinsic::experimental_constrained_fadd:
4716  case Intrinsic::experimental_constrained_fsub:
4717  case Intrinsic::experimental_constrained_fmul:
4718  case Intrinsic::experimental_constrained_fdiv:
4719  case Intrinsic::experimental_constrained_frem:
4720  case Intrinsic::experimental_constrained_pow:
4721  case Intrinsic::experimental_constrained_powi:
4722  case Intrinsic::experimental_constrained_maxnum:
4723  case Intrinsic::experimental_constrained_minnum:
4724    Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic",
4725           &FPI);
4726    HasExceptionMD = true;
4727    HasRoundingMD = true;
4728    break;
4729
4730  case Intrinsic::experimental_constrained_fptrunc:
4731  case Intrinsic::experimental_constrained_fpext: {
4732    if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4733      Assert((NumOperands == 3),
4734             "invalid arguments for constrained FP intrinsic", &FPI);
4735      HasRoundingMD = true;
4736    } else {
4737      Assert((NumOperands == 2),
4738             "invalid arguments for constrained FP intrinsic", &FPI);
4739    }
4740    HasExceptionMD = true;
4741
4742    Value *Operand = FPI.getArgOperand(0);
4743    Type *OperandTy = Operand->getType();
4744    Value *Result = &FPI;
4745    Type *ResultTy = Result->getType();
4746    Assert(OperandTy->isFPOrFPVectorTy(),
4747           "Intrinsic first argument must be FP or FP vector", &FPI);
4748    Assert(ResultTy->isFPOrFPVectorTy(),
4749           "Intrinsic result must be FP or FP vector", &FPI);
4750    Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
4751           "Intrinsic first argument and result disagree on vector use", &FPI);
4752    if (OperandTy->isVectorTy()) {
4753      auto *OperandVecTy = cast<VectorType>(OperandTy);
4754      auto *ResultVecTy = cast<VectorType>(ResultTy);
4755      Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
4756             "Intrinsic first argument and result vector lengths must be equal",
4757             &FPI);
4758    }
4759    if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4760      Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
4761             "Intrinsic first argument's type must be larger than result type",
4762             &FPI);
4763    } else {
4764      Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
4765             "Intrinsic first argument's type must be smaller than result type",
4766             &FPI);
4767    }
4768  }
4769    break;
4770
4771  default:
4772    llvm_unreachable("Invalid constrained FP intrinsic!");
4773  }
4774
4775  // If a non-metadata argument is passed in a metadata slot then the
4776  // error will be caught earlier when the incorrect argument doesn't
4777  // match the specification in the intrinsic call table. Thus, no
4778  // argument type check is needed here.
4779
4780  if (HasExceptionMD) {
4781    Assert(FPI.getExceptionBehavior().hasValue(),
4782           "invalid exception behavior argument", &FPI);
4783  }
4784  if (HasRoundingMD) {
4785    Assert(FPI.getRoundingMode().hasValue(),
4786           "invalid rounding mode argument", &FPI);
4787  }
4788}
4789
4790void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4791  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4792  AssertDI(isa<ValueAsMetadata>(MD) ||
4793             (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4794         "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4795  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4796         "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4797         DII.getRawVariable());
4798  AssertDI(isa<DIExpression>(DII.getRawExpression()),
4799         "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4800         DII.getRawExpression());
4801
4802  // Ignore broken !dbg attachments; they're checked elsewhere.
4803  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4804    if (!isa<DILocation>(N))
4805      return;
4806
4807  BasicBlock *BB = DII.getParent();
4808  Function *F = BB ? BB->getParent() : nullptr;
4809
4810  // The scopes for variables and !dbg attachments must agree.
4811  DILocalVariable *Var = DII.getVariable();
4812  DILocation *Loc = DII.getDebugLoc();
4813  AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4814           &DII, BB, F);
4815
4816  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4817  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4818  if (!VarSP || !LocSP)
4819    return; // Broken scope chains are checked elsewhere.
4820
4821  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4822                               " variable and !dbg attachment",
4823           &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4824           Loc->getScope()->getSubprogram());
4825
4826  // This check is redundant with one in visitLocalVariable().
4827  AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4828           Var->getRawType());
4829  if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType()))
4830    if (Type->isBlockByrefStruct())
4831      AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(),
4832               "BlockByRef variable without complex expression", Var, &DII);
4833
4834  verifyFnArgs(DII);
4835}
4836
4837void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4838  AssertDI(isa<DILabel>(DLI.getRawLabel()),
4839         "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4840         DLI.getRawLabel());
4841
4842  // Ignore broken !dbg attachments; they're checked elsewhere.
4843  if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4844    if (!isa<DILocation>(N))
4845      return;
4846
4847  BasicBlock *BB = DLI.getParent();
4848  Function *F = BB ? BB->getParent() : nullptr;
4849
4850  // The scopes for variables and !dbg attachments must agree.
4851  DILabel *Label = DLI.getLabel();
4852  DILocation *Loc = DLI.getDebugLoc();
4853  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4854         &DLI, BB, F);
4855
4856  DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4857  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4858  if (!LabelSP || !LocSP)
4859    return;
4860
4861  AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4862                             " label and !dbg attachment",
4863           &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4864           Loc->getScope()->getSubprogram());
4865}
4866
4867void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4868  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4869  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4870
4871  // We don't know whether this intrinsic verified correctly.
4872  if (!V || !E || !E->isValid())
4873    return;
4874
4875  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4876  auto Fragment = E->getFragmentInfo();
4877  if (!Fragment)
4878    return;
4879
4880  // The frontend helps out GDB by emitting the members of local anonymous
4881  // unions as artificial local variables with shared storage. When SROA splits
4882  // the storage for artificial local variables that are smaller than the entire
4883  // union, the overhang piece will be outside of the allotted space for the
4884  // variable and this check fails.
4885  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4886  if (V->isArtificial())
4887    return;
4888
4889  verifyFragmentExpression(*V, *Fragment, &I);
4890}
4891
4892template <typename ValueOrMetadata>
4893void Verifier::verifyFragmentExpression(const DIVariable &V,
4894                                        DIExpression::FragmentInfo Fragment,
4895                                        ValueOrMetadata *Desc) {
4896  // If there's no size, the type is broken, but that should be checked
4897  // elsewhere.
4898  auto VarSize = V.getSizeInBits();
4899  if (!VarSize)
4900    return;
4901
4902  unsigned FragSize = Fragment.SizeInBits;
4903  unsigned FragOffset = Fragment.OffsetInBits;
4904  AssertDI(FragSize + FragOffset <= *VarSize,
4905         "fragment is larger than or outside of variable", Desc, &V);
4906  AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4907}
4908
4909void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
4910  // This function does not take the scope of noninlined function arguments into
4911  // account. Don't run it if current function is nodebug, because it may
4912  // contain inlined debug intrinsics.
4913  if (!HasDebugInfo)
4914    return;
4915
4916  // For performance reasons only check non-inlined ones.
4917  if (I.getDebugLoc()->getInlinedAt())
4918    return;
4919
4920  DILocalVariable *Var = I.getVariable();
4921  AssertDI(Var, "dbg intrinsic without variable");
4922
4923  unsigned ArgNo = Var->getArg();
4924  if (!ArgNo)
4925    return;
4926
4927  // Verify there are no duplicate function argument debug info entries.
4928  // These will cause hard-to-debug assertions in the DWARF backend.
4929  if (DebugFnArgs.size() < ArgNo)
4930    DebugFnArgs.resize(ArgNo, nullptr);
4931
4932  auto *Prev = DebugFnArgs[ArgNo - 1];
4933  DebugFnArgs[ArgNo - 1] = Var;
4934  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4935           Prev, Var);
4936}
4937
4938void Verifier::verifyCompileUnits() {
4939  // When more than one Module is imported into the same context, such as during
4940  // an LTO build before linking the modules, ODR type uniquing may cause types
4941  // to point to a different CU. This check does not make sense in this case.
4942  if (M.getContext().isODRUniquingDebugTypes())
4943    return;
4944  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4945  SmallPtrSet<const Metadata *, 2> Listed;
4946  if (CUs)
4947    Listed.insert(CUs->op_begin(), CUs->op_end());
4948  for (auto *CU : CUVisited)
4949    AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4950  CUVisited.clear();
4951}
4952
4953void Verifier::verifyDeoptimizeCallingConvs() {
4954  if (DeoptimizeDeclarations.empty())
4955    return;
4956
4957  const Function *First = DeoptimizeDeclarations[0];
4958  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4959    Assert(First->getCallingConv() == F->getCallingConv(),
4960           "All llvm.experimental.deoptimize declarations must have the same "
4961           "calling convention",
4962           First, F);
4963  }
4964}
4965
4966void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
4967  bool HasSource = F.getSource().hasValue();
4968  if (!HasSourceDebugInfo.count(&U))
4969    HasSourceDebugInfo[&U] = HasSource;
4970  AssertDI(HasSource == HasSourceDebugInfo[&U],
4971           "inconsistent use of embedded source");
4972}
4973
4974//===----------------------------------------------------------------------===//
4975//  Implement the public interfaces to this file...
4976//===----------------------------------------------------------------------===//
4977
4978bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4979  Function &F = const_cast<Function &>(f);
4980
4981  // Don't use a raw_null_ostream.  Printing IR is expensive.
4982  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4983
4984  // Note that this function's return value is inverted from what you would
4985  // expect of a function called "verify".
4986  return !V.verify(F);
4987}
4988
4989bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4990                        bool *BrokenDebugInfo) {
4991  // Don't use a raw_null_ostream.  Printing IR is expensive.
4992  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4993
4994  bool Broken = false;
4995  for (const Function &F : M)
4996    Broken |= !V.verify(F);
4997
4998  Broken |= !V.verify();
4999  if (BrokenDebugInfo)
5000    *BrokenDebugInfo = V.hasBrokenDebugInfo();
5001  // Note that this function's return value is inverted from what you would
5002  // expect of a function called "verify".
5003  return Broken;
5004}
5005
5006namespace {
5007
5008struct VerifierLegacyPass : public FunctionPass {
5009  static char ID;
5010
5011  std::unique_ptr<Verifier> V;
5012  bool FatalErrors = true;
5013
5014  VerifierLegacyPass() : FunctionPass(ID) {
5015    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5016  }
5017  explicit VerifierLegacyPass(bool FatalErrors)
5018      : FunctionPass(ID),
5019        FatalErrors(FatalErrors) {
5020    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5021  }
5022
5023  bool doInitialization(Module &M) override {
5024    V = llvm::make_unique<Verifier>(
5025        &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5026    return false;
5027  }
5028
5029  bool runOnFunction(Function &F) override {
5030    if (!V->verify(F) && FatalErrors) {
5031      errs() << "in function " << F.getName() << '\n';
5032      report_fatal_error("Broken function found, compilation aborted!");
5033    }
5034    return false;
5035  }
5036
5037  bool doFinalization(Module &M) override {
5038    bool HasErrors = false;
5039    for (Function &F : M)
5040      if (F.isDeclaration())
5041        HasErrors |= !V->verify(F);
5042
5043    HasErrors |= !V->verify();
5044    if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5045      report_fatal_error("Broken module found, compilation aborted!");
5046    return false;
5047  }
5048
5049  void getAnalysisUsage(AnalysisUsage &AU) const override {
5050    AU.setPreservesAll();
5051  }
5052};
5053
5054} // end anonymous namespace
5055
5056/// Helper to issue failure from the TBAA verification
5057template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5058  if (Diagnostic)
5059    return Diagnostic->CheckFailed(Args...);
5060}
5061
5062#define AssertTBAA(C, ...)                                                     \
5063  do {                                                                         \
5064    if (!(C)) {                                                                \
5065      CheckFailed(__VA_ARGS__);                                                \
5066      return false;                                                            \
5067    }                                                                          \
5068  } while (false)
5069
5070/// Verify that \p BaseNode can be used as the "base type" in the struct-path
5071/// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5072/// struct-type node describing an aggregate data structure (like a struct).
5073TBAAVerifier::TBAABaseNodeSummary
5074TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5075                                 bool IsNewFormat) {
5076  if (BaseNode->getNumOperands() < 2) {
5077    CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5078    return {true, ~0u};
5079  }
5080
5081  auto Itr = TBAABaseNodes.find(BaseNode);
5082  if (Itr != TBAABaseNodes.end())
5083    return Itr->second;
5084
5085  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5086  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5087  (void)InsertResult;
5088  assert(InsertResult.second && "We just checked!");
5089  return Result;
5090}
5091
5092TBAAVerifier::TBAABaseNodeSummary
5093TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5094                                     bool IsNewFormat) {
5095  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5096
5097  if (BaseNode->getNumOperands() == 2) {
5098    // Scalar nodes can only be accessed at offset 0.
5099    return isValidScalarTBAANode(BaseNode)
5100               ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5101               : InvalidNode;
5102  }
5103
5104  if (IsNewFormat) {
5105    if (BaseNode->getNumOperands() % 3 != 0) {
5106      CheckFailed("Access tag nodes must have the number of operands that is a "
5107                  "multiple of 3!", BaseNode);
5108      return InvalidNode;
5109    }
5110  } else {
5111    if (BaseNode->getNumOperands() % 2 != 1) {
5112      CheckFailed("Struct tag nodes must have an odd number of operands!",
5113                  BaseNode);
5114      return InvalidNode;
5115    }
5116  }
5117
5118  // Check the type size field.
5119  if (IsNewFormat) {
5120    auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5121        BaseNode->getOperand(1));
5122    if (!TypeSizeNode) {
5123      CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5124      return InvalidNode;
5125    }
5126  }
5127
5128  // Check the type name field. In the new format it can be anything.
5129  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5130    CheckFailed("Struct tag nodes have a string as their first operand",
5131                BaseNode);
5132    return InvalidNode;
5133  }
5134
5135  bool Failed = false;
5136
5137  Optional<APInt> PrevOffset;
5138  unsigned BitWidth = ~0u;
5139
5140  // We've already checked that BaseNode is not a degenerate root node with one
5141  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5142  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5143  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5144  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5145           Idx += NumOpsPerField) {
5146    const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5147    const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5148    if (!isa<MDNode>(FieldTy)) {
5149      CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5150      Failed = true;
5151      continue;
5152    }
5153
5154    auto *OffsetEntryCI =
5155        mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5156    if (!OffsetEntryCI) {
5157      CheckFailed("Offset entries must be constants!", &I, BaseNode);
5158      Failed = true;
5159      continue;
5160    }
5161
5162    if (BitWidth == ~0u)
5163      BitWidth = OffsetEntryCI->getBitWidth();
5164
5165    if (OffsetEntryCI->getBitWidth() != BitWidth) {
5166      CheckFailed(
5167          "Bitwidth between the offsets and struct type entries must match", &I,
5168          BaseNode);
5169      Failed = true;
5170      continue;
5171    }
5172
5173    // NB! As far as I can tell, we generate a non-strictly increasing offset
5174    // sequence only from structs that have zero size bit fields.  When
5175    // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5176    // pick the field lexically the latest in struct type metadata node.  This
5177    // mirrors the actual behavior of the alias analysis implementation.
5178    bool IsAscending =
5179        !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5180
5181    if (!IsAscending) {
5182      CheckFailed("Offsets must be increasing!", &I, BaseNode);
5183      Failed = true;
5184    }
5185
5186    PrevOffset = OffsetEntryCI->getValue();
5187
5188    if (IsNewFormat) {
5189      auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5190          BaseNode->getOperand(Idx + 2));
5191      if (!MemberSizeNode) {
5192        CheckFailed("Member size entries must be constants!", &I, BaseNode);
5193        Failed = true;
5194        continue;
5195      }
5196    }
5197  }
5198
5199  return Failed ? InvalidNode
5200                : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5201}
5202
5203static bool IsRootTBAANode(const MDNode *MD) {
5204  return MD->getNumOperands() < 2;
5205}
5206
5207static bool IsScalarTBAANodeImpl(const MDNode *MD,
5208                                 SmallPtrSetImpl<const MDNode *> &Visited) {
5209  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5210    return false;
5211
5212  if (!isa<MDString>(MD->getOperand(0)))
5213    return false;
5214
5215  if (MD->getNumOperands() == 3) {
5216    auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5217    if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5218      return false;
5219  }
5220
5221  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5222  return Parent && Visited.insert(Parent).second &&
5223         (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5224}
5225
5226bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5227  auto ResultIt = TBAAScalarNodes.find(MD);
5228  if (ResultIt != TBAAScalarNodes.end())
5229    return ResultIt->second;
5230
5231  SmallPtrSet<const MDNode *, 4> Visited;
5232  bool Result = IsScalarTBAANodeImpl(MD, Visited);
5233  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5234  (void)InsertResult;
5235  assert(InsertResult.second && "Just checked!");
5236
5237  return Result;
5238}
5239
5240/// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5241/// Offset in place to be the offset within the field node returned.
5242///
5243/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5244MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5245                                                   const MDNode *BaseNode,
5246                                                   APInt &Offset,
5247                                                   bool IsNewFormat) {
5248  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5249
5250  // Scalar nodes have only one possible "field" -- their parent in the access
5251  // hierarchy.  Offset must be zero at this point, but our caller is supposed
5252  // to Assert that.
5253  if (BaseNode->getNumOperands() == 2)
5254    return cast<MDNode>(BaseNode->getOperand(1));
5255
5256  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5257  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5258  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5259           Idx += NumOpsPerField) {
5260    auto *OffsetEntryCI =
5261        mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5262    if (OffsetEntryCI->getValue().ugt(Offset)) {
5263      if (Idx == FirstFieldOpNo) {
5264        CheckFailed("Could not find TBAA parent in struct type node", &I,
5265                    BaseNode, &Offset);
5266        return nullptr;
5267      }
5268
5269      unsigned PrevIdx = Idx - NumOpsPerField;
5270      auto *PrevOffsetEntryCI =
5271          mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5272      Offset -= PrevOffsetEntryCI->getValue();
5273      return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5274    }
5275  }
5276
5277  unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5278  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5279      BaseNode->getOperand(LastIdx + 1));
5280  Offset -= LastOffsetEntryCI->getValue();
5281  return cast<MDNode>(BaseNode->getOperand(LastIdx));
5282}
5283
5284static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5285  if (!Type || Type->getNumOperands() < 3)
5286    return false;
5287
5288  // In the new format type nodes shall have a reference to the parent type as
5289  // its first operand.
5290  MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5291  if (!Parent)
5292    return false;
5293
5294  return true;
5295}
5296
5297bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5298  AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5299                 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5300                 isa<AtomicCmpXchgInst>(I),
5301             "This instruction shall not have a TBAA access tag!", &I);
5302
5303  bool IsStructPathTBAA =
5304      isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5305
5306  AssertTBAA(
5307      IsStructPathTBAA,
5308      "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5309
5310  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5311  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5312
5313  bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5314
5315  if (IsNewFormat) {
5316    AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5317               "Access tag metadata must have either 4 or 5 operands", &I, MD);
5318  } else {
5319    AssertTBAA(MD->getNumOperands() < 5,
5320               "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5321  }
5322
5323  // Check the access size field.
5324  if (IsNewFormat) {
5325    auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5326        MD->getOperand(3));
5327    AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5328  }
5329
5330  // Check the immutability flag.
5331  unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5332  if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5333    auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5334        MD->getOperand(ImmutabilityFlagOpNo));
5335    AssertTBAA(IsImmutableCI,
5336               "Immutability tag on struct tag metadata must be a constant",
5337               &I, MD);
5338    AssertTBAA(
5339        IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5340        "Immutability part of the struct tag metadata must be either 0 or 1",
5341        &I, MD);
5342  }
5343
5344  AssertTBAA(BaseNode && AccessType,
5345             "Malformed struct tag metadata: base and access-type "
5346             "should be non-null and point to Metadata nodes",
5347             &I, MD, BaseNode, AccessType);
5348
5349  if (!IsNewFormat) {
5350    AssertTBAA(isValidScalarTBAANode(AccessType),
5351               "Access type node must be a valid scalar type", &I, MD,
5352               AccessType);
5353  }
5354
5355  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5356  AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5357
5358  APInt Offset = OffsetCI->getValue();
5359  bool SeenAccessTypeInPath = false;
5360
5361  SmallPtrSet<MDNode *, 4> StructPath;
5362
5363  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5364       BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5365                                               IsNewFormat)) {
5366    if (!StructPath.insert(BaseNode).second) {
5367      CheckFailed("Cycle detected in struct path", &I, MD);
5368      return false;
5369    }
5370
5371    bool Invalid;
5372    unsigned BaseNodeBitWidth;
5373    std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5374                                                             IsNewFormat);
5375
5376    // If the base node is invalid in itself, then we've already printed all the
5377    // errors we wanted to print.
5378    if (Invalid)
5379      return false;
5380
5381    SeenAccessTypeInPath |= BaseNode == AccessType;
5382
5383    if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5384      AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5385                 &I, MD, &Offset);
5386
5387    AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5388                   (BaseNodeBitWidth == 0 && Offset == 0) ||
5389                   (IsNewFormat && BaseNodeBitWidth == ~0u),
5390               "Access bit-width not the same as description bit-width", &I, MD,
5391               BaseNodeBitWidth, Offset.getBitWidth());
5392
5393    if (IsNewFormat && SeenAccessTypeInPath)
5394      break;
5395  }
5396
5397  AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5398             &I, MD);
5399  return true;
5400}
5401
5402char VerifierLegacyPass::ID = 0;
5403INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5404
5405FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5406  return new VerifierLegacyPass(FatalErrors);
5407}
5408
5409AnalysisKey VerifierAnalysis::Key;
5410VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5411                                               ModuleAnalysisManager &) {
5412  Result Res;
5413  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5414  return Res;
5415}
5416
5417VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5418                                               FunctionAnalysisManager &) {
5419  return { llvm::verifyFunction(F, &dbgs()), false };
5420}
5421
5422PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5423  auto Res = AM.getResult<VerifierAnalysis>(M);
5424  if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5425    report_fatal_error("Broken module found, compilation aborted!");
5426
5427  return PreservedAnalyses::all();
5428}
5429
5430PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5431  auto res = AM.getResult<VerifierAnalysis>(F);
5432  if (res.IRBroken && FatalErrors)
5433    report_fatal_error("Broken function found, compilation aborted!");
5434
5435  return PreservedAnalyses::all();
5436}
5437