1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the function verifier interface, that can be used for some
10// sanity checking of input to the system.
11//
12// Note that this does not provide full `Java style' security and verifications,
13// instead it just tries to ensure that code is well-formed.
14//
15//  * Both of a binary operator's parameters are of the same type
16//  * Verify that the indices of mem access instructions match other operands
17//  * Verify that arithmetic and other things are only performed on first-class
18//    types.  Verify that shifts & logicals only happen on integrals f.e.
19//  * All of the constants in a switch statement are of the correct type
20//  * The code is in valid SSA form
21//  * It should be illegal to put a label into any other type (like a structure)
22//    or to return one. [except constant arrays!]
23//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24//  * PHI nodes must have an entry for each predecessor, with no extras.
25//  * PHI nodes must be the first thing in a basic block, all grouped together
26//  * PHI nodes must have at least one entry
27//  * All basic blocks should only end with terminator insts, not contain them
28//  * The entry node to a function must not have predecessors
29//  * All Instructions must be embedded into a basic block
30//  * Functions cannot take a void-typed parameter
31//  * Verify that a function's argument list agrees with it's declared type.
32//  * It is illegal to specify a name for a void value.
33//  * It is illegal to have a internal global value with no initializer
34//  * It is illegal to have a ret instruction that returns a value that does not
35//    agree with the function return value type.
36//  * Function call argument types match the function prototype
37//  * A landing pad is defined by a landingpad instruction, and can be jumped to
38//    only by the unwind edge of an invoke instruction.
39//  * A landingpad instruction must be the first non-PHI instruction in the
40//    block.
41//  * Landingpad instructions must be in a function with a personality function.
42//  * All other things that are tested by asserts spread about the code...
43//
44//===----------------------------------------------------------------------===//
45
46#include "llvm/IR/Verifier.h"
47#include "llvm/ADT/APFloat.h"
48#include "llvm/ADT/APInt.h"
49#include "llvm/ADT/ArrayRef.h"
50#include "llvm/ADT/DenseMap.h"
51#include "llvm/ADT/MapVector.h"
52#include "llvm/ADT/Optional.h"
53#include "llvm/ADT/STLExtras.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/StringExtras.h"
58#include "llvm/ADT/StringMap.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/Twine.h"
61#include "llvm/ADT/ilist.h"
62#include "llvm/BinaryFormat/Dwarf.h"
63#include "llvm/IR/Argument.h"
64#include "llvm/IR/Attributes.h"
65#include "llvm/IR/BasicBlock.h"
66#include "llvm/IR/CFG.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/Dominators.h"
78#include "llvm/IR/Function.h"
79#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalValue.h"
81#include "llvm/IR/GlobalVariable.h"
82#include "llvm/IR/InlineAsm.h"
83#include "llvm/IR/InstVisitor.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/IntrinsicInst.h"
88#include "llvm/IR/Intrinsics.h"
89#include "llvm/IR/IntrinsicsWebAssembly.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/InitializePasses.h"
101#include "llvm/Pass.h"
102#include "llvm/Support/AtomicOrdering.h"
103#include "llvm/Support/Casting.h"
104#include "llvm/Support/CommandLine.h"
105#include "llvm/Support/Debug.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118namespace llvm {
119
120struct VerifierSupport {
121  raw_ostream *OS;
122  const Module &M;
123  ModuleSlotTracker MST;
124  Triple TT;
125  const DataLayout &DL;
126  LLVMContext &Context;
127
128  /// Track the brokenness of the module while recursively visiting.
129  bool Broken = false;
130  /// Broken debug info can be "recovered" from by stripping the debug info.
131  bool BrokenDebugInfo = false;
132  /// Whether to treat broken debug info as an error.
133  bool TreatBrokenDebugInfoAsError = true;
134
135  explicit VerifierSupport(raw_ostream *OS, const Module &M)
136      : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
137        Context(M.getContext()) {}
138
139private:
140  void Write(const Module *M) {
141    *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142  }
143
144  void Write(const Value *V) {
145    if (V)
146      Write(*V);
147  }
148
149  void Write(const Value &V) {
150    if (isa<Instruction>(V)) {
151      V.print(*OS, MST);
152      *OS << '\n';
153    } else {
154      V.printAsOperand(*OS, true, MST);
155      *OS << '\n';
156    }
157  }
158
159  void Write(const Metadata *MD) {
160    if (!MD)
161      return;
162    MD->print(*OS, MST, &M);
163    *OS << '\n';
164  }
165
166  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
167    Write(MD.get());
168  }
169
170  void Write(const NamedMDNode *NMD) {
171    if (!NMD)
172      return;
173    NMD->print(*OS, MST);
174    *OS << '\n';
175  }
176
177  void Write(Type *T) {
178    if (!T)
179      return;
180    *OS << ' ' << *T;
181  }
182
183  void Write(const Comdat *C) {
184    if (!C)
185      return;
186    *OS << *C;
187  }
188
189  void Write(const APInt *AI) {
190    if (!AI)
191      return;
192    *OS << *AI << '\n';
193  }
194
195  void Write(const unsigned i) { *OS << i << '\n'; }
196
197  template <typename T> void Write(ArrayRef<T> Vs) {
198    for (const T &V : Vs)
199      Write(V);
200  }
201
202  template <typename T1, typename... Ts>
203  void WriteTs(const T1 &V1, const Ts &... Vs) {
204    Write(V1);
205    WriteTs(Vs...);
206  }
207
208  template <typename... Ts> void WriteTs() {}
209
210public:
211  /// A check failed, so printout out the condition and the message.
212  ///
213  /// This provides a nice place to put a breakpoint if you want to see why
214  /// something is not correct.
215  void CheckFailed(const Twine &Message) {
216    if (OS)
217      *OS << Message << '\n';
218    Broken = true;
219  }
220
221  /// A check failed (with values to print).
222  ///
223  /// This calls the Message-only version so that the above is easier to set a
224  /// breakpoint on.
225  template <typename T1, typename... Ts>
226  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
227    CheckFailed(Message);
228    if (OS)
229      WriteTs(V1, Vs...);
230  }
231
232  /// A debug info check failed.
233  void DebugInfoCheckFailed(const Twine &Message) {
234    if (OS)
235      *OS << Message << '\n';
236    Broken |= TreatBrokenDebugInfoAsError;
237    BrokenDebugInfo = true;
238  }
239
240  /// A debug info check failed (with values to print).
241  template <typename T1, typename... Ts>
242  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
243                            const Ts &... Vs) {
244    DebugInfoCheckFailed(Message);
245    if (OS)
246      WriteTs(V1, Vs...);
247  }
248};
249
250} // namespace llvm
251
252namespace {
253
254class Verifier : public InstVisitor<Verifier>, VerifierSupport {
255  friend class InstVisitor<Verifier>;
256
257  DominatorTree DT;
258
259  /// When verifying a basic block, keep track of all of the
260  /// instructions we have seen so far.
261  ///
262  /// This allows us to do efficient dominance checks for the case when an
263  /// instruction has an operand that is an instruction in the same block.
264  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
265
266  /// Keep track of the metadata nodes that have been checked already.
267  SmallPtrSet<const Metadata *, 32> MDNodes;
268
269  /// Keep track which DISubprogram is attached to which function.
270  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
271
272  /// Track all DICompileUnits visited.
273  SmallPtrSet<const Metadata *, 2> CUVisited;
274
275  /// The result type for a landingpad.
276  Type *LandingPadResultTy;
277
278  /// Whether we've seen a call to @llvm.localescape in this function
279  /// already.
280  bool SawFrameEscape;
281
282  /// Whether the current function has a DISubprogram attached to it.
283  bool HasDebugInfo = false;
284
285  /// Whether source was present on the first DIFile encountered in each CU.
286  DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
287
288  /// Stores the count of how many objects were passed to llvm.localescape for a
289  /// given function and the largest index passed to llvm.localrecover.
290  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
291
292  // Maps catchswitches and cleanuppads that unwind to siblings to the
293  // terminators that indicate the unwind, used to detect cycles therein.
294  MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
295
296  /// Cache of constants visited in search of ConstantExprs.
297  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
298
299  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
300  SmallVector<const Function *, 4> DeoptimizeDeclarations;
301
302  // Verify that this GlobalValue is only used in this module.
303  // This map is used to avoid visiting uses twice. We can arrive at a user
304  // twice, if they have multiple operands. In particular for very large
305  // constant expressions, we can arrive at a particular user many times.
306  SmallPtrSet<const Value *, 32> GlobalValueVisited;
307
308  // Keeps track of duplicate function argument debug info.
309  SmallVector<const DILocalVariable *, 16> DebugFnArgs;
310
311  TBAAVerifier TBAAVerifyHelper;
312
313  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
314
315public:
316  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
317                    const Module &M)
318      : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
319        SawFrameEscape(false), TBAAVerifyHelper(this) {
320    TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
321  }
322
323  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
324
325  bool verify(const Function &F) {
326    assert(F.getParent() == &M &&
327           "An instance of this class only works with a specific module!");
328
329    // First ensure the function is well-enough formed to compute dominance
330    // information, and directly compute a dominance tree. We don't rely on the
331    // pass manager to provide this as it isolates us from a potentially
332    // out-of-date dominator tree and makes it significantly more complex to run
333    // this code outside of a pass manager.
334    // FIXME: It's really gross that we have to cast away constness here.
335    if (!F.empty())
336      DT.recalculate(const_cast<Function &>(F));
337
338    for (const BasicBlock &BB : F) {
339      if (!BB.empty() && BB.back().isTerminator())
340        continue;
341
342      if (OS) {
343        *OS << "Basic Block in function '" << F.getName()
344            << "' does not have terminator!\n";
345        BB.printAsOperand(*OS, true, MST);
346        *OS << "\n";
347      }
348      return false;
349    }
350
351    Broken = false;
352    // FIXME: We strip const here because the inst visitor strips const.
353    visit(const_cast<Function &>(F));
354    verifySiblingFuncletUnwinds();
355    InstsInThisBlock.clear();
356    DebugFnArgs.clear();
357    LandingPadResultTy = nullptr;
358    SawFrameEscape = false;
359    SiblingFuncletInfo.clear();
360
361    return !Broken;
362  }
363
364  /// Verify the module that this instance of \c Verifier was initialized with.
365  bool verify() {
366    Broken = false;
367
368    // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
369    for (const Function &F : M)
370      if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
371        DeoptimizeDeclarations.push_back(&F);
372
373    // Now that we've visited every function, verify that we never asked to
374    // recover a frame index that wasn't escaped.
375    verifyFrameRecoverIndices();
376    for (const GlobalVariable &GV : M.globals())
377      visitGlobalVariable(GV);
378
379    for (const GlobalAlias &GA : M.aliases())
380      visitGlobalAlias(GA);
381
382    for (const NamedMDNode &NMD : M.named_metadata())
383      visitNamedMDNode(NMD);
384
385    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
386      visitComdat(SMEC.getValue());
387
388    visitModuleFlags(M);
389    visitModuleIdents(M);
390    visitModuleCommandLines(M);
391
392    verifyCompileUnits();
393
394    verifyDeoptimizeCallingConvs();
395    DISubprogramAttachments.clear();
396    return !Broken;
397  }
398
399private:
400  // Verification methods...
401  void visitGlobalValue(const GlobalValue &GV);
402  void visitGlobalVariable(const GlobalVariable &GV);
403  void visitGlobalAlias(const GlobalAlias &GA);
404  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
405  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
406                           const GlobalAlias &A, const Constant &C);
407  void visitNamedMDNode(const NamedMDNode &NMD);
408  void visitMDNode(const MDNode &MD);
409  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
410  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
411  void visitComdat(const Comdat &C);
412  void visitModuleIdents(const Module &M);
413  void visitModuleCommandLines(const Module &M);
414  void visitModuleFlags(const Module &M);
415  void visitModuleFlag(const MDNode *Op,
416                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
417                       SmallVectorImpl<const MDNode *> &Requirements);
418  void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
419  void visitFunction(const Function &F);
420  void visitBasicBlock(BasicBlock &BB);
421  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
422  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
423  void visitProfMetadata(Instruction &I, MDNode *MD);
424
425  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
426#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
427#include "llvm/IR/Metadata.def"
428  void visitDIScope(const DIScope &N);
429  void visitDIVariable(const DIVariable &N);
430  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
431  void visitDITemplateParameter(const DITemplateParameter &N);
432
433  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
434
435  // InstVisitor overrides...
436  using InstVisitor<Verifier>::visit;
437  void visit(Instruction &I);
438
439  void visitTruncInst(TruncInst &I);
440  void visitZExtInst(ZExtInst &I);
441  void visitSExtInst(SExtInst &I);
442  void visitFPTruncInst(FPTruncInst &I);
443  void visitFPExtInst(FPExtInst &I);
444  void visitFPToUIInst(FPToUIInst &I);
445  void visitFPToSIInst(FPToSIInst &I);
446  void visitUIToFPInst(UIToFPInst &I);
447  void visitSIToFPInst(SIToFPInst &I);
448  void visitIntToPtrInst(IntToPtrInst &I);
449  void visitPtrToIntInst(PtrToIntInst &I);
450  void visitBitCastInst(BitCastInst &I);
451  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
452  void visitPHINode(PHINode &PN);
453  void visitCallBase(CallBase &Call);
454  void visitUnaryOperator(UnaryOperator &U);
455  void visitBinaryOperator(BinaryOperator &B);
456  void visitICmpInst(ICmpInst &IC);
457  void visitFCmpInst(FCmpInst &FC);
458  void visitExtractElementInst(ExtractElementInst &EI);
459  void visitInsertElementInst(InsertElementInst &EI);
460  void visitShuffleVectorInst(ShuffleVectorInst &EI);
461  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
462  void visitCallInst(CallInst &CI);
463  void visitInvokeInst(InvokeInst &II);
464  void visitGetElementPtrInst(GetElementPtrInst &GEP);
465  void visitLoadInst(LoadInst &LI);
466  void visitStoreInst(StoreInst &SI);
467  void verifyDominatesUse(Instruction &I, unsigned i);
468  void visitInstruction(Instruction &I);
469  void visitTerminator(Instruction &I);
470  void visitBranchInst(BranchInst &BI);
471  void visitReturnInst(ReturnInst &RI);
472  void visitSwitchInst(SwitchInst &SI);
473  void visitIndirectBrInst(IndirectBrInst &BI);
474  void visitCallBrInst(CallBrInst &CBI);
475  void visitSelectInst(SelectInst &SI);
476  void visitUserOp1(Instruction &I);
477  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
478  void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
479  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
480  void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
481  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
482  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
483  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
484  void visitFenceInst(FenceInst &FI);
485  void visitAllocaInst(AllocaInst &AI);
486  void visitExtractValueInst(ExtractValueInst &EVI);
487  void visitInsertValueInst(InsertValueInst &IVI);
488  void visitEHPadPredecessors(Instruction &I);
489  void visitLandingPadInst(LandingPadInst &LPI);
490  void visitResumeInst(ResumeInst &RI);
491  void visitCatchPadInst(CatchPadInst &CPI);
492  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
493  void visitCleanupPadInst(CleanupPadInst &CPI);
494  void visitFuncletPadInst(FuncletPadInst &FPI);
495  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
496  void visitCleanupReturnInst(CleanupReturnInst &CRI);
497
498  void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
499  void verifySwiftErrorValue(const Value *SwiftErrorVal);
500  void verifyMustTailCall(CallInst &CI);
501  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
502                        unsigned ArgNo, std::string &Suffix);
503  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
504  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
505                            const Value *V);
506  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
507  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
508                           const Value *V, bool IsIntrinsic);
509  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
510
511  void visitConstantExprsRecursively(const Constant *EntryC);
512  void visitConstantExpr(const ConstantExpr *CE);
513  void verifyStatepoint(const CallBase &Call);
514  void verifyFrameRecoverIndices();
515  void verifySiblingFuncletUnwinds();
516
517  void verifyFragmentExpression(const DbgVariableIntrinsic &I);
518  template <typename ValueOrMetadata>
519  void verifyFragmentExpression(const DIVariable &V,
520                                DIExpression::FragmentInfo Fragment,
521                                ValueOrMetadata *Desc);
522  void verifyFnArgs(const DbgVariableIntrinsic &I);
523  void verifyNotEntryValue(const DbgVariableIntrinsic &I);
524
525  /// Module-level debug info verification...
526  void verifyCompileUnits();
527
528  /// Module-level verification that all @llvm.experimental.deoptimize
529  /// declarations share the same calling convention.
530  void verifyDeoptimizeCallingConvs();
531
532  /// Verify all-or-nothing property of DIFile source attribute within a CU.
533  void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
534};
535
536} // end anonymous namespace
537
538/// We know that cond should be true, if not print an error message.
539#define Assert(C, ...) \
540  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
541
542/// We know that a debug info condition should be true, if not print
543/// an error message.
544#define AssertDI(C, ...) \
545  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
546
547void Verifier::visit(Instruction &I) {
548  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
549    Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
550  InstVisitor<Verifier>::visit(I);
551}
552
553// Helper to recursively iterate over indirect users. By
554// returning false, the callback can ask to stop recursing
555// further.
556static void forEachUser(const Value *User,
557                        SmallPtrSet<const Value *, 32> &Visited,
558                        llvm::function_ref<bool(const Value *)> Callback) {
559  if (!Visited.insert(User).second)
560    return;
561  for (const Value *TheNextUser : User->materialized_users())
562    if (Callback(TheNextUser))
563      forEachUser(TheNextUser, Visited, Callback);
564}
565
566void Verifier::visitGlobalValue(const GlobalValue &GV) {
567  Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
568         "Global is external, but doesn't have external or weak linkage!", &GV);
569
570  Assert(GV.getAlignment() <= Value::MaximumAlignment,
571         "huge alignment values are unsupported", &GV);
572  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
573         "Only global variables can have appending linkage!", &GV);
574
575  if (GV.hasAppendingLinkage()) {
576    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
577    Assert(GVar && GVar->getValueType()->isArrayTy(),
578           "Only global arrays can have appending linkage!", GVar);
579  }
580
581  if (GV.isDeclarationForLinker())
582    Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
583
584  if (GV.hasDLLImportStorageClass()) {
585    Assert(!GV.isDSOLocal(),
586           "GlobalValue with DLLImport Storage is dso_local!", &GV);
587
588    Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
589               GV.hasAvailableExternallyLinkage(),
590           "Global is marked as dllimport, but not external", &GV);
591  }
592
593  if (GV.hasLocalLinkage())
594    Assert(GV.isDSOLocal(),
595           "GlobalValue with private or internal linkage must be dso_local!",
596           &GV);
597
598  if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
599    Assert(GV.isDSOLocal(),
600           "GlobalValue with non default visibility must be dso_local!", &GV);
601
602  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
603    if (const Instruction *I = dyn_cast<Instruction>(V)) {
604      if (!I->getParent() || !I->getParent()->getParent())
605        CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
606                    I);
607      else if (I->getParent()->getParent()->getParent() != &M)
608        CheckFailed("Global is referenced in a different module!", &GV, &M, I,
609                    I->getParent()->getParent(),
610                    I->getParent()->getParent()->getParent());
611      return false;
612    } else if (const Function *F = dyn_cast<Function>(V)) {
613      if (F->getParent() != &M)
614        CheckFailed("Global is used by function in a different module", &GV, &M,
615                    F, F->getParent());
616      return false;
617    }
618    return true;
619  });
620}
621
622void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
623  if (GV.hasInitializer()) {
624    Assert(GV.getInitializer()->getType() == GV.getValueType(),
625           "Global variable initializer type does not match global "
626           "variable type!",
627           &GV);
628    // If the global has common linkage, it must have a zero initializer and
629    // cannot be constant.
630    if (GV.hasCommonLinkage()) {
631      Assert(GV.getInitializer()->isNullValue(),
632             "'common' global must have a zero initializer!", &GV);
633      Assert(!GV.isConstant(), "'common' global may not be marked constant!",
634             &GV);
635      Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
636    }
637  }
638
639  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
640                       GV.getName() == "llvm.global_dtors")) {
641    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
642           "invalid linkage for intrinsic global variable", &GV);
643    // Don't worry about emitting an error for it not being an array,
644    // visitGlobalValue will complain on appending non-array.
645    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
646      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
647      PointerType *FuncPtrTy =
648          FunctionType::get(Type::getVoidTy(Context), false)->
649          getPointerTo(DL.getProgramAddressSpace());
650      Assert(STy &&
651                 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
652                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
653                 STy->getTypeAtIndex(1) == FuncPtrTy,
654             "wrong type for intrinsic global variable", &GV);
655      Assert(STy->getNumElements() == 3,
656             "the third field of the element type is mandatory, "
657             "specify i8* null to migrate from the obsoleted 2-field form");
658      Type *ETy = STy->getTypeAtIndex(2);
659      Assert(ETy->isPointerTy() &&
660                 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
661             "wrong type for intrinsic global variable", &GV);
662    }
663  }
664
665  if (GV.hasName() && (GV.getName() == "llvm.used" ||
666                       GV.getName() == "llvm.compiler.used")) {
667    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
668           "invalid linkage for intrinsic global variable", &GV);
669    Type *GVType = GV.getValueType();
670    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
671      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
672      Assert(PTy, "wrong type for intrinsic global variable", &GV);
673      if (GV.hasInitializer()) {
674        const Constant *Init = GV.getInitializer();
675        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
676        Assert(InitArray, "wrong initalizer for intrinsic global variable",
677               Init);
678        for (Value *Op : InitArray->operands()) {
679          Value *V = Op->stripPointerCasts();
680          Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
681                     isa<GlobalAlias>(V),
682                 "invalid llvm.used member", V);
683          Assert(V->hasName(), "members of llvm.used must be named", V);
684        }
685      }
686    }
687  }
688
689  // Visit any debug info attachments.
690  SmallVector<MDNode *, 1> MDs;
691  GV.getMetadata(LLVMContext::MD_dbg, MDs);
692  for (auto *MD : MDs) {
693    if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
694      visitDIGlobalVariableExpression(*GVE);
695    else
696      AssertDI(false, "!dbg attachment of global variable must be a "
697                      "DIGlobalVariableExpression");
698  }
699
700  // Scalable vectors cannot be global variables, since we don't know
701  // the runtime size. If the global is a struct or an array containing
702  // scalable vectors, that will be caught by the isValidElementType methods
703  // in StructType or ArrayType instead.
704  if (auto *VTy = dyn_cast<VectorType>(GV.getValueType()))
705    Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV);
706
707  if (!GV.hasInitializer()) {
708    visitGlobalValue(GV);
709    return;
710  }
711
712  // Walk any aggregate initializers looking for bitcasts between address spaces
713  visitConstantExprsRecursively(GV.getInitializer());
714
715  visitGlobalValue(GV);
716}
717
718void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
719  SmallPtrSet<const GlobalAlias*, 4> Visited;
720  Visited.insert(&GA);
721  visitAliaseeSubExpr(Visited, GA, C);
722}
723
724void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
725                                   const GlobalAlias &GA, const Constant &C) {
726  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
727    Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
728           &GA);
729
730    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
731      Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
732
733      Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
734             &GA);
735    } else {
736      // Only continue verifying subexpressions of GlobalAliases.
737      // Do not recurse into global initializers.
738      return;
739    }
740  }
741
742  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
743    visitConstantExprsRecursively(CE);
744
745  for (const Use &U : C.operands()) {
746    Value *V = &*U;
747    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
748      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
749    else if (const auto *C2 = dyn_cast<Constant>(V))
750      visitAliaseeSubExpr(Visited, GA, *C2);
751  }
752}
753
754void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
755  Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
756         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
757         "weak_odr, or external linkage!",
758         &GA);
759  const Constant *Aliasee = GA.getAliasee();
760  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
761  Assert(GA.getType() == Aliasee->getType(),
762         "Alias and aliasee types should match!", &GA);
763
764  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
765         "Aliasee should be either GlobalValue or ConstantExpr", &GA);
766
767  visitAliaseeSubExpr(GA, *Aliasee);
768
769  visitGlobalValue(GA);
770}
771
772void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
773  // There used to be various other llvm.dbg.* nodes, but we don't support
774  // upgrading them and we want to reserve the namespace for future uses.
775  if (NMD.getName().startswith("llvm.dbg."))
776    AssertDI(NMD.getName() == "llvm.dbg.cu",
777             "unrecognized named metadata node in the llvm.dbg namespace",
778             &NMD);
779  for (const MDNode *MD : NMD.operands()) {
780    if (NMD.getName() == "llvm.dbg.cu")
781      AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
782
783    if (!MD)
784      continue;
785
786    visitMDNode(*MD);
787  }
788}
789
790void Verifier::visitMDNode(const MDNode &MD) {
791  // Only visit each node once.  Metadata can be mutually recursive, so this
792  // avoids infinite recursion here, as well as being an optimization.
793  if (!MDNodes.insert(&MD).second)
794    return;
795
796  switch (MD.getMetadataID()) {
797  default:
798    llvm_unreachable("Invalid MDNode subclass");
799  case Metadata::MDTupleKind:
800    break;
801#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
802  case Metadata::CLASS##Kind:                                                  \
803    visit##CLASS(cast<CLASS>(MD));                                             \
804    break;
805#include "llvm/IR/Metadata.def"
806  }
807
808  for (const Metadata *Op : MD.operands()) {
809    if (!Op)
810      continue;
811    Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
812           &MD, Op);
813    if (auto *N = dyn_cast<MDNode>(Op)) {
814      visitMDNode(*N);
815      continue;
816    }
817    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
818      visitValueAsMetadata(*V, nullptr);
819      continue;
820    }
821  }
822
823  // Check these last, so we diagnose problems in operands first.
824  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
825  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
826}
827
828void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
829  Assert(MD.getValue(), "Expected valid value", &MD);
830  Assert(!MD.getValue()->getType()->isMetadataTy(),
831         "Unexpected metadata round-trip through values", &MD, MD.getValue());
832
833  auto *L = dyn_cast<LocalAsMetadata>(&MD);
834  if (!L)
835    return;
836
837  Assert(F, "function-local metadata used outside a function", L);
838
839  // If this was an instruction, bb, or argument, verify that it is in the
840  // function that we expect.
841  Function *ActualF = nullptr;
842  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
843    Assert(I->getParent(), "function-local metadata not in basic block", L, I);
844    ActualF = I->getParent()->getParent();
845  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
846    ActualF = BB->getParent();
847  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
848    ActualF = A->getParent();
849  assert(ActualF && "Unimplemented function local metadata case!");
850
851  Assert(ActualF == F, "function-local metadata used in wrong function", L);
852}
853
854void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
855  Metadata *MD = MDV.getMetadata();
856  if (auto *N = dyn_cast<MDNode>(MD)) {
857    visitMDNode(*N);
858    return;
859  }
860
861  // Only visit each node once.  Metadata can be mutually recursive, so this
862  // avoids infinite recursion here, as well as being an optimization.
863  if (!MDNodes.insert(MD).second)
864    return;
865
866  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
867    visitValueAsMetadata(*V, F);
868}
869
870static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
871static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
872static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
873
874void Verifier::visitDILocation(const DILocation &N) {
875  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
876           "location requires a valid scope", &N, N.getRawScope());
877  if (auto *IA = N.getRawInlinedAt())
878    AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
879  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
880    AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
881}
882
883void Verifier::visitGenericDINode(const GenericDINode &N) {
884  AssertDI(N.getTag(), "invalid tag", &N);
885}
886
887void Verifier::visitDIScope(const DIScope &N) {
888  if (auto *F = N.getRawFile())
889    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
890}
891
892void Verifier::visitDISubrange(const DISubrange &N) {
893  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
894  auto Count = N.getCount();
895  AssertDI(Count, "Count must either be a signed constant or a DIVariable",
896           &N);
897  AssertDI(!Count.is<ConstantInt*>() ||
898               Count.get<ConstantInt*>()->getSExtValue() >= -1,
899           "invalid subrange count", &N);
900}
901
902void Verifier::visitDIEnumerator(const DIEnumerator &N) {
903  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
904}
905
906void Verifier::visitDIBasicType(const DIBasicType &N) {
907  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
908               N.getTag() == dwarf::DW_TAG_unspecified_type,
909           "invalid tag", &N);
910  AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
911            "has conflicting flags", &N);
912}
913
914void Verifier::visitDIDerivedType(const DIDerivedType &N) {
915  // Common scope checks.
916  visitDIScope(N);
917
918  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
919               N.getTag() == dwarf::DW_TAG_pointer_type ||
920               N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
921               N.getTag() == dwarf::DW_TAG_reference_type ||
922               N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
923               N.getTag() == dwarf::DW_TAG_const_type ||
924               N.getTag() == dwarf::DW_TAG_volatile_type ||
925               N.getTag() == dwarf::DW_TAG_restrict_type ||
926               N.getTag() == dwarf::DW_TAG_atomic_type ||
927               N.getTag() == dwarf::DW_TAG_member ||
928               N.getTag() == dwarf::DW_TAG_inheritance ||
929               N.getTag() == dwarf::DW_TAG_friend,
930           "invalid tag", &N);
931  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
932    AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
933             N.getRawExtraData());
934  }
935
936  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
937  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
938           N.getRawBaseType());
939
940  if (N.getDWARFAddressSpace()) {
941    AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
942                 N.getTag() == dwarf::DW_TAG_reference_type ||
943                 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
944             "DWARF address space only applies to pointer or reference types",
945             &N);
946  }
947}
948
949/// Detect mutually exclusive flags.
950static bool hasConflictingReferenceFlags(unsigned Flags) {
951  return ((Flags & DINode::FlagLValueReference) &&
952          (Flags & DINode::FlagRValueReference)) ||
953         ((Flags & DINode::FlagTypePassByValue) &&
954          (Flags & DINode::FlagTypePassByReference));
955}
956
957void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
958  auto *Params = dyn_cast<MDTuple>(&RawParams);
959  AssertDI(Params, "invalid template params", &N, &RawParams);
960  for (Metadata *Op : Params->operands()) {
961    AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
962             &N, Params, Op);
963  }
964}
965
966void Verifier::visitDICompositeType(const DICompositeType &N) {
967  // Common scope checks.
968  visitDIScope(N);
969
970  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
971               N.getTag() == dwarf::DW_TAG_structure_type ||
972               N.getTag() == dwarf::DW_TAG_union_type ||
973               N.getTag() == dwarf::DW_TAG_enumeration_type ||
974               N.getTag() == dwarf::DW_TAG_class_type ||
975               N.getTag() == dwarf::DW_TAG_variant_part,
976           "invalid tag", &N);
977
978  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
979  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
980           N.getRawBaseType());
981
982  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
983           "invalid composite elements", &N, N.getRawElements());
984  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
985           N.getRawVTableHolder());
986  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
987           "invalid reference flags", &N);
988  unsigned DIBlockByRefStruct = 1 << 4;
989  AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
990           "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
991
992  if (N.isVector()) {
993    const DINodeArray Elements = N.getElements();
994    AssertDI(Elements.size() == 1 &&
995             Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
996             "invalid vector, expected one element of type subrange", &N);
997  }
998
999  if (auto *Params = N.getRawTemplateParams())
1000    visitTemplateParams(N, *Params);
1001
1002  if (N.getTag() == dwarf::DW_TAG_class_type ||
1003      N.getTag() == dwarf::DW_TAG_union_type) {
1004    AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
1005             "class/union requires a filename", &N, N.getFile());
1006  }
1007
1008  if (auto *D = N.getRawDiscriminator()) {
1009    AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1010             "discriminator can only appear on variant part");
1011  }
1012}
1013
1014void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1015  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1016  if (auto *Types = N.getRawTypeArray()) {
1017    AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1018    for (Metadata *Ty : N.getTypeArray()->operands()) {
1019      AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1020    }
1021  }
1022  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1023           "invalid reference flags", &N);
1024}
1025
1026void Verifier::visitDIFile(const DIFile &N) {
1027  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1028  Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1029  if (Checksum) {
1030    AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1031             "invalid checksum kind", &N);
1032    size_t Size;
1033    switch (Checksum->Kind) {
1034    case DIFile::CSK_MD5:
1035      Size = 32;
1036      break;
1037    case DIFile::CSK_SHA1:
1038      Size = 40;
1039      break;
1040    }
1041    AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1042    AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1043             "invalid checksum", &N);
1044  }
1045}
1046
1047void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1048  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1049  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1050
1051  // Don't bother verifying the compilation directory or producer string
1052  // as those could be empty.
1053  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1054           N.getRawFile());
1055  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1056           N.getFile());
1057
1058  verifySourceDebugInfo(N, *N.getFile());
1059
1060  AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1061           "invalid emission kind", &N);
1062
1063  if (auto *Array = N.getRawEnumTypes()) {
1064    AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1065    for (Metadata *Op : N.getEnumTypes()->operands()) {
1066      auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1067      AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1068               "invalid enum type", &N, N.getEnumTypes(), Op);
1069    }
1070  }
1071  if (auto *Array = N.getRawRetainedTypes()) {
1072    AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1073    for (Metadata *Op : N.getRetainedTypes()->operands()) {
1074      AssertDI(Op && (isa<DIType>(Op) ||
1075                      (isa<DISubprogram>(Op) &&
1076                       !cast<DISubprogram>(Op)->isDefinition())),
1077               "invalid retained type", &N, Op);
1078    }
1079  }
1080  if (auto *Array = N.getRawGlobalVariables()) {
1081    AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1082    for (Metadata *Op : N.getGlobalVariables()->operands()) {
1083      AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1084               "invalid global variable ref", &N, Op);
1085    }
1086  }
1087  if (auto *Array = N.getRawImportedEntities()) {
1088    AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1089    for (Metadata *Op : N.getImportedEntities()->operands()) {
1090      AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1091               &N, Op);
1092    }
1093  }
1094  if (auto *Array = N.getRawMacros()) {
1095    AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1096    for (Metadata *Op : N.getMacros()->operands()) {
1097      AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1098    }
1099  }
1100  CUVisited.insert(&N);
1101}
1102
1103void Verifier::visitDISubprogram(const DISubprogram &N) {
1104  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1105  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1106  if (auto *F = N.getRawFile())
1107    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1108  else
1109    AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1110  if (auto *T = N.getRawType())
1111    AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1112  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1113           N.getRawContainingType());
1114  if (auto *Params = N.getRawTemplateParams())
1115    visitTemplateParams(N, *Params);
1116  if (auto *S = N.getRawDeclaration())
1117    AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1118             "invalid subprogram declaration", &N, S);
1119  if (auto *RawNode = N.getRawRetainedNodes()) {
1120    auto *Node = dyn_cast<MDTuple>(RawNode);
1121    AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1122    for (Metadata *Op : Node->operands()) {
1123      AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1124               "invalid retained nodes, expected DILocalVariable or DILabel",
1125               &N, Node, Op);
1126    }
1127  }
1128  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1129           "invalid reference flags", &N);
1130
1131  auto *Unit = N.getRawUnit();
1132  if (N.isDefinition()) {
1133    // Subprogram definitions (not part of the type hierarchy).
1134    AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1135    AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1136    AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1137    if (N.getFile())
1138      verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1139  } else {
1140    // Subprogram declarations (part of the type hierarchy).
1141    AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1142  }
1143
1144  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1145    auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1146    AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1147    for (Metadata *Op : ThrownTypes->operands())
1148      AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1149               Op);
1150  }
1151
1152  if (N.areAllCallsDescribed())
1153    AssertDI(N.isDefinition(),
1154             "DIFlagAllCallsDescribed must be attached to a definition");
1155}
1156
1157void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1158  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1159  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1160           "invalid local scope", &N, N.getRawScope());
1161  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1162    AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1163}
1164
1165void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1166  visitDILexicalBlockBase(N);
1167
1168  AssertDI(N.getLine() || !N.getColumn(),
1169           "cannot have column info without line info", &N);
1170}
1171
1172void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1173  visitDILexicalBlockBase(N);
1174}
1175
1176void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1177  AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1178  if (auto *S = N.getRawScope())
1179    AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1180  if (auto *S = N.getRawDecl())
1181    AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1182}
1183
1184void Verifier::visitDINamespace(const DINamespace &N) {
1185  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1186  if (auto *S = N.getRawScope())
1187    AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1188}
1189
1190void Verifier::visitDIMacro(const DIMacro &N) {
1191  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1192               N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1193           "invalid macinfo type", &N);
1194  AssertDI(!N.getName().empty(), "anonymous macro", &N);
1195  if (!N.getValue().empty()) {
1196    assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1197  }
1198}
1199
1200void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1201  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1202           "invalid macinfo type", &N);
1203  if (auto *F = N.getRawFile())
1204    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1205
1206  if (auto *Array = N.getRawElements()) {
1207    AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1208    for (Metadata *Op : N.getElements()->operands()) {
1209      AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1210    }
1211  }
1212}
1213
1214void Verifier::visitDIModule(const DIModule &N) {
1215  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1216  AssertDI(!N.getName().empty(), "anonymous module", &N);
1217}
1218
1219void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1220  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1221}
1222
1223void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1224  visitDITemplateParameter(N);
1225
1226  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1227           &N);
1228}
1229
1230void Verifier::visitDITemplateValueParameter(
1231    const DITemplateValueParameter &N) {
1232  visitDITemplateParameter(N);
1233
1234  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1235               N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1236               N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1237           "invalid tag", &N);
1238}
1239
1240void Verifier::visitDIVariable(const DIVariable &N) {
1241  if (auto *S = N.getRawScope())
1242    AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1243  if (auto *F = N.getRawFile())
1244    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1245}
1246
1247void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1248  // Checks common to all variables.
1249  visitDIVariable(N);
1250
1251  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1252  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1253  AssertDI(N.getType(), "missing global variable type", &N);
1254  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1255    AssertDI(isa<DIDerivedType>(Member),
1256             "invalid static data member declaration", &N, Member);
1257  }
1258}
1259
1260void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1261  // Checks common to all variables.
1262  visitDIVariable(N);
1263
1264  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1265  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1266  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1267           "local variable requires a valid scope", &N, N.getRawScope());
1268  if (auto Ty = N.getType())
1269    AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1270}
1271
1272void Verifier::visitDILabel(const DILabel &N) {
1273  if (auto *S = N.getRawScope())
1274    AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1275  if (auto *F = N.getRawFile())
1276    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1277
1278  AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1279  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1280           "label requires a valid scope", &N, N.getRawScope());
1281}
1282
1283void Verifier::visitDIExpression(const DIExpression &N) {
1284  AssertDI(N.isValid(), "invalid expression", &N);
1285}
1286
1287void Verifier::visitDIGlobalVariableExpression(
1288    const DIGlobalVariableExpression &GVE) {
1289  AssertDI(GVE.getVariable(), "missing variable");
1290  if (auto *Var = GVE.getVariable())
1291    visitDIGlobalVariable(*Var);
1292  if (auto *Expr = GVE.getExpression()) {
1293    visitDIExpression(*Expr);
1294    if (auto Fragment = Expr->getFragmentInfo())
1295      verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1296  }
1297}
1298
1299void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1300  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1301  if (auto *T = N.getRawType())
1302    AssertDI(isType(T), "invalid type ref", &N, T);
1303  if (auto *F = N.getRawFile())
1304    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1305}
1306
1307void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1308  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1309               N.getTag() == dwarf::DW_TAG_imported_declaration,
1310           "invalid tag", &N);
1311  if (auto *S = N.getRawScope())
1312    AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1313  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1314           N.getRawEntity());
1315}
1316
1317void Verifier::visitComdat(const Comdat &C) {
1318  // In COFF the Module is invalid if the GlobalValue has private linkage.
1319  // Entities with private linkage don't have entries in the symbol table.
1320  if (TT.isOSBinFormatCOFF())
1321    if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1322      Assert(!GV->hasPrivateLinkage(),
1323             "comdat global value has private linkage", GV);
1324}
1325
1326void Verifier::visitModuleIdents(const Module &M) {
1327  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1328  if (!Idents)
1329    return;
1330
1331  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1332  // Scan each llvm.ident entry and make sure that this requirement is met.
1333  for (const MDNode *N : Idents->operands()) {
1334    Assert(N->getNumOperands() == 1,
1335           "incorrect number of operands in llvm.ident metadata", N);
1336    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1337           ("invalid value for llvm.ident metadata entry operand"
1338            "(the operand should be a string)"),
1339           N->getOperand(0));
1340  }
1341}
1342
1343void Verifier::visitModuleCommandLines(const Module &M) {
1344  const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1345  if (!CommandLines)
1346    return;
1347
1348  // llvm.commandline takes a list of metadata entry. Each entry has only one
1349  // string. Scan each llvm.commandline entry and make sure that this
1350  // requirement is met.
1351  for (const MDNode *N : CommandLines->operands()) {
1352    Assert(N->getNumOperands() == 1,
1353           "incorrect number of operands in llvm.commandline metadata", N);
1354    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1355           ("invalid value for llvm.commandline metadata entry operand"
1356            "(the operand should be a string)"),
1357           N->getOperand(0));
1358  }
1359}
1360
1361void Verifier::visitModuleFlags(const Module &M) {
1362  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1363  if (!Flags) return;
1364
1365  // Scan each flag, and track the flags and requirements.
1366  DenseMap<const MDString*, const MDNode*> SeenIDs;
1367  SmallVector<const MDNode*, 16> Requirements;
1368  for (const MDNode *MDN : Flags->operands())
1369    visitModuleFlag(MDN, SeenIDs, Requirements);
1370
1371  // Validate that the requirements in the module are valid.
1372  for (const MDNode *Requirement : Requirements) {
1373    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1374    const Metadata *ReqValue = Requirement->getOperand(1);
1375
1376    const MDNode *Op = SeenIDs.lookup(Flag);
1377    if (!Op) {
1378      CheckFailed("invalid requirement on flag, flag is not present in module",
1379                  Flag);
1380      continue;
1381    }
1382
1383    if (Op->getOperand(2) != ReqValue) {
1384      CheckFailed(("invalid requirement on flag, "
1385                   "flag does not have the required value"),
1386                  Flag);
1387      continue;
1388    }
1389  }
1390}
1391
1392void
1393Verifier::visitModuleFlag(const MDNode *Op,
1394                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
1395                          SmallVectorImpl<const MDNode *> &Requirements) {
1396  // Each module flag should have three arguments, the merge behavior (a
1397  // constant int), the flag ID (an MDString), and the value.
1398  Assert(Op->getNumOperands() == 3,
1399         "incorrect number of operands in module flag", Op);
1400  Module::ModFlagBehavior MFB;
1401  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1402    Assert(
1403        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1404        "invalid behavior operand in module flag (expected constant integer)",
1405        Op->getOperand(0));
1406    Assert(false,
1407           "invalid behavior operand in module flag (unexpected constant)",
1408           Op->getOperand(0));
1409  }
1410  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1411  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1412         Op->getOperand(1));
1413
1414  // Sanity check the values for behaviors with additional requirements.
1415  switch (MFB) {
1416  case Module::Error:
1417  case Module::Warning:
1418  case Module::Override:
1419    // These behavior types accept any value.
1420    break;
1421
1422  case Module::Max: {
1423    Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1424           "invalid value for 'max' module flag (expected constant integer)",
1425           Op->getOperand(2));
1426    break;
1427  }
1428
1429  case Module::Require: {
1430    // The value should itself be an MDNode with two operands, a flag ID (an
1431    // MDString), and a value.
1432    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1433    Assert(Value && Value->getNumOperands() == 2,
1434           "invalid value for 'require' module flag (expected metadata pair)",
1435           Op->getOperand(2));
1436    Assert(isa<MDString>(Value->getOperand(0)),
1437           ("invalid value for 'require' module flag "
1438            "(first value operand should be a string)"),
1439           Value->getOperand(0));
1440
1441    // Append it to the list of requirements, to check once all module flags are
1442    // scanned.
1443    Requirements.push_back(Value);
1444    break;
1445  }
1446
1447  case Module::Append:
1448  case Module::AppendUnique: {
1449    // These behavior types require the operand be an MDNode.
1450    Assert(isa<MDNode>(Op->getOperand(2)),
1451           "invalid value for 'append'-type module flag "
1452           "(expected a metadata node)",
1453           Op->getOperand(2));
1454    break;
1455  }
1456  }
1457
1458  // Unless this is a "requires" flag, check the ID is unique.
1459  if (MFB != Module::Require) {
1460    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1461    Assert(Inserted,
1462           "module flag identifiers must be unique (or of 'require' type)", ID);
1463  }
1464
1465  if (ID->getString() == "wchar_size") {
1466    ConstantInt *Value
1467      = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1468    Assert(Value, "wchar_size metadata requires constant integer argument");
1469  }
1470
1471  if (ID->getString() == "Linker Options") {
1472    // If the llvm.linker.options named metadata exists, we assume that the
1473    // bitcode reader has upgraded the module flag. Otherwise the flag might
1474    // have been created by a client directly.
1475    Assert(M.getNamedMetadata("llvm.linker.options"),
1476           "'Linker Options' named metadata no longer supported");
1477  }
1478
1479  if (ID->getString() == "CG Profile") {
1480    for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1481      visitModuleFlagCGProfileEntry(MDO);
1482  }
1483}
1484
1485void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1486  auto CheckFunction = [&](const MDOperand &FuncMDO) {
1487    if (!FuncMDO)
1488      return;
1489    auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1490    Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1491           FuncMDO);
1492  };
1493  auto Node = dyn_cast_or_null<MDNode>(MDO);
1494  Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1495  CheckFunction(Node->getOperand(0));
1496  CheckFunction(Node->getOperand(1));
1497  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1498  Assert(Count && Count->getType()->isIntegerTy(),
1499         "expected an integer constant", Node->getOperand(2));
1500}
1501
1502/// Return true if this attribute kind only applies to functions.
1503static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1504  switch (Kind) {
1505  case Attribute::NoReturn:
1506  case Attribute::NoSync:
1507  case Attribute::WillReturn:
1508  case Attribute::NoCfCheck:
1509  case Attribute::NoUnwind:
1510  case Attribute::NoInline:
1511  case Attribute::AlwaysInline:
1512  case Attribute::OptimizeForSize:
1513  case Attribute::StackProtect:
1514  case Attribute::StackProtectReq:
1515  case Attribute::StackProtectStrong:
1516  case Attribute::SafeStack:
1517  case Attribute::ShadowCallStack:
1518  case Attribute::NoRedZone:
1519  case Attribute::NoImplicitFloat:
1520  case Attribute::Naked:
1521  case Attribute::InlineHint:
1522  case Attribute::StackAlignment:
1523  case Attribute::UWTable:
1524  case Attribute::NonLazyBind:
1525  case Attribute::ReturnsTwice:
1526  case Attribute::SanitizeAddress:
1527  case Attribute::SanitizeHWAddress:
1528  case Attribute::SanitizeMemTag:
1529  case Attribute::SanitizeThread:
1530  case Attribute::SanitizeMemory:
1531  case Attribute::MinSize:
1532  case Attribute::NoDuplicate:
1533  case Attribute::Builtin:
1534  case Attribute::NoBuiltin:
1535  case Attribute::Cold:
1536  case Attribute::OptForFuzzing:
1537  case Attribute::OptimizeNone:
1538  case Attribute::JumpTable:
1539  case Attribute::Convergent:
1540  case Attribute::ArgMemOnly:
1541  case Attribute::NoRecurse:
1542  case Attribute::InaccessibleMemOnly:
1543  case Attribute::InaccessibleMemOrArgMemOnly:
1544  case Attribute::AllocSize:
1545  case Attribute::SpeculativeLoadHardening:
1546  case Attribute::Speculatable:
1547  case Attribute::StrictFP:
1548    return true;
1549  default:
1550    break;
1551  }
1552  return false;
1553}
1554
1555/// Return true if this is a function attribute that can also appear on
1556/// arguments.
1557static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1558  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1559         Kind == Attribute::ReadNone || Kind == Attribute::NoFree;
1560}
1561
1562void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1563                                    const Value *V) {
1564  for (Attribute A : Attrs) {
1565    if (A.isStringAttribute())
1566      continue;
1567
1568    if (isFuncOnlyAttr(A.getKindAsEnum())) {
1569      if (!IsFunction) {
1570        CheckFailed("Attribute '" + A.getAsString() +
1571                        "' only applies to functions!",
1572                    V);
1573        return;
1574      }
1575    } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1576      CheckFailed("Attribute '" + A.getAsString() +
1577                      "' does not apply to functions!",
1578                  V);
1579      return;
1580    }
1581  }
1582}
1583
1584// VerifyParameterAttrs - Check the given attributes for an argument or return
1585// value of the specified type.  The value V is printed in error messages.
1586void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1587                                    const Value *V) {
1588  if (!Attrs.hasAttributes())
1589    return;
1590
1591  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1592
1593  if (Attrs.hasAttribute(Attribute::ImmArg)) {
1594    Assert(Attrs.getNumAttributes() == 1,
1595           "Attribute 'immarg' is incompatible with other attributes", V);
1596  }
1597
1598  // Check for mutually incompatible attributes.  Only inreg is compatible with
1599  // sret.
1600  unsigned AttrCount = 0;
1601  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1602  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1603  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1604               Attrs.hasAttribute(Attribute::InReg);
1605  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1606  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1607                         "and 'sret' are incompatible!",
1608         V);
1609
1610  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1611           Attrs.hasAttribute(Attribute::ReadOnly)),
1612         "Attributes "
1613         "'inalloca and readonly' are incompatible!",
1614         V);
1615
1616  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1617           Attrs.hasAttribute(Attribute::Returned)),
1618         "Attributes "
1619         "'sret and returned' are incompatible!",
1620         V);
1621
1622  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1623           Attrs.hasAttribute(Attribute::SExt)),
1624         "Attributes "
1625         "'zeroext and signext' are incompatible!",
1626         V);
1627
1628  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1629           Attrs.hasAttribute(Attribute::ReadOnly)),
1630         "Attributes "
1631         "'readnone and readonly' are incompatible!",
1632         V);
1633
1634  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1635           Attrs.hasAttribute(Attribute::WriteOnly)),
1636         "Attributes "
1637         "'readnone and writeonly' are incompatible!",
1638         V);
1639
1640  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1641           Attrs.hasAttribute(Attribute::WriteOnly)),
1642         "Attributes "
1643         "'readonly and writeonly' are incompatible!",
1644         V);
1645
1646  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1647           Attrs.hasAttribute(Attribute::AlwaysInline)),
1648         "Attributes "
1649         "'noinline and alwaysinline' are incompatible!",
1650         V);
1651
1652  if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1653    Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
1654           "Attribute 'byval' type does not match parameter!", V);
1655  }
1656
1657  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1658  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1659         "Wrong types for attribute: " +
1660             AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1661         V);
1662
1663  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1664    SmallPtrSet<Type*, 4> Visited;
1665    if (!PTy->getElementType()->isSized(&Visited)) {
1666      Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1667                 !Attrs.hasAttribute(Attribute::InAlloca),
1668             "Attributes 'byval' and 'inalloca' do not support unsized types!",
1669             V);
1670    }
1671    if (!isa<PointerType>(PTy->getElementType()))
1672      Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1673             "Attribute 'swifterror' only applies to parameters "
1674             "with pointer to pointer type!",
1675             V);
1676  } else {
1677    Assert(!Attrs.hasAttribute(Attribute::ByVal),
1678           "Attribute 'byval' only applies to parameters with pointer type!",
1679           V);
1680    Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1681           "Attribute 'swifterror' only applies to parameters "
1682           "with pointer type!",
1683           V);
1684  }
1685}
1686
1687// Check parameter attributes against a function type.
1688// The value V is printed in error messages.
1689void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1690                                   const Value *V, bool IsIntrinsic) {
1691  if (Attrs.isEmpty())
1692    return;
1693
1694  bool SawNest = false;
1695  bool SawReturned = false;
1696  bool SawSRet = false;
1697  bool SawSwiftSelf = false;
1698  bool SawSwiftError = false;
1699
1700  // Verify return value attributes.
1701  AttributeSet RetAttrs = Attrs.getRetAttributes();
1702  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1703          !RetAttrs.hasAttribute(Attribute::Nest) &&
1704          !RetAttrs.hasAttribute(Attribute::StructRet) &&
1705          !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1706          !RetAttrs.hasAttribute(Attribute::NoFree) &&
1707          !RetAttrs.hasAttribute(Attribute::Returned) &&
1708          !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1709          !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1710          !RetAttrs.hasAttribute(Attribute::SwiftError)),
1711         "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
1712         "'returned', 'swiftself', and 'swifterror' do not apply to return "
1713         "values!",
1714         V);
1715  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1716          !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1717          !RetAttrs.hasAttribute(Attribute::ReadNone)),
1718         "Attribute '" + RetAttrs.getAsString() +
1719             "' does not apply to function returns",
1720         V);
1721  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1722
1723  // Verify parameter attributes.
1724  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1725    Type *Ty = FT->getParamType(i);
1726    AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1727
1728    if (!IsIntrinsic) {
1729      Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1730             "immarg attribute only applies to intrinsics",V);
1731    }
1732
1733    verifyParameterAttrs(ArgAttrs, Ty, V);
1734
1735    if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1736      Assert(!SawNest, "More than one parameter has attribute nest!", V);
1737      SawNest = true;
1738    }
1739
1740    if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1741      Assert(!SawReturned, "More than one parameter has attribute returned!",
1742             V);
1743      Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1744             "Incompatible argument and return types for 'returned' attribute",
1745             V);
1746      SawReturned = true;
1747    }
1748
1749    if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1750      Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1751      Assert(i == 0 || i == 1,
1752             "Attribute 'sret' is not on first or second parameter!", V);
1753      SawSRet = true;
1754    }
1755
1756    if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1757      Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1758      SawSwiftSelf = true;
1759    }
1760
1761    if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1762      Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1763             V);
1764      SawSwiftError = true;
1765    }
1766
1767    if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1768      Assert(i == FT->getNumParams() - 1,
1769             "inalloca isn't on the last parameter!", V);
1770    }
1771  }
1772
1773  if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1774    return;
1775
1776  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1777
1778  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1779           Attrs.hasFnAttribute(Attribute::ReadOnly)),
1780         "Attributes 'readnone and readonly' are incompatible!", V);
1781
1782  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1783           Attrs.hasFnAttribute(Attribute::WriteOnly)),
1784         "Attributes 'readnone and writeonly' are incompatible!", V);
1785
1786  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1787           Attrs.hasFnAttribute(Attribute::WriteOnly)),
1788         "Attributes 'readonly and writeonly' are incompatible!", V);
1789
1790  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1791           Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1792         "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1793         "incompatible!",
1794         V);
1795
1796  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1797           Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1798         "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1799
1800  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1801           Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1802         "Attributes 'noinline and alwaysinline' are incompatible!", V);
1803
1804  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1805    Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1806           "Attribute 'optnone' requires 'noinline'!", V);
1807
1808    Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1809           "Attributes 'optsize and optnone' are incompatible!", V);
1810
1811    Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1812           "Attributes 'minsize and optnone' are incompatible!", V);
1813  }
1814
1815  if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1816    const GlobalValue *GV = cast<GlobalValue>(V);
1817    Assert(GV->hasGlobalUnnamedAddr(),
1818           "Attribute 'jumptable' requires 'unnamed_addr'", V);
1819  }
1820
1821  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1822    std::pair<unsigned, Optional<unsigned>> Args =
1823        Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1824
1825    auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1826      if (ParamNo >= FT->getNumParams()) {
1827        CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1828        return false;
1829      }
1830
1831      if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1832        CheckFailed("'allocsize' " + Name +
1833                        " argument must refer to an integer parameter",
1834                    V);
1835        return false;
1836      }
1837
1838      return true;
1839    };
1840
1841    if (!CheckParam("element size", Args.first))
1842      return;
1843
1844    if (Args.second && !CheckParam("number of elements", *Args.second))
1845      return;
1846  }
1847
1848  if (Attrs.hasFnAttribute("frame-pointer")) {
1849    StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
1850                                      "frame-pointer").getValueAsString();
1851    if (FP != "all" && FP != "non-leaf" && FP != "none")
1852      CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
1853  }
1854
1855  if (Attrs.hasFnAttribute("patchable-function-prefix")) {
1856    StringRef S = Attrs
1857                      .getAttribute(AttributeList::FunctionIndex,
1858                                    "patchable-function-prefix")
1859                      .getValueAsString();
1860    unsigned N;
1861    if (S.getAsInteger(10, N))
1862      CheckFailed(
1863          "\"patchable-function-prefix\" takes an unsigned integer: " + S, V);
1864  }
1865  if (Attrs.hasFnAttribute("patchable-function-entry")) {
1866    StringRef S = Attrs
1867                      .getAttribute(AttributeList::FunctionIndex,
1868                                    "patchable-function-entry")
1869                      .getValueAsString();
1870    unsigned N;
1871    if (S.getAsInteger(10, N))
1872      CheckFailed(
1873          "\"patchable-function-entry\" takes an unsigned integer: " + S, V);
1874  }
1875}
1876
1877void Verifier::verifyFunctionMetadata(
1878    ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1879  for (const auto &Pair : MDs) {
1880    if (Pair.first == LLVMContext::MD_prof) {
1881      MDNode *MD = Pair.second;
1882      Assert(MD->getNumOperands() >= 2,
1883             "!prof annotations should have no less than 2 operands", MD);
1884
1885      // Check first operand.
1886      Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1887             MD);
1888      Assert(isa<MDString>(MD->getOperand(0)),
1889             "expected string with name of the !prof annotation", MD);
1890      MDString *MDS = cast<MDString>(MD->getOperand(0));
1891      StringRef ProfName = MDS->getString();
1892      Assert(ProfName.equals("function_entry_count") ||
1893                 ProfName.equals("synthetic_function_entry_count"),
1894             "first operand should be 'function_entry_count'"
1895             " or 'synthetic_function_entry_count'",
1896             MD);
1897
1898      // Check second operand.
1899      Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1900             MD);
1901      Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1902             "expected integer argument to function_entry_count", MD);
1903    }
1904  }
1905}
1906
1907void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1908  if (!ConstantExprVisited.insert(EntryC).second)
1909    return;
1910
1911  SmallVector<const Constant *, 16> Stack;
1912  Stack.push_back(EntryC);
1913
1914  while (!Stack.empty()) {
1915    const Constant *C = Stack.pop_back_val();
1916
1917    // Check this constant expression.
1918    if (const auto *CE = dyn_cast<ConstantExpr>(C))
1919      visitConstantExpr(CE);
1920
1921    if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1922      // Global Values get visited separately, but we do need to make sure
1923      // that the global value is in the correct module
1924      Assert(GV->getParent() == &M, "Referencing global in another module!",
1925             EntryC, &M, GV, GV->getParent());
1926      continue;
1927    }
1928
1929    // Visit all sub-expressions.
1930    for (const Use &U : C->operands()) {
1931      const auto *OpC = dyn_cast<Constant>(U);
1932      if (!OpC)
1933        continue;
1934      if (!ConstantExprVisited.insert(OpC).second)
1935        continue;
1936      Stack.push_back(OpC);
1937    }
1938  }
1939}
1940
1941void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1942  if (CE->getOpcode() == Instruction::BitCast)
1943    Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1944                                 CE->getType()),
1945           "Invalid bitcast", CE);
1946
1947  if (CE->getOpcode() == Instruction::IntToPtr ||
1948      CE->getOpcode() == Instruction::PtrToInt) {
1949    auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1950                      ? CE->getType()
1951                      : CE->getOperand(0)->getType();
1952    StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1953                        ? "inttoptr not supported for non-integral pointers"
1954                        : "ptrtoint not supported for non-integral pointers";
1955    Assert(
1956        !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1957        Msg);
1958  }
1959}
1960
1961bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1962  // There shouldn't be more attribute sets than there are parameters plus the
1963  // function and return value.
1964  return Attrs.getNumAttrSets() <= Params + 2;
1965}
1966
1967/// Verify that statepoint intrinsic is well formed.
1968void Verifier::verifyStatepoint(const CallBase &Call) {
1969  assert(Call.getCalledFunction() &&
1970         Call.getCalledFunction()->getIntrinsicID() ==
1971             Intrinsic::experimental_gc_statepoint);
1972
1973  Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
1974             !Call.onlyAccessesArgMemory(),
1975         "gc.statepoint must read and write all memory to preserve "
1976         "reordering restrictions required by safepoint semantics",
1977         Call);
1978
1979  const int64_t NumPatchBytes =
1980      cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1981  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1982  Assert(NumPatchBytes >= 0,
1983         "gc.statepoint number of patchable bytes must be "
1984         "positive",
1985         Call);
1986
1987  const Value *Target = Call.getArgOperand(2);
1988  auto *PT = dyn_cast<PointerType>(Target->getType());
1989  Assert(PT && PT->getElementType()->isFunctionTy(),
1990         "gc.statepoint callee must be of function pointer type", Call, Target);
1991  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1992
1993  const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1994  Assert(NumCallArgs >= 0,
1995         "gc.statepoint number of arguments to underlying call "
1996         "must be positive",
1997         Call);
1998  const int NumParams = (int)TargetFuncType->getNumParams();
1999  if (TargetFuncType->isVarArg()) {
2000    Assert(NumCallArgs >= NumParams,
2001           "gc.statepoint mismatch in number of vararg call args", Call);
2002
2003    // TODO: Remove this limitation
2004    Assert(TargetFuncType->getReturnType()->isVoidTy(),
2005           "gc.statepoint doesn't support wrapping non-void "
2006           "vararg functions yet",
2007           Call);
2008  } else
2009    Assert(NumCallArgs == NumParams,
2010           "gc.statepoint mismatch in number of call args", Call);
2011
2012  const uint64_t Flags
2013    = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2014  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2015         "unknown flag used in gc.statepoint flags argument", Call);
2016
2017  // Verify that the types of the call parameter arguments match
2018  // the type of the wrapped callee.
2019  AttributeList Attrs = Call.getAttributes();
2020  for (int i = 0; i < NumParams; i++) {
2021    Type *ParamType = TargetFuncType->getParamType(i);
2022    Type *ArgType = Call.getArgOperand(5 + i)->getType();
2023    Assert(ArgType == ParamType,
2024           "gc.statepoint call argument does not match wrapped "
2025           "function type",
2026           Call);
2027
2028    if (TargetFuncType->isVarArg()) {
2029      AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2030      Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2031             "Attribute 'sret' cannot be used for vararg call arguments!",
2032             Call);
2033    }
2034  }
2035
2036  const int EndCallArgsInx = 4 + NumCallArgs;
2037
2038  const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2039  Assert(isa<ConstantInt>(NumTransitionArgsV),
2040         "gc.statepoint number of transition arguments "
2041         "must be constant integer",
2042         Call);
2043  const int NumTransitionArgs =
2044      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2045  Assert(NumTransitionArgs >= 0,
2046         "gc.statepoint number of transition arguments must be positive", Call);
2047  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2048
2049  const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2050  Assert(isa<ConstantInt>(NumDeoptArgsV),
2051         "gc.statepoint number of deoptimization arguments "
2052         "must be constant integer",
2053         Call);
2054  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2055  Assert(NumDeoptArgs >= 0,
2056         "gc.statepoint number of deoptimization arguments "
2057         "must be positive",
2058         Call);
2059
2060  const int ExpectedNumArgs =
2061      7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2062  Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2063         "gc.statepoint too few arguments according to length fields", Call);
2064
2065  // Check that the only uses of this gc.statepoint are gc.result or
2066  // gc.relocate calls which are tied to this statepoint and thus part
2067  // of the same statepoint sequence
2068  for (const User *U : Call.users()) {
2069    const CallInst *UserCall = dyn_cast<const CallInst>(U);
2070    Assert(UserCall, "illegal use of statepoint token", Call, U);
2071    if (!UserCall)
2072      continue;
2073    Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2074           "gc.result or gc.relocate are the only value uses "
2075           "of a gc.statepoint",
2076           Call, U);
2077    if (isa<GCResultInst>(UserCall)) {
2078      Assert(UserCall->getArgOperand(0) == &Call,
2079             "gc.result connected to wrong gc.statepoint", Call, UserCall);
2080    } else if (isa<GCRelocateInst>(Call)) {
2081      Assert(UserCall->getArgOperand(0) == &Call,
2082             "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2083    }
2084  }
2085
2086  // Note: It is legal for a single derived pointer to be listed multiple
2087  // times.  It's non-optimal, but it is legal.  It can also happen after
2088  // insertion if we strip a bitcast away.
2089  // Note: It is really tempting to check that each base is relocated and
2090  // that a derived pointer is never reused as a base pointer.  This turns
2091  // out to be problematic since optimizations run after safepoint insertion
2092  // can recognize equality properties that the insertion logic doesn't know
2093  // about.  See example statepoint.ll in the verifier subdirectory
2094}
2095
2096void Verifier::verifyFrameRecoverIndices() {
2097  for (auto &Counts : FrameEscapeInfo) {
2098    Function *F = Counts.first;
2099    unsigned EscapedObjectCount = Counts.second.first;
2100    unsigned MaxRecoveredIndex = Counts.second.second;
2101    Assert(MaxRecoveredIndex <= EscapedObjectCount,
2102           "all indices passed to llvm.localrecover must be less than the "
2103           "number of arguments passed to llvm.localescape in the parent "
2104           "function",
2105           F);
2106  }
2107}
2108
2109static Instruction *getSuccPad(Instruction *Terminator) {
2110  BasicBlock *UnwindDest;
2111  if (auto *II = dyn_cast<InvokeInst>(Terminator))
2112    UnwindDest = II->getUnwindDest();
2113  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2114    UnwindDest = CSI->getUnwindDest();
2115  else
2116    UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2117  return UnwindDest->getFirstNonPHI();
2118}
2119
2120void Verifier::verifySiblingFuncletUnwinds() {
2121  SmallPtrSet<Instruction *, 8> Visited;
2122  SmallPtrSet<Instruction *, 8> Active;
2123  for (const auto &Pair : SiblingFuncletInfo) {
2124    Instruction *PredPad = Pair.first;
2125    if (Visited.count(PredPad))
2126      continue;
2127    Active.insert(PredPad);
2128    Instruction *Terminator = Pair.second;
2129    do {
2130      Instruction *SuccPad = getSuccPad(Terminator);
2131      if (Active.count(SuccPad)) {
2132        // Found a cycle; report error
2133        Instruction *CyclePad = SuccPad;
2134        SmallVector<Instruction *, 8> CycleNodes;
2135        do {
2136          CycleNodes.push_back(CyclePad);
2137          Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2138          if (CycleTerminator != CyclePad)
2139            CycleNodes.push_back(CycleTerminator);
2140          CyclePad = getSuccPad(CycleTerminator);
2141        } while (CyclePad != SuccPad);
2142        Assert(false, "EH pads can't handle each other's exceptions",
2143               ArrayRef<Instruction *>(CycleNodes));
2144      }
2145      // Don't re-walk a node we've already checked
2146      if (!Visited.insert(SuccPad).second)
2147        break;
2148      // Walk to this successor if it has a map entry.
2149      PredPad = SuccPad;
2150      auto TermI = SiblingFuncletInfo.find(PredPad);
2151      if (TermI == SiblingFuncletInfo.end())
2152        break;
2153      Terminator = TermI->second;
2154      Active.insert(PredPad);
2155    } while (true);
2156    // Each node only has one successor, so we've walked all the active
2157    // nodes' successors.
2158    Active.clear();
2159  }
2160}
2161
2162// visitFunction - Verify that a function is ok.
2163//
2164void Verifier::visitFunction(const Function &F) {
2165  visitGlobalValue(F);
2166
2167  // Check function arguments.
2168  FunctionType *FT = F.getFunctionType();
2169  unsigned NumArgs = F.arg_size();
2170
2171  Assert(&Context == &F.getContext(),
2172         "Function context does not match Module context!", &F);
2173
2174  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2175  Assert(FT->getNumParams() == NumArgs,
2176         "# formal arguments must match # of arguments for function type!", &F,
2177         FT);
2178  Assert(F.getReturnType()->isFirstClassType() ||
2179             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2180         "Functions cannot return aggregate values!", &F);
2181
2182  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2183         "Invalid struct return type!", &F);
2184
2185  AttributeList Attrs = F.getAttributes();
2186
2187  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2188         "Attribute after last parameter!", &F);
2189
2190  bool isLLVMdotName = F.getName().size() >= 5 &&
2191                       F.getName().substr(0, 5) == "llvm.";
2192
2193  // Check function attributes.
2194  verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2195
2196  // On function declarations/definitions, we do not support the builtin
2197  // attribute. We do not check this in VerifyFunctionAttrs since that is
2198  // checking for Attributes that can/can not ever be on functions.
2199  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2200         "Attribute 'builtin' can only be applied to a callsite.", &F);
2201
2202  // Check that this function meets the restrictions on this calling convention.
2203  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2204  // restrictions can be lifted.
2205  switch (F.getCallingConv()) {
2206  default:
2207  case CallingConv::C:
2208    break;
2209  case CallingConv::AMDGPU_KERNEL:
2210  case CallingConv::SPIR_KERNEL:
2211    Assert(F.getReturnType()->isVoidTy(),
2212           "Calling convention requires void return type", &F);
2213    LLVM_FALLTHROUGH;
2214  case CallingConv::AMDGPU_VS:
2215  case CallingConv::AMDGPU_HS:
2216  case CallingConv::AMDGPU_GS:
2217  case CallingConv::AMDGPU_PS:
2218  case CallingConv::AMDGPU_CS:
2219    Assert(!F.hasStructRetAttr(),
2220           "Calling convention does not allow sret", &F);
2221    LLVM_FALLTHROUGH;
2222  case CallingConv::Fast:
2223  case CallingConv::Cold:
2224  case CallingConv::Intel_OCL_BI:
2225  case CallingConv::PTX_Kernel:
2226  case CallingConv::PTX_Device:
2227    Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2228                          "perfect forwarding!",
2229           &F);
2230    break;
2231  }
2232
2233  // Check that the argument values match the function type for this function...
2234  unsigned i = 0;
2235  for (const Argument &Arg : F.args()) {
2236    Assert(Arg.getType() == FT->getParamType(i),
2237           "Argument value does not match function argument type!", &Arg,
2238           FT->getParamType(i));
2239    Assert(Arg.getType()->isFirstClassType(),
2240           "Function arguments must have first-class types!", &Arg);
2241    if (!isLLVMdotName) {
2242      Assert(!Arg.getType()->isMetadataTy(),
2243             "Function takes metadata but isn't an intrinsic", &Arg, &F);
2244      Assert(!Arg.getType()->isTokenTy(),
2245             "Function takes token but isn't an intrinsic", &Arg, &F);
2246    }
2247
2248    // Check that swifterror argument is only used by loads and stores.
2249    if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2250      verifySwiftErrorValue(&Arg);
2251    }
2252    ++i;
2253  }
2254
2255  if (!isLLVMdotName)
2256    Assert(!F.getReturnType()->isTokenTy(),
2257           "Functions returns a token but isn't an intrinsic", &F);
2258
2259  // Get the function metadata attachments.
2260  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2261  F.getAllMetadata(MDs);
2262  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2263  verifyFunctionMetadata(MDs);
2264
2265  // Check validity of the personality function
2266  if (F.hasPersonalityFn()) {
2267    auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2268    if (Per)
2269      Assert(Per->getParent() == F.getParent(),
2270             "Referencing personality function in another module!",
2271             &F, F.getParent(), Per, Per->getParent());
2272  }
2273
2274  if (F.isMaterializable()) {
2275    // Function has a body somewhere we can't see.
2276    Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2277           MDs.empty() ? nullptr : MDs.front().second);
2278  } else if (F.isDeclaration()) {
2279    for (const auto &I : MDs) {
2280      // This is used for call site debug information.
2281      AssertDI(I.first != LLVMContext::MD_dbg ||
2282                   !cast<DISubprogram>(I.second)->isDistinct(),
2283               "function declaration may only have a unique !dbg attachment",
2284               &F);
2285      Assert(I.first != LLVMContext::MD_prof,
2286             "function declaration may not have a !prof attachment", &F);
2287
2288      // Verify the metadata itself.
2289      visitMDNode(*I.second);
2290    }
2291    Assert(!F.hasPersonalityFn(),
2292           "Function declaration shouldn't have a personality routine", &F);
2293  } else {
2294    // Verify that this function (which has a body) is not named "llvm.*".  It
2295    // is not legal to define intrinsics.
2296    Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2297
2298    // Check the entry node
2299    const BasicBlock *Entry = &F.getEntryBlock();
2300    Assert(pred_empty(Entry),
2301           "Entry block to function must not have predecessors!", Entry);
2302
2303    // The address of the entry block cannot be taken, unless it is dead.
2304    if (Entry->hasAddressTaken()) {
2305      Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2306             "blockaddress may not be used with the entry block!", Entry);
2307    }
2308
2309    unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2310    // Visit metadata attachments.
2311    for (const auto &I : MDs) {
2312      // Verify that the attachment is legal.
2313      switch (I.first) {
2314      default:
2315        break;
2316      case LLVMContext::MD_dbg: {
2317        ++NumDebugAttachments;
2318        AssertDI(NumDebugAttachments == 1,
2319                 "function must have a single !dbg attachment", &F, I.second);
2320        AssertDI(isa<DISubprogram>(I.second),
2321                 "function !dbg attachment must be a subprogram", &F, I.second);
2322        auto *SP = cast<DISubprogram>(I.second);
2323        const Function *&AttachedTo = DISubprogramAttachments[SP];
2324        AssertDI(!AttachedTo || AttachedTo == &F,
2325                 "DISubprogram attached to more than one function", SP, &F);
2326        AttachedTo = &F;
2327        break;
2328      }
2329      case LLVMContext::MD_prof:
2330        ++NumProfAttachments;
2331        Assert(NumProfAttachments == 1,
2332               "function must have a single !prof attachment", &F, I.second);
2333        break;
2334      }
2335
2336      // Verify the metadata itself.
2337      visitMDNode(*I.second);
2338    }
2339  }
2340
2341  // If this function is actually an intrinsic, verify that it is only used in
2342  // direct call/invokes, never having its "address taken".
2343  // Only do this if the module is materialized, otherwise we don't have all the
2344  // uses.
2345  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2346    const User *U;
2347    if (F.hasAddressTaken(&U))
2348      Assert(false, "Invalid user of intrinsic instruction!", U);
2349  }
2350
2351  auto *N = F.getSubprogram();
2352  HasDebugInfo = (N != nullptr);
2353  if (!HasDebugInfo)
2354    return;
2355
2356  // Check that all !dbg attachments lead to back to N (or, at least, another
2357  // subprogram that describes the same function).
2358  //
2359  // FIXME: Check this incrementally while visiting !dbg attachments.
2360  // FIXME: Only check when N is the canonical subprogram for F.
2361  SmallPtrSet<const MDNode *, 32> Seen;
2362  auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2363    // Be careful about using DILocation here since we might be dealing with
2364    // broken code (this is the Verifier after all).
2365    const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2366    if (!DL)
2367      return;
2368    if (!Seen.insert(DL).second)
2369      return;
2370
2371    Metadata *Parent = DL->getRawScope();
2372    AssertDI(Parent && isa<DILocalScope>(Parent),
2373             "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2374             Parent);
2375    DILocalScope *Scope = DL->getInlinedAtScope();
2376    if (Scope && !Seen.insert(Scope).second)
2377      return;
2378
2379    DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2380
2381    // Scope and SP could be the same MDNode and we don't want to skip
2382    // validation in that case
2383    if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2384      return;
2385
2386    // FIXME: Once N is canonical, check "SP == &N".
2387    AssertDI(SP->describes(&F),
2388             "!dbg attachment points at wrong subprogram for function", N, &F,
2389             &I, DL, Scope, SP);
2390  };
2391  for (auto &BB : F)
2392    for (auto &I : BB) {
2393      VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2394      // The llvm.loop annotations also contain two DILocations.
2395      if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2396        for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2397          VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2398      if (BrokenDebugInfo)
2399        return;
2400    }
2401}
2402
2403// verifyBasicBlock - Verify that a basic block is well formed...
2404//
2405void Verifier::visitBasicBlock(BasicBlock &BB) {
2406  InstsInThisBlock.clear();
2407
2408  // Ensure that basic blocks have terminators!
2409  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2410
2411  // Check constraints that this basic block imposes on all of the PHI nodes in
2412  // it.
2413  if (isa<PHINode>(BB.front())) {
2414    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2415    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2416    llvm::sort(Preds);
2417    for (const PHINode &PN : BB.phis()) {
2418      // Ensure that PHI nodes have at least one entry!
2419      Assert(PN.getNumIncomingValues() != 0,
2420             "PHI nodes must have at least one entry.  If the block is dead, "
2421             "the PHI should be removed!",
2422             &PN);
2423      Assert(PN.getNumIncomingValues() == Preds.size(),
2424             "PHINode should have one entry for each predecessor of its "
2425             "parent basic block!",
2426             &PN);
2427
2428      // Get and sort all incoming values in the PHI node...
2429      Values.clear();
2430      Values.reserve(PN.getNumIncomingValues());
2431      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2432        Values.push_back(
2433            std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2434      llvm::sort(Values);
2435
2436      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2437        // Check to make sure that if there is more than one entry for a
2438        // particular basic block in this PHI node, that the incoming values are
2439        // all identical.
2440        //
2441        Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2442                   Values[i].second == Values[i - 1].second,
2443               "PHI node has multiple entries for the same basic block with "
2444               "different incoming values!",
2445               &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2446
2447        // Check to make sure that the predecessors and PHI node entries are
2448        // matched up.
2449        Assert(Values[i].first == Preds[i],
2450               "PHI node entries do not match predecessors!", &PN,
2451               Values[i].first, Preds[i]);
2452      }
2453    }
2454  }
2455
2456  // Check that all instructions have their parent pointers set up correctly.
2457  for (auto &I : BB)
2458  {
2459    Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2460  }
2461}
2462
2463void Verifier::visitTerminator(Instruction &I) {
2464  // Ensure that terminators only exist at the end of the basic block.
2465  Assert(&I == I.getParent()->getTerminator(),
2466         "Terminator found in the middle of a basic block!", I.getParent());
2467  visitInstruction(I);
2468}
2469
2470void Verifier::visitBranchInst(BranchInst &BI) {
2471  if (BI.isConditional()) {
2472    Assert(BI.getCondition()->getType()->isIntegerTy(1),
2473           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2474  }
2475  visitTerminator(BI);
2476}
2477
2478void Verifier::visitReturnInst(ReturnInst &RI) {
2479  Function *F = RI.getParent()->getParent();
2480  unsigned N = RI.getNumOperands();
2481  if (F->getReturnType()->isVoidTy())
2482    Assert(N == 0,
2483           "Found return instr that returns non-void in Function of void "
2484           "return type!",
2485           &RI, F->getReturnType());
2486  else
2487    Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2488           "Function return type does not match operand "
2489           "type of return inst!",
2490           &RI, F->getReturnType());
2491
2492  // Check to make sure that the return value has necessary properties for
2493  // terminators...
2494  visitTerminator(RI);
2495}
2496
2497void Verifier::visitSwitchInst(SwitchInst &SI) {
2498  // Check to make sure that all of the constants in the switch instruction
2499  // have the same type as the switched-on value.
2500  Type *SwitchTy = SI.getCondition()->getType();
2501  SmallPtrSet<ConstantInt*, 32> Constants;
2502  for (auto &Case : SI.cases()) {
2503    Assert(Case.getCaseValue()->getType() == SwitchTy,
2504           "Switch constants must all be same type as switch value!", &SI);
2505    Assert(Constants.insert(Case.getCaseValue()).second,
2506           "Duplicate integer as switch case", &SI, Case.getCaseValue());
2507  }
2508
2509  visitTerminator(SI);
2510}
2511
2512void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2513  Assert(BI.getAddress()->getType()->isPointerTy(),
2514         "Indirectbr operand must have pointer type!", &BI);
2515  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2516    Assert(BI.getDestination(i)->getType()->isLabelTy(),
2517           "Indirectbr destinations must all have pointer type!", &BI);
2518
2519  visitTerminator(BI);
2520}
2521
2522void Verifier::visitCallBrInst(CallBrInst &CBI) {
2523  Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2524         &CBI);
2525  Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
2526         &CBI);
2527  for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2528    Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2529           "Callbr successors must all have pointer type!", &CBI);
2530  for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2531    Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2532           "Using an unescaped label as a callbr argument!", &CBI);
2533    if (isa<BasicBlock>(CBI.getOperand(i)))
2534      for (unsigned j = i + 1; j != e; ++j)
2535        Assert(CBI.getOperand(i) != CBI.getOperand(j),
2536               "Duplicate callbr destination!", &CBI);
2537  }
2538  {
2539    SmallPtrSet<BasicBlock *, 4> ArgBBs;
2540    for (Value *V : CBI.args())
2541      if (auto *BA = dyn_cast<BlockAddress>(V))
2542        ArgBBs.insert(BA->getBasicBlock());
2543    for (BasicBlock *BB : CBI.getIndirectDests())
2544      Assert(ArgBBs.find(BB) != ArgBBs.end(),
2545             "Indirect label missing from arglist.", &CBI);
2546  }
2547
2548  visitTerminator(CBI);
2549}
2550
2551void Verifier::visitSelectInst(SelectInst &SI) {
2552  Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2553                                         SI.getOperand(2)),
2554         "Invalid operands for select instruction!", &SI);
2555
2556  Assert(SI.getTrueValue()->getType() == SI.getType(),
2557         "Select values must have same type as select instruction!", &SI);
2558  visitInstruction(SI);
2559}
2560
2561/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2562/// a pass, if any exist, it's an error.
2563///
2564void Verifier::visitUserOp1(Instruction &I) {
2565  Assert(false, "User-defined operators should not live outside of a pass!", &I);
2566}
2567
2568void Verifier::visitTruncInst(TruncInst &I) {
2569  // Get the source and destination types
2570  Type *SrcTy = I.getOperand(0)->getType();
2571  Type *DestTy = I.getType();
2572
2573  // Get the size of the types in bits, we'll need this later
2574  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2575  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2576
2577  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2578  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2579  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2580         "trunc source and destination must both be a vector or neither", &I);
2581  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2582
2583  visitInstruction(I);
2584}
2585
2586void Verifier::visitZExtInst(ZExtInst &I) {
2587  // Get the source and destination types
2588  Type *SrcTy = I.getOperand(0)->getType();
2589  Type *DestTy = I.getType();
2590
2591  // Get the size of the types in bits, we'll need this later
2592  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2593  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2594  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2595         "zext source and destination must both be a vector or neither", &I);
2596  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2597  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2598
2599  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2600
2601  visitInstruction(I);
2602}
2603
2604void Verifier::visitSExtInst(SExtInst &I) {
2605  // Get the source and destination types
2606  Type *SrcTy = I.getOperand(0)->getType();
2607  Type *DestTy = I.getType();
2608
2609  // Get the size of the types in bits, we'll need this later
2610  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2611  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2612
2613  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2614  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2615  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2616         "sext source and destination must both be a vector or neither", &I);
2617  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2618
2619  visitInstruction(I);
2620}
2621
2622void Verifier::visitFPTruncInst(FPTruncInst &I) {
2623  // Get the source and destination types
2624  Type *SrcTy = I.getOperand(0)->getType();
2625  Type *DestTy = I.getType();
2626  // Get the size of the types in bits, we'll need this later
2627  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2628  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2629
2630  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2631  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2632  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2633         "fptrunc source and destination must both be a vector or neither", &I);
2634  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2635
2636  visitInstruction(I);
2637}
2638
2639void Verifier::visitFPExtInst(FPExtInst &I) {
2640  // Get the source and destination types
2641  Type *SrcTy = I.getOperand(0)->getType();
2642  Type *DestTy = I.getType();
2643
2644  // Get the size of the types in bits, we'll need this later
2645  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2646  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2647
2648  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2649  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2650  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2651         "fpext source and destination must both be a vector or neither", &I);
2652  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2653
2654  visitInstruction(I);
2655}
2656
2657void Verifier::visitUIToFPInst(UIToFPInst &I) {
2658  // Get the source and destination types
2659  Type *SrcTy = I.getOperand(0)->getType();
2660  Type *DestTy = I.getType();
2661
2662  bool SrcVec = SrcTy->isVectorTy();
2663  bool DstVec = DestTy->isVectorTy();
2664
2665  Assert(SrcVec == DstVec,
2666         "UIToFP source and dest must both be vector or scalar", &I);
2667  Assert(SrcTy->isIntOrIntVectorTy(),
2668         "UIToFP source must be integer or integer vector", &I);
2669  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2670         &I);
2671
2672  if (SrcVec && DstVec)
2673    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2674               cast<VectorType>(DestTy)->getNumElements(),
2675           "UIToFP source and dest vector length mismatch", &I);
2676
2677  visitInstruction(I);
2678}
2679
2680void Verifier::visitSIToFPInst(SIToFPInst &I) {
2681  // Get the source and destination types
2682  Type *SrcTy = I.getOperand(0)->getType();
2683  Type *DestTy = I.getType();
2684
2685  bool SrcVec = SrcTy->isVectorTy();
2686  bool DstVec = DestTy->isVectorTy();
2687
2688  Assert(SrcVec == DstVec,
2689         "SIToFP source and dest must both be vector or scalar", &I);
2690  Assert(SrcTy->isIntOrIntVectorTy(),
2691         "SIToFP source must be integer or integer vector", &I);
2692  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2693         &I);
2694
2695  if (SrcVec && DstVec)
2696    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2697               cast<VectorType>(DestTy)->getNumElements(),
2698           "SIToFP source and dest vector length mismatch", &I);
2699
2700  visitInstruction(I);
2701}
2702
2703void Verifier::visitFPToUIInst(FPToUIInst &I) {
2704  // Get the source and destination types
2705  Type *SrcTy = I.getOperand(0)->getType();
2706  Type *DestTy = I.getType();
2707
2708  bool SrcVec = SrcTy->isVectorTy();
2709  bool DstVec = DestTy->isVectorTy();
2710
2711  Assert(SrcVec == DstVec,
2712         "FPToUI source and dest must both be vector or scalar", &I);
2713  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2714         &I);
2715  Assert(DestTy->isIntOrIntVectorTy(),
2716         "FPToUI result must be integer or integer vector", &I);
2717
2718  if (SrcVec && DstVec)
2719    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2720               cast<VectorType>(DestTy)->getNumElements(),
2721           "FPToUI source and dest vector length mismatch", &I);
2722
2723  visitInstruction(I);
2724}
2725
2726void Verifier::visitFPToSIInst(FPToSIInst &I) {
2727  // Get the source and destination types
2728  Type *SrcTy = I.getOperand(0)->getType();
2729  Type *DestTy = I.getType();
2730
2731  bool SrcVec = SrcTy->isVectorTy();
2732  bool DstVec = DestTy->isVectorTy();
2733
2734  Assert(SrcVec == DstVec,
2735         "FPToSI source and dest must both be vector or scalar", &I);
2736  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2737         &I);
2738  Assert(DestTy->isIntOrIntVectorTy(),
2739         "FPToSI result must be integer or integer vector", &I);
2740
2741  if (SrcVec && DstVec)
2742    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2743               cast<VectorType>(DestTy)->getNumElements(),
2744           "FPToSI source and dest vector length mismatch", &I);
2745
2746  visitInstruction(I);
2747}
2748
2749void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2750  // Get the source and destination types
2751  Type *SrcTy = I.getOperand(0)->getType();
2752  Type *DestTy = I.getType();
2753
2754  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2755
2756  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2757    Assert(!DL.isNonIntegralPointerType(PTy),
2758           "ptrtoint not supported for non-integral pointers");
2759
2760  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2761  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2762         &I);
2763
2764  if (SrcTy->isVectorTy()) {
2765    VectorType *VSrc = cast<VectorType>(SrcTy);
2766    VectorType *VDest = cast<VectorType>(DestTy);
2767    Assert(VSrc->getNumElements() == VDest->getNumElements(),
2768           "PtrToInt Vector width mismatch", &I);
2769  }
2770
2771  visitInstruction(I);
2772}
2773
2774void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2775  // Get the source and destination types
2776  Type *SrcTy = I.getOperand(0)->getType();
2777  Type *DestTy = I.getType();
2778
2779  Assert(SrcTy->isIntOrIntVectorTy(),
2780         "IntToPtr source must be an integral", &I);
2781  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2782
2783  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2784    Assert(!DL.isNonIntegralPointerType(PTy),
2785           "inttoptr not supported for non-integral pointers");
2786
2787  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2788         &I);
2789  if (SrcTy->isVectorTy()) {
2790    VectorType *VSrc = cast<VectorType>(SrcTy);
2791    VectorType *VDest = cast<VectorType>(DestTy);
2792    Assert(VSrc->getNumElements() == VDest->getNumElements(),
2793           "IntToPtr Vector width mismatch", &I);
2794  }
2795  visitInstruction(I);
2796}
2797
2798void Verifier::visitBitCastInst(BitCastInst &I) {
2799  Assert(
2800      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2801      "Invalid bitcast", &I);
2802  visitInstruction(I);
2803}
2804
2805void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2806  Type *SrcTy = I.getOperand(0)->getType();
2807  Type *DestTy = I.getType();
2808
2809  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2810         &I);
2811  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2812         &I);
2813  Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2814         "AddrSpaceCast must be between different address spaces", &I);
2815  if (SrcTy->isVectorTy())
2816    Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2817           "AddrSpaceCast vector pointer number of elements mismatch", &I);
2818  visitInstruction(I);
2819}
2820
2821/// visitPHINode - Ensure that a PHI node is well formed.
2822///
2823void Verifier::visitPHINode(PHINode &PN) {
2824  // Ensure that the PHI nodes are all grouped together at the top of the block.
2825  // This can be tested by checking whether the instruction before this is
2826  // either nonexistent (because this is begin()) or is a PHI node.  If not,
2827  // then there is some other instruction before a PHI.
2828  Assert(&PN == &PN.getParent()->front() ||
2829             isa<PHINode>(--BasicBlock::iterator(&PN)),
2830         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2831
2832  // Check that a PHI doesn't yield a Token.
2833  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2834
2835  // Check that all of the values of the PHI node have the same type as the
2836  // result, and that the incoming blocks are really basic blocks.
2837  for (Value *IncValue : PN.incoming_values()) {
2838    Assert(PN.getType() == IncValue->getType(),
2839           "PHI node operands are not the same type as the result!", &PN);
2840  }
2841
2842  // All other PHI node constraints are checked in the visitBasicBlock method.
2843
2844  visitInstruction(PN);
2845}
2846
2847void Verifier::visitCallBase(CallBase &Call) {
2848  Assert(Call.getCalledValue()->getType()->isPointerTy(),
2849         "Called function must be a pointer!", Call);
2850  PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2851
2852  Assert(FPTy->getElementType()->isFunctionTy(),
2853         "Called function is not pointer to function type!", Call);
2854
2855  Assert(FPTy->getElementType() == Call.getFunctionType(),
2856         "Called function is not the same type as the call!", Call);
2857
2858  FunctionType *FTy = Call.getFunctionType();
2859
2860  // Verify that the correct number of arguments are being passed
2861  if (FTy->isVarArg())
2862    Assert(Call.arg_size() >= FTy->getNumParams(),
2863           "Called function requires more parameters than were provided!",
2864           Call);
2865  else
2866    Assert(Call.arg_size() == FTy->getNumParams(),
2867           "Incorrect number of arguments passed to called function!", Call);
2868
2869  // Verify that all arguments to the call match the function type.
2870  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2871    Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2872           "Call parameter type does not match function signature!",
2873           Call.getArgOperand(i), FTy->getParamType(i), Call);
2874
2875  AttributeList Attrs = Call.getAttributes();
2876
2877  Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2878         "Attribute after last parameter!", Call);
2879
2880  bool IsIntrinsic = Call.getCalledFunction() &&
2881                     Call.getCalledFunction()->getName().startswith("llvm.");
2882
2883  Function *Callee
2884    = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
2885
2886  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2887    // Don't allow speculatable on call sites, unless the underlying function
2888    // declaration is also speculatable.
2889    Assert(Callee && Callee->isSpeculatable(),
2890           "speculatable attribute may not apply to call sites", Call);
2891  }
2892
2893  // Verify call attributes.
2894  verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2895
2896  // Conservatively check the inalloca argument.
2897  // We have a bug if we can find that there is an underlying alloca without
2898  // inalloca.
2899  if (Call.hasInAllocaArgument()) {
2900    Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2901    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2902      Assert(AI->isUsedWithInAlloca(),
2903             "inalloca argument for call has mismatched alloca", AI, Call);
2904  }
2905
2906  // For each argument of the callsite, if it has the swifterror argument,
2907  // make sure the underlying alloca/parameter it comes from has a swifterror as
2908  // well.
2909  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2910    if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2911      Value *SwiftErrorArg = Call.getArgOperand(i);
2912      if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2913        Assert(AI->isSwiftError(),
2914               "swifterror argument for call has mismatched alloca", AI, Call);
2915        continue;
2916      }
2917      auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2918      Assert(ArgI,
2919             "swifterror argument should come from an alloca or parameter",
2920             SwiftErrorArg, Call);
2921      Assert(ArgI->hasSwiftErrorAttr(),
2922             "swifterror argument for call has mismatched parameter", ArgI,
2923             Call);
2924    }
2925
2926    if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2927      // Don't allow immarg on call sites, unless the underlying declaration
2928      // also has the matching immarg.
2929      Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
2930             "immarg may not apply only to call sites",
2931             Call.getArgOperand(i), Call);
2932    }
2933
2934    if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2935      Value *ArgVal = Call.getArgOperand(i);
2936      Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
2937             "immarg operand has non-immediate parameter", ArgVal, Call);
2938    }
2939  }
2940
2941  if (FTy->isVarArg()) {
2942    // FIXME? is 'nest' even legal here?
2943    bool SawNest = false;
2944    bool SawReturned = false;
2945
2946    for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2947      if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2948        SawNest = true;
2949      if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2950        SawReturned = true;
2951    }
2952
2953    // Check attributes on the varargs part.
2954    for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2955      Type *Ty = Call.getArgOperand(Idx)->getType();
2956      AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2957      verifyParameterAttrs(ArgAttrs, Ty, &Call);
2958
2959      if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2960        Assert(!SawNest, "More than one parameter has attribute nest!", Call);
2961        SawNest = true;
2962      }
2963
2964      if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2965        Assert(!SawReturned, "More than one parameter has attribute returned!",
2966               Call);
2967        Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2968               "Incompatible argument and return types for 'returned' "
2969               "attribute",
2970               Call);
2971        SawReturned = true;
2972      }
2973
2974      // Statepoint intrinsic is vararg but the wrapped function may be not.
2975      // Allow sret here and check the wrapped function in verifyStatepoint.
2976      if (!Call.getCalledFunction() ||
2977          Call.getCalledFunction()->getIntrinsicID() !=
2978              Intrinsic::experimental_gc_statepoint)
2979        Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2980               "Attribute 'sret' cannot be used for vararg call arguments!",
2981               Call);
2982
2983      if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2984        Assert(Idx == Call.arg_size() - 1,
2985               "inalloca isn't on the last argument!", Call);
2986    }
2987  }
2988
2989  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2990  if (!IsIntrinsic) {
2991    for (Type *ParamTy : FTy->params()) {
2992      Assert(!ParamTy->isMetadataTy(),
2993             "Function has metadata parameter but isn't an intrinsic", Call);
2994      Assert(!ParamTy->isTokenTy(),
2995             "Function has token parameter but isn't an intrinsic", Call);
2996    }
2997  }
2998
2999  // Verify that indirect calls don't return tokens.
3000  if (!Call.getCalledFunction())
3001    Assert(!FTy->getReturnType()->isTokenTy(),
3002           "Return type cannot be token for indirect call!");
3003
3004  if (Function *F = Call.getCalledFunction())
3005    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3006      visitIntrinsicCall(ID, Call);
3007
3008  // Verify that a callsite has at most one "deopt", at most one "funclet", at
3009  // most one "gc-transition", and at most one "cfguardtarget" operand bundle.
3010  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3011       FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false;
3012  for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3013    OperandBundleUse BU = Call.getOperandBundleAt(i);
3014    uint32_t Tag = BU.getTagID();
3015    if (Tag == LLVMContext::OB_deopt) {
3016      Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3017      FoundDeoptBundle = true;
3018    } else if (Tag == LLVMContext::OB_gc_transition) {
3019      Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3020             Call);
3021      FoundGCTransitionBundle = true;
3022    } else if (Tag == LLVMContext::OB_funclet) {
3023      Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3024      FoundFuncletBundle = true;
3025      Assert(BU.Inputs.size() == 1,
3026             "Expected exactly one funclet bundle operand", Call);
3027      Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3028             "Funclet bundle operands should correspond to a FuncletPadInst",
3029             Call);
3030    } else if (Tag == LLVMContext::OB_cfguardtarget) {
3031      Assert(!FoundCFGuardTargetBundle,
3032             "Multiple CFGuardTarget operand bundles", Call);
3033      FoundCFGuardTargetBundle = true;
3034      Assert(BU.Inputs.size() == 1,
3035             "Expected exactly one cfguardtarget bundle operand", Call);
3036    }
3037  }
3038
3039  // Verify that each inlinable callsite of a debug-info-bearing function in a
3040  // debug-info-bearing function has a debug location attached to it. Failure to
3041  // do so causes assertion failures when the inliner sets up inline scope info.
3042  if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3043      Call.getCalledFunction()->getSubprogram())
3044    AssertDI(Call.getDebugLoc(),
3045             "inlinable function call in a function with "
3046             "debug info must have a !dbg location",
3047             Call);
3048
3049  visitInstruction(Call);
3050}
3051
3052/// Two types are "congruent" if they are identical, or if they are both pointer
3053/// types with different pointee types and the same address space.
3054static bool isTypeCongruent(Type *L, Type *R) {
3055  if (L == R)
3056    return true;
3057  PointerType *PL = dyn_cast<PointerType>(L);
3058  PointerType *PR = dyn_cast<PointerType>(R);
3059  if (!PL || !PR)
3060    return false;
3061  return PL->getAddressSpace() == PR->getAddressSpace();
3062}
3063
3064static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3065  static const Attribute::AttrKind ABIAttrs[] = {
3066      Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3067      Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
3068      Attribute::SwiftError};
3069  AttrBuilder Copy;
3070  for (auto AK : ABIAttrs) {
3071    if (Attrs.hasParamAttribute(I, AK))
3072      Copy.addAttribute(AK);
3073  }
3074  if (Attrs.hasParamAttribute(I, Attribute::Alignment))
3075    Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3076  return Copy;
3077}
3078
3079void Verifier::verifyMustTailCall(CallInst &CI) {
3080  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3081
3082  // - The caller and callee prototypes must match.  Pointer types of
3083  //   parameters or return types may differ in pointee type, but not
3084  //   address space.
3085  Function *F = CI.getParent()->getParent();
3086  FunctionType *CallerTy = F->getFunctionType();
3087  FunctionType *CalleeTy = CI.getFunctionType();
3088  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3089    Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3090           "cannot guarantee tail call due to mismatched parameter counts",
3091           &CI);
3092    for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3093      Assert(
3094          isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3095          "cannot guarantee tail call due to mismatched parameter types", &CI);
3096    }
3097  }
3098  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3099         "cannot guarantee tail call due to mismatched varargs", &CI);
3100  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3101         "cannot guarantee tail call due to mismatched return types", &CI);
3102
3103  // - The calling conventions of the caller and callee must match.
3104  Assert(F->getCallingConv() == CI.getCallingConv(),
3105         "cannot guarantee tail call due to mismatched calling conv", &CI);
3106
3107  // - All ABI-impacting function attributes, such as sret, byval, inreg,
3108  //   returned, and inalloca, must match.
3109  AttributeList CallerAttrs = F->getAttributes();
3110  AttributeList CalleeAttrs = CI.getAttributes();
3111  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3112    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3113    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3114    Assert(CallerABIAttrs == CalleeABIAttrs,
3115           "cannot guarantee tail call due to mismatched ABI impacting "
3116           "function attributes",
3117           &CI, CI.getOperand(I));
3118  }
3119
3120  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3121  //   or a pointer bitcast followed by a ret instruction.
3122  // - The ret instruction must return the (possibly bitcasted) value
3123  //   produced by the call or void.
3124  Value *RetVal = &CI;
3125  Instruction *Next = CI.getNextNode();
3126
3127  // Handle the optional bitcast.
3128  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3129    Assert(BI->getOperand(0) == RetVal,
3130           "bitcast following musttail call must use the call", BI);
3131    RetVal = BI;
3132    Next = BI->getNextNode();
3133  }
3134
3135  // Check the return.
3136  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3137  Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3138         &CI);
3139  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3140         "musttail call result must be returned", Ret);
3141}
3142
3143void Verifier::visitCallInst(CallInst &CI) {
3144  visitCallBase(CI);
3145
3146  if (CI.isMustTailCall())
3147    verifyMustTailCall(CI);
3148}
3149
3150void Verifier::visitInvokeInst(InvokeInst &II) {
3151  visitCallBase(II);
3152
3153  // Verify that the first non-PHI instruction of the unwind destination is an
3154  // exception handling instruction.
3155  Assert(
3156      II.getUnwindDest()->isEHPad(),
3157      "The unwind destination does not have an exception handling instruction!",
3158      &II);
3159
3160  visitTerminator(II);
3161}
3162
3163/// visitUnaryOperator - Check the argument to the unary operator.
3164///
3165void Verifier::visitUnaryOperator(UnaryOperator &U) {
3166  Assert(U.getType() == U.getOperand(0)->getType(),
3167         "Unary operators must have same type for"
3168         "operands and result!",
3169         &U);
3170
3171  switch (U.getOpcode()) {
3172  // Check that floating-point arithmetic operators are only used with
3173  // floating-point operands.
3174  case Instruction::FNeg:
3175    Assert(U.getType()->isFPOrFPVectorTy(),
3176           "FNeg operator only works with float types!", &U);
3177    break;
3178  default:
3179    llvm_unreachable("Unknown UnaryOperator opcode!");
3180  }
3181
3182  visitInstruction(U);
3183}
3184
3185/// visitBinaryOperator - Check that both arguments to the binary operator are
3186/// of the same type!
3187///
3188void Verifier::visitBinaryOperator(BinaryOperator &B) {
3189  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3190         "Both operands to a binary operator are not of the same type!", &B);
3191
3192  switch (B.getOpcode()) {
3193  // Check that integer arithmetic operators are only used with
3194  // integral operands.
3195  case Instruction::Add:
3196  case Instruction::Sub:
3197  case Instruction::Mul:
3198  case Instruction::SDiv:
3199  case Instruction::UDiv:
3200  case Instruction::SRem:
3201  case Instruction::URem:
3202    Assert(B.getType()->isIntOrIntVectorTy(),
3203           "Integer arithmetic operators only work with integral types!", &B);
3204    Assert(B.getType() == B.getOperand(0)->getType(),
3205           "Integer arithmetic operators must have same type "
3206           "for operands and result!",
3207           &B);
3208    break;
3209  // Check that floating-point arithmetic operators are only used with
3210  // floating-point operands.
3211  case Instruction::FAdd:
3212  case Instruction::FSub:
3213  case Instruction::FMul:
3214  case Instruction::FDiv:
3215  case Instruction::FRem:
3216    Assert(B.getType()->isFPOrFPVectorTy(),
3217           "Floating-point arithmetic operators only work with "
3218           "floating-point types!",
3219           &B);
3220    Assert(B.getType() == B.getOperand(0)->getType(),
3221           "Floating-point arithmetic operators must have same type "
3222           "for operands and result!",
3223           &B);
3224    break;
3225  // Check that logical operators are only used with integral operands.
3226  case Instruction::And:
3227  case Instruction::Or:
3228  case Instruction::Xor:
3229    Assert(B.getType()->isIntOrIntVectorTy(),
3230           "Logical operators only work with integral types!", &B);
3231    Assert(B.getType() == B.getOperand(0)->getType(),
3232           "Logical operators must have same type for operands and result!",
3233           &B);
3234    break;
3235  case Instruction::Shl:
3236  case Instruction::LShr:
3237  case Instruction::AShr:
3238    Assert(B.getType()->isIntOrIntVectorTy(),
3239           "Shifts only work with integral types!", &B);
3240    Assert(B.getType() == B.getOperand(0)->getType(),
3241           "Shift return type must be same as operands!", &B);
3242    break;
3243  default:
3244    llvm_unreachable("Unknown BinaryOperator opcode!");
3245  }
3246
3247  visitInstruction(B);
3248}
3249
3250void Verifier::visitICmpInst(ICmpInst &IC) {
3251  // Check that the operands are the same type
3252  Type *Op0Ty = IC.getOperand(0)->getType();
3253  Type *Op1Ty = IC.getOperand(1)->getType();
3254  Assert(Op0Ty == Op1Ty,
3255         "Both operands to ICmp instruction are not of the same type!", &IC);
3256  // Check that the operands are the right type
3257  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3258         "Invalid operand types for ICmp instruction", &IC);
3259  // Check that the predicate is valid.
3260  Assert(IC.isIntPredicate(),
3261         "Invalid predicate in ICmp instruction!", &IC);
3262
3263  visitInstruction(IC);
3264}
3265
3266void Verifier::visitFCmpInst(FCmpInst &FC) {
3267  // Check that the operands are the same type
3268  Type *Op0Ty = FC.getOperand(0)->getType();
3269  Type *Op1Ty = FC.getOperand(1)->getType();
3270  Assert(Op0Ty == Op1Ty,
3271         "Both operands to FCmp instruction are not of the same type!", &FC);
3272  // Check that the operands are the right type
3273  Assert(Op0Ty->isFPOrFPVectorTy(),
3274         "Invalid operand types for FCmp instruction", &FC);
3275  // Check that the predicate is valid.
3276  Assert(FC.isFPPredicate(),
3277         "Invalid predicate in FCmp instruction!", &FC);
3278
3279  visitInstruction(FC);
3280}
3281
3282void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3283  Assert(
3284      ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3285      "Invalid extractelement operands!", &EI);
3286  visitInstruction(EI);
3287}
3288
3289void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3290  Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3291                                            IE.getOperand(2)),
3292         "Invalid insertelement operands!", &IE);
3293  visitInstruction(IE);
3294}
3295
3296void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3297  Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3298                                            SV.getOperand(2)),
3299         "Invalid shufflevector operands!", &SV);
3300  visitInstruction(SV);
3301}
3302
3303void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3304  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3305
3306  Assert(isa<PointerType>(TargetTy),
3307         "GEP base pointer is not a vector or a vector of pointers", &GEP);
3308  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3309
3310  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3311  Assert(all_of(
3312      Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3313      "GEP indexes must be integers", &GEP);
3314  Type *ElTy =
3315      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3316  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3317
3318  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3319             GEP.getResultElementType() == ElTy,
3320         "GEP is not of right type for indices!", &GEP, ElTy);
3321
3322  if (GEP.getType()->isVectorTy()) {
3323    // Additional checks for vector GEPs.
3324    unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3325    if (GEP.getPointerOperandType()->isVectorTy())
3326      Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3327             "Vector GEP result width doesn't match operand's", &GEP);
3328    for (Value *Idx : Idxs) {
3329      Type *IndexTy = Idx->getType();
3330      if (IndexTy->isVectorTy()) {
3331        unsigned IndexWidth = IndexTy->getVectorNumElements();
3332        Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3333      }
3334      Assert(IndexTy->isIntOrIntVectorTy(),
3335             "All GEP indices should be of integer type");
3336    }
3337  }
3338
3339  if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3340    Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3341           "GEP address space doesn't match type", &GEP);
3342  }
3343
3344  visitInstruction(GEP);
3345}
3346
3347static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3348  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3349}
3350
3351void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3352  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3353         "precondition violation");
3354
3355  unsigned NumOperands = Range->getNumOperands();
3356  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3357  unsigned NumRanges = NumOperands / 2;
3358  Assert(NumRanges >= 1, "It should have at least one range!", Range);
3359
3360  ConstantRange LastRange(1, true); // Dummy initial value
3361  for (unsigned i = 0; i < NumRanges; ++i) {
3362    ConstantInt *Low =
3363        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3364    Assert(Low, "The lower limit must be an integer!", Low);
3365    ConstantInt *High =
3366        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3367    Assert(High, "The upper limit must be an integer!", High);
3368    Assert(High->getType() == Low->getType() && High->getType() == Ty,
3369           "Range types must match instruction type!", &I);
3370
3371    APInt HighV = High->getValue();
3372    APInt LowV = Low->getValue();
3373    ConstantRange CurRange(LowV, HighV);
3374    Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3375           "Range must not be empty!", Range);
3376    if (i != 0) {
3377      Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3378             "Intervals are overlapping", Range);
3379      Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3380             Range);
3381      Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3382             Range);
3383    }
3384    LastRange = ConstantRange(LowV, HighV);
3385  }
3386  if (NumRanges > 2) {
3387    APInt FirstLow =
3388        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3389    APInt FirstHigh =
3390        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3391    ConstantRange FirstRange(FirstLow, FirstHigh);
3392    Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3393           "Intervals are overlapping", Range);
3394    Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3395           Range);
3396  }
3397}
3398
3399void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3400  unsigned Size = DL.getTypeSizeInBits(Ty);
3401  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3402  Assert(!(Size & (Size - 1)),
3403         "atomic memory access' operand must have a power-of-two size", Ty, I);
3404}
3405
3406void Verifier::visitLoadInst(LoadInst &LI) {
3407  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3408  Assert(PTy, "Load operand must be a pointer.", &LI);
3409  Type *ElTy = LI.getType();
3410  Assert(LI.getAlignment() <= Value::MaximumAlignment,
3411         "huge alignment values are unsupported", &LI);
3412  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3413  if (LI.isAtomic()) {
3414    Assert(LI.getOrdering() != AtomicOrdering::Release &&
3415               LI.getOrdering() != AtomicOrdering::AcquireRelease,
3416           "Load cannot have Release ordering", &LI);
3417    Assert(LI.getAlignment() != 0,
3418           "Atomic load must specify explicit alignment", &LI);
3419    Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3420           "atomic load operand must have integer, pointer, or floating point "
3421           "type!",
3422           ElTy, &LI);
3423    checkAtomicMemAccessSize(ElTy, &LI);
3424  } else {
3425    Assert(LI.getSyncScopeID() == SyncScope::System,
3426           "Non-atomic load cannot have SynchronizationScope specified", &LI);
3427  }
3428
3429  visitInstruction(LI);
3430}
3431
3432void Verifier::visitStoreInst(StoreInst &SI) {
3433  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3434  Assert(PTy, "Store operand must be a pointer.", &SI);
3435  Type *ElTy = PTy->getElementType();
3436  Assert(ElTy == SI.getOperand(0)->getType(),
3437         "Stored value type does not match pointer operand type!", &SI, ElTy);
3438  Assert(SI.getAlignment() <= Value::MaximumAlignment,
3439         "huge alignment values are unsupported", &SI);
3440  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3441  if (SI.isAtomic()) {
3442    Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3443               SI.getOrdering() != AtomicOrdering::AcquireRelease,
3444           "Store cannot have Acquire ordering", &SI);
3445    Assert(SI.getAlignment() != 0,
3446           "Atomic store must specify explicit alignment", &SI);
3447    Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3448           "atomic store operand must have integer, pointer, or floating point "
3449           "type!",
3450           ElTy, &SI);
3451    checkAtomicMemAccessSize(ElTy, &SI);
3452  } else {
3453    Assert(SI.getSyncScopeID() == SyncScope::System,
3454           "Non-atomic store cannot have SynchronizationScope specified", &SI);
3455  }
3456  visitInstruction(SI);
3457}
3458
3459/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3460void Verifier::verifySwiftErrorCall(CallBase &Call,
3461                                    const Value *SwiftErrorVal) {
3462  unsigned Idx = 0;
3463  for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3464    if (*I == SwiftErrorVal) {
3465      Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3466             "swifterror value when used in a callsite should be marked "
3467             "with swifterror attribute",
3468             SwiftErrorVal, Call);
3469    }
3470  }
3471}
3472
3473void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3474  // Check that swifterror value is only used by loads, stores, or as
3475  // a swifterror argument.
3476  for (const User *U : SwiftErrorVal->users()) {
3477    Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3478           isa<InvokeInst>(U),
3479           "swifterror value can only be loaded and stored from, or "
3480           "as a swifterror argument!",
3481           SwiftErrorVal, U);
3482    // If it is used by a store, check it is the second operand.
3483    if (auto StoreI = dyn_cast<StoreInst>(U))
3484      Assert(StoreI->getOperand(1) == SwiftErrorVal,
3485             "swifterror value should be the second operand when used "
3486             "by stores", SwiftErrorVal, U);
3487    if (auto *Call = dyn_cast<CallBase>(U))
3488      verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3489  }
3490}
3491
3492void Verifier::visitAllocaInst(AllocaInst &AI) {
3493  SmallPtrSet<Type*, 4> Visited;
3494  PointerType *PTy = AI.getType();
3495  // TODO: Relax this restriction?
3496  Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3497         "Allocation instruction pointer not in the stack address space!",
3498         &AI);
3499  Assert(AI.getAllocatedType()->isSized(&Visited),
3500         "Cannot allocate unsized type", &AI);
3501  Assert(AI.getArraySize()->getType()->isIntegerTy(),
3502         "Alloca array size must have integer type", &AI);
3503  Assert(AI.getAlignment() <= Value::MaximumAlignment,
3504         "huge alignment values are unsupported", &AI);
3505
3506  if (AI.isSwiftError()) {
3507    verifySwiftErrorValue(&AI);
3508  }
3509
3510  visitInstruction(AI);
3511}
3512
3513void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3514
3515  // FIXME: more conditions???
3516  Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3517         "cmpxchg instructions must be atomic.", &CXI);
3518  Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3519         "cmpxchg instructions must be atomic.", &CXI);
3520  Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3521         "cmpxchg instructions cannot be unordered.", &CXI);
3522  Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3523         "cmpxchg instructions cannot be unordered.", &CXI);
3524  Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3525         "cmpxchg instructions failure argument shall be no stronger than the "
3526         "success argument",
3527         &CXI);
3528  Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3529             CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3530         "cmpxchg failure ordering cannot include release semantics", &CXI);
3531
3532  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3533  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3534  Type *ElTy = PTy->getElementType();
3535  Assert(ElTy->isIntOrPtrTy(),
3536         "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3537  checkAtomicMemAccessSize(ElTy, &CXI);
3538  Assert(ElTy == CXI.getOperand(1)->getType(),
3539         "Expected value type does not match pointer operand type!", &CXI,
3540         ElTy);
3541  Assert(ElTy == CXI.getOperand(2)->getType(),
3542         "Stored value type does not match pointer operand type!", &CXI, ElTy);
3543  visitInstruction(CXI);
3544}
3545
3546void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3547  Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3548         "atomicrmw instructions must be atomic.", &RMWI);
3549  Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3550         "atomicrmw instructions cannot be unordered.", &RMWI);
3551  auto Op = RMWI.getOperation();
3552  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3553  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3554  Type *ElTy = PTy->getElementType();
3555  if (Op == AtomicRMWInst::Xchg) {
3556    Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3557           AtomicRMWInst::getOperationName(Op) +
3558           " operand must have integer or floating point type!",
3559           &RMWI, ElTy);
3560  } else if (AtomicRMWInst::isFPOperation(Op)) {
3561    Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3562           AtomicRMWInst::getOperationName(Op) +
3563           " operand must have floating point type!",
3564           &RMWI, ElTy);
3565  } else {
3566    Assert(ElTy->isIntegerTy(), "atomicrmw " +
3567           AtomicRMWInst::getOperationName(Op) +
3568           " operand must have integer type!",
3569           &RMWI, ElTy);
3570  }
3571  checkAtomicMemAccessSize(ElTy, &RMWI);
3572  Assert(ElTy == RMWI.getOperand(1)->getType(),
3573         "Argument value type does not match pointer operand type!", &RMWI,
3574         ElTy);
3575  Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3576         "Invalid binary operation!", &RMWI);
3577  visitInstruction(RMWI);
3578}
3579
3580void Verifier::visitFenceInst(FenceInst &FI) {
3581  const AtomicOrdering Ordering = FI.getOrdering();
3582  Assert(Ordering == AtomicOrdering::Acquire ||
3583             Ordering == AtomicOrdering::Release ||
3584             Ordering == AtomicOrdering::AcquireRelease ||
3585             Ordering == AtomicOrdering::SequentiallyConsistent,
3586         "fence instructions may only have acquire, release, acq_rel, or "
3587         "seq_cst ordering.",
3588         &FI);
3589  visitInstruction(FI);
3590}
3591
3592void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3593  Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3594                                          EVI.getIndices()) == EVI.getType(),
3595         "Invalid ExtractValueInst operands!", &EVI);
3596
3597  visitInstruction(EVI);
3598}
3599
3600void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3601  Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3602                                          IVI.getIndices()) ==
3603             IVI.getOperand(1)->getType(),
3604         "Invalid InsertValueInst operands!", &IVI);
3605
3606  visitInstruction(IVI);
3607}
3608
3609static Value *getParentPad(Value *EHPad) {
3610  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3611    return FPI->getParentPad();
3612
3613  return cast<CatchSwitchInst>(EHPad)->getParentPad();
3614}
3615
3616void Verifier::visitEHPadPredecessors(Instruction &I) {
3617  assert(I.isEHPad());
3618
3619  BasicBlock *BB = I.getParent();
3620  Function *F = BB->getParent();
3621
3622  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3623
3624  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3625    // The landingpad instruction defines its parent as a landing pad block. The
3626    // landing pad block may be branched to only by the unwind edge of an
3627    // invoke.
3628    for (BasicBlock *PredBB : predecessors(BB)) {
3629      const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3630      Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3631             "Block containing LandingPadInst must be jumped to "
3632             "only by the unwind edge of an invoke.",
3633             LPI);
3634    }
3635    return;
3636  }
3637  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3638    if (!pred_empty(BB))
3639      Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3640             "Block containg CatchPadInst must be jumped to "
3641             "only by its catchswitch.",
3642             CPI);
3643    Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3644           "Catchswitch cannot unwind to one of its catchpads",
3645           CPI->getCatchSwitch(), CPI);
3646    return;
3647  }
3648
3649  // Verify that each pred has a legal terminator with a legal to/from EH
3650  // pad relationship.
3651  Instruction *ToPad = &I;
3652  Value *ToPadParent = getParentPad(ToPad);
3653  for (BasicBlock *PredBB : predecessors(BB)) {
3654    Instruction *TI = PredBB->getTerminator();
3655    Value *FromPad;
3656    if (auto *II = dyn_cast<InvokeInst>(TI)) {
3657      Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3658             "EH pad must be jumped to via an unwind edge", ToPad, II);
3659      if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3660        FromPad = Bundle->Inputs[0];
3661      else
3662        FromPad = ConstantTokenNone::get(II->getContext());
3663    } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3664      FromPad = CRI->getOperand(0);
3665      Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3666    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3667      FromPad = CSI;
3668    } else {
3669      Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3670    }
3671
3672    // The edge may exit from zero or more nested pads.
3673    SmallSet<Value *, 8> Seen;
3674    for (;; FromPad = getParentPad(FromPad)) {
3675      Assert(FromPad != ToPad,
3676             "EH pad cannot handle exceptions raised within it", FromPad, TI);
3677      if (FromPad == ToPadParent) {
3678        // This is a legal unwind edge.
3679        break;
3680      }
3681      Assert(!isa<ConstantTokenNone>(FromPad),
3682             "A single unwind edge may only enter one EH pad", TI);
3683      Assert(Seen.insert(FromPad).second,
3684             "EH pad jumps through a cycle of pads", FromPad);
3685    }
3686  }
3687}
3688
3689void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3690  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3691  // isn't a cleanup.
3692  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3693         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3694
3695  visitEHPadPredecessors(LPI);
3696
3697  if (!LandingPadResultTy)
3698    LandingPadResultTy = LPI.getType();
3699  else
3700    Assert(LandingPadResultTy == LPI.getType(),
3701           "The landingpad instruction should have a consistent result type "
3702           "inside a function.",
3703           &LPI);
3704
3705  Function *F = LPI.getParent()->getParent();
3706  Assert(F->hasPersonalityFn(),
3707         "LandingPadInst needs to be in a function with a personality.", &LPI);
3708
3709  // The landingpad instruction must be the first non-PHI instruction in the
3710  // block.
3711  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3712         "LandingPadInst not the first non-PHI instruction in the block.",
3713         &LPI);
3714
3715  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3716    Constant *Clause = LPI.getClause(i);
3717    if (LPI.isCatch(i)) {
3718      Assert(isa<PointerType>(Clause->getType()),
3719             "Catch operand does not have pointer type!", &LPI);
3720    } else {
3721      Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3722      Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3723             "Filter operand is not an array of constants!", &LPI);
3724    }
3725  }
3726
3727  visitInstruction(LPI);
3728}
3729
3730void Verifier::visitResumeInst(ResumeInst &RI) {
3731  Assert(RI.getFunction()->hasPersonalityFn(),
3732         "ResumeInst needs to be in a function with a personality.", &RI);
3733
3734  if (!LandingPadResultTy)
3735    LandingPadResultTy = RI.getValue()->getType();
3736  else
3737    Assert(LandingPadResultTy == RI.getValue()->getType(),
3738           "The resume instruction should have a consistent result type "
3739           "inside a function.",
3740           &RI);
3741
3742  visitTerminator(RI);
3743}
3744
3745void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3746  BasicBlock *BB = CPI.getParent();
3747
3748  Function *F = BB->getParent();
3749  Assert(F->hasPersonalityFn(),
3750         "CatchPadInst needs to be in a function with a personality.", &CPI);
3751
3752  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3753         "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3754         CPI.getParentPad());
3755
3756  // The catchpad instruction must be the first non-PHI instruction in the
3757  // block.
3758  Assert(BB->getFirstNonPHI() == &CPI,
3759         "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3760
3761  visitEHPadPredecessors(CPI);
3762  visitFuncletPadInst(CPI);
3763}
3764
3765void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3766  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3767         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3768         CatchReturn.getOperand(0));
3769
3770  visitTerminator(CatchReturn);
3771}
3772
3773void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3774  BasicBlock *BB = CPI.getParent();
3775
3776  Function *F = BB->getParent();
3777  Assert(F->hasPersonalityFn(),
3778         "CleanupPadInst needs to be in a function with a personality.", &CPI);
3779
3780  // The cleanuppad instruction must be the first non-PHI instruction in the
3781  // block.
3782  Assert(BB->getFirstNonPHI() == &CPI,
3783         "CleanupPadInst not the first non-PHI instruction in the block.",
3784         &CPI);
3785
3786  auto *ParentPad = CPI.getParentPad();
3787  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3788         "CleanupPadInst has an invalid parent.", &CPI);
3789
3790  visitEHPadPredecessors(CPI);
3791  visitFuncletPadInst(CPI);
3792}
3793
3794void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3795  User *FirstUser = nullptr;
3796  Value *FirstUnwindPad = nullptr;
3797  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3798  SmallSet<FuncletPadInst *, 8> Seen;
3799
3800  while (!Worklist.empty()) {
3801    FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3802    Assert(Seen.insert(CurrentPad).second,
3803           "FuncletPadInst must not be nested within itself", CurrentPad);
3804    Value *UnresolvedAncestorPad = nullptr;
3805    for (User *U : CurrentPad->users()) {
3806      BasicBlock *UnwindDest;
3807      if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3808        UnwindDest = CRI->getUnwindDest();
3809      } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3810        // We allow catchswitch unwind to caller to nest
3811        // within an outer pad that unwinds somewhere else,
3812        // because catchswitch doesn't have a nounwind variant.
3813        // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3814        if (CSI->unwindsToCaller())
3815          continue;
3816        UnwindDest = CSI->getUnwindDest();
3817      } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3818        UnwindDest = II->getUnwindDest();
3819      } else if (isa<CallInst>(U)) {
3820        // Calls which don't unwind may be found inside funclet
3821        // pads that unwind somewhere else.  We don't *require*
3822        // such calls to be annotated nounwind.
3823        continue;
3824      } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3825        // The unwind dest for a cleanup can only be found by
3826        // recursive search.  Add it to the worklist, and we'll
3827        // search for its first use that determines where it unwinds.
3828        Worklist.push_back(CPI);
3829        continue;
3830      } else {
3831        Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3832        continue;
3833      }
3834
3835      Value *UnwindPad;
3836      bool ExitsFPI;
3837      if (UnwindDest) {
3838        UnwindPad = UnwindDest->getFirstNonPHI();
3839        if (!cast<Instruction>(UnwindPad)->isEHPad())
3840          continue;
3841        Value *UnwindParent = getParentPad(UnwindPad);
3842        // Ignore unwind edges that don't exit CurrentPad.
3843        if (UnwindParent == CurrentPad)
3844          continue;
3845        // Determine whether the original funclet pad is exited,
3846        // and if we are scanning nested pads determine how many
3847        // of them are exited so we can stop searching their
3848        // children.
3849        Value *ExitedPad = CurrentPad;
3850        ExitsFPI = false;
3851        do {
3852          if (ExitedPad == &FPI) {
3853            ExitsFPI = true;
3854            // Now we can resolve any ancestors of CurrentPad up to
3855            // FPI, but not including FPI since we need to make sure
3856            // to check all direct users of FPI for consistency.
3857            UnresolvedAncestorPad = &FPI;
3858            break;
3859          }
3860          Value *ExitedParent = getParentPad(ExitedPad);
3861          if (ExitedParent == UnwindParent) {
3862            // ExitedPad is the ancestor-most pad which this unwind
3863            // edge exits, so we can resolve up to it, meaning that
3864            // ExitedParent is the first ancestor still unresolved.
3865            UnresolvedAncestorPad = ExitedParent;
3866            break;
3867          }
3868          ExitedPad = ExitedParent;
3869        } while (!isa<ConstantTokenNone>(ExitedPad));
3870      } else {
3871        // Unwinding to caller exits all pads.
3872        UnwindPad = ConstantTokenNone::get(FPI.getContext());
3873        ExitsFPI = true;
3874        UnresolvedAncestorPad = &FPI;
3875      }
3876
3877      if (ExitsFPI) {
3878        // This unwind edge exits FPI.  Make sure it agrees with other
3879        // such edges.
3880        if (FirstUser) {
3881          Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3882                                              "pad must have the same unwind "
3883                                              "dest",
3884                 &FPI, U, FirstUser);
3885        } else {
3886          FirstUser = U;
3887          FirstUnwindPad = UnwindPad;
3888          // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3889          if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3890              getParentPad(UnwindPad) == getParentPad(&FPI))
3891            SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3892        }
3893      }
3894      // Make sure we visit all uses of FPI, but for nested pads stop as
3895      // soon as we know where they unwind to.
3896      if (CurrentPad != &FPI)
3897        break;
3898    }
3899    if (UnresolvedAncestorPad) {
3900      if (CurrentPad == UnresolvedAncestorPad) {
3901        // When CurrentPad is FPI itself, we don't mark it as resolved even if
3902        // we've found an unwind edge that exits it, because we need to verify
3903        // all direct uses of FPI.
3904        assert(CurrentPad == &FPI);
3905        continue;
3906      }
3907      // Pop off the worklist any nested pads that we've found an unwind
3908      // destination for.  The pads on the worklist are the uncles,
3909      // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3910      // for all ancestors of CurrentPad up to but not including
3911      // UnresolvedAncestorPad.
3912      Value *ResolvedPad = CurrentPad;
3913      while (!Worklist.empty()) {
3914        Value *UnclePad = Worklist.back();
3915        Value *AncestorPad = getParentPad(UnclePad);
3916        // Walk ResolvedPad up the ancestor list until we either find the
3917        // uncle's parent or the last resolved ancestor.
3918        while (ResolvedPad != AncestorPad) {
3919          Value *ResolvedParent = getParentPad(ResolvedPad);
3920          if (ResolvedParent == UnresolvedAncestorPad) {
3921            break;
3922          }
3923          ResolvedPad = ResolvedParent;
3924        }
3925        // If the resolved ancestor search didn't find the uncle's parent,
3926        // then the uncle is not yet resolved.
3927        if (ResolvedPad != AncestorPad)
3928          break;
3929        // This uncle is resolved, so pop it from the worklist.
3930        Worklist.pop_back();
3931      }
3932    }
3933  }
3934
3935  if (FirstUnwindPad) {
3936    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3937      BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3938      Value *SwitchUnwindPad;
3939      if (SwitchUnwindDest)
3940        SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3941      else
3942        SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3943      Assert(SwitchUnwindPad == FirstUnwindPad,
3944             "Unwind edges out of a catch must have the same unwind dest as "
3945             "the parent catchswitch",
3946             &FPI, FirstUser, CatchSwitch);
3947    }
3948  }
3949
3950  visitInstruction(FPI);
3951}
3952
3953void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3954  BasicBlock *BB = CatchSwitch.getParent();
3955
3956  Function *F = BB->getParent();
3957  Assert(F->hasPersonalityFn(),
3958         "CatchSwitchInst needs to be in a function with a personality.",
3959         &CatchSwitch);
3960
3961  // The catchswitch instruction must be the first non-PHI instruction in the
3962  // block.
3963  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3964         "CatchSwitchInst not the first non-PHI instruction in the block.",
3965         &CatchSwitch);
3966
3967  auto *ParentPad = CatchSwitch.getParentPad();
3968  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3969         "CatchSwitchInst has an invalid parent.", ParentPad);
3970
3971  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3972    Instruction *I = UnwindDest->getFirstNonPHI();
3973    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3974           "CatchSwitchInst must unwind to an EH block which is not a "
3975           "landingpad.",
3976           &CatchSwitch);
3977
3978    // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3979    if (getParentPad(I) == ParentPad)
3980      SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3981  }
3982
3983  Assert(CatchSwitch.getNumHandlers() != 0,
3984         "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3985
3986  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3987    Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3988           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3989  }
3990
3991  visitEHPadPredecessors(CatchSwitch);
3992  visitTerminator(CatchSwitch);
3993}
3994
3995void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3996  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3997         "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3998         CRI.getOperand(0));
3999
4000  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4001    Instruction *I = UnwindDest->getFirstNonPHI();
4002    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4003           "CleanupReturnInst must unwind to an EH block which is not a "
4004           "landingpad.",
4005           &CRI);
4006  }
4007
4008  visitTerminator(CRI);
4009}
4010
4011void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4012  Instruction *Op = cast<Instruction>(I.getOperand(i));
4013  // If the we have an invalid invoke, don't try to compute the dominance.
4014  // We already reject it in the invoke specific checks and the dominance
4015  // computation doesn't handle multiple edges.
4016  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4017    if (II->getNormalDest() == II->getUnwindDest())
4018      return;
4019  }
4020
4021  // Quick check whether the def has already been encountered in the same block.
4022  // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4023  // uses are defined to happen on the incoming edge, not at the instruction.
4024  //
4025  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4026  // wrapping an SSA value, assert that we've already encountered it.  See
4027  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4028  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4029    return;
4030
4031  const Use &U = I.getOperandUse(i);
4032  Assert(DT.dominates(Op, U),
4033         "Instruction does not dominate all uses!", Op, &I);
4034}
4035
4036void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4037  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4038         "apply only to pointer types", &I);
4039  Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4040         "dereferenceable, dereferenceable_or_null apply only to load"
4041         " and inttoptr instructions, use attributes for calls or invokes", &I);
4042  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4043         "take one operand!", &I);
4044  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4045  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4046         "dereferenceable_or_null metadata value must be an i64!", &I);
4047}
4048
4049void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4050  Assert(MD->getNumOperands() >= 2,
4051         "!prof annotations should have no less than 2 operands", MD);
4052
4053  // Check first operand.
4054  Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4055  Assert(isa<MDString>(MD->getOperand(0)),
4056         "expected string with name of the !prof annotation", MD);
4057  MDString *MDS = cast<MDString>(MD->getOperand(0));
4058  StringRef ProfName = MDS->getString();
4059
4060  // Check consistency of !prof branch_weights metadata.
4061  if (ProfName.equals("branch_weights")) {
4062    unsigned ExpectedNumOperands = 0;
4063    if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4064      ExpectedNumOperands = BI->getNumSuccessors();
4065    else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4066      ExpectedNumOperands = SI->getNumSuccessors();
4067    else if (isa<CallInst>(&I) || isa<InvokeInst>(&I))
4068      ExpectedNumOperands = 1;
4069    else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4070      ExpectedNumOperands = IBI->getNumDestinations();
4071    else if (isa<SelectInst>(&I))
4072      ExpectedNumOperands = 2;
4073    else
4074      CheckFailed("!prof branch_weights are not allowed for this instruction",
4075                  MD);
4076
4077    Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4078           "Wrong number of operands", MD);
4079    for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4080      auto &MDO = MD->getOperand(i);
4081      Assert(MDO, "second operand should not be null", MD);
4082      Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4083             "!prof brunch_weights operand is not a const int");
4084    }
4085  }
4086}
4087
4088/// verifyInstruction - Verify that an instruction is well formed.
4089///
4090void Verifier::visitInstruction(Instruction &I) {
4091  BasicBlock *BB = I.getParent();
4092  Assert(BB, "Instruction not embedded in basic block!", &I);
4093
4094  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4095    for (User *U : I.users()) {
4096      Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4097             "Only PHI nodes may reference their own value!", &I);
4098    }
4099  }
4100
4101  // Check that void typed values don't have names
4102  Assert(!I.getType()->isVoidTy() || !I.hasName(),
4103         "Instruction has a name, but provides a void value!", &I);
4104
4105  // Check that the return value of the instruction is either void or a legal
4106  // value type.
4107  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4108         "Instruction returns a non-scalar type!", &I);
4109
4110  // Check that the instruction doesn't produce metadata. Calls are already
4111  // checked against the callee type.
4112  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4113         "Invalid use of metadata!", &I);
4114
4115  // Check that all uses of the instruction, if they are instructions
4116  // themselves, actually have parent basic blocks.  If the use is not an
4117  // instruction, it is an error!
4118  for (Use &U : I.uses()) {
4119    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4120      Assert(Used->getParent() != nullptr,
4121             "Instruction referencing"
4122             " instruction not embedded in a basic block!",
4123             &I, Used);
4124    else {
4125      CheckFailed("Use of instruction is not an instruction!", U);
4126      return;
4127    }
4128  }
4129
4130  // Get a pointer to the call base of the instruction if it is some form of
4131  // call.
4132  const CallBase *CBI = dyn_cast<CallBase>(&I);
4133
4134  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4135    Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4136
4137    // Check to make sure that only first-class-values are operands to
4138    // instructions.
4139    if (!I.getOperand(i)->getType()->isFirstClassType()) {
4140      Assert(false, "Instruction operands must be first-class values!", &I);
4141    }
4142
4143    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4144      // Check to make sure that the "address of" an intrinsic function is never
4145      // taken.
4146      Assert(!F->isIntrinsic() ||
4147                 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4148             "Cannot take the address of an intrinsic!", &I);
4149      Assert(
4150          !F->isIntrinsic() || isa<CallInst>(I) ||
4151              F->getIntrinsicID() == Intrinsic::donothing ||
4152              F->getIntrinsicID() == Intrinsic::coro_resume ||
4153              F->getIntrinsicID() == Intrinsic::coro_destroy ||
4154              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4155              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4156              F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4157              F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4158          "Cannot invoke an intrinsic other than donothing, patchpoint, "
4159          "statepoint, coro_resume or coro_destroy",
4160          &I);
4161      Assert(F->getParent() == &M, "Referencing function in another module!",
4162             &I, &M, F, F->getParent());
4163    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4164      Assert(OpBB->getParent() == BB->getParent(),
4165             "Referring to a basic block in another function!", &I);
4166    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4167      Assert(OpArg->getParent() == BB->getParent(),
4168             "Referring to an argument in another function!", &I);
4169    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4170      Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4171             &M, GV, GV->getParent());
4172    } else if (isa<Instruction>(I.getOperand(i))) {
4173      verifyDominatesUse(I, i);
4174    } else if (isa<InlineAsm>(I.getOperand(i))) {
4175      Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4176             "Cannot take the address of an inline asm!", &I);
4177    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4178      if (CE->getType()->isPtrOrPtrVectorTy() ||
4179          !DL.getNonIntegralAddressSpaces().empty()) {
4180        // If we have a ConstantExpr pointer, we need to see if it came from an
4181        // illegal bitcast.  If the datalayout string specifies non-integral
4182        // address spaces then we also need to check for illegal ptrtoint and
4183        // inttoptr expressions.
4184        visitConstantExprsRecursively(CE);
4185      }
4186    }
4187  }
4188
4189  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4190    Assert(I.getType()->isFPOrFPVectorTy(),
4191           "fpmath requires a floating point result!", &I);
4192    Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4193    if (ConstantFP *CFP0 =
4194            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4195      const APFloat &Accuracy = CFP0->getValueAPF();
4196      Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4197             "fpmath accuracy must have float type", &I);
4198      Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4199             "fpmath accuracy not a positive number!", &I);
4200    } else {
4201      Assert(false, "invalid fpmath accuracy!", &I);
4202    }
4203  }
4204
4205  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4206    Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4207           "Ranges are only for loads, calls and invokes!", &I);
4208    visitRangeMetadata(I, Range, I.getType());
4209  }
4210
4211  if (I.getMetadata(LLVMContext::MD_nonnull)) {
4212    Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4213           &I);
4214    Assert(isa<LoadInst>(I),
4215           "nonnull applies only to load instructions, use attributes"
4216           " for calls or invokes",
4217           &I);
4218  }
4219
4220  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4221    visitDereferenceableMetadata(I, MD);
4222
4223  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4224    visitDereferenceableMetadata(I, MD);
4225
4226  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4227    TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4228
4229  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4230    Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4231           &I);
4232    Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4233           "use attributes for calls or invokes", &I);
4234    Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4235    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4236    Assert(CI && CI->getType()->isIntegerTy(64),
4237           "align metadata value must be an i64!", &I);
4238    uint64_t Align = CI->getZExtValue();
4239    Assert(isPowerOf2_64(Align),
4240           "align metadata value must be a power of 2!", &I);
4241    Assert(Align <= Value::MaximumAlignment,
4242           "alignment is larger that implementation defined limit", &I);
4243  }
4244
4245  if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4246    visitProfMetadata(I, MD);
4247
4248  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4249    AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4250    visitMDNode(*N);
4251  }
4252
4253  if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4254    verifyFragmentExpression(*DII);
4255    verifyNotEntryValue(*DII);
4256  }
4257
4258  InstsInThisBlock.insert(&I);
4259}
4260
4261/// Allow intrinsics to be verified in different ways.
4262void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4263  Function *IF = Call.getCalledFunction();
4264  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4265         IF);
4266
4267  // Verify that the intrinsic prototype lines up with what the .td files
4268  // describe.
4269  FunctionType *IFTy = IF->getFunctionType();
4270  bool IsVarArg = IFTy->isVarArg();
4271
4272  SmallVector<Intrinsic::IITDescriptor, 8> Table;
4273  getIntrinsicInfoTableEntries(ID, Table);
4274  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4275
4276  // Walk the descriptors to extract overloaded types.
4277  SmallVector<Type *, 4> ArgTys;
4278  Intrinsic::MatchIntrinsicTypesResult Res =
4279      Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4280  Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4281         "Intrinsic has incorrect return type!", IF);
4282  Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4283         "Intrinsic has incorrect argument type!", IF);
4284
4285  // Verify if the intrinsic call matches the vararg property.
4286  if (IsVarArg)
4287    Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4288           "Intrinsic was not defined with variable arguments!", IF);
4289  else
4290    Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4291           "Callsite was not defined with variable arguments!", IF);
4292
4293  // All descriptors should be absorbed by now.
4294  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4295
4296  // Now that we have the intrinsic ID and the actual argument types (and we
4297  // know they are legal for the intrinsic!) get the intrinsic name through the
4298  // usual means.  This allows us to verify the mangling of argument types into
4299  // the name.
4300  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4301  Assert(ExpectedName == IF->getName(),
4302         "Intrinsic name not mangled correctly for type arguments! "
4303         "Should be: " +
4304             ExpectedName,
4305         IF);
4306
4307  // If the intrinsic takes MDNode arguments, verify that they are either global
4308  // or are local to *this* function.
4309  for (Value *V : Call.args())
4310    if (auto *MD = dyn_cast<MetadataAsValue>(V))
4311      visitMetadataAsValue(*MD, Call.getCaller());
4312
4313  switch (ID) {
4314  default:
4315    break;
4316  case Intrinsic::coro_id: {
4317    auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4318    if (isa<ConstantPointerNull>(InfoArg))
4319      break;
4320    auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4321    Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4322      "info argument of llvm.coro.begin must refer to an initialized "
4323      "constant");
4324    Constant *Init = GV->getInitializer();
4325    Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4326      "info argument of llvm.coro.begin must refer to either a struct or "
4327      "an array");
4328    break;
4329  }
4330#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC, DAGN)                  \
4331  case Intrinsic::INTRINSIC:
4332#include "llvm/IR/ConstrainedOps.def"
4333    visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4334    break;
4335  case Intrinsic::dbg_declare: // llvm.dbg.declare
4336    Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4337           "invalid llvm.dbg.declare intrinsic call 1", Call);
4338    visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4339    break;
4340  case Intrinsic::dbg_addr: // llvm.dbg.addr
4341    visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4342    break;
4343  case Intrinsic::dbg_value: // llvm.dbg.value
4344    visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4345    break;
4346  case Intrinsic::dbg_label: // llvm.dbg.label
4347    visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4348    break;
4349  case Intrinsic::memcpy:
4350  case Intrinsic::memmove:
4351  case Intrinsic::memset: {
4352    const auto *MI = cast<MemIntrinsic>(&Call);
4353    auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4354      return Alignment == 0 || isPowerOf2_32(Alignment);
4355    };
4356    Assert(IsValidAlignment(MI->getDestAlignment()),
4357           "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4358           Call);
4359    if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4360      Assert(IsValidAlignment(MTI->getSourceAlignment()),
4361             "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4362             Call);
4363    }
4364
4365    break;
4366  }
4367  case Intrinsic::memcpy_element_unordered_atomic:
4368  case Intrinsic::memmove_element_unordered_atomic:
4369  case Intrinsic::memset_element_unordered_atomic: {
4370    const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4371
4372    ConstantInt *ElementSizeCI =
4373        cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4374    const APInt &ElementSizeVal = ElementSizeCI->getValue();
4375    Assert(ElementSizeVal.isPowerOf2(),
4376           "element size of the element-wise atomic memory intrinsic "
4377           "must be a power of 2",
4378           Call);
4379
4380    if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4381      uint64_t Length = LengthCI->getZExtValue();
4382      uint64_t ElementSize = AMI->getElementSizeInBytes();
4383      Assert((Length % ElementSize) == 0,
4384             "constant length must be a multiple of the element size in the "
4385             "element-wise atomic memory intrinsic",
4386             Call);
4387    }
4388
4389    auto IsValidAlignment = [&](uint64_t Alignment) {
4390      return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4391    };
4392    uint64_t DstAlignment = AMI->getDestAlignment();
4393    Assert(IsValidAlignment(DstAlignment),
4394           "incorrect alignment of the destination argument", Call);
4395    if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4396      uint64_t SrcAlignment = AMT->getSourceAlignment();
4397      Assert(IsValidAlignment(SrcAlignment),
4398             "incorrect alignment of the source argument", Call);
4399    }
4400    break;
4401  }
4402  case Intrinsic::gcroot:
4403  case Intrinsic::gcwrite:
4404  case Intrinsic::gcread:
4405    if (ID == Intrinsic::gcroot) {
4406      AllocaInst *AI =
4407          dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4408      Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4409      Assert(isa<Constant>(Call.getArgOperand(1)),
4410             "llvm.gcroot parameter #2 must be a constant.", Call);
4411      if (!AI->getAllocatedType()->isPointerTy()) {
4412        Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4413               "llvm.gcroot parameter #1 must either be a pointer alloca, "
4414               "or argument #2 must be a non-null constant.",
4415               Call);
4416      }
4417    }
4418
4419    Assert(Call.getParent()->getParent()->hasGC(),
4420           "Enclosing function does not use GC.", Call);
4421    break;
4422  case Intrinsic::init_trampoline:
4423    Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4424           "llvm.init_trampoline parameter #2 must resolve to a function.",
4425           Call);
4426    break;
4427  case Intrinsic::prefetch:
4428    Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4429           cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4430           "invalid arguments to llvm.prefetch", Call);
4431    break;
4432  case Intrinsic::stackprotector:
4433    Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4434           "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4435    break;
4436  case Intrinsic::localescape: {
4437    BasicBlock *BB = Call.getParent();
4438    Assert(BB == &BB->getParent()->front(),
4439           "llvm.localescape used outside of entry block", Call);
4440    Assert(!SawFrameEscape,
4441           "multiple calls to llvm.localescape in one function", Call);
4442    for (Value *Arg : Call.args()) {
4443      if (isa<ConstantPointerNull>(Arg))
4444        continue; // Null values are allowed as placeholders.
4445      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4446      Assert(AI && AI->isStaticAlloca(),
4447             "llvm.localescape only accepts static allocas", Call);
4448    }
4449    FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4450    SawFrameEscape = true;
4451    break;
4452  }
4453  case Intrinsic::localrecover: {
4454    Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4455    Function *Fn = dyn_cast<Function>(FnArg);
4456    Assert(Fn && !Fn->isDeclaration(),
4457           "llvm.localrecover first "
4458           "argument must be function defined in this module",
4459           Call);
4460    auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4461    auto &Entry = FrameEscapeInfo[Fn];
4462    Entry.second = unsigned(
4463        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4464    break;
4465  }
4466
4467  case Intrinsic::experimental_gc_statepoint:
4468    if (auto *CI = dyn_cast<CallInst>(&Call))
4469      Assert(!CI->isInlineAsm(),
4470             "gc.statepoint support for inline assembly unimplemented", CI);
4471    Assert(Call.getParent()->getParent()->hasGC(),
4472           "Enclosing function does not use GC.", Call);
4473
4474    verifyStatepoint(Call);
4475    break;
4476  case Intrinsic::experimental_gc_result: {
4477    Assert(Call.getParent()->getParent()->hasGC(),
4478           "Enclosing function does not use GC.", Call);
4479    // Are we tied to a statepoint properly?
4480    const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4481    const Function *StatepointFn =
4482        StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4483    Assert(StatepointFn && StatepointFn->isDeclaration() &&
4484               StatepointFn->getIntrinsicID() ==
4485                   Intrinsic::experimental_gc_statepoint,
4486           "gc.result operand #1 must be from a statepoint", Call,
4487           Call.getArgOperand(0));
4488
4489    // Assert that result type matches wrapped callee.
4490    const Value *Target = StatepointCall->getArgOperand(2);
4491    auto *PT = cast<PointerType>(Target->getType());
4492    auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4493    Assert(Call.getType() == TargetFuncType->getReturnType(),
4494           "gc.result result type does not match wrapped callee", Call);
4495    break;
4496  }
4497  case Intrinsic::experimental_gc_relocate: {
4498    Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4499
4500    Assert(isa<PointerType>(Call.getType()->getScalarType()),
4501           "gc.relocate must return a pointer or a vector of pointers", Call);
4502
4503    // Check that this relocate is correctly tied to the statepoint
4504
4505    // This is case for relocate on the unwinding path of an invoke statepoint
4506    if (LandingPadInst *LandingPad =
4507            dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4508
4509      const BasicBlock *InvokeBB =
4510          LandingPad->getParent()->getUniquePredecessor();
4511
4512      // Landingpad relocates should have only one predecessor with invoke
4513      // statepoint terminator
4514      Assert(InvokeBB, "safepoints should have unique landingpads",
4515             LandingPad->getParent());
4516      Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4517             InvokeBB);
4518      Assert(isStatepoint(InvokeBB->getTerminator()),
4519             "gc relocate should be linked to a statepoint", InvokeBB);
4520    } else {
4521      // In all other cases relocate should be tied to the statepoint directly.
4522      // This covers relocates on a normal return path of invoke statepoint and
4523      // relocates of a call statepoint.
4524      auto Token = Call.getArgOperand(0);
4525      Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4526             "gc relocate is incorrectly tied to the statepoint", Call, Token);
4527    }
4528
4529    // Verify rest of the relocate arguments.
4530    const CallBase &StatepointCall =
4531        *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4532
4533    // Both the base and derived must be piped through the safepoint.
4534    Value *Base = Call.getArgOperand(1);
4535    Assert(isa<ConstantInt>(Base),
4536           "gc.relocate operand #2 must be integer offset", Call);
4537
4538    Value *Derived = Call.getArgOperand(2);
4539    Assert(isa<ConstantInt>(Derived),
4540           "gc.relocate operand #3 must be integer offset", Call);
4541
4542    const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4543    const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4544    // Check the bounds
4545    Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4546           "gc.relocate: statepoint base index out of bounds", Call);
4547    Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4548           "gc.relocate: statepoint derived index out of bounds", Call);
4549
4550    // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4551    // section of the statepoint's argument.
4552    Assert(StatepointCall.arg_size() > 0,
4553           "gc.statepoint: insufficient arguments");
4554    Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4555           "gc.statement: number of call arguments must be constant integer");
4556    const unsigned NumCallArgs =
4557        cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4558    Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4559           "gc.statepoint: mismatch in number of call arguments");
4560    Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4561           "gc.statepoint: number of transition arguments must be "
4562           "a constant integer");
4563    const int NumTransitionArgs =
4564        cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4565            ->getZExtValue();
4566    const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4567    Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4568           "gc.statepoint: number of deoptimization arguments must be "
4569           "a constant integer");
4570    const int NumDeoptArgs =
4571        cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4572            ->getZExtValue();
4573    const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4574    const int GCParamArgsEnd = StatepointCall.arg_size();
4575    Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4576           "gc.relocate: statepoint base index doesn't fall within the "
4577           "'gc parameters' section of the statepoint call",
4578           Call);
4579    Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4580           "gc.relocate: statepoint derived index doesn't fall within the "
4581           "'gc parameters' section of the statepoint call",
4582           Call);
4583
4584    // Relocated value must be either a pointer type or vector-of-pointer type,
4585    // but gc_relocate does not need to return the same pointer type as the
4586    // relocated pointer. It can be casted to the correct type later if it's
4587    // desired. However, they must have the same address space and 'vectorness'
4588    GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4589    Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4590           "gc.relocate: relocated value must be a gc pointer", Call);
4591
4592    auto ResultType = Call.getType();
4593    auto DerivedType = Relocate.getDerivedPtr()->getType();
4594    Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4595           "gc.relocate: vector relocates to vector and pointer to pointer",
4596           Call);
4597    Assert(
4598        ResultType->getPointerAddressSpace() ==
4599            DerivedType->getPointerAddressSpace(),
4600        "gc.relocate: relocating a pointer shouldn't change its address space",
4601        Call);
4602    break;
4603  }
4604  case Intrinsic::eh_exceptioncode:
4605  case Intrinsic::eh_exceptionpointer: {
4606    Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4607           "eh.exceptionpointer argument must be a catchpad", Call);
4608    break;
4609  }
4610  case Intrinsic::masked_load: {
4611    Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4612           Call);
4613
4614    Value *Ptr = Call.getArgOperand(0);
4615    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4616    Value *Mask = Call.getArgOperand(2);
4617    Value *PassThru = Call.getArgOperand(3);
4618    Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4619           Call);
4620    Assert(Alignment->getValue().isPowerOf2(),
4621           "masked_load: alignment must be a power of 2", Call);
4622
4623    // DataTy is the overloaded type
4624    Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4625    Assert(DataTy == Call.getType(),
4626           "masked_load: return must match pointer type", Call);
4627    Assert(PassThru->getType() == DataTy,
4628           "masked_load: pass through and data type must match", Call);
4629    Assert(Mask->getType()->getVectorNumElements() ==
4630               DataTy->getVectorNumElements(),
4631           "masked_load: vector mask must be same length as data", Call);
4632    break;
4633  }
4634  case Intrinsic::masked_store: {
4635    Value *Val = Call.getArgOperand(0);
4636    Value *Ptr = Call.getArgOperand(1);
4637    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4638    Value *Mask = Call.getArgOperand(3);
4639    Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4640           Call);
4641    Assert(Alignment->getValue().isPowerOf2(),
4642           "masked_store: alignment must be a power of 2", Call);
4643
4644    // DataTy is the overloaded type
4645    Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4646    Assert(DataTy == Val->getType(),
4647           "masked_store: storee must match pointer type", Call);
4648    Assert(Mask->getType()->getVectorNumElements() ==
4649               DataTy->getVectorNumElements(),
4650           "masked_store: vector mask must be same length as data", Call);
4651    break;
4652  }
4653
4654  case Intrinsic::experimental_guard: {
4655    Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4656    Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4657           "experimental_guard must have exactly one "
4658           "\"deopt\" operand bundle");
4659    break;
4660  }
4661
4662  case Intrinsic::experimental_deoptimize: {
4663    Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4664           Call);
4665    Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4666           "experimental_deoptimize must have exactly one "
4667           "\"deopt\" operand bundle");
4668    Assert(Call.getType() == Call.getFunction()->getReturnType(),
4669           "experimental_deoptimize return type must match caller return type");
4670
4671    if (isa<CallInst>(Call)) {
4672      auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4673      Assert(RI,
4674             "calls to experimental_deoptimize must be followed by a return");
4675
4676      if (!Call.getType()->isVoidTy() && RI)
4677        Assert(RI->getReturnValue() == &Call,
4678               "calls to experimental_deoptimize must be followed by a return "
4679               "of the value computed by experimental_deoptimize");
4680    }
4681
4682    break;
4683  }
4684  case Intrinsic::sadd_sat:
4685  case Intrinsic::uadd_sat:
4686  case Intrinsic::ssub_sat:
4687  case Intrinsic::usub_sat: {
4688    Value *Op1 = Call.getArgOperand(0);
4689    Value *Op2 = Call.getArgOperand(1);
4690    Assert(Op1->getType()->isIntOrIntVectorTy(),
4691           "first operand of [us][add|sub]_sat must be an int type or vector "
4692           "of ints");
4693    Assert(Op2->getType()->isIntOrIntVectorTy(),
4694           "second operand of [us][add|sub]_sat must be an int type or vector "
4695           "of ints");
4696    break;
4697  }
4698  case Intrinsic::smul_fix:
4699  case Intrinsic::smul_fix_sat:
4700  case Intrinsic::umul_fix:
4701  case Intrinsic::umul_fix_sat:
4702  case Intrinsic::sdiv_fix:
4703  case Intrinsic::udiv_fix: {
4704    Value *Op1 = Call.getArgOperand(0);
4705    Value *Op2 = Call.getArgOperand(1);
4706    Assert(Op1->getType()->isIntOrIntVectorTy(),
4707           "first operand of [us][mul|div]_fix[_sat] must be an int type or "
4708           "vector of ints");
4709    Assert(Op2->getType()->isIntOrIntVectorTy(),
4710           "second operand of [us][mul|div]_fix[_sat] must be an int type or "
4711           "vector of ints");
4712
4713    auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4714    Assert(Op3->getType()->getBitWidth() <= 32,
4715           "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
4716
4717    if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
4718        ID == Intrinsic::sdiv_fix) {
4719      Assert(
4720          Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4721          "the scale of s[mul|div]_fix[_sat] must be less than the width of "
4722          "the operands");
4723    } else {
4724      Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4725             "the scale of u[mul|div]_fix[_sat] must be less than or equal "
4726             "to the width of the operands");
4727    }
4728    break;
4729  }
4730  case Intrinsic::lround:
4731  case Intrinsic::llround:
4732  case Intrinsic::lrint:
4733  case Intrinsic::llrint: {
4734    Type *ValTy = Call.getArgOperand(0)->getType();
4735    Type *ResultTy = Call.getType();
4736    Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4737           "Intrinsic does not support vectors", &Call);
4738    break;
4739  }
4740  };
4741}
4742
4743/// Carefully grab the subprogram from a local scope.
4744///
4745/// This carefully grabs the subprogram from a local scope, avoiding the
4746/// built-in assertions that would typically fire.
4747static DISubprogram *getSubprogram(Metadata *LocalScope) {
4748  if (!LocalScope)
4749    return nullptr;
4750
4751  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4752    return SP;
4753
4754  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4755    return getSubprogram(LB->getRawScope());
4756
4757  // Just return null; broken scope chains are checked elsewhere.
4758  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4759  return nullptr;
4760}
4761
4762void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4763  unsigned NumOperands;
4764  bool HasRoundingMD;
4765  switch (FPI.getIntrinsicID()) {
4766#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
4767  case Intrinsic::INTRINSIC:                                                   \
4768    NumOperands = NARG;                                                        \
4769    HasRoundingMD = ROUND_MODE;                                                \
4770    break;
4771#include "llvm/IR/ConstrainedOps.def"
4772  default:
4773    llvm_unreachable("Invalid constrained FP intrinsic!");
4774  }
4775  NumOperands += (1 + HasRoundingMD);
4776  // Compare intrinsics carry an extra predicate metadata operand.
4777  if (isa<ConstrainedFPCmpIntrinsic>(FPI))
4778    NumOperands += 1;
4779  Assert((FPI.getNumArgOperands() == NumOperands),
4780         "invalid arguments for constrained FP intrinsic", &FPI);
4781
4782  switch (FPI.getIntrinsicID()) {
4783  case Intrinsic::experimental_constrained_lrint:
4784  case Intrinsic::experimental_constrained_llrint: {
4785    Type *ValTy = FPI.getArgOperand(0)->getType();
4786    Type *ResultTy = FPI.getType();
4787    Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4788           "Intrinsic does not support vectors", &FPI);
4789  }
4790    break;
4791
4792  case Intrinsic::experimental_constrained_lround:
4793  case Intrinsic::experimental_constrained_llround: {
4794    Type *ValTy = FPI.getArgOperand(0)->getType();
4795    Type *ResultTy = FPI.getType();
4796    Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4797           "Intrinsic does not support vectors", &FPI);
4798    break;
4799  }
4800
4801  case Intrinsic::experimental_constrained_fcmp:
4802  case Intrinsic::experimental_constrained_fcmps: {
4803    auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
4804    Assert(CmpInst::isFPPredicate(Pred),
4805           "invalid predicate for constrained FP comparison intrinsic", &FPI);
4806    break;
4807  }
4808
4809  case Intrinsic::experimental_constrained_fptosi:
4810  case Intrinsic::experimental_constrained_fptoui: {
4811    Value *Operand = FPI.getArgOperand(0);
4812    uint64_t NumSrcElem = 0;
4813    Assert(Operand->getType()->isFPOrFPVectorTy(),
4814           "Intrinsic first argument must be floating point", &FPI);
4815    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4816      NumSrcElem = OperandT->getNumElements();
4817    }
4818
4819    Operand = &FPI;
4820    Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
4821           "Intrinsic first argument and result disagree on vector use", &FPI);
4822    Assert(Operand->getType()->isIntOrIntVectorTy(),
4823           "Intrinsic result must be an integer", &FPI);
4824    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4825      Assert(NumSrcElem == OperandT->getNumElements(),
4826             "Intrinsic first argument and result vector lengths must be equal",
4827             &FPI);
4828    }
4829  }
4830    break;
4831
4832  case Intrinsic::experimental_constrained_sitofp:
4833  case Intrinsic::experimental_constrained_uitofp: {
4834    Value *Operand = FPI.getArgOperand(0);
4835    uint64_t NumSrcElem = 0;
4836    Assert(Operand->getType()->isIntOrIntVectorTy(),
4837           "Intrinsic first argument must be integer", &FPI);
4838    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4839      NumSrcElem = OperandT->getNumElements();
4840    }
4841
4842    Operand = &FPI;
4843    Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
4844           "Intrinsic first argument and result disagree on vector use", &FPI);
4845    Assert(Operand->getType()->isFPOrFPVectorTy(),
4846           "Intrinsic result must be a floating point", &FPI);
4847    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4848      Assert(NumSrcElem == OperandT->getNumElements(),
4849             "Intrinsic first argument and result vector lengths must be equal",
4850             &FPI);
4851    }
4852  } break;
4853
4854  case Intrinsic::experimental_constrained_fptrunc:
4855  case Intrinsic::experimental_constrained_fpext: {
4856    Value *Operand = FPI.getArgOperand(0);
4857    Type *OperandTy = Operand->getType();
4858    Value *Result = &FPI;
4859    Type *ResultTy = Result->getType();
4860    Assert(OperandTy->isFPOrFPVectorTy(),
4861           "Intrinsic first argument must be FP or FP vector", &FPI);
4862    Assert(ResultTy->isFPOrFPVectorTy(),
4863           "Intrinsic result must be FP or FP vector", &FPI);
4864    Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
4865           "Intrinsic first argument and result disagree on vector use", &FPI);
4866    if (OperandTy->isVectorTy()) {
4867      auto *OperandVecTy = cast<VectorType>(OperandTy);
4868      auto *ResultVecTy = cast<VectorType>(ResultTy);
4869      Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
4870             "Intrinsic first argument and result vector lengths must be equal",
4871             &FPI);
4872    }
4873    if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4874      Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
4875             "Intrinsic first argument's type must be larger than result type",
4876             &FPI);
4877    } else {
4878      Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
4879             "Intrinsic first argument's type must be smaller than result type",
4880             &FPI);
4881    }
4882  }
4883    break;
4884
4885  default:
4886    break;
4887  }
4888
4889  // If a non-metadata argument is passed in a metadata slot then the
4890  // error will be caught earlier when the incorrect argument doesn't
4891  // match the specification in the intrinsic call table. Thus, no
4892  // argument type check is needed here.
4893
4894  Assert(FPI.getExceptionBehavior().hasValue(),
4895         "invalid exception behavior argument", &FPI);
4896  if (HasRoundingMD) {
4897    Assert(FPI.getRoundingMode().hasValue(),
4898           "invalid rounding mode argument", &FPI);
4899  }
4900}
4901
4902void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4903  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4904  AssertDI(isa<ValueAsMetadata>(MD) ||
4905             (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4906         "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4907  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4908         "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4909         DII.getRawVariable());
4910  AssertDI(isa<DIExpression>(DII.getRawExpression()),
4911         "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4912         DII.getRawExpression());
4913
4914  // Ignore broken !dbg attachments; they're checked elsewhere.
4915  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4916    if (!isa<DILocation>(N))
4917      return;
4918
4919  BasicBlock *BB = DII.getParent();
4920  Function *F = BB ? BB->getParent() : nullptr;
4921
4922  // The scopes for variables and !dbg attachments must agree.
4923  DILocalVariable *Var = DII.getVariable();
4924  DILocation *Loc = DII.getDebugLoc();
4925  AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4926           &DII, BB, F);
4927
4928  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4929  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4930  if (!VarSP || !LocSP)
4931    return; // Broken scope chains are checked elsewhere.
4932
4933  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4934                               " variable and !dbg attachment",
4935           &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4936           Loc->getScope()->getSubprogram());
4937
4938  // This check is redundant with one in visitLocalVariable().
4939  AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4940           Var->getRawType());
4941  verifyFnArgs(DII);
4942}
4943
4944void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4945  AssertDI(isa<DILabel>(DLI.getRawLabel()),
4946         "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4947         DLI.getRawLabel());
4948
4949  // Ignore broken !dbg attachments; they're checked elsewhere.
4950  if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4951    if (!isa<DILocation>(N))
4952      return;
4953
4954  BasicBlock *BB = DLI.getParent();
4955  Function *F = BB ? BB->getParent() : nullptr;
4956
4957  // The scopes for variables and !dbg attachments must agree.
4958  DILabel *Label = DLI.getLabel();
4959  DILocation *Loc = DLI.getDebugLoc();
4960  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4961         &DLI, BB, F);
4962
4963  DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4964  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4965  if (!LabelSP || !LocSP)
4966    return;
4967
4968  AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4969                             " label and !dbg attachment",
4970           &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4971           Loc->getScope()->getSubprogram());
4972}
4973
4974void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4975  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4976  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4977
4978  // We don't know whether this intrinsic verified correctly.
4979  if (!V || !E || !E->isValid())
4980    return;
4981
4982  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4983  auto Fragment = E->getFragmentInfo();
4984  if (!Fragment)
4985    return;
4986
4987  // The frontend helps out GDB by emitting the members of local anonymous
4988  // unions as artificial local variables with shared storage. When SROA splits
4989  // the storage for artificial local variables that are smaller than the entire
4990  // union, the overhang piece will be outside of the allotted space for the
4991  // variable and this check fails.
4992  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4993  if (V->isArtificial())
4994    return;
4995
4996  verifyFragmentExpression(*V, *Fragment, &I);
4997}
4998
4999template <typename ValueOrMetadata>
5000void Verifier::verifyFragmentExpression(const DIVariable &V,
5001                                        DIExpression::FragmentInfo Fragment,
5002                                        ValueOrMetadata *Desc) {
5003  // If there's no size, the type is broken, but that should be checked
5004  // elsewhere.
5005  auto VarSize = V.getSizeInBits();
5006  if (!VarSize)
5007    return;
5008
5009  unsigned FragSize = Fragment.SizeInBits;
5010  unsigned FragOffset = Fragment.OffsetInBits;
5011  AssertDI(FragSize + FragOffset <= *VarSize,
5012         "fragment is larger than or outside of variable", Desc, &V);
5013  AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5014}
5015
5016void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5017  // This function does not take the scope of noninlined function arguments into
5018  // account. Don't run it if current function is nodebug, because it may
5019  // contain inlined debug intrinsics.
5020  if (!HasDebugInfo)
5021    return;
5022
5023  // For performance reasons only check non-inlined ones.
5024  if (I.getDebugLoc()->getInlinedAt())
5025    return;
5026
5027  DILocalVariable *Var = I.getVariable();
5028  AssertDI(Var, "dbg intrinsic without variable");
5029
5030  unsigned ArgNo = Var->getArg();
5031  if (!ArgNo)
5032    return;
5033
5034  // Verify there are no duplicate function argument debug info entries.
5035  // These will cause hard-to-debug assertions in the DWARF backend.
5036  if (DebugFnArgs.size() < ArgNo)
5037    DebugFnArgs.resize(ArgNo, nullptr);
5038
5039  auto *Prev = DebugFnArgs[ArgNo - 1];
5040  DebugFnArgs[ArgNo - 1] = Var;
5041  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5042           Prev, Var);
5043}
5044
5045void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5046  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5047
5048  // We don't know whether this intrinsic verified correctly.
5049  if (!E || !E->isValid())
5050    return;
5051
5052  AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5053}
5054
5055void Verifier::verifyCompileUnits() {
5056  // When more than one Module is imported into the same context, such as during
5057  // an LTO build before linking the modules, ODR type uniquing may cause types
5058  // to point to a different CU. This check does not make sense in this case.
5059  if (M.getContext().isODRUniquingDebugTypes())
5060    return;
5061  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5062  SmallPtrSet<const Metadata *, 2> Listed;
5063  if (CUs)
5064    Listed.insert(CUs->op_begin(), CUs->op_end());
5065  for (auto *CU : CUVisited)
5066    AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5067  CUVisited.clear();
5068}
5069
5070void Verifier::verifyDeoptimizeCallingConvs() {
5071  if (DeoptimizeDeclarations.empty())
5072    return;
5073
5074  const Function *First = DeoptimizeDeclarations[0];
5075  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5076    Assert(First->getCallingConv() == F->getCallingConv(),
5077           "All llvm.experimental.deoptimize declarations must have the same "
5078           "calling convention",
5079           First, F);
5080  }
5081}
5082
5083void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5084  bool HasSource = F.getSource().hasValue();
5085  if (!HasSourceDebugInfo.count(&U))
5086    HasSourceDebugInfo[&U] = HasSource;
5087  AssertDI(HasSource == HasSourceDebugInfo[&U],
5088           "inconsistent use of embedded source");
5089}
5090
5091//===----------------------------------------------------------------------===//
5092//  Implement the public interfaces to this file...
5093//===----------------------------------------------------------------------===//
5094
5095bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5096  Function &F = const_cast<Function &>(f);
5097
5098  // Don't use a raw_null_ostream.  Printing IR is expensive.
5099  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5100
5101  // Note that this function's return value is inverted from what you would
5102  // expect of a function called "verify".
5103  return !V.verify(F);
5104}
5105
5106bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5107                        bool *BrokenDebugInfo) {
5108  // Don't use a raw_null_ostream.  Printing IR is expensive.
5109  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5110
5111  bool Broken = false;
5112  for (const Function &F : M)
5113    Broken |= !V.verify(F);
5114
5115  Broken |= !V.verify();
5116  if (BrokenDebugInfo)
5117    *BrokenDebugInfo = V.hasBrokenDebugInfo();
5118  // Note that this function's return value is inverted from what you would
5119  // expect of a function called "verify".
5120  return Broken;
5121}
5122
5123namespace {
5124
5125struct VerifierLegacyPass : public FunctionPass {
5126  static char ID;
5127
5128  std::unique_ptr<Verifier> V;
5129  bool FatalErrors = true;
5130
5131  VerifierLegacyPass() : FunctionPass(ID) {
5132    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5133  }
5134  explicit VerifierLegacyPass(bool FatalErrors)
5135      : FunctionPass(ID),
5136        FatalErrors(FatalErrors) {
5137    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5138  }
5139
5140  bool doInitialization(Module &M) override {
5141    V = std::make_unique<Verifier>(
5142        &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5143    return false;
5144  }
5145
5146  bool runOnFunction(Function &F) override {
5147    if (!V->verify(F) && FatalErrors) {
5148      errs() << "in function " << F.getName() << '\n';
5149      report_fatal_error("Broken function found, compilation aborted!");
5150    }
5151    return false;
5152  }
5153
5154  bool doFinalization(Module &M) override {
5155    bool HasErrors = false;
5156    for (Function &F : M)
5157      if (F.isDeclaration())
5158        HasErrors |= !V->verify(F);
5159
5160    HasErrors |= !V->verify();
5161    if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5162      report_fatal_error("Broken module found, compilation aborted!");
5163    return false;
5164  }
5165
5166  void getAnalysisUsage(AnalysisUsage &AU) const override {
5167    AU.setPreservesAll();
5168  }
5169};
5170
5171} // end anonymous namespace
5172
5173/// Helper to issue failure from the TBAA verification
5174template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5175  if (Diagnostic)
5176    return Diagnostic->CheckFailed(Args...);
5177}
5178
5179#define AssertTBAA(C, ...)                                                     \
5180  do {                                                                         \
5181    if (!(C)) {                                                                \
5182      CheckFailed(__VA_ARGS__);                                                \
5183      return false;                                                            \
5184    }                                                                          \
5185  } while (false)
5186
5187/// Verify that \p BaseNode can be used as the "base type" in the struct-path
5188/// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5189/// struct-type node describing an aggregate data structure (like a struct).
5190TBAAVerifier::TBAABaseNodeSummary
5191TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5192                                 bool IsNewFormat) {
5193  if (BaseNode->getNumOperands() < 2) {
5194    CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5195    return {true, ~0u};
5196  }
5197
5198  auto Itr = TBAABaseNodes.find(BaseNode);
5199  if (Itr != TBAABaseNodes.end())
5200    return Itr->second;
5201
5202  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5203  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5204  (void)InsertResult;
5205  assert(InsertResult.second && "We just checked!");
5206  return Result;
5207}
5208
5209TBAAVerifier::TBAABaseNodeSummary
5210TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5211                                     bool IsNewFormat) {
5212  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5213
5214  if (BaseNode->getNumOperands() == 2) {
5215    // Scalar nodes can only be accessed at offset 0.
5216    return isValidScalarTBAANode(BaseNode)
5217               ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5218               : InvalidNode;
5219  }
5220
5221  if (IsNewFormat) {
5222    if (BaseNode->getNumOperands() % 3 != 0) {
5223      CheckFailed("Access tag nodes must have the number of operands that is a "
5224                  "multiple of 3!", BaseNode);
5225      return InvalidNode;
5226    }
5227  } else {
5228    if (BaseNode->getNumOperands() % 2 != 1) {
5229      CheckFailed("Struct tag nodes must have an odd number of operands!",
5230                  BaseNode);
5231      return InvalidNode;
5232    }
5233  }
5234
5235  // Check the type size field.
5236  if (IsNewFormat) {
5237    auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5238        BaseNode->getOperand(1));
5239    if (!TypeSizeNode) {
5240      CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5241      return InvalidNode;
5242    }
5243  }
5244
5245  // Check the type name field. In the new format it can be anything.
5246  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5247    CheckFailed("Struct tag nodes have a string as their first operand",
5248                BaseNode);
5249    return InvalidNode;
5250  }
5251
5252  bool Failed = false;
5253
5254  Optional<APInt> PrevOffset;
5255  unsigned BitWidth = ~0u;
5256
5257  // We've already checked that BaseNode is not a degenerate root node with one
5258  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5259  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5260  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5261  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5262           Idx += NumOpsPerField) {
5263    const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5264    const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5265    if (!isa<MDNode>(FieldTy)) {
5266      CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5267      Failed = true;
5268      continue;
5269    }
5270
5271    auto *OffsetEntryCI =
5272        mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5273    if (!OffsetEntryCI) {
5274      CheckFailed("Offset entries must be constants!", &I, BaseNode);
5275      Failed = true;
5276      continue;
5277    }
5278
5279    if (BitWidth == ~0u)
5280      BitWidth = OffsetEntryCI->getBitWidth();
5281
5282    if (OffsetEntryCI->getBitWidth() != BitWidth) {
5283      CheckFailed(
5284          "Bitwidth between the offsets and struct type entries must match", &I,
5285          BaseNode);
5286      Failed = true;
5287      continue;
5288    }
5289
5290    // NB! As far as I can tell, we generate a non-strictly increasing offset
5291    // sequence only from structs that have zero size bit fields.  When
5292    // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5293    // pick the field lexically the latest in struct type metadata node.  This
5294    // mirrors the actual behavior of the alias analysis implementation.
5295    bool IsAscending =
5296        !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5297
5298    if (!IsAscending) {
5299      CheckFailed("Offsets must be increasing!", &I, BaseNode);
5300      Failed = true;
5301    }
5302
5303    PrevOffset = OffsetEntryCI->getValue();
5304
5305    if (IsNewFormat) {
5306      auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5307          BaseNode->getOperand(Idx + 2));
5308      if (!MemberSizeNode) {
5309        CheckFailed("Member size entries must be constants!", &I, BaseNode);
5310        Failed = true;
5311        continue;
5312      }
5313    }
5314  }
5315
5316  return Failed ? InvalidNode
5317                : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5318}
5319
5320static bool IsRootTBAANode(const MDNode *MD) {
5321  return MD->getNumOperands() < 2;
5322}
5323
5324static bool IsScalarTBAANodeImpl(const MDNode *MD,
5325                                 SmallPtrSetImpl<const MDNode *> &Visited) {
5326  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5327    return false;
5328
5329  if (!isa<MDString>(MD->getOperand(0)))
5330    return false;
5331
5332  if (MD->getNumOperands() == 3) {
5333    auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5334    if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5335      return false;
5336  }
5337
5338  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5339  return Parent && Visited.insert(Parent).second &&
5340         (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5341}
5342
5343bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5344  auto ResultIt = TBAAScalarNodes.find(MD);
5345  if (ResultIt != TBAAScalarNodes.end())
5346    return ResultIt->second;
5347
5348  SmallPtrSet<const MDNode *, 4> Visited;
5349  bool Result = IsScalarTBAANodeImpl(MD, Visited);
5350  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5351  (void)InsertResult;
5352  assert(InsertResult.second && "Just checked!");
5353
5354  return Result;
5355}
5356
5357/// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5358/// Offset in place to be the offset within the field node returned.
5359///
5360/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5361MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5362                                                   const MDNode *BaseNode,
5363                                                   APInt &Offset,
5364                                                   bool IsNewFormat) {
5365  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5366
5367  // Scalar nodes have only one possible "field" -- their parent in the access
5368  // hierarchy.  Offset must be zero at this point, but our caller is supposed
5369  // to Assert that.
5370  if (BaseNode->getNumOperands() == 2)
5371    return cast<MDNode>(BaseNode->getOperand(1));
5372
5373  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5374  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5375  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5376           Idx += NumOpsPerField) {
5377    auto *OffsetEntryCI =
5378        mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5379    if (OffsetEntryCI->getValue().ugt(Offset)) {
5380      if (Idx == FirstFieldOpNo) {
5381        CheckFailed("Could not find TBAA parent in struct type node", &I,
5382                    BaseNode, &Offset);
5383        return nullptr;
5384      }
5385
5386      unsigned PrevIdx = Idx - NumOpsPerField;
5387      auto *PrevOffsetEntryCI =
5388          mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5389      Offset -= PrevOffsetEntryCI->getValue();
5390      return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5391    }
5392  }
5393
5394  unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5395  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5396      BaseNode->getOperand(LastIdx + 1));
5397  Offset -= LastOffsetEntryCI->getValue();
5398  return cast<MDNode>(BaseNode->getOperand(LastIdx));
5399}
5400
5401static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5402  if (!Type || Type->getNumOperands() < 3)
5403    return false;
5404
5405  // In the new format type nodes shall have a reference to the parent type as
5406  // its first operand.
5407  MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5408  if (!Parent)
5409    return false;
5410
5411  return true;
5412}
5413
5414bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5415  AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5416                 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5417                 isa<AtomicCmpXchgInst>(I),
5418             "This instruction shall not have a TBAA access tag!", &I);
5419
5420  bool IsStructPathTBAA =
5421      isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5422
5423  AssertTBAA(
5424      IsStructPathTBAA,
5425      "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5426
5427  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5428  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5429
5430  bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5431
5432  if (IsNewFormat) {
5433    AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5434               "Access tag metadata must have either 4 or 5 operands", &I, MD);
5435  } else {
5436    AssertTBAA(MD->getNumOperands() < 5,
5437               "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5438  }
5439
5440  // Check the access size field.
5441  if (IsNewFormat) {
5442    auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5443        MD->getOperand(3));
5444    AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5445  }
5446
5447  // Check the immutability flag.
5448  unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5449  if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5450    auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5451        MD->getOperand(ImmutabilityFlagOpNo));
5452    AssertTBAA(IsImmutableCI,
5453               "Immutability tag on struct tag metadata must be a constant",
5454               &I, MD);
5455    AssertTBAA(
5456        IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5457        "Immutability part of the struct tag metadata must be either 0 or 1",
5458        &I, MD);
5459  }
5460
5461  AssertTBAA(BaseNode && AccessType,
5462             "Malformed struct tag metadata: base and access-type "
5463             "should be non-null and point to Metadata nodes",
5464             &I, MD, BaseNode, AccessType);
5465
5466  if (!IsNewFormat) {
5467    AssertTBAA(isValidScalarTBAANode(AccessType),
5468               "Access type node must be a valid scalar type", &I, MD,
5469               AccessType);
5470  }
5471
5472  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5473  AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5474
5475  APInt Offset = OffsetCI->getValue();
5476  bool SeenAccessTypeInPath = false;
5477
5478  SmallPtrSet<MDNode *, 4> StructPath;
5479
5480  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5481       BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5482                                               IsNewFormat)) {
5483    if (!StructPath.insert(BaseNode).second) {
5484      CheckFailed("Cycle detected in struct path", &I, MD);
5485      return false;
5486    }
5487
5488    bool Invalid;
5489    unsigned BaseNodeBitWidth;
5490    std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5491                                                             IsNewFormat);
5492
5493    // If the base node is invalid in itself, then we've already printed all the
5494    // errors we wanted to print.
5495    if (Invalid)
5496      return false;
5497
5498    SeenAccessTypeInPath |= BaseNode == AccessType;
5499
5500    if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5501      AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5502                 &I, MD, &Offset);
5503
5504    AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5505                   (BaseNodeBitWidth == 0 && Offset == 0) ||
5506                   (IsNewFormat && BaseNodeBitWidth == ~0u),
5507               "Access bit-width not the same as description bit-width", &I, MD,
5508               BaseNodeBitWidth, Offset.getBitWidth());
5509
5510    if (IsNewFormat && SeenAccessTypeInPath)
5511      break;
5512  }
5513
5514  AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5515             &I, MD);
5516  return true;
5517}
5518
5519char VerifierLegacyPass::ID = 0;
5520INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5521
5522FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5523  return new VerifierLegacyPass(FatalErrors);
5524}
5525
5526AnalysisKey VerifierAnalysis::Key;
5527VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5528                                               ModuleAnalysisManager &) {
5529  Result Res;
5530  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5531  return Res;
5532}
5533
5534VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5535                                               FunctionAnalysisManager &) {
5536  return { llvm::verifyFunction(F, &dbgs()), false };
5537}
5538
5539PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5540  auto Res = AM.getResult<VerifierAnalysis>(M);
5541  if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5542    report_fatal_error("Broken module found, compilation aborted!");
5543
5544  return PreservedAnalyses::all();
5545}
5546
5547PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5548  auto res = AM.getResult<VerifierAnalysis>(F);
5549  if (res.IRBroken && FatalErrors)
5550    report_fatal_error("Broken function found, compilation aborted!");
5551
5552  return PreservedAnalyses::all();
5553}
5554