Verifier.cpp revision 309124
1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16//  * Both of a binary operator's parameters are of the same type
17//  * Verify that the indices of mem access instructions match other operands
18//  * Verify that arithmetic and other things are only performed on first-class
19//    types.  Verify that shifts & logicals only happen on integrals f.e.
20//  * All of the constants in a switch statement are of the correct type
21//  * The code is in valid SSA form
22//  * It should be illegal to put a label into any other type (like a structure)
23//    or to return one. [except constant arrays!]
24//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25//  * PHI nodes must have an entry for each predecessor, with no extras.
26//  * PHI nodes must be the first thing in a basic block, all grouped together
27//  * PHI nodes must have at least one entry
28//  * All basic blocks should only end with terminator insts, not contain them
29//  * The entry node to a function must not have predecessors
30//  * All Instructions must be embedded into a basic block
31//  * Functions cannot take a void-typed parameter
32//  * Verify that a function's argument list agrees with it's declared type.
33//  * It is illegal to specify a name for a void value.
34//  * It is illegal to have a internal global value with no initializer
35//  * It is illegal to have a ret instruction that returns a value that does not
36//    agree with the function return value type.
37//  * Function call argument types match the function prototype
38//  * A landing pad is defined by a landingpad instruction, and can be jumped to
39//    only by the unwind edge of an invoke instruction.
40//  * A landingpad instruction must be the first non-PHI instruction in the
41//    block.
42//  * Landingpad instructions must be in a function with a personality function.
43//  * All other things that are tested by asserts spread about the code...
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/IR/Verifier.h"
48#include "llvm/ADT/MapVector.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/IR/CFG.h"
55#include "llvm/IR/CallSite.h"
56#include "llvm/IR/CallingConv.h"
57#include "llvm/IR/ConstantRange.h"
58#include "llvm/IR/Constants.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/DebugInfo.h"
61#include "llvm/IR/DerivedTypes.h"
62#include "llvm/IR/DiagnosticInfo.h"
63#include "llvm/IR/Dominators.h"
64#include "llvm/IR/InlineAsm.h"
65#include "llvm/IR/InstIterator.h"
66#include "llvm/IR/InstVisitor.h"
67#include "llvm/IR/IntrinsicInst.h"
68#include "llvm/IR/LLVMContext.h"
69#include "llvm/IR/Metadata.h"
70#include "llvm/IR/Module.h"
71#include "llvm/IR/ModuleSlotTracker.h"
72#include "llvm/IR/PassManager.h"
73#include "llvm/IR/Statepoint.h"
74#include "llvm/Pass.h"
75#include "llvm/Support/CommandLine.h"
76#include "llvm/Support/Debug.h"
77#include "llvm/Support/ErrorHandling.h"
78#include "llvm/Support/raw_ostream.h"
79#include <algorithm>
80#include <cstdarg>
81using namespace llvm;
82
83static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
84
85namespace {
86struct VerifierSupport {
87  raw_ostream *OS;
88  const Module *M = nullptr;
89  Optional<ModuleSlotTracker> MST;
90
91  /// Track the brokenness of the module while recursively visiting.
92  bool Broken = false;
93  /// Broken debug info can be "recovered" from by stripping the debug info.
94  bool BrokenDebugInfo = false;
95  /// Whether to treat broken debug info as an error.
96  bool TreatBrokenDebugInfoAsError = true;
97
98  explicit VerifierSupport(raw_ostream *OS) : OS(OS) {}
99
100private:
101  template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) {
102    Write(&*I);
103  }
104
105  void Write(const Module *M) {
106    if (!M)
107      return;
108    *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
109  }
110
111  void Write(const Value *V) {
112    if (!V)
113      return;
114    if (isa<Instruction>(V)) {
115      V->print(*OS, *MST);
116      *OS << '\n';
117    } else {
118      V->printAsOperand(*OS, true, *MST);
119      *OS << '\n';
120    }
121  }
122  void Write(ImmutableCallSite CS) {
123    Write(CS.getInstruction());
124  }
125
126  void Write(const Metadata *MD) {
127    if (!MD)
128      return;
129    MD->print(*OS, *MST, M);
130    *OS << '\n';
131  }
132
133  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
134    Write(MD.get());
135  }
136
137  void Write(const NamedMDNode *NMD) {
138    if (!NMD)
139      return;
140    NMD->print(*OS, *MST);
141    *OS << '\n';
142  }
143
144  void Write(Type *T) {
145    if (!T)
146      return;
147    *OS << ' ' << *T;
148  }
149
150  void Write(const Comdat *C) {
151    if (!C)
152      return;
153    *OS << *C;
154  }
155
156  template <typename T> void Write(ArrayRef<T> Vs) {
157    for (const T &V : Vs)
158      Write(V);
159  }
160
161  template <typename T1, typename... Ts>
162  void WriteTs(const T1 &V1, const Ts &... Vs) {
163    Write(V1);
164    WriteTs(Vs...);
165  }
166
167  template <typename... Ts> void WriteTs() {}
168
169public:
170  /// \brief A check failed, so printout out the condition and the message.
171  ///
172  /// This provides a nice place to put a breakpoint if you want to see why
173  /// something is not correct.
174  void CheckFailed(const Twine &Message) {
175    if (OS)
176      *OS << Message << '\n';
177    Broken = true;
178  }
179
180  /// \brief A check failed (with values to print).
181  ///
182  /// This calls the Message-only version so that the above is easier to set a
183  /// breakpoint on.
184  template <typename T1, typename... Ts>
185  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
186    CheckFailed(Message);
187    if (OS)
188      WriteTs(V1, Vs...);
189  }
190
191  /// A debug info check failed.
192  void DebugInfoCheckFailed(const Twine &Message) {
193    if (OS)
194      *OS << Message << '\n';
195    Broken |= TreatBrokenDebugInfoAsError;
196    BrokenDebugInfo = true;
197  }
198
199  /// A debug info check failed (with values to print).
200  template <typename T1, typename... Ts>
201  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
202                            const Ts &... Vs) {
203    DebugInfoCheckFailed(Message);
204    if (OS)
205      WriteTs(V1, Vs...);
206  }
207};
208
209class Verifier : public InstVisitor<Verifier>, VerifierSupport {
210  friend class InstVisitor<Verifier>;
211
212  LLVMContext *Context;
213  DominatorTree DT;
214
215  /// \brief When verifying a basic block, keep track of all of the
216  /// instructions we have seen so far.
217  ///
218  /// This allows us to do efficient dominance checks for the case when an
219  /// instruction has an operand that is an instruction in the same block.
220  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
221
222  /// \brief Keep track of the metadata nodes that have been checked already.
223  SmallPtrSet<const Metadata *, 32> MDNodes;
224
225  /// Track all DICompileUnits visited.
226  SmallPtrSet<const Metadata *, 2> CUVisited;
227
228  /// \brief The result type for a landingpad.
229  Type *LandingPadResultTy;
230
231  /// \brief Whether we've seen a call to @llvm.localescape in this function
232  /// already.
233  bool SawFrameEscape;
234
235  /// Stores the count of how many objects were passed to llvm.localescape for a
236  /// given function and the largest index passed to llvm.localrecover.
237  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
238
239  // Maps catchswitches and cleanuppads that unwind to siblings to the
240  // terminators that indicate the unwind, used to detect cycles therein.
241  MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
242
243  /// Cache of constants visited in search of ConstantExprs.
244  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
245
246  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
247  SmallVector<const Function *, 4> DeoptimizeDeclarations;
248
249  // Verify that this GlobalValue is only used in this module.
250  // This map is used to avoid visiting uses twice. We can arrive at a user
251  // twice, if they have multiple operands. In particular for very large
252  // constant expressions, we can arrive at a particular user many times.
253  SmallPtrSet<const Value *, 32> GlobalValueVisited;
254
255  void checkAtomicMemAccessSize(const Module *M, Type *Ty,
256                                const Instruction *I);
257
258  void updateModule(const Module *NewM) {
259    if (M == NewM)
260      return;
261    MST.emplace(NewM);
262    M = NewM;
263  }
264
265public:
266  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError)
267      : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
268        SawFrameEscape(false) {
269    TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
270  }
271
272  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
273
274  bool verify(const Function &F) {
275    updateModule(F.getParent());
276    Context = &M->getContext();
277
278    // First ensure the function is well-enough formed to compute dominance
279    // information, and directly compute a dominance tree. We don't rely on the
280    // pass manager to provide this as it isolates us from a potentially
281    // out-of-date dominator tree and makes it significantly more complex to run
282    // this code outside of a pass manager.
283    // FIXME: It's really gross that we have to cast away constness here.
284    if (!F.empty())
285      DT.recalculate(const_cast<Function &>(F));
286
287    for (const BasicBlock &BB : F) {
288      if (!BB.empty() && BB.back().isTerminator())
289        continue;
290
291      if (OS) {
292        *OS << "Basic Block in function '" << F.getName()
293            << "' does not have terminator!\n";
294        BB.printAsOperand(*OS, true, *MST);
295        *OS << "\n";
296      }
297      return false;
298    }
299
300    Broken = false;
301    // FIXME: We strip const here because the inst visitor strips const.
302    visit(const_cast<Function &>(F));
303    verifySiblingFuncletUnwinds();
304    InstsInThisBlock.clear();
305    LandingPadResultTy = nullptr;
306    SawFrameEscape = false;
307    SiblingFuncletInfo.clear();
308
309    return !Broken;
310  }
311
312  bool verify(const Module &M) {
313    updateModule(&M);
314    Context = &M.getContext();
315    Broken = false;
316
317    // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
318    for (const Function &F : M)
319      if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
320        DeoptimizeDeclarations.push_back(&F);
321
322    // Now that we've visited every function, verify that we never asked to
323    // recover a frame index that wasn't escaped.
324    verifyFrameRecoverIndices();
325    for (const GlobalVariable &GV : M.globals())
326      visitGlobalVariable(GV);
327
328    for (const GlobalAlias &GA : M.aliases())
329      visitGlobalAlias(GA);
330
331    for (const NamedMDNode &NMD : M.named_metadata())
332      visitNamedMDNode(NMD);
333
334    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
335      visitComdat(SMEC.getValue());
336
337    visitModuleFlags(M);
338    visitModuleIdents(M);
339
340    verifyCompileUnits();
341
342    verifyDeoptimizeCallingConvs();
343
344    return !Broken;
345  }
346
347private:
348  // Verification methods...
349  void visitGlobalValue(const GlobalValue &GV);
350  void visitGlobalVariable(const GlobalVariable &GV);
351  void visitGlobalAlias(const GlobalAlias &GA);
352  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
353  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
354                           const GlobalAlias &A, const Constant &C);
355  void visitNamedMDNode(const NamedMDNode &NMD);
356  void visitMDNode(const MDNode &MD);
357  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
358  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
359  void visitComdat(const Comdat &C);
360  void visitModuleIdents(const Module &M);
361  void visitModuleFlags(const Module &M);
362  void visitModuleFlag(const MDNode *Op,
363                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
364                       SmallVectorImpl<const MDNode *> &Requirements);
365  void visitFunction(const Function &F);
366  void visitBasicBlock(BasicBlock &BB);
367  void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
368  void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
369
370  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
371#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
372#include "llvm/IR/Metadata.def"
373  void visitDIScope(const DIScope &N);
374  void visitDIVariable(const DIVariable &N);
375  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
376  void visitDITemplateParameter(const DITemplateParameter &N);
377
378  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
379
380  // InstVisitor overrides...
381  using InstVisitor<Verifier>::visit;
382  void visit(Instruction &I);
383
384  void visitTruncInst(TruncInst &I);
385  void visitZExtInst(ZExtInst &I);
386  void visitSExtInst(SExtInst &I);
387  void visitFPTruncInst(FPTruncInst &I);
388  void visitFPExtInst(FPExtInst &I);
389  void visitFPToUIInst(FPToUIInst &I);
390  void visitFPToSIInst(FPToSIInst &I);
391  void visitUIToFPInst(UIToFPInst &I);
392  void visitSIToFPInst(SIToFPInst &I);
393  void visitIntToPtrInst(IntToPtrInst &I);
394  void visitPtrToIntInst(PtrToIntInst &I);
395  void visitBitCastInst(BitCastInst &I);
396  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
397  void visitPHINode(PHINode &PN);
398  void visitBinaryOperator(BinaryOperator &B);
399  void visitICmpInst(ICmpInst &IC);
400  void visitFCmpInst(FCmpInst &FC);
401  void visitExtractElementInst(ExtractElementInst &EI);
402  void visitInsertElementInst(InsertElementInst &EI);
403  void visitShuffleVectorInst(ShuffleVectorInst &EI);
404  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
405  void visitCallInst(CallInst &CI);
406  void visitInvokeInst(InvokeInst &II);
407  void visitGetElementPtrInst(GetElementPtrInst &GEP);
408  void visitLoadInst(LoadInst &LI);
409  void visitStoreInst(StoreInst &SI);
410  void verifyDominatesUse(Instruction &I, unsigned i);
411  void visitInstruction(Instruction &I);
412  void visitTerminatorInst(TerminatorInst &I);
413  void visitBranchInst(BranchInst &BI);
414  void visitReturnInst(ReturnInst &RI);
415  void visitSwitchInst(SwitchInst &SI);
416  void visitIndirectBrInst(IndirectBrInst &BI);
417  void visitSelectInst(SelectInst &SI);
418  void visitUserOp1(Instruction &I);
419  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
420  void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
421  template <class DbgIntrinsicTy>
422  void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
423  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
424  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
425  void visitFenceInst(FenceInst &FI);
426  void visitAllocaInst(AllocaInst &AI);
427  void visitExtractValueInst(ExtractValueInst &EVI);
428  void visitInsertValueInst(InsertValueInst &IVI);
429  void visitEHPadPredecessors(Instruction &I);
430  void visitLandingPadInst(LandingPadInst &LPI);
431  void visitCatchPadInst(CatchPadInst &CPI);
432  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
433  void visitCleanupPadInst(CleanupPadInst &CPI);
434  void visitFuncletPadInst(FuncletPadInst &FPI);
435  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
436  void visitCleanupReturnInst(CleanupReturnInst &CRI);
437
438  void verifyCallSite(CallSite CS);
439  void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
440  void verifySwiftErrorValue(const Value *SwiftErrorVal);
441  void verifyMustTailCall(CallInst &CI);
442  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
443                        unsigned ArgNo, std::string &Suffix);
444  bool verifyAttributeCount(AttributeSet Attrs, unsigned Params);
445  void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
446                            const Value *V);
447  void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
448                            bool isReturnValue, const Value *V);
449  void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
450                           const Value *V);
451  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
452
453  void visitConstantExprsRecursively(const Constant *EntryC);
454  void visitConstantExpr(const ConstantExpr *CE);
455  void verifyStatepoint(ImmutableCallSite CS);
456  void verifyFrameRecoverIndices();
457  void verifySiblingFuncletUnwinds();
458
459  void verifyBitPieceExpression(const DbgInfoIntrinsic &I);
460
461  /// Module-level debug info verification...
462  void verifyCompileUnits();
463
464  /// Module-level verification that all @llvm.experimental.deoptimize
465  /// declarations share the same calling convention.
466  void verifyDeoptimizeCallingConvs();
467};
468} // End anonymous namespace
469
470/// We know that cond should be true, if not print an error message.
471#define Assert(C, ...) \
472  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
473
474/// We know that a debug info condition should be true, if not print
475/// an error message.
476#define AssertDI(C, ...) \
477  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (0)
478
479
480void Verifier::visit(Instruction &I) {
481  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
482    Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
483  InstVisitor<Verifier>::visit(I);
484}
485
486// Helper to recursively iterate over indirect users. By
487// returning false, the callback can ask to stop recursing
488// further.
489static void forEachUser(const Value *User,
490                        SmallPtrSet<const Value *, 32> &Visited,
491                        llvm::function_ref<bool(const Value *)> Callback) {
492  if (!Visited.insert(User).second)
493    return;
494  for (const Value *TheNextUser : User->materialized_users())
495    if (Callback(TheNextUser))
496      forEachUser(TheNextUser, Visited, Callback);
497}
498
499void Verifier::visitGlobalValue(const GlobalValue &GV) {
500  Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
501         "Global is external, but doesn't have external or weak linkage!", &GV);
502
503  Assert(GV.getAlignment() <= Value::MaximumAlignment,
504         "huge alignment values are unsupported", &GV);
505  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
506         "Only global variables can have appending linkage!", &GV);
507
508  if (GV.hasAppendingLinkage()) {
509    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
510    Assert(GVar && GVar->getValueType()->isArrayTy(),
511           "Only global arrays can have appending linkage!", GVar);
512  }
513
514  if (GV.isDeclarationForLinker())
515    Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
516
517  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
518    if (const Instruction *I = dyn_cast<Instruction>(V)) {
519      if (!I->getParent() || !I->getParent()->getParent())
520        CheckFailed("Global is referenced by parentless instruction!", &GV,
521                    M, I);
522      else if (I->getParent()->getParent()->getParent() != M)
523        CheckFailed("Global is referenced in a different module!", &GV,
524                    M, I, I->getParent()->getParent(),
525                    I->getParent()->getParent()->getParent());
526      return false;
527    } else if (const Function *F = dyn_cast<Function>(V)) {
528      if (F->getParent() != M)
529        CheckFailed("Global is used by function in a different module", &GV,
530                    M, F, F->getParent());
531      return false;
532    }
533    return true;
534  });
535}
536
537void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
538  if (GV.hasInitializer()) {
539    Assert(GV.getInitializer()->getType() == GV.getValueType(),
540           "Global variable initializer type does not match global "
541           "variable type!",
542           &GV);
543
544    // If the global has common linkage, it must have a zero initializer and
545    // cannot be constant.
546    if (GV.hasCommonLinkage()) {
547      Assert(GV.getInitializer()->isNullValue(),
548             "'common' global must have a zero initializer!", &GV);
549      Assert(!GV.isConstant(), "'common' global may not be marked constant!",
550             &GV);
551      Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
552    }
553  }
554
555  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
556                       GV.getName() == "llvm.global_dtors")) {
557    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
558           "invalid linkage for intrinsic global variable", &GV);
559    // Don't worry about emitting an error for it not being an array,
560    // visitGlobalValue will complain on appending non-array.
561    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
562      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
563      PointerType *FuncPtrTy =
564          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
565      // FIXME: Reject the 2-field form in LLVM 4.0.
566      Assert(STy &&
567                 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
568                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
569                 STy->getTypeAtIndex(1) == FuncPtrTy,
570             "wrong type for intrinsic global variable", &GV);
571      if (STy->getNumElements() == 3) {
572        Type *ETy = STy->getTypeAtIndex(2);
573        Assert(ETy->isPointerTy() &&
574                   cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
575               "wrong type for intrinsic global variable", &GV);
576      }
577    }
578  }
579
580  if (GV.hasName() && (GV.getName() == "llvm.used" ||
581                       GV.getName() == "llvm.compiler.used")) {
582    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
583           "invalid linkage for intrinsic global variable", &GV);
584    Type *GVType = GV.getValueType();
585    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
586      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
587      Assert(PTy, "wrong type for intrinsic global variable", &GV);
588      if (GV.hasInitializer()) {
589        const Constant *Init = GV.getInitializer();
590        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
591        Assert(InitArray, "wrong initalizer for intrinsic global variable",
592               Init);
593        for (Value *Op : InitArray->operands()) {
594          Value *V = Op->stripPointerCastsNoFollowAliases();
595          Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
596                     isa<GlobalAlias>(V),
597                 "invalid llvm.used member", V);
598          Assert(V->hasName(), "members of llvm.used must be named", V);
599        }
600      }
601    }
602  }
603
604  Assert(!GV.hasDLLImportStorageClass() ||
605             (GV.isDeclaration() && GV.hasExternalLinkage()) ||
606             GV.hasAvailableExternallyLinkage(),
607         "Global is marked as dllimport, but not external", &GV);
608
609  if (!GV.hasInitializer()) {
610    visitGlobalValue(GV);
611    return;
612  }
613
614  // Walk any aggregate initializers looking for bitcasts between address spaces
615  visitConstantExprsRecursively(GV.getInitializer());
616
617  visitGlobalValue(GV);
618}
619
620void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
621  SmallPtrSet<const GlobalAlias*, 4> Visited;
622  Visited.insert(&GA);
623  visitAliaseeSubExpr(Visited, GA, C);
624}
625
626void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
627                                   const GlobalAlias &GA, const Constant &C) {
628  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
629    Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
630           &GA);
631
632    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
633      Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
634
635      Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
636             &GA);
637    } else {
638      // Only continue verifying subexpressions of GlobalAliases.
639      // Do not recurse into global initializers.
640      return;
641    }
642  }
643
644  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
645    visitConstantExprsRecursively(CE);
646
647  for (const Use &U : C.operands()) {
648    Value *V = &*U;
649    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
650      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
651    else if (const auto *C2 = dyn_cast<Constant>(V))
652      visitAliaseeSubExpr(Visited, GA, *C2);
653  }
654}
655
656void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
657  Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
658         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
659         "weak_odr, or external linkage!",
660         &GA);
661  const Constant *Aliasee = GA.getAliasee();
662  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
663  Assert(GA.getType() == Aliasee->getType(),
664         "Alias and aliasee types should match!", &GA);
665
666  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
667         "Aliasee should be either GlobalValue or ConstantExpr", &GA);
668
669  visitAliaseeSubExpr(GA, *Aliasee);
670
671  visitGlobalValue(GA);
672}
673
674void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
675  for (const MDNode *MD : NMD.operands()) {
676    if (NMD.getName() == "llvm.dbg.cu") {
677      AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
678    }
679
680    if (!MD)
681      continue;
682
683    visitMDNode(*MD);
684  }
685}
686
687void Verifier::visitMDNode(const MDNode &MD) {
688  // Only visit each node once.  Metadata can be mutually recursive, so this
689  // avoids infinite recursion here, as well as being an optimization.
690  if (!MDNodes.insert(&MD).second)
691    return;
692
693  switch (MD.getMetadataID()) {
694  default:
695    llvm_unreachable("Invalid MDNode subclass");
696  case Metadata::MDTupleKind:
697    break;
698#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
699  case Metadata::CLASS##Kind:                                                  \
700    visit##CLASS(cast<CLASS>(MD));                                             \
701    break;
702#include "llvm/IR/Metadata.def"
703  }
704
705  for (const Metadata *Op : MD.operands()) {
706    if (!Op)
707      continue;
708    Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
709           &MD, Op);
710    if (auto *N = dyn_cast<MDNode>(Op)) {
711      visitMDNode(*N);
712      continue;
713    }
714    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
715      visitValueAsMetadata(*V, nullptr);
716      continue;
717    }
718  }
719
720  // Check these last, so we diagnose problems in operands first.
721  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
722  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
723}
724
725void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
726  Assert(MD.getValue(), "Expected valid value", &MD);
727  Assert(!MD.getValue()->getType()->isMetadataTy(),
728         "Unexpected metadata round-trip through values", &MD, MD.getValue());
729
730  auto *L = dyn_cast<LocalAsMetadata>(&MD);
731  if (!L)
732    return;
733
734  Assert(F, "function-local metadata used outside a function", L);
735
736  // If this was an instruction, bb, or argument, verify that it is in the
737  // function that we expect.
738  Function *ActualF = nullptr;
739  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
740    Assert(I->getParent(), "function-local metadata not in basic block", L, I);
741    ActualF = I->getParent()->getParent();
742  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
743    ActualF = BB->getParent();
744  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
745    ActualF = A->getParent();
746  assert(ActualF && "Unimplemented function local metadata case!");
747
748  Assert(ActualF == F, "function-local metadata used in wrong function", L);
749}
750
751void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
752  Metadata *MD = MDV.getMetadata();
753  if (auto *N = dyn_cast<MDNode>(MD)) {
754    visitMDNode(*N);
755    return;
756  }
757
758  // Only visit each node once.  Metadata can be mutually recursive, so this
759  // avoids infinite recursion here, as well as being an optimization.
760  if (!MDNodes.insert(MD).second)
761    return;
762
763  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
764    visitValueAsMetadata(*V, F);
765}
766
767static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
768static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
769static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
770
771template <class Ty>
772bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
773  for (Metadata *MD : N.operands()) {
774    if (MD) {
775      if (!isa<Ty>(MD))
776        return false;
777    } else {
778      if (!AllowNull)
779        return false;
780    }
781  }
782  return true;
783}
784
785template <class Ty>
786bool isValidMetadataArray(const MDTuple &N) {
787  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
788}
789
790template <class Ty>
791bool isValidMetadataNullArray(const MDTuple &N) {
792  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
793}
794
795void Verifier::visitDILocation(const DILocation &N) {
796  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
797           "location requires a valid scope", &N, N.getRawScope());
798  if (auto *IA = N.getRawInlinedAt())
799    AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
800}
801
802void Verifier::visitGenericDINode(const GenericDINode &N) {
803  AssertDI(N.getTag(), "invalid tag", &N);
804}
805
806void Verifier::visitDIScope(const DIScope &N) {
807  if (auto *F = N.getRawFile())
808    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
809}
810
811void Verifier::visitDISubrange(const DISubrange &N) {
812  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
813  AssertDI(N.getCount() >= -1, "invalid subrange count", &N);
814}
815
816void Verifier::visitDIEnumerator(const DIEnumerator &N) {
817  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
818}
819
820void Verifier::visitDIBasicType(const DIBasicType &N) {
821  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
822               N.getTag() == dwarf::DW_TAG_unspecified_type,
823           "invalid tag", &N);
824}
825
826void Verifier::visitDIDerivedType(const DIDerivedType &N) {
827  // Common scope checks.
828  visitDIScope(N);
829
830  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
831               N.getTag() == dwarf::DW_TAG_pointer_type ||
832               N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
833               N.getTag() == dwarf::DW_TAG_reference_type ||
834               N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
835               N.getTag() == dwarf::DW_TAG_const_type ||
836               N.getTag() == dwarf::DW_TAG_volatile_type ||
837               N.getTag() == dwarf::DW_TAG_restrict_type ||
838               N.getTag() == dwarf::DW_TAG_member ||
839               N.getTag() == dwarf::DW_TAG_inheritance ||
840               N.getTag() == dwarf::DW_TAG_friend,
841           "invalid tag", &N);
842  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
843    AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
844             N.getRawExtraData());
845  }
846
847  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
848  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
849           N.getRawBaseType());
850}
851
852static bool hasConflictingReferenceFlags(unsigned Flags) {
853  return (Flags & DINode::FlagLValueReference) &&
854         (Flags & DINode::FlagRValueReference);
855}
856
857void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
858  auto *Params = dyn_cast<MDTuple>(&RawParams);
859  AssertDI(Params, "invalid template params", &N, &RawParams);
860  for (Metadata *Op : Params->operands()) {
861    AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
862             &N, Params, Op);
863  }
864}
865
866void Verifier::visitDICompositeType(const DICompositeType &N) {
867  // Common scope checks.
868  visitDIScope(N);
869
870  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
871               N.getTag() == dwarf::DW_TAG_structure_type ||
872               N.getTag() == dwarf::DW_TAG_union_type ||
873               N.getTag() == dwarf::DW_TAG_enumeration_type ||
874               N.getTag() == dwarf::DW_TAG_class_type,
875           "invalid tag", &N);
876
877  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
878  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
879           N.getRawBaseType());
880
881  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
882           "invalid composite elements", &N, N.getRawElements());
883  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
884           N.getRawVTableHolder());
885  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
886           "invalid reference flags", &N);
887  if (auto *Params = N.getRawTemplateParams())
888    visitTemplateParams(N, *Params);
889
890  if (N.getTag() == dwarf::DW_TAG_class_type ||
891      N.getTag() == dwarf::DW_TAG_union_type) {
892    AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
893             "class/union requires a filename", &N, N.getFile());
894  }
895}
896
897void Verifier::visitDISubroutineType(const DISubroutineType &N) {
898  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
899  if (auto *Types = N.getRawTypeArray()) {
900    AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
901    for (Metadata *Ty : N.getTypeArray()->operands()) {
902      AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
903    }
904  }
905  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
906           "invalid reference flags", &N);
907}
908
909void Verifier::visitDIFile(const DIFile &N) {
910  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
911}
912
913void Verifier::visitDICompileUnit(const DICompileUnit &N) {
914  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
915  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
916
917  // Don't bother verifying the compilation directory or producer string
918  // as those could be empty.
919  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
920           N.getRawFile());
921  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
922           N.getFile());
923
924  AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
925           "invalid emission kind", &N);
926
927  if (auto *Array = N.getRawEnumTypes()) {
928    AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
929    for (Metadata *Op : N.getEnumTypes()->operands()) {
930      auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
931      AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
932               "invalid enum type", &N, N.getEnumTypes(), Op);
933    }
934  }
935  if (auto *Array = N.getRawRetainedTypes()) {
936    AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
937    for (Metadata *Op : N.getRetainedTypes()->operands()) {
938      AssertDI(Op && (isa<DIType>(Op) ||
939                      (isa<DISubprogram>(Op) &&
940                       cast<DISubprogram>(Op)->isDefinition() == false)),
941               "invalid retained type", &N, Op);
942    }
943  }
944  if (auto *Array = N.getRawGlobalVariables()) {
945    AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
946    for (Metadata *Op : N.getGlobalVariables()->operands()) {
947      AssertDI(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref",
948               &N, Op);
949    }
950  }
951  if (auto *Array = N.getRawImportedEntities()) {
952    AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
953    for (Metadata *Op : N.getImportedEntities()->operands()) {
954      AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
955               &N, Op);
956    }
957  }
958  if (auto *Array = N.getRawMacros()) {
959    AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
960    for (Metadata *Op : N.getMacros()->operands()) {
961      AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
962    }
963  }
964  CUVisited.insert(&N);
965}
966
967void Verifier::visitDISubprogram(const DISubprogram &N) {
968  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
969  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
970  if (auto *F = N.getRawFile())
971    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
972  if (auto *T = N.getRawType())
973    AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
974  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
975           N.getRawContainingType());
976  if (auto *Params = N.getRawTemplateParams())
977    visitTemplateParams(N, *Params);
978  if (auto *S = N.getRawDeclaration())
979    AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
980             "invalid subprogram declaration", &N, S);
981  if (auto *RawVars = N.getRawVariables()) {
982    auto *Vars = dyn_cast<MDTuple>(RawVars);
983    AssertDI(Vars, "invalid variable list", &N, RawVars);
984    for (Metadata *Op : Vars->operands()) {
985      AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,
986               Vars, Op);
987    }
988  }
989  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
990           "invalid reference flags", &N);
991
992  auto *Unit = N.getRawUnit();
993  if (N.isDefinition()) {
994    // Subprogram definitions (not part of the type hierarchy).
995    AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
996    AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
997    AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
998  } else {
999    // Subprogram declarations (part of the type hierarchy).
1000    AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1001  }
1002}
1003
1004void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1005  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1006  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1007           "invalid local scope", &N, N.getRawScope());
1008}
1009
1010void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1011  visitDILexicalBlockBase(N);
1012
1013  AssertDI(N.getLine() || !N.getColumn(),
1014           "cannot have column info without line info", &N);
1015}
1016
1017void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1018  visitDILexicalBlockBase(N);
1019}
1020
1021void Verifier::visitDINamespace(const DINamespace &N) {
1022  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1023  if (auto *S = N.getRawScope())
1024    AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1025}
1026
1027void Verifier::visitDIMacro(const DIMacro &N) {
1028  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1029               N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1030           "invalid macinfo type", &N);
1031  AssertDI(!N.getName().empty(), "anonymous macro", &N);
1032  if (!N.getValue().empty()) {
1033    assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1034  }
1035}
1036
1037void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1038  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1039           "invalid macinfo type", &N);
1040  if (auto *F = N.getRawFile())
1041    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1042
1043  if (auto *Array = N.getRawElements()) {
1044    AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1045    for (Metadata *Op : N.getElements()->operands()) {
1046      AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1047    }
1048  }
1049}
1050
1051void Verifier::visitDIModule(const DIModule &N) {
1052  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1053  AssertDI(!N.getName().empty(), "anonymous module", &N);
1054}
1055
1056void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1057  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1058}
1059
1060void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1061  visitDITemplateParameter(N);
1062
1063  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1064           &N);
1065}
1066
1067void Verifier::visitDITemplateValueParameter(
1068    const DITemplateValueParameter &N) {
1069  visitDITemplateParameter(N);
1070
1071  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1072               N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1073               N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1074           "invalid tag", &N);
1075}
1076
1077void Verifier::visitDIVariable(const DIVariable &N) {
1078  if (auto *S = N.getRawScope())
1079    AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1080  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1081  if (auto *F = N.getRawFile())
1082    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1083}
1084
1085void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1086  // Checks common to all variables.
1087  visitDIVariable(N);
1088
1089  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1090  AssertDI(!N.getName().empty(), "missing global variable name", &N);
1091  if (auto *V = N.getRawVariable()) {
1092    AssertDI(isa<ConstantAsMetadata>(V) &&
1093                 !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
1094             "invalid global varaible ref", &N, V);
1095    visitConstantExprsRecursively(cast<ConstantAsMetadata>(V)->getValue());
1096  }
1097  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1098    AssertDI(isa<DIDerivedType>(Member),
1099             "invalid static data member declaration", &N, Member);
1100  }
1101}
1102
1103void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1104  // Checks common to all variables.
1105  visitDIVariable(N);
1106
1107  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1108  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1109           "local variable requires a valid scope", &N, N.getRawScope());
1110}
1111
1112void Verifier::visitDIExpression(const DIExpression &N) {
1113  AssertDI(N.isValid(), "invalid expression", &N);
1114}
1115
1116void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1117  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1118  if (auto *T = N.getRawType())
1119    AssertDI(isType(T), "invalid type ref", &N, T);
1120  if (auto *F = N.getRawFile())
1121    AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1122}
1123
1124void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1125  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1126               N.getTag() == dwarf::DW_TAG_imported_declaration,
1127           "invalid tag", &N);
1128  if (auto *S = N.getRawScope())
1129    AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1130  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1131           N.getRawEntity());
1132}
1133
1134void Verifier::visitComdat(const Comdat &C) {
1135  // The Module is invalid if the GlobalValue has private linkage.  Entities
1136  // with private linkage don't have entries in the symbol table.
1137  if (const GlobalValue *GV = M->getNamedValue(C.getName()))
1138    Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1139           GV);
1140}
1141
1142void Verifier::visitModuleIdents(const Module &M) {
1143  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1144  if (!Idents)
1145    return;
1146
1147  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1148  // Scan each llvm.ident entry and make sure that this requirement is met.
1149  for (const MDNode *N : Idents->operands()) {
1150    Assert(N->getNumOperands() == 1,
1151           "incorrect number of operands in llvm.ident metadata", N);
1152    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1153           ("invalid value for llvm.ident metadata entry operand"
1154            "(the operand should be a string)"),
1155           N->getOperand(0));
1156  }
1157}
1158
1159void Verifier::visitModuleFlags(const Module &M) {
1160  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1161  if (!Flags) return;
1162
1163  // Scan each flag, and track the flags and requirements.
1164  DenseMap<const MDString*, const MDNode*> SeenIDs;
1165  SmallVector<const MDNode*, 16> Requirements;
1166  for (const MDNode *MDN : Flags->operands())
1167    visitModuleFlag(MDN, SeenIDs, Requirements);
1168
1169  // Validate that the requirements in the module are valid.
1170  for (const MDNode *Requirement : Requirements) {
1171    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1172    const Metadata *ReqValue = Requirement->getOperand(1);
1173
1174    const MDNode *Op = SeenIDs.lookup(Flag);
1175    if (!Op) {
1176      CheckFailed("invalid requirement on flag, flag is not present in module",
1177                  Flag);
1178      continue;
1179    }
1180
1181    if (Op->getOperand(2) != ReqValue) {
1182      CheckFailed(("invalid requirement on flag, "
1183                   "flag does not have the required value"),
1184                  Flag);
1185      continue;
1186    }
1187  }
1188}
1189
1190void
1191Verifier::visitModuleFlag(const MDNode *Op,
1192                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
1193                          SmallVectorImpl<const MDNode *> &Requirements) {
1194  // Each module flag should have three arguments, the merge behavior (a
1195  // constant int), the flag ID (an MDString), and the value.
1196  Assert(Op->getNumOperands() == 3,
1197         "incorrect number of operands in module flag", Op);
1198  Module::ModFlagBehavior MFB;
1199  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1200    Assert(
1201        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1202        "invalid behavior operand in module flag (expected constant integer)",
1203        Op->getOperand(0));
1204    Assert(false,
1205           "invalid behavior operand in module flag (unexpected constant)",
1206           Op->getOperand(0));
1207  }
1208  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1209  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1210         Op->getOperand(1));
1211
1212  // Sanity check the values for behaviors with additional requirements.
1213  switch (MFB) {
1214  case Module::Error:
1215  case Module::Warning:
1216  case Module::Override:
1217    // These behavior types accept any value.
1218    break;
1219
1220  case Module::Require: {
1221    // The value should itself be an MDNode with two operands, a flag ID (an
1222    // MDString), and a value.
1223    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1224    Assert(Value && Value->getNumOperands() == 2,
1225           "invalid value for 'require' module flag (expected metadata pair)",
1226           Op->getOperand(2));
1227    Assert(isa<MDString>(Value->getOperand(0)),
1228           ("invalid value for 'require' module flag "
1229            "(first value operand should be a string)"),
1230           Value->getOperand(0));
1231
1232    // Append it to the list of requirements, to check once all module flags are
1233    // scanned.
1234    Requirements.push_back(Value);
1235    break;
1236  }
1237
1238  case Module::Append:
1239  case Module::AppendUnique: {
1240    // These behavior types require the operand be an MDNode.
1241    Assert(isa<MDNode>(Op->getOperand(2)),
1242           "invalid value for 'append'-type module flag "
1243           "(expected a metadata node)",
1244           Op->getOperand(2));
1245    break;
1246  }
1247  }
1248
1249  // Unless this is a "requires" flag, check the ID is unique.
1250  if (MFB != Module::Require) {
1251    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1252    Assert(Inserted,
1253           "module flag identifiers must be unique (or of 'require' type)", ID);
1254  }
1255}
1256
1257void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1258                                    bool isFunction, const Value *V) {
1259  unsigned Slot = ~0U;
1260  for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1261    if (Attrs.getSlotIndex(I) == Idx) {
1262      Slot = I;
1263      break;
1264    }
1265
1266  assert(Slot != ~0U && "Attribute set inconsistency!");
1267
1268  for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1269         I != E; ++I) {
1270    if (I->isStringAttribute())
1271      continue;
1272
1273    if (I->getKindAsEnum() == Attribute::NoReturn ||
1274        I->getKindAsEnum() == Attribute::NoUnwind ||
1275        I->getKindAsEnum() == Attribute::NoInline ||
1276        I->getKindAsEnum() == Attribute::AlwaysInline ||
1277        I->getKindAsEnum() == Attribute::OptimizeForSize ||
1278        I->getKindAsEnum() == Attribute::StackProtect ||
1279        I->getKindAsEnum() == Attribute::StackProtectReq ||
1280        I->getKindAsEnum() == Attribute::StackProtectStrong ||
1281        I->getKindAsEnum() == Attribute::SafeStack ||
1282        I->getKindAsEnum() == Attribute::NoRedZone ||
1283        I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1284        I->getKindAsEnum() == Attribute::Naked ||
1285        I->getKindAsEnum() == Attribute::InlineHint ||
1286        I->getKindAsEnum() == Attribute::StackAlignment ||
1287        I->getKindAsEnum() == Attribute::UWTable ||
1288        I->getKindAsEnum() == Attribute::NonLazyBind ||
1289        I->getKindAsEnum() == Attribute::ReturnsTwice ||
1290        I->getKindAsEnum() == Attribute::SanitizeAddress ||
1291        I->getKindAsEnum() == Attribute::SanitizeThread ||
1292        I->getKindAsEnum() == Attribute::SanitizeMemory ||
1293        I->getKindAsEnum() == Attribute::MinSize ||
1294        I->getKindAsEnum() == Attribute::NoDuplicate ||
1295        I->getKindAsEnum() == Attribute::Builtin ||
1296        I->getKindAsEnum() == Attribute::NoBuiltin ||
1297        I->getKindAsEnum() == Attribute::Cold ||
1298        I->getKindAsEnum() == Attribute::OptimizeNone ||
1299        I->getKindAsEnum() == Attribute::JumpTable ||
1300        I->getKindAsEnum() == Attribute::Convergent ||
1301        I->getKindAsEnum() == Attribute::ArgMemOnly ||
1302        I->getKindAsEnum() == Attribute::NoRecurse ||
1303        I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1304        I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly ||
1305        I->getKindAsEnum() == Attribute::AllocSize) {
1306      if (!isFunction) {
1307        CheckFailed("Attribute '" + I->getAsString() +
1308                    "' only applies to functions!", V);
1309        return;
1310      }
1311    } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1312               I->getKindAsEnum() == Attribute::WriteOnly ||
1313               I->getKindAsEnum() == Attribute::ReadNone) {
1314      if (Idx == 0) {
1315        CheckFailed("Attribute '" + I->getAsString() +
1316                    "' does not apply to function returns");
1317        return;
1318      }
1319    } else if (isFunction) {
1320      CheckFailed("Attribute '" + I->getAsString() +
1321                  "' does not apply to functions!", V);
1322      return;
1323    }
1324  }
1325}
1326
1327// VerifyParameterAttrs - Check the given attributes for an argument or return
1328// value of the specified type.  The value V is printed in error messages.
1329void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1330                                    bool isReturnValue, const Value *V) {
1331  if (!Attrs.hasAttributes(Idx))
1332    return;
1333
1334  verifyAttributeTypes(Attrs, Idx, false, V);
1335
1336  if (isReturnValue)
1337    Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1338               !Attrs.hasAttribute(Idx, Attribute::Nest) &&
1339               !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1340               !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
1341               !Attrs.hasAttribute(Idx, Attribute::Returned) &&
1342               !Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1343               !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) &&
1344               !Attrs.hasAttribute(Idx, Attribute::SwiftError),
1345           "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1346           "'returned', 'swiftself', and 'swifterror' do not apply to return "
1347           "values!",
1348           V);
1349
1350  // Check for mutually incompatible attributes.  Only inreg is compatible with
1351  // sret.
1352  unsigned AttrCount = 0;
1353  AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1354  AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1355  AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1356               Attrs.hasAttribute(Idx, Attribute::InReg);
1357  AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1358  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1359                         "and 'sret' are incompatible!",
1360         V);
1361
1362  Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1363           Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1364         "Attributes "
1365         "'inalloca and readonly' are incompatible!",
1366         V);
1367
1368  Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1369           Attrs.hasAttribute(Idx, Attribute::Returned)),
1370         "Attributes "
1371         "'sret and returned' are incompatible!",
1372         V);
1373
1374  Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
1375           Attrs.hasAttribute(Idx, Attribute::SExt)),
1376         "Attributes "
1377         "'zeroext and signext' are incompatible!",
1378         V);
1379
1380  Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1381           Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1382         "Attributes "
1383         "'readnone and readonly' are incompatible!",
1384         V);
1385
1386  Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1387           Attrs.hasAttribute(Idx, Attribute::WriteOnly)),
1388         "Attributes "
1389         "'readnone and writeonly' are incompatible!",
1390         V);
1391
1392  Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
1393           Attrs.hasAttribute(Idx, Attribute::WriteOnly)),
1394         "Attributes "
1395         "'readonly and writeonly' are incompatible!",
1396         V);
1397
1398  Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
1399           Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
1400         "Attributes "
1401         "'noinline and alwaysinline' are incompatible!",
1402         V);
1403
1404  Assert(!AttrBuilder(Attrs, Idx)
1405              .overlaps(AttributeFuncs::typeIncompatible(Ty)),
1406         "Wrong types for attribute: " +
1407         AttributeSet::get(*Context, Idx,
1408                        AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
1409         V);
1410
1411  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1412    SmallPtrSet<Type*, 4> Visited;
1413    if (!PTy->getElementType()->isSized(&Visited)) {
1414      Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1415                 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1416             "Attributes 'byval' and 'inalloca' do not support unsized types!",
1417             V);
1418    }
1419    if (!isa<PointerType>(PTy->getElementType()))
1420      Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),
1421             "Attribute 'swifterror' only applies to parameters "
1422             "with pointer to pointer type!",
1423             V);
1424  } else {
1425    Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
1426           "Attribute 'byval' only applies to parameters with pointer type!",
1427           V);
1428    Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),
1429           "Attribute 'swifterror' only applies to parameters "
1430           "with pointer type!",
1431           V);
1432  }
1433}
1434
1435// Check parameter attributes against a function type.
1436// The value V is printed in error messages.
1437void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1438                                   const Value *V) {
1439  if (Attrs.isEmpty())
1440    return;
1441
1442  bool SawNest = false;
1443  bool SawReturned = false;
1444  bool SawSRet = false;
1445  bool SawSwiftSelf = false;
1446  bool SawSwiftError = false;
1447
1448  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1449    unsigned Idx = Attrs.getSlotIndex(i);
1450
1451    Type *Ty;
1452    if (Idx == 0)
1453      Ty = FT->getReturnType();
1454    else if (Idx-1 < FT->getNumParams())
1455      Ty = FT->getParamType(Idx-1);
1456    else
1457      break;  // VarArgs attributes, verified elsewhere.
1458
1459    verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1460
1461    if (Idx == 0)
1462      continue;
1463
1464    if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1465      Assert(!SawNest, "More than one parameter has attribute nest!", V);
1466      SawNest = true;
1467    }
1468
1469    if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1470      Assert(!SawReturned, "More than one parameter has attribute returned!",
1471             V);
1472      Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1473             "Incompatible "
1474             "argument and return types for 'returned' attribute",
1475             V);
1476      SawReturned = true;
1477    }
1478
1479    if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1480      Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1481      Assert(Idx == 1 || Idx == 2,
1482             "Attribute 'sret' is not on first or second parameter!", V);
1483      SawSRet = true;
1484    }
1485
1486    if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) {
1487      Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1488      SawSwiftSelf = true;
1489    }
1490
1491    if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) {
1492      Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1493             V);
1494      SawSwiftError = true;
1495    }
1496
1497    if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1498      Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
1499             V);
1500    }
1501  }
1502
1503  if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1504    return;
1505
1506  verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1507
1508  Assert(
1509      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1510        Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
1511      "Attributes 'readnone and readonly' are incompatible!", V);
1512
1513  Assert(
1514      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1515        Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),
1516      "Attributes 'readnone and writeonly' are incompatible!", V);
1517
1518  Assert(
1519      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly) &&
1520        Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),
1521      "Attributes 'readonly and writeonly' are incompatible!", V);
1522
1523  Assert(
1524      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1525        Attrs.hasAttribute(AttributeSet::FunctionIndex,
1526                           Attribute::InaccessibleMemOrArgMemOnly)),
1527      "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
1528
1529  Assert(
1530      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1531        Attrs.hasAttribute(AttributeSet::FunctionIndex,
1532                           Attribute::InaccessibleMemOnly)),
1533      "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1534
1535  Assert(
1536      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
1537        Attrs.hasAttribute(AttributeSet::FunctionIndex,
1538                           Attribute::AlwaysInline)),
1539      "Attributes 'noinline and alwaysinline' are incompatible!", V);
1540
1541  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1542                         Attribute::OptimizeNone)) {
1543    Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
1544           "Attribute 'optnone' requires 'noinline'!", V);
1545
1546    Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1547                               Attribute::OptimizeForSize),
1548           "Attributes 'optsize and optnone' are incompatible!", V);
1549
1550    Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
1551           "Attributes 'minsize and optnone' are incompatible!", V);
1552  }
1553
1554  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1555                         Attribute::JumpTable)) {
1556    const GlobalValue *GV = cast<GlobalValue>(V);
1557    Assert(GV->hasGlobalUnnamedAddr(),
1558           "Attribute 'jumptable' requires 'unnamed_addr'", V);
1559  }
1560
1561  if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AllocSize)) {
1562    std::pair<unsigned, Optional<unsigned>> Args =
1563        Attrs.getAllocSizeArgs(AttributeSet::FunctionIndex);
1564
1565    auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1566      if (ParamNo >= FT->getNumParams()) {
1567        CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1568        return false;
1569      }
1570
1571      if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1572        CheckFailed("'allocsize' " + Name +
1573                        " argument must refer to an integer parameter",
1574                    V);
1575        return false;
1576      }
1577
1578      return true;
1579    };
1580
1581    if (!CheckParam("element size", Args.first))
1582      return;
1583
1584    if (Args.second && !CheckParam("number of elements", *Args.second))
1585      return;
1586  }
1587}
1588
1589void Verifier::verifyFunctionMetadata(
1590    ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1591  for (const auto &Pair : MDs) {
1592    if (Pair.first == LLVMContext::MD_prof) {
1593      MDNode *MD = Pair.second;
1594      Assert(MD->getNumOperands() == 2,
1595             "!prof annotations should have exactly 2 operands", MD);
1596
1597      // Check first operand.
1598      Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1599             MD);
1600      Assert(isa<MDString>(MD->getOperand(0)),
1601             "expected string with name of the !prof annotation", MD);
1602      MDString *MDS = cast<MDString>(MD->getOperand(0));
1603      StringRef ProfName = MDS->getString();
1604      Assert(ProfName.equals("function_entry_count"),
1605             "first operand should be 'function_entry_count'", MD);
1606
1607      // Check second operand.
1608      Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1609             MD);
1610      Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1611             "expected integer argument to function_entry_count", MD);
1612    }
1613  }
1614}
1615
1616void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1617  if (!ConstantExprVisited.insert(EntryC).second)
1618    return;
1619
1620  SmallVector<const Constant *, 16> Stack;
1621  Stack.push_back(EntryC);
1622
1623  while (!Stack.empty()) {
1624    const Constant *C = Stack.pop_back_val();
1625
1626    // Check this constant expression.
1627    if (const auto *CE = dyn_cast<ConstantExpr>(C))
1628      visitConstantExpr(CE);
1629
1630    if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1631      // Global Values get visited separately, but we do need to make sure
1632      // that the global value is in the correct module
1633      Assert(GV->getParent() == M, "Referencing global in another module!",
1634             EntryC, M, GV, GV->getParent());
1635      continue;
1636    }
1637
1638    // Visit all sub-expressions.
1639    for (const Use &U : C->operands()) {
1640      const auto *OpC = dyn_cast<Constant>(U);
1641      if (!OpC)
1642        continue;
1643      if (!ConstantExprVisited.insert(OpC).second)
1644        continue;
1645      Stack.push_back(OpC);
1646    }
1647  }
1648}
1649
1650void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1651  if (CE->getOpcode() != Instruction::BitCast)
1652    return;
1653
1654  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1655                               CE->getType()),
1656         "Invalid bitcast", CE);
1657}
1658
1659bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1660  if (Attrs.getNumSlots() == 0)
1661    return true;
1662
1663  unsigned LastSlot = Attrs.getNumSlots() - 1;
1664  unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1665  if (LastIndex <= Params
1666      || (LastIndex == AttributeSet::FunctionIndex
1667          && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1668    return true;
1669
1670  return false;
1671}
1672
1673/// Verify that statepoint intrinsic is well formed.
1674void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1675  assert(CS.getCalledFunction() &&
1676         CS.getCalledFunction()->getIntrinsicID() ==
1677           Intrinsic::experimental_gc_statepoint);
1678
1679  const Instruction &CI = *CS.getInstruction();
1680
1681  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1682         !CS.onlyAccessesArgMemory(),
1683         "gc.statepoint must read and write all memory to preserve "
1684         "reordering restrictions required by safepoint semantics",
1685         &CI);
1686
1687  const Value *IDV = CS.getArgument(0);
1688  Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1689         &CI);
1690
1691  const Value *NumPatchBytesV = CS.getArgument(1);
1692  Assert(isa<ConstantInt>(NumPatchBytesV),
1693         "gc.statepoint number of patchable bytes must be a constant integer",
1694         &CI);
1695  const int64_t NumPatchBytes =
1696      cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1697  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1698  Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1699                             "positive",
1700         &CI);
1701
1702  const Value *Target = CS.getArgument(2);
1703  auto *PT = dyn_cast<PointerType>(Target->getType());
1704  Assert(PT && PT->getElementType()->isFunctionTy(),
1705         "gc.statepoint callee must be of function pointer type", &CI, Target);
1706  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1707
1708  const Value *NumCallArgsV = CS.getArgument(3);
1709  Assert(isa<ConstantInt>(NumCallArgsV),
1710         "gc.statepoint number of arguments to underlying call "
1711         "must be constant integer",
1712         &CI);
1713  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1714  Assert(NumCallArgs >= 0,
1715         "gc.statepoint number of arguments to underlying call "
1716         "must be positive",
1717         &CI);
1718  const int NumParams = (int)TargetFuncType->getNumParams();
1719  if (TargetFuncType->isVarArg()) {
1720    Assert(NumCallArgs >= NumParams,
1721           "gc.statepoint mismatch in number of vararg call args", &CI);
1722
1723    // TODO: Remove this limitation
1724    Assert(TargetFuncType->getReturnType()->isVoidTy(),
1725           "gc.statepoint doesn't support wrapping non-void "
1726           "vararg functions yet",
1727           &CI);
1728  } else
1729    Assert(NumCallArgs == NumParams,
1730           "gc.statepoint mismatch in number of call args", &CI);
1731
1732  const Value *FlagsV = CS.getArgument(4);
1733  Assert(isa<ConstantInt>(FlagsV),
1734         "gc.statepoint flags must be constant integer", &CI);
1735  const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1736  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1737         "unknown flag used in gc.statepoint flags argument", &CI);
1738
1739  // Verify that the types of the call parameter arguments match
1740  // the type of the wrapped callee.
1741  for (int i = 0; i < NumParams; i++) {
1742    Type *ParamType = TargetFuncType->getParamType(i);
1743    Type *ArgType = CS.getArgument(5 + i)->getType();
1744    Assert(ArgType == ParamType,
1745           "gc.statepoint call argument does not match wrapped "
1746           "function type",
1747           &CI);
1748  }
1749
1750  const int EndCallArgsInx = 4 + NumCallArgs;
1751
1752  const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1753  Assert(isa<ConstantInt>(NumTransitionArgsV),
1754         "gc.statepoint number of transition arguments "
1755         "must be constant integer",
1756         &CI);
1757  const int NumTransitionArgs =
1758      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1759  Assert(NumTransitionArgs >= 0,
1760         "gc.statepoint number of transition arguments must be positive", &CI);
1761  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1762
1763  const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1764  Assert(isa<ConstantInt>(NumDeoptArgsV),
1765         "gc.statepoint number of deoptimization arguments "
1766         "must be constant integer",
1767         &CI);
1768  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1769  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1770                            "must be positive",
1771         &CI);
1772
1773  const int ExpectedNumArgs =
1774      7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1775  Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1776         "gc.statepoint too few arguments according to length fields", &CI);
1777
1778  // Check that the only uses of this gc.statepoint are gc.result or
1779  // gc.relocate calls which are tied to this statepoint and thus part
1780  // of the same statepoint sequence
1781  for (const User *U : CI.users()) {
1782    const CallInst *Call = dyn_cast<const CallInst>(U);
1783    Assert(Call, "illegal use of statepoint token", &CI, U);
1784    if (!Call) continue;
1785    Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1786           "gc.result or gc.relocate are the only value uses"
1787           "of a gc.statepoint",
1788           &CI, U);
1789    if (isa<GCResultInst>(Call)) {
1790      Assert(Call->getArgOperand(0) == &CI,
1791             "gc.result connected to wrong gc.statepoint", &CI, Call);
1792    } else if (isa<GCRelocateInst>(Call)) {
1793      Assert(Call->getArgOperand(0) == &CI,
1794             "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1795    }
1796  }
1797
1798  // Note: It is legal for a single derived pointer to be listed multiple
1799  // times.  It's non-optimal, but it is legal.  It can also happen after
1800  // insertion if we strip a bitcast away.
1801  // Note: It is really tempting to check that each base is relocated and
1802  // that a derived pointer is never reused as a base pointer.  This turns
1803  // out to be problematic since optimizations run after safepoint insertion
1804  // can recognize equality properties that the insertion logic doesn't know
1805  // about.  See example statepoint.ll in the verifier subdirectory
1806}
1807
1808void Verifier::verifyFrameRecoverIndices() {
1809  for (auto &Counts : FrameEscapeInfo) {
1810    Function *F = Counts.first;
1811    unsigned EscapedObjectCount = Counts.second.first;
1812    unsigned MaxRecoveredIndex = Counts.second.second;
1813    Assert(MaxRecoveredIndex <= EscapedObjectCount,
1814           "all indices passed to llvm.localrecover must be less than the "
1815           "number of arguments passed ot llvm.localescape in the parent "
1816           "function",
1817           F);
1818  }
1819}
1820
1821static Instruction *getSuccPad(TerminatorInst *Terminator) {
1822  BasicBlock *UnwindDest;
1823  if (auto *II = dyn_cast<InvokeInst>(Terminator))
1824    UnwindDest = II->getUnwindDest();
1825  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1826    UnwindDest = CSI->getUnwindDest();
1827  else
1828    UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1829  return UnwindDest->getFirstNonPHI();
1830}
1831
1832void Verifier::verifySiblingFuncletUnwinds() {
1833  SmallPtrSet<Instruction *, 8> Visited;
1834  SmallPtrSet<Instruction *, 8> Active;
1835  for (const auto &Pair : SiblingFuncletInfo) {
1836    Instruction *PredPad = Pair.first;
1837    if (Visited.count(PredPad))
1838      continue;
1839    Active.insert(PredPad);
1840    TerminatorInst *Terminator = Pair.second;
1841    do {
1842      Instruction *SuccPad = getSuccPad(Terminator);
1843      if (Active.count(SuccPad)) {
1844        // Found a cycle; report error
1845        Instruction *CyclePad = SuccPad;
1846        SmallVector<Instruction *, 8> CycleNodes;
1847        do {
1848          CycleNodes.push_back(CyclePad);
1849          TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1850          if (CycleTerminator != CyclePad)
1851            CycleNodes.push_back(CycleTerminator);
1852          CyclePad = getSuccPad(CycleTerminator);
1853        } while (CyclePad != SuccPad);
1854        Assert(false, "EH pads can't handle each other's exceptions",
1855               ArrayRef<Instruction *>(CycleNodes));
1856      }
1857      // Don't re-walk a node we've already checked
1858      if (!Visited.insert(SuccPad).second)
1859        break;
1860      // Walk to this successor if it has a map entry.
1861      PredPad = SuccPad;
1862      auto TermI = SiblingFuncletInfo.find(PredPad);
1863      if (TermI == SiblingFuncletInfo.end())
1864        break;
1865      Terminator = TermI->second;
1866      Active.insert(PredPad);
1867    } while (true);
1868    // Each node only has one successor, so we've walked all the active
1869    // nodes' successors.
1870    Active.clear();
1871  }
1872}
1873
1874// visitFunction - Verify that a function is ok.
1875//
1876void Verifier::visitFunction(const Function &F) {
1877  visitGlobalValue(F);
1878
1879  // Check function arguments.
1880  FunctionType *FT = F.getFunctionType();
1881  unsigned NumArgs = F.arg_size();
1882
1883  Assert(Context == &F.getContext(),
1884         "Function context does not match Module context!", &F);
1885
1886  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1887  Assert(FT->getNumParams() == NumArgs,
1888         "# formal arguments must match # of arguments for function type!", &F,
1889         FT);
1890  Assert(F.getReturnType()->isFirstClassType() ||
1891             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1892         "Functions cannot return aggregate values!", &F);
1893
1894  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1895         "Invalid struct return type!", &F);
1896
1897  AttributeSet Attrs = F.getAttributes();
1898
1899  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
1900         "Attribute after last parameter!", &F);
1901
1902  // Check function attributes.
1903  verifyFunctionAttrs(FT, Attrs, &F);
1904
1905  // On function declarations/definitions, we do not support the builtin
1906  // attribute. We do not check this in VerifyFunctionAttrs since that is
1907  // checking for Attributes that can/can not ever be on functions.
1908  Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
1909         "Attribute 'builtin' can only be applied to a callsite.", &F);
1910
1911  // Check that this function meets the restrictions on this calling convention.
1912  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1913  // restrictions can be lifted.
1914  switch (F.getCallingConv()) {
1915  default:
1916  case CallingConv::C:
1917    break;
1918  case CallingConv::Fast:
1919  case CallingConv::Cold:
1920  case CallingConv::Intel_OCL_BI:
1921  case CallingConv::PTX_Kernel:
1922  case CallingConv::PTX_Device:
1923    Assert(!F.isVarArg(), "Calling convention does not support varargs or "
1924                          "perfect forwarding!",
1925           &F);
1926    break;
1927  }
1928
1929  bool isLLVMdotName = F.getName().size() >= 5 &&
1930                       F.getName().substr(0, 5) == "llvm.";
1931
1932  // Check that the argument values match the function type for this function...
1933  unsigned i = 0;
1934  for (const Argument &Arg : F.args()) {
1935    Assert(Arg.getType() == FT->getParamType(i),
1936           "Argument value does not match function argument type!", &Arg,
1937           FT->getParamType(i));
1938    Assert(Arg.getType()->isFirstClassType(),
1939           "Function arguments must have first-class types!", &Arg);
1940    if (!isLLVMdotName) {
1941      Assert(!Arg.getType()->isMetadataTy(),
1942             "Function takes metadata but isn't an intrinsic", &Arg, &F);
1943      Assert(!Arg.getType()->isTokenTy(),
1944             "Function takes token but isn't an intrinsic", &Arg, &F);
1945    }
1946
1947    // Check that swifterror argument is only used by loads and stores.
1948    if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) {
1949      verifySwiftErrorValue(&Arg);
1950    }
1951    ++i;
1952  }
1953
1954  if (!isLLVMdotName)
1955    Assert(!F.getReturnType()->isTokenTy(),
1956           "Functions returns a token but isn't an intrinsic", &F);
1957
1958  // Get the function metadata attachments.
1959  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1960  F.getAllMetadata(MDs);
1961  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
1962  verifyFunctionMetadata(MDs);
1963
1964  // Check validity of the personality function
1965  if (F.hasPersonalityFn()) {
1966    auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
1967    if (Per)
1968      Assert(Per->getParent() == F.getParent(),
1969             "Referencing personality function in another module!",
1970             &F, F.getParent(), Per, Per->getParent());
1971  }
1972
1973  if (F.isMaterializable()) {
1974    // Function has a body somewhere we can't see.
1975    Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
1976           MDs.empty() ? nullptr : MDs.front().second);
1977  } else if (F.isDeclaration()) {
1978    for (const auto &I : MDs) {
1979      AssertDI(I.first != LLVMContext::MD_dbg,
1980               "function declaration may not have a !dbg attachment", &F);
1981      Assert(I.first != LLVMContext::MD_prof,
1982             "function declaration may not have a !prof attachment", &F);
1983
1984      // Verify the metadata itself.
1985      visitMDNode(*I.second);
1986    }
1987    Assert(!F.hasPersonalityFn(),
1988           "Function declaration shouldn't have a personality routine", &F);
1989  } else {
1990    // Verify that this function (which has a body) is not named "llvm.*".  It
1991    // is not legal to define intrinsics.
1992    Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1993
1994    // Check the entry node
1995    const BasicBlock *Entry = &F.getEntryBlock();
1996    Assert(pred_empty(Entry),
1997           "Entry block to function must not have predecessors!", Entry);
1998
1999    // The address of the entry block cannot be taken, unless it is dead.
2000    if (Entry->hasAddressTaken()) {
2001      Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2002             "blockaddress may not be used with the entry block!", Entry);
2003    }
2004
2005    unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2006    // Visit metadata attachments.
2007    for (const auto &I : MDs) {
2008      // Verify that the attachment is legal.
2009      switch (I.first) {
2010      default:
2011        break;
2012      case LLVMContext::MD_dbg:
2013        ++NumDebugAttachments;
2014        AssertDI(NumDebugAttachments == 1,
2015                 "function must have a single !dbg attachment", &F, I.second);
2016        AssertDI(isa<DISubprogram>(I.second),
2017                 "function !dbg attachment must be a subprogram", &F, I.second);
2018        break;
2019      case LLVMContext::MD_prof:
2020        ++NumProfAttachments;
2021        Assert(NumProfAttachments == 1,
2022               "function must have a single !prof attachment", &F, I.second);
2023        break;
2024      }
2025
2026      // Verify the metadata itself.
2027      visitMDNode(*I.second);
2028    }
2029  }
2030
2031  // If this function is actually an intrinsic, verify that it is only used in
2032  // direct call/invokes, never having its "address taken".
2033  // Only do this if the module is materialized, otherwise we don't have all the
2034  // uses.
2035  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2036    const User *U;
2037    if (F.hasAddressTaken(&U))
2038      Assert(0, "Invalid user of intrinsic instruction!", U);
2039  }
2040
2041  Assert(!F.hasDLLImportStorageClass() ||
2042             (F.isDeclaration() && F.hasExternalLinkage()) ||
2043             F.hasAvailableExternallyLinkage(),
2044         "Function is marked as dllimport, but not external.", &F);
2045
2046  auto *N = F.getSubprogram();
2047  if (!N)
2048    return;
2049
2050  visitDISubprogram(*N);
2051
2052  // Check that all !dbg attachments lead to back to N (or, at least, another
2053  // subprogram that describes the same function).
2054  //
2055  // FIXME: Check this incrementally while visiting !dbg attachments.
2056  // FIXME: Only check when N is the canonical subprogram for F.
2057  SmallPtrSet<const MDNode *, 32> Seen;
2058  for (auto &BB : F)
2059    for (auto &I : BB) {
2060      // Be careful about using DILocation here since we might be dealing with
2061      // broken code (this is the Verifier after all).
2062      DILocation *DL =
2063          dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2064      if (!DL)
2065        continue;
2066      if (!Seen.insert(DL).second)
2067        continue;
2068
2069      DILocalScope *Scope = DL->getInlinedAtScope();
2070      if (Scope && !Seen.insert(Scope).second)
2071        continue;
2072
2073      DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2074
2075      // Scope and SP could be the same MDNode and we don't want to skip
2076      // validation in that case
2077      if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2078        continue;
2079
2080      // FIXME: Once N is canonical, check "SP == &N".
2081      Assert(SP->describes(&F),
2082             "!dbg attachment points at wrong subprogram for function", N, &F,
2083             &I, DL, Scope, SP);
2084    }
2085}
2086
2087// verifyBasicBlock - Verify that a basic block is well formed...
2088//
2089void Verifier::visitBasicBlock(BasicBlock &BB) {
2090  InstsInThisBlock.clear();
2091
2092  // Ensure that basic blocks have terminators!
2093  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2094
2095  // Check constraints that this basic block imposes on all of the PHI nodes in
2096  // it.
2097  if (isa<PHINode>(BB.front())) {
2098    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2099    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2100    std::sort(Preds.begin(), Preds.end());
2101    PHINode *PN;
2102    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2103      // Ensure that PHI nodes have at least one entry!
2104      Assert(PN->getNumIncomingValues() != 0,
2105             "PHI nodes must have at least one entry.  If the block is dead, "
2106             "the PHI should be removed!",
2107             PN);
2108      Assert(PN->getNumIncomingValues() == Preds.size(),
2109             "PHINode should have one entry for each predecessor of its "
2110             "parent basic block!",
2111             PN);
2112
2113      // Get and sort all incoming values in the PHI node...
2114      Values.clear();
2115      Values.reserve(PN->getNumIncomingValues());
2116      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2117        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2118                                        PN->getIncomingValue(i)));
2119      std::sort(Values.begin(), Values.end());
2120
2121      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2122        // Check to make sure that if there is more than one entry for a
2123        // particular basic block in this PHI node, that the incoming values are
2124        // all identical.
2125        //
2126        Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2127                   Values[i].second == Values[i - 1].second,
2128               "PHI node has multiple entries for the same basic block with "
2129               "different incoming values!",
2130               PN, Values[i].first, Values[i].second, Values[i - 1].second);
2131
2132        // Check to make sure that the predecessors and PHI node entries are
2133        // matched up.
2134        Assert(Values[i].first == Preds[i],
2135               "PHI node entries do not match predecessors!", PN,
2136               Values[i].first, Preds[i]);
2137      }
2138    }
2139  }
2140
2141  // Check that all instructions have their parent pointers set up correctly.
2142  for (auto &I : BB)
2143  {
2144    Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2145  }
2146}
2147
2148void Verifier::visitTerminatorInst(TerminatorInst &I) {
2149  // Ensure that terminators only exist at the end of the basic block.
2150  Assert(&I == I.getParent()->getTerminator(),
2151         "Terminator found in the middle of a basic block!", I.getParent());
2152  visitInstruction(I);
2153}
2154
2155void Verifier::visitBranchInst(BranchInst &BI) {
2156  if (BI.isConditional()) {
2157    Assert(BI.getCondition()->getType()->isIntegerTy(1),
2158           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2159  }
2160  visitTerminatorInst(BI);
2161}
2162
2163void Verifier::visitReturnInst(ReturnInst &RI) {
2164  Function *F = RI.getParent()->getParent();
2165  unsigned N = RI.getNumOperands();
2166  if (F->getReturnType()->isVoidTy())
2167    Assert(N == 0,
2168           "Found return instr that returns non-void in Function of void "
2169           "return type!",
2170           &RI, F->getReturnType());
2171  else
2172    Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2173           "Function return type does not match operand "
2174           "type of return inst!",
2175           &RI, F->getReturnType());
2176
2177  // Check to make sure that the return value has necessary properties for
2178  // terminators...
2179  visitTerminatorInst(RI);
2180}
2181
2182void Verifier::visitSwitchInst(SwitchInst &SI) {
2183  // Check to make sure that all of the constants in the switch instruction
2184  // have the same type as the switched-on value.
2185  Type *SwitchTy = SI.getCondition()->getType();
2186  SmallPtrSet<ConstantInt*, 32> Constants;
2187  for (auto &Case : SI.cases()) {
2188    Assert(Case.getCaseValue()->getType() == SwitchTy,
2189           "Switch constants must all be same type as switch value!", &SI);
2190    Assert(Constants.insert(Case.getCaseValue()).second,
2191           "Duplicate integer as switch case", &SI, Case.getCaseValue());
2192  }
2193
2194  visitTerminatorInst(SI);
2195}
2196
2197void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2198  Assert(BI.getAddress()->getType()->isPointerTy(),
2199         "Indirectbr operand must have pointer type!", &BI);
2200  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2201    Assert(BI.getDestination(i)->getType()->isLabelTy(),
2202           "Indirectbr destinations must all have pointer type!", &BI);
2203
2204  visitTerminatorInst(BI);
2205}
2206
2207void Verifier::visitSelectInst(SelectInst &SI) {
2208  Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2209                                         SI.getOperand(2)),
2210         "Invalid operands for select instruction!", &SI);
2211
2212  Assert(SI.getTrueValue()->getType() == SI.getType(),
2213         "Select values must have same type as select instruction!", &SI);
2214  visitInstruction(SI);
2215}
2216
2217/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2218/// a pass, if any exist, it's an error.
2219///
2220void Verifier::visitUserOp1(Instruction &I) {
2221  Assert(0, "User-defined operators should not live outside of a pass!", &I);
2222}
2223
2224void Verifier::visitTruncInst(TruncInst &I) {
2225  // Get the source and destination types
2226  Type *SrcTy = I.getOperand(0)->getType();
2227  Type *DestTy = I.getType();
2228
2229  // Get the size of the types in bits, we'll need this later
2230  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2231  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2232
2233  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2234  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2235  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2236         "trunc source and destination must both be a vector or neither", &I);
2237  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2238
2239  visitInstruction(I);
2240}
2241
2242void Verifier::visitZExtInst(ZExtInst &I) {
2243  // Get the source and destination types
2244  Type *SrcTy = I.getOperand(0)->getType();
2245  Type *DestTy = I.getType();
2246
2247  // Get the size of the types in bits, we'll need this later
2248  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2249  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2250  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2251         "zext source and destination must both be a vector or neither", &I);
2252  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2253  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2254
2255  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2256
2257  visitInstruction(I);
2258}
2259
2260void Verifier::visitSExtInst(SExtInst &I) {
2261  // Get the source and destination types
2262  Type *SrcTy = I.getOperand(0)->getType();
2263  Type *DestTy = I.getType();
2264
2265  // Get the size of the types in bits, we'll need this later
2266  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2267  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2268
2269  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2270  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2271  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2272         "sext source and destination must both be a vector or neither", &I);
2273  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2274
2275  visitInstruction(I);
2276}
2277
2278void Verifier::visitFPTruncInst(FPTruncInst &I) {
2279  // Get the source and destination types
2280  Type *SrcTy = I.getOperand(0)->getType();
2281  Type *DestTy = I.getType();
2282  // Get the size of the types in bits, we'll need this later
2283  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2284  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2285
2286  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2287  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2288  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2289         "fptrunc source and destination must both be a vector or neither", &I);
2290  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2291
2292  visitInstruction(I);
2293}
2294
2295void Verifier::visitFPExtInst(FPExtInst &I) {
2296  // Get the source and destination types
2297  Type *SrcTy = I.getOperand(0)->getType();
2298  Type *DestTy = I.getType();
2299
2300  // Get the size of the types in bits, we'll need this later
2301  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2302  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2303
2304  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2305  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2306  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2307         "fpext source and destination must both be a vector or neither", &I);
2308  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2309
2310  visitInstruction(I);
2311}
2312
2313void Verifier::visitUIToFPInst(UIToFPInst &I) {
2314  // Get the source and destination types
2315  Type *SrcTy = I.getOperand(0)->getType();
2316  Type *DestTy = I.getType();
2317
2318  bool SrcVec = SrcTy->isVectorTy();
2319  bool DstVec = DestTy->isVectorTy();
2320
2321  Assert(SrcVec == DstVec,
2322         "UIToFP source and dest must both be vector or scalar", &I);
2323  Assert(SrcTy->isIntOrIntVectorTy(),
2324         "UIToFP source must be integer or integer vector", &I);
2325  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2326         &I);
2327
2328  if (SrcVec && DstVec)
2329    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2330               cast<VectorType>(DestTy)->getNumElements(),
2331           "UIToFP source and dest vector length mismatch", &I);
2332
2333  visitInstruction(I);
2334}
2335
2336void Verifier::visitSIToFPInst(SIToFPInst &I) {
2337  // Get the source and destination types
2338  Type *SrcTy = I.getOperand(0)->getType();
2339  Type *DestTy = I.getType();
2340
2341  bool SrcVec = SrcTy->isVectorTy();
2342  bool DstVec = DestTy->isVectorTy();
2343
2344  Assert(SrcVec == DstVec,
2345         "SIToFP source and dest must both be vector or scalar", &I);
2346  Assert(SrcTy->isIntOrIntVectorTy(),
2347         "SIToFP source must be integer or integer vector", &I);
2348  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2349         &I);
2350
2351  if (SrcVec && DstVec)
2352    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2353               cast<VectorType>(DestTy)->getNumElements(),
2354           "SIToFP source and dest vector length mismatch", &I);
2355
2356  visitInstruction(I);
2357}
2358
2359void Verifier::visitFPToUIInst(FPToUIInst &I) {
2360  // Get the source and destination types
2361  Type *SrcTy = I.getOperand(0)->getType();
2362  Type *DestTy = I.getType();
2363
2364  bool SrcVec = SrcTy->isVectorTy();
2365  bool DstVec = DestTy->isVectorTy();
2366
2367  Assert(SrcVec == DstVec,
2368         "FPToUI source and dest must both be vector or scalar", &I);
2369  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2370         &I);
2371  Assert(DestTy->isIntOrIntVectorTy(),
2372         "FPToUI result must be integer or integer vector", &I);
2373
2374  if (SrcVec && DstVec)
2375    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2376               cast<VectorType>(DestTy)->getNumElements(),
2377           "FPToUI source and dest vector length mismatch", &I);
2378
2379  visitInstruction(I);
2380}
2381
2382void Verifier::visitFPToSIInst(FPToSIInst &I) {
2383  // Get the source and destination types
2384  Type *SrcTy = I.getOperand(0)->getType();
2385  Type *DestTy = I.getType();
2386
2387  bool SrcVec = SrcTy->isVectorTy();
2388  bool DstVec = DestTy->isVectorTy();
2389
2390  Assert(SrcVec == DstVec,
2391         "FPToSI source and dest must both be vector or scalar", &I);
2392  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2393         &I);
2394  Assert(DestTy->isIntOrIntVectorTy(),
2395         "FPToSI result must be integer or integer vector", &I);
2396
2397  if (SrcVec && DstVec)
2398    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2399               cast<VectorType>(DestTy)->getNumElements(),
2400           "FPToSI source and dest vector length mismatch", &I);
2401
2402  visitInstruction(I);
2403}
2404
2405void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2406  // Get the source and destination types
2407  Type *SrcTy = I.getOperand(0)->getType();
2408  Type *DestTy = I.getType();
2409
2410  Assert(SrcTy->getScalarType()->isPointerTy(),
2411         "PtrToInt source must be pointer", &I);
2412  Assert(DestTy->getScalarType()->isIntegerTy(),
2413         "PtrToInt result must be integral", &I);
2414  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2415         &I);
2416
2417  if (SrcTy->isVectorTy()) {
2418    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2419    VectorType *VDest = dyn_cast<VectorType>(DestTy);
2420    Assert(VSrc->getNumElements() == VDest->getNumElements(),
2421           "PtrToInt Vector width mismatch", &I);
2422  }
2423
2424  visitInstruction(I);
2425}
2426
2427void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2428  // Get the source and destination types
2429  Type *SrcTy = I.getOperand(0)->getType();
2430  Type *DestTy = I.getType();
2431
2432  Assert(SrcTy->getScalarType()->isIntegerTy(),
2433         "IntToPtr source must be an integral", &I);
2434  Assert(DestTy->getScalarType()->isPointerTy(),
2435         "IntToPtr result must be a pointer", &I);
2436  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2437         &I);
2438  if (SrcTy->isVectorTy()) {
2439    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2440    VectorType *VDest = dyn_cast<VectorType>(DestTy);
2441    Assert(VSrc->getNumElements() == VDest->getNumElements(),
2442           "IntToPtr Vector width mismatch", &I);
2443  }
2444  visitInstruction(I);
2445}
2446
2447void Verifier::visitBitCastInst(BitCastInst &I) {
2448  Assert(
2449      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2450      "Invalid bitcast", &I);
2451  visitInstruction(I);
2452}
2453
2454void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2455  Type *SrcTy = I.getOperand(0)->getType();
2456  Type *DestTy = I.getType();
2457
2458  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2459         &I);
2460  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2461         &I);
2462  Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2463         "AddrSpaceCast must be between different address spaces", &I);
2464  if (SrcTy->isVectorTy())
2465    Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2466           "AddrSpaceCast vector pointer number of elements mismatch", &I);
2467  visitInstruction(I);
2468}
2469
2470/// visitPHINode - Ensure that a PHI node is well formed.
2471///
2472void Verifier::visitPHINode(PHINode &PN) {
2473  // Ensure that the PHI nodes are all grouped together at the top of the block.
2474  // This can be tested by checking whether the instruction before this is
2475  // either nonexistent (because this is begin()) or is a PHI node.  If not,
2476  // then there is some other instruction before a PHI.
2477  Assert(&PN == &PN.getParent()->front() ||
2478             isa<PHINode>(--BasicBlock::iterator(&PN)),
2479         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2480
2481  // Check that a PHI doesn't yield a Token.
2482  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2483
2484  // Check that all of the values of the PHI node have the same type as the
2485  // result, and that the incoming blocks are really basic blocks.
2486  for (Value *IncValue : PN.incoming_values()) {
2487    Assert(PN.getType() == IncValue->getType(),
2488           "PHI node operands are not the same type as the result!", &PN);
2489  }
2490
2491  // All other PHI node constraints are checked in the visitBasicBlock method.
2492
2493  visitInstruction(PN);
2494}
2495
2496void Verifier::verifyCallSite(CallSite CS) {
2497  Instruction *I = CS.getInstruction();
2498
2499  Assert(CS.getCalledValue()->getType()->isPointerTy(),
2500         "Called function must be a pointer!", I);
2501  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2502
2503  Assert(FPTy->getElementType()->isFunctionTy(),
2504         "Called function is not pointer to function type!", I);
2505
2506  Assert(FPTy->getElementType() == CS.getFunctionType(),
2507         "Called function is not the same type as the call!", I);
2508
2509  FunctionType *FTy = CS.getFunctionType();
2510
2511  // Verify that the correct number of arguments are being passed
2512  if (FTy->isVarArg())
2513    Assert(CS.arg_size() >= FTy->getNumParams(),
2514           "Called function requires more parameters than were provided!", I);
2515  else
2516    Assert(CS.arg_size() == FTy->getNumParams(),
2517           "Incorrect number of arguments passed to called function!", I);
2518
2519  // Verify that all arguments to the call match the function type.
2520  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2521    Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2522           "Call parameter type does not match function signature!",
2523           CS.getArgument(i), FTy->getParamType(i), I);
2524
2525  AttributeSet Attrs = CS.getAttributes();
2526
2527  Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2528         "Attribute after last parameter!", I);
2529
2530  // Verify call attributes.
2531  verifyFunctionAttrs(FTy, Attrs, I);
2532
2533  // Conservatively check the inalloca argument.
2534  // We have a bug if we can find that there is an underlying alloca without
2535  // inalloca.
2536  if (CS.hasInAllocaArgument()) {
2537    Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2538    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2539      Assert(AI->isUsedWithInAlloca(),
2540             "inalloca argument for call has mismatched alloca", AI, I);
2541  }
2542
2543  // For each argument of the callsite, if it has the swifterror argument,
2544  // make sure the underlying alloca has swifterror as well.
2545  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2546    if (CS.paramHasAttr(i+1, Attribute::SwiftError)) {
2547      Value *SwiftErrorArg = CS.getArgument(i);
2548      auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets());
2549      Assert(AI, "swifterror argument should come from alloca", AI, I);
2550      if (AI)
2551        Assert(AI->isSwiftError(),
2552               "swifterror argument for call has mismatched alloca", AI, I);
2553    }
2554
2555  if (FTy->isVarArg()) {
2556    // FIXME? is 'nest' even legal here?
2557    bool SawNest = false;
2558    bool SawReturned = false;
2559
2560    for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2561      if (Attrs.hasAttribute(Idx, Attribute::Nest))
2562        SawNest = true;
2563      if (Attrs.hasAttribute(Idx, Attribute::Returned))
2564        SawReturned = true;
2565    }
2566
2567    // Check attributes on the varargs part.
2568    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2569      Type *Ty = CS.getArgument(Idx-1)->getType();
2570      verifyParameterAttrs(Attrs, Idx, Ty, false, I);
2571
2572      if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2573        Assert(!SawNest, "More than one parameter has attribute nest!", I);
2574        SawNest = true;
2575      }
2576
2577      if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2578        Assert(!SawReturned, "More than one parameter has attribute returned!",
2579               I);
2580        Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2581               "Incompatible argument and return types for 'returned' "
2582               "attribute",
2583               I);
2584        SawReturned = true;
2585      }
2586
2587      Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
2588             "Attribute 'sret' cannot be used for vararg call arguments!", I);
2589
2590      if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2591        Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
2592    }
2593  }
2594
2595  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2596  if (CS.getCalledFunction() == nullptr ||
2597      !CS.getCalledFunction()->getName().startswith("llvm.")) {
2598    for (Type *ParamTy : FTy->params()) {
2599      Assert(!ParamTy->isMetadataTy(),
2600             "Function has metadata parameter but isn't an intrinsic", I);
2601      Assert(!ParamTy->isTokenTy(),
2602             "Function has token parameter but isn't an intrinsic", I);
2603    }
2604  }
2605
2606  // Verify that indirect calls don't return tokens.
2607  if (CS.getCalledFunction() == nullptr)
2608    Assert(!FTy->getReturnType()->isTokenTy(),
2609           "Return type cannot be token for indirect call!");
2610
2611  if (Function *F = CS.getCalledFunction())
2612    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2613      visitIntrinsicCallSite(ID, CS);
2614
2615  // Verify that a callsite has at most one "deopt", at most one "funclet" and
2616  // at most one "gc-transition" operand bundle.
2617  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2618       FoundGCTransitionBundle = false;
2619  for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2620    OperandBundleUse BU = CS.getOperandBundleAt(i);
2621    uint32_t Tag = BU.getTagID();
2622    if (Tag == LLVMContext::OB_deopt) {
2623      Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2624      FoundDeoptBundle = true;
2625    } else if (Tag == LLVMContext::OB_gc_transition) {
2626      Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2627             I);
2628      FoundGCTransitionBundle = true;
2629    } else if (Tag == LLVMContext::OB_funclet) {
2630      Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2631      FoundFuncletBundle = true;
2632      Assert(BU.Inputs.size() == 1,
2633             "Expected exactly one funclet bundle operand", I);
2634      Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2635             "Funclet bundle operands should correspond to a FuncletPadInst",
2636             I);
2637    }
2638  }
2639
2640  // Verify that each inlinable callsite of a debug-info-bearing function in a
2641  // debug-info-bearing function has a debug location attached to it. Failure to
2642  // do so causes assertion failures when the inliner sets up inline scope info.
2643  if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2644      CS.getCalledFunction()->getSubprogram())
2645    Assert(I->getDebugLoc(), "inlinable function call in a function with debug "
2646                             "info must have a !dbg location",
2647           I);
2648
2649  visitInstruction(*I);
2650}
2651
2652/// Two types are "congruent" if they are identical, or if they are both pointer
2653/// types with different pointee types and the same address space.
2654static bool isTypeCongruent(Type *L, Type *R) {
2655  if (L == R)
2656    return true;
2657  PointerType *PL = dyn_cast<PointerType>(L);
2658  PointerType *PR = dyn_cast<PointerType>(R);
2659  if (!PL || !PR)
2660    return false;
2661  return PL->getAddressSpace() == PR->getAddressSpace();
2662}
2663
2664static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2665  static const Attribute::AttrKind ABIAttrs[] = {
2666      Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2667      Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2668      Attribute::SwiftError};
2669  AttrBuilder Copy;
2670  for (auto AK : ABIAttrs) {
2671    if (Attrs.hasAttribute(I + 1, AK))
2672      Copy.addAttribute(AK);
2673  }
2674  if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2675    Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2676  return Copy;
2677}
2678
2679void Verifier::verifyMustTailCall(CallInst &CI) {
2680  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2681
2682  // - The caller and callee prototypes must match.  Pointer types of
2683  //   parameters or return types may differ in pointee type, but not
2684  //   address space.
2685  Function *F = CI.getParent()->getParent();
2686  FunctionType *CallerTy = F->getFunctionType();
2687  FunctionType *CalleeTy = CI.getFunctionType();
2688  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2689         "cannot guarantee tail call due to mismatched parameter counts", &CI);
2690  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2691         "cannot guarantee tail call due to mismatched varargs", &CI);
2692  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2693         "cannot guarantee tail call due to mismatched return types", &CI);
2694  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2695    Assert(
2696        isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2697        "cannot guarantee tail call due to mismatched parameter types", &CI);
2698  }
2699
2700  // - The calling conventions of the caller and callee must match.
2701  Assert(F->getCallingConv() == CI.getCallingConv(),
2702         "cannot guarantee tail call due to mismatched calling conv", &CI);
2703
2704  // - All ABI-impacting function attributes, such as sret, byval, inreg,
2705  //   returned, and inalloca, must match.
2706  AttributeSet CallerAttrs = F->getAttributes();
2707  AttributeSet CalleeAttrs = CI.getAttributes();
2708  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2709    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2710    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2711    Assert(CallerABIAttrs == CalleeABIAttrs,
2712           "cannot guarantee tail call due to mismatched ABI impacting "
2713           "function attributes",
2714           &CI, CI.getOperand(I));
2715  }
2716
2717  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2718  //   or a pointer bitcast followed by a ret instruction.
2719  // - The ret instruction must return the (possibly bitcasted) value
2720  //   produced by the call or void.
2721  Value *RetVal = &CI;
2722  Instruction *Next = CI.getNextNode();
2723
2724  // Handle the optional bitcast.
2725  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2726    Assert(BI->getOperand(0) == RetVal,
2727           "bitcast following musttail call must use the call", BI);
2728    RetVal = BI;
2729    Next = BI->getNextNode();
2730  }
2731
2732  // Check the return.
2733  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2734  Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2735         &CI);
2736  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2737         "musttail call result must be returned", Ret);
2738}
2739
2740void Verifier::visitCallInst(CallInst &CI) {
2741  verifyCallSite(&CI);
2742
2743  if (CI.isMustTailCall())
2744    verifyMustTailCall(CI);
2745}
2746
2747void Verifier::visitInvokeInst(InvokeInst &II) {
2748  verifyCallSite(&II);
2749
2750  // Verify that the first non-PHI instruction of the unwind destination is an
2751  // exception handling instruction.
2752  Assert(
2753      II.getUnwindDest()->isEHPad(),
2754      "The unwind destination does not have an exception handling instruction!",
2755      &II);
2756
2757  visitTerminatorInst(II);
2758}
2759
2760/// visitBinaryOperator - Check that both arguments to the binary operator are
2761/// of the same type!
2762///
2763void Verifier::visitBinaryOperator(BinaryOperator &B) {
2764  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2765         "Both operands to a binary operator are not of the same type!", &B);
2766
2767  switch (B.getOpcode()) {
2768  // Check that integer arithmetic operators are only used with
2769  // integral operands.
2770  case Instruction::Add:
2771  case Instruction::Sub:
2772  case Instruction::Mul:
2773  case Instruction::SDiv:
2774  case Instruction::UDiv:
2775  case Instruction::SRem:
2776  case Instruction::URem:
2777    Assert(B.getType()->isIntOrIntVectorTy(),
2778           "Integer arithmetic operators only work with integral types!", &B);
2779    Assert(B.getType() == B.getOperand(0)->getType(),
2780           "Integer arithmetic operators must have same type "
2781           "for operands and result!",
2782           &B);
2783    break;
2784  // Check that floating-point arithmetic operators are only used with
2785  // floating-point operands.
2786  case Instruction::FAdd:
2787  case Instruction::FSub:
2788  case Instruction::FMul:
2789  case Instruction::FDiv:
2790  case Instruction::FRem:
2791    Assert(B.getType()->isFPOrFPVectorTy(),
2792           "Floating-point arithmetic operators only work with "
2793           "floating-point types!",
2794           &B);
2795    Assert(B.getType() == B.getOperand(0)->getType(),
2796           "Floating-point arithmetic operators must have same type "
2797           "for operands and result!",
2798           &B);
2799    break;
2800  // Check that logical operators are only used with integral operands.
2801  case Instruction::And:
2802  case Instruction::Or:
2803  case Instruction::Xor:
2804    Assert(B.getType()->isIntOrIntVectorTy(),
2805           "Logical operators only work with integral types!", &B);
2806    Assert(B.getType() == B.getOperand(0)->getType(),
2807           "Logical operators must have same type for operands and result!",
2808           &B);
2809    break;
2810  case Instruction::Shl:
2811  case Instruction::LShr:
2812  case Instruction::AShr:
2813    Assert(B.getType()->isIntOrIntVectorTy(),
2814           "Shifts only work with integral types!", &B);
2815    Assert(B.getType() == B.getOperand(0)->getType(),
2816           "Shift return type must be same as operands!", &B);
2817    break;
2818  default:
2819    llvm_unreachable("Unknown BinaryOperator opcode!");
2820  }
2821
2822  visitInstruction(B);
2823}
2824
2825void Verifier::visitICmpInst(ICmpInst &IC) {
2826  // Check that the operands are the same type
2827  Type *Op0Ty = IC.getOperand(0)->getType();
2828  Type *Op1Ty = IC.getOperand(1)->getType();
2829  Assert(Op0Ty == Op1Ty,
2830         "Both operands to ICmp instruction are not of the same type!", &IC);
2831  // Check that the operands are the right type
2832  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
2833         "Invalid operand types for ICmp instruction", &IC);
2834  // Check that the predicate is valid.
2835  Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
2836             IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
2837         "Invalid predicate in ICmp instruction!", &IC);
2838
2839  visitInstruction(IC);
2840}
2841
2842void Verifier::visitFCmpInst(FCmpInst &FC) {
2843  // Check that the operands are the same type
2844  Type *Op0Ty = FC.getOperand(0)->getType();
2845  Type *Op1Ty = FC.getOperand(1)->getType();
2846  Assert(Op0Ty == Op1Ty,
2847         "Both operands to FCmp instruction are not of the same type!", &FC);
2848  // Check that the operands are the right type
2849  Assert(Op0Ty->isFPOrFPVectorTy(),
2850         "Invalid operand types for FCmp instruction", &FC);
2851  // Check that the predicate is valid.
2852  Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
2853             FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
2854         "Invalid predicate in FCmp instruction!", &FC);
2855
2856  visitInstruction(FC);
2857}
2858
2859void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2860  Assert(
2861      ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
2862      "Invalid extractelement operands!", &EI);
2863  visitInstruction(EI);
2864}
2865
2866void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2867  Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
2868                                            IE.getOperand(2)),
2869         "Invalid insertelement operands!", &IE);
2870  visitInstruction(IE);
2871}
2872
2873void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2874  Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
2875                                            SV.getOperand(2)),
2876         "Invalid shufflevector operands!", &SV);
2877  visitInstruction(SV);
2878}
2879
2880void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2881  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2882
2883  Assert(isa<PointerType>(TargetTy),
2884         "GEP base pointer is not a vector or a vector of pointers", &GEP);
2885  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
2886  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2887  Type *ElTy =
2888      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2889  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
2890
2891  Assert(GEP.getType()->getScalarType()->isPointerTy() &&
2892             GEP.getResultElementType() == ElTy,
2893         "GEP is not of right type for indices!", &GEP, ElTy);
2894
2895  if (GEP.getType()->isVectorTy()) {
2896    // Additional checks for vector GEPs.
2897    unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2898    if (GEP.getPointerOperandType()->isVectorTy())
2899      Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
2900             "Vector GEP result width doesn't match operand's", &GEP);
2901    for (Value *Idx : Idxs) {
2902      Type *IndexTy = Idx->getType();
2903      if (IndexTy->isVectorTy()) {
2904        unsigned IndexWidth = IndexTy->getVectorNumElements();
2905        Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
2906      }
2907      Assert(IndexTy->getScalarType()->isIntegerTy(),
2908             "All GEP indices should be of integer type");
2909    }
2910  }
2911  visitInstruction(GEP);
2912}
2913
2914static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2915  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2916}
2917
2918void Verifier::visitRangeMetadata(Instruction& I,
2919                                  MDNode* Range, Type* Ty) {
2920  assert(Range &&
2921         Range == I.getMetadata(LLVMContext::MD_range) &&
2922         "precondition violation");
2923
2924  unsigned NumOperands = Range->getNumOperands();
2925  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
2926  unsigned NumRanges = NumOperands / 2;
2927  Assert(NumRanges >= 1, "It should have at least one range!", Range);
2928
2929  ConstantRange LastRange(1); // Dummy initial value
2930  for (unsigned i = 0; i < NumRanges; ++i) {
2931    ConstantInt *Low =
2932        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2933    Assert(Low, "The lower limit must be an integer!", Low);
2934    ConstantInt *High =
2935        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2936    Assert(High, "The upper limit must be an integer!", High);
2937    Assert(High->getType() == Low->getType() && High->getType() == Ty,
2938           "Range types must match instruction type!", &I);
2939
2940    APInt HighV = High->getValue();
2941    APInt LowV = Low->getValue();
2942    ConstantRange CurRange(LowV, HighV);
2943    Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
2944           "Range must not be empty!", Range);
2945    if (i != 0) {
2946      Assert(CurRange.intersectWith(LastRange).isEmptySet(),
2947             "Intervals are overlapping", Range);
2948      Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
2949             Range);
2950      Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
2951             Range);
2952    }
2953    LastRange = ConstantRange(LowV, HighV);
2954  }
2955  if (NumRanges > 2) {
2956    APInt FirstLow =
2957        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
2958    APInt FirstHigh =
2959        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
2960    ConstantRange FirstRange(FirstLow, FirstHigh);
2961    Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
2962           "Intervals are overlapping", Range);
2963    Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
2964           Range);
2965  }
2966}
2967
2968void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty,
2969                                        const Instruction *I) {
2970  unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty);
2971  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
2972  Assert(!(Size & (Size - 1)),
2973         "atomic memory access' operand must have a power-of-two size", Ty, I);
2974}
2975
2976void Verifier::visitLoadInst(LoadInst &LI) {
2977  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
2978  Assert(PTy, "Load operand must be a pointer.", &LI);
2979  Type *ElTy = LI.getType();
2980  Assert(LI.getAlignment() <= Value::MaximumAlignment,
2981         "huge alignment values are unsupported", &LI);
2982  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
2983  if (LI.isAtomic()) {
2984    Assert(LI.getOrdering() != AtomicOrdering::Release &&
2985               LI.getOrdering() != AtomicOrdering::AcquireRelease,
2986           "Load cannot have Release ordering", &LI);
2987    Assert(LI.getAlignment() != 0,
2988           "Atomic load must specify explicit alignment", &LI);
2989    Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
2990               ElTy->isFloatingPointTy(),
2991           "atomic load operand must have integer, pointer, or floating point "
2992           "type!",
2993           ElTy, &LI);
2994    checkAtomicMemAccessSize(M, ElTy, &LI);
2995  } else {
2996    Assert(LI.getSynchScope() == CrossThread,
2997           "Non-atomic load cannot have SynchronizationScope specified", &LI);
2998  }
2999
3000  visitInstruction(LI);
3001}
3002
3003void Verifier::visitStoreInst(StoreInst &SI) {
3004  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3005  Assert(PTy, "Store operand must be a pointer.", &SI);
3006  Type *ElTy = PTy->getElementType();
3007  Assert(ElTy == SI.getOperand(0)->getType(),
3008         "Stored value type does not match pointer operand type!", &SI, ElTy);
3009  Assert(SI.getAlignment() <= Value::MaximumAlignment,
3010         "huge alignment values are unsupported", &SI);
3011  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3012  if (SI.isAtomic()) {
3013    Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3014               SI.getOrdering() != AtomicOrdering::AcquireRelease,
3015           "Store cannot have Acquire ordering", &SI);
3016    Assert(SI.getAlignment() != 0,
3017           "Atomic store must specify explicit alignment", &SI);
3018    Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3019               ElTy->isFloatingPointTy(),
3020           "atomic store operand must have integer, pointer, or floating point "
3021           "type!",
3022           ElTy, &SI);
3023    checkAtomicMemAccessSize(M, ElTy, &SI);
3024  } else {
3025    Assert(SI.getSynchScope() == CrossThread,
3026           "Non-atomic store cannot have SynchronizationScope specified", &SI);
3027  }
3028  visitInstruction(SI);
3029}
3030
3031/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3032void Verifier::verifySwiftErrorCallSite(CallSite CS,
3033                                        const Value *SwiftErrorVal) {
3034  unsigned Idx = 0;
3035  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3036       I != E; ++I, ++Idx) {
3037    if (*I == SwiftErrorVal) {
3038      Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError),
3039             "swifterror value when used in a callsite should be marked "
3040             "with swifterror attribute",
3041              SwiftErrorVal, CS);
3042    }
3043  }
3044}
3045
3046void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3047  // Check that swifterror value is only used by loads, stores, or as
3048  // a swifterror argument.
3049  for (const User *U : SwiftErrorVal->users()) {
3050    Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3051           isa<InvokeInst>(U),
3052           "swifterror value can only be loaded and stored from, or "
3053           "as a swifterror argument!",
3054           SwiftErrorVal, U);
3055    // If it is used by a store, check it is the second operand.
3056    if (auto StoreI = dyn_cast<StoreInst>(U))
3057      Assert(StoreI->getOperand(1) == SwiftErrorVal,
3058             "swifterror value should be the second operand when used "
3059             "by stores", SwiftErrorVal, U);
3060    if (auto CallI = dyn_cast<CallInst>(U))
3061      verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3062    if (auto II = dyn_cast<InvokeInst>(U))
3063      verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3064  }
3065}
3066
3067void Verifier::visitAllocaInst(AllocaInst &AI) {
3068  SmallPtrSet<Type*, 4> Visited;
3069  PointerType *PTy = AI.getType();
3070  Assert(PTy->getAddressSpace() == 0,
3071         "Allocation instruction pointer not in the generic address space!",
3072         &AI);
3073  Assert(AI.getAllocatedType()->isSized(&Visited),
3074         "Cannot allocate unsized type", &AI);
3075  Assert(AI.getArraySize()->getType()->isIntegerTy(),
3076         "Alloca array size must have integer type", &AI);
3077  Assert(AI.getAlignment() <= Value::MaximumAlignment,
3078         "huge alignment values are unsupported", &AI);
3079
3080  if (AI.isSwiftError()) {
3081    verifySwiftErrorValue(&AI);
3082  }
3083
3084  visitInstruction(AI);
3085}
3086
3087void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3088
3089  // FIXME: more conditions???
3090  Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3091         "cmpxchg instructions must be atomic.", &CXI);
3092  Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3093         "cmpxchg instructions must be atomic.", &CXI);
3094  Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3095         "cmpxchg instructions cannot be unordered.", &CXI);
3096  Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3097         "cmpxchg instructions cannot be unordered.", &CXI);
3098  Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3099         "cmpxchg instructions failure argument shall be no stronger than the "
3100         "success argument",
3101         &CXI);
3102  Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3103             CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3104         "cmpxchg failure ordering cannot include release semantics", &CXI);
3105
3106  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3107  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3108  Type *ElTy = PTy->getElementType();
3109  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
3110        "cmpxchg operand must have integer or pointer type",
3111         ElTy, &CXI);
3112  checkAtomicMemAccessSize(M, ElTy, &CXI);
3113  Assert(ElTy == CXI.getOperand(1)->getType(),
3114         "Expected value type does not match pointer operand type!", &CXI,
3115         ElTy);
3116  Assert(ElTy == CXI.getOperand(2)->getType(),
3117         "Stored value type does not match pointer operand type!", &CXI, ElTy);
3118  visitInstruction(CXI);
3119}
3120
3121void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3122  Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3123         "atomicrmw instructions must be atomic.", &RMWI);
3124  Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3125         "atomicrmw instructions cannot be unordered.", &RMWI);
3126  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3127  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3128  Type *ElTy = PTy->getElementType();
3129  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3130         &RMWI, ElTy);
3131  checkAtomicMemAccessSize(M, ElTy, &RMWI);
3132  Assert(ElTy == RMWI.getOperand(1)->getType(),
3133         "Argument value type does not match pointer operand type!", &RMWI,
3134         ElTy);
3135  Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
3136             RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
3137         "Invalid binary operation!", &RMWI);
3138  visitInstruction(RMWI);
3139}
3140
3141void Verifier::visitFenceInst(FenceInst &FI) {
3142  const AtomicOrdering Ordering = FI.getOrdering();
3143  Assert(Ordering == AtomicOrdering::Acquire ||
3144             Ordering == AtomicOrdering::Release ||
3145             Ordering == AtomicOrdering::AcquireRelease ||
3146             Ordering == AtomicOrdering::SequentiallyConsistent,
3147         "fence instructions may only have acquire, release, acq_rel, or "
3148         "seq_cst ordering.",
3149         &FI);
3150  visitInstruction(FI);
3151}
3152
3153void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3154  Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3155                                          EVI.getIndices()) == EVI.getType(),
3156         "Invalid ExtractValueInst operands!", &EVI);
3157
3158  visitInstruction(EVI);
3159}
3160
3161void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3162  Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3163                                          IVI.getIndices()) ==
3164             IVI.getOperand(1)->getType(),
3165         "Invalid InsertValueInst operands!", &IVI);
3166
3167  visitInstruction(IVI);
3168}
3169
3170static Value *getParentPad(Value *EHPad) {
3171  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3172    return FPI->getParentPad();
3173
3174  return cast<CatchSwitchInst>(EHPad)->getParentPad();
3175}
3176
3177void Verifier::visitEHPadPredecessors(Instruction &I) {
3178  assert(I.isEHPad());
3179
3180  BasicBlock *BB = I.getParent();
3181  Function *F = BB->getParent();
3182
3183  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3184
3185  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3186    // The landingpad instruction defines its parent as a landing pad block. The
3187    // landing pad block may be branched to only by the unwind edge of an
3188    // invoke.
3189    for (BasicBlock *PredBB : predecessors(BB)) {
3190      const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3191      Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3192             "Block containing LandingPadInst must be jumped to "
3193             "only by the unwind edge of an invoke.",
3194             LPI);
3195    }
3196    return;
3197  }
3198  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3199    if (!pred_empty(BB))
3200      Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3201             "Block containg CatchPadInst must be jumped to "
3202             "only by its catchswitch.",
3203             CPI);
3204    Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3205           "Catchswitch cannot unwind to one of its catchpads",
3206           CPI->getCatchSwitch(), CPI);
3207    return;
3208  }
3209
3210  // Verify that each pred has a legal terminator with a legal to/from EH
3211  // pad relationship.
3212  Instruction *ToPad = &I;
3213  Value *ToPadParent = getParentPad(ToPad);
3214  for (BasicBlock *PredBB : predecessors(BB)) {
3215    TerminatorInst *TI = PredBB->getTerminator();
3216    Value *FromPad;
3217    if (auto *II = dyn_cast<InvokeInst>(TI)) {
3218      Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3219             "EH pad must be jumped to via an unwind edge", ToPad, II);
3220      if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3221        FromPad = Bundle->Inputs[0];
3222      else
3223        FromPad = ConstantTokenNone::get(II->getContext());
3224    } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3225      FromPad = CRI->getOperand(0);
3226      Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3227    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3228      FromPad = CSI;
3229    } else {
3230      Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3231    }
3232
3233    // The edge may exit from zero or more nested pads.
3234    SmallSet<Value *, 8> Seen;
3235    for (;; FromPad = getParentPad(FromPad)) {
3236      Assert(FromPad != ToPad,
3237             "EH pad cannot handle exceptions raised within it", FromPad, TI);
3238      if (FromPad == ToPadParent) {
3239        // This is a legal unwind edge.
3240        break;
3241      }
3242      Assert(!isa<ConstantTokenNone>(FromPad),
3243             "A single unwind edge may only enter one EH pad", TI);
3244      Assert(Seen.insert(FromPad).second,
3245             "EH pad jumps through a cycle of pads", FromPad);
3246    }
3247  }
3248}
3249
3250void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3251  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3252  // isn't a cleanup.
3253  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3254         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3255
3256  visitEHPadPredecessors(LPI);
3257
3258  if (!LandingPadResultTy)
3259    LandingPadResultTy = LPI.getType();
3260  else
3261    Assert(LandingPadResultTy == LPI.getType(),
3262           "The landingpad instruction should have a consistent result type "
3263           "inside a function.",
3264           &LPI);
3265
3266  Function *F = LPI.getParent()->getParent();
3267  Assert(F->hasPersonalityFn(),
3268         "LandingPadInst needs to be in a function with a personality.", &LPI);
3269
3270  // The landingpad instruction must be the first non-PHI instruction in the
3271  // block.
3272  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3273         "LandingPadInst not the first non-PHI instruction in the block.",
3274         &LPI);
3275
3276  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3277    Constant *Clause = LPI.getClause(i);
3278    if (LPI.isCatch(i)) {
3279      Assert(isa<PointerType>(Clause->getType()),
3280             "Catch operand does not have pointer type!", &LPI);
3281    } else {
3282      Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3283      Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3284             "Filter operand is not an array of constants!", &LPI);
3285    }
3286  }
3287
3288  visitInstruction(LPI);
3289}
3290
3291void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3292  BasicBlock *BB = CPI.getParent();
3293
3294  Function *F = BB->getParent();
3295  Assert(F->hasPersonalityFn(),
3296         "CatchPadInst needs to be in a function with a personality.", &CPI);
3297
3298  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3299         "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3300         CPI.getParentPad());
3301
3302  // The catchpad instruction must be the first non-PHI instruction in the
3303  // block.
3304  Assert(BB->getFirstNonPHI() == &CPI,
3305         "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3306
3307  visitEHPadPredecessors(CPI);
3308  visitFuncletPadInst(CPI);
3309}
3310
3311void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3312  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3313         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3314         CatchReturn.getOperand(0));
3315
3316  visitTerminatorInst(CatchReturn);
3317}
3318
3319void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3320  BasicBlock *BB = CPI.getParent();
3321
3322  Function *F = BB->getParent();
3323  Assert(F->hasPersonalityFn(),
3324         "CleanupPadInst needs to be in a function with a personality.", &CPI);
3325
3326  // The cleanuppad instruction must be the first non-PHI instruction in the
3327  // block.
3328  Assert(BB->getFirstNonPHI() == &CPI,
3329         "CleanupPadInst not the first non-PHI instruction in the block.",
3330         &CPI);
3331
3332  auto *ParentPad = CPI.getParentPad();
3333  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3334         "CleanupPadInst has an invalid parent.", &CPI);
3335
3336  visitEHPadPredecessors(CPI);
3337  visitFuncletPadInst(CPI);
3338}
3339
3340void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3341  User *FirstUser = nullptr;
3342  Value *FirstUnwindPad = nullptr;
3343  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3344  SmallSet<FuncletPadInst *, 8> Seen;
3345
3346  while (!Worklist.empty()) {
3347    FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3348    Assert(Seen.insert(CurrentPad).second,
3349           "FuncletPadInst must not be nested within itself", CurrentPad);
3350    Value *UnresolvedAncestorPad = nullptr;
3351    for (User *U : CurrentPad->users()) {
3352      BasicBlock *UnwindDest;
3353      if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3354        UnwindDest = CRI->getUnwindDest();
3355      } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3356        // We allow catchswitch unwind to caller to nest
3357        // within an outer pad that unwinds somewhere else,
3358        // because catchswitch doesn't have a nounwind variant.
3359        // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3360        if (CSI->unwindsToCaller())
3361          continue;
3362        UnwindDest = CSI->getUnwindDest();
3363      } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3364        UnwindDest = II->getUnwindDest();
3365      } else if (isa<CallInst>(U)) {
3366        // Calls which don't unwind may be found inside funclet
3367        // pads that unwind somewhere else.  We don't *require*
3368        // such calls to be annotated nounwind.
3369        continue;
3370      } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3371        // The unwind dest for a cleanup can only be found by
3372        // recursive search.  Add it to the worklist, and we'll
3373        // search for its first use that determines where it unwinds.
3374        Worklist.push_back(CPI);
3375        continue;
3376      } else {
3377        Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3378        continue;
3379      }
3380
3381      Value *UnwindPad;
3382      bool ExitsFPI;
3383      if (UnwindDest) {
3384        UnwindPad = UnwindDest->getFirstNonPHI();
3385        if (!cast<Instruction>(UnwindPad)->isEHPad())
3386          continue;
3387        Value *UnwindParent = getParentPad(UnwindPad);
3388        // Ignore unwind edges that don't exit CurrentPad.
3389        if (UnwindParent == CurrentPad)
3390          continue;
3391        // Determine whether the original funclet pad is exited,
3392        // and if we are scanning nested pads determine how many
3393        // of them are exited so we can stop searching their
3394        // children.
3395        Value *ExitedPad = CurrentPad;
3396        ExitsFPI = false;
3397        do {
3398          if (ExitedPad == &FPI) {
3399            ExitsFPI = true;
3400            // Now we can resolve any ancestors of CurrentPad up to
3401            // FPI, but not including FPI since we need to make sure
3402            // to check all direct users of FPI for consistency.
3403            UnresolvedAncestorPad = &FPI;
3404            break;
3405          }
3406          Value *ExitedParent = getParentPad(ExitedPad);
3407          if (ExitedParent == UnwindParent) {
3408            // ExitedPad is the ancestor-most pad which this unwind
3409            // edge exits, so we can resolve up to it, meaning that
3410            // ExitedParent is the first ancestor still unresolved.
3411            UnresolvedAncestorPad = ExitedParent;
3412            break;
3413          }
3414          ExitedPad = ExitedParent;
3415        } while (!isa<ConstantTokenNone>(ExitedPad));
3416      } else {
3417        // Unwinding to caller exits all pads.
3418        UnwindPad = ConstantTokenNone::get(FPI.getContext());
3419        ExitsFPI = true;
3420        UnresolvedAncestorPad = &FPI;
3421      }
3422
3423      if (ExitsFPI) {
3424        // This unwind edge exits FPI.  Make sure it agrees with other
3425        // such edges.
3426        if (FirstUser) {
3427          Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3428                                              "pad must have the same unwind "
3429                                              "dest",
3430                 &FPI, U, FirstUser);
3431        } else {
3432          FirstUser = U;
3433          FirstUnwindPad = UnwindPad;
3434          // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3435          if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3436              getParentPad(UnwindPad) == getParentPad(&FPI))
3437            SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3438        }
3439      }
3440      // Make sure we visit all uses of FPI, but for nested pads stop as
3441      // soon as we know where they unwind to.
3442      if (CurrentPad != &FPI)
3443        break;
3444    }
3445    if (UnresolvedAncestorPad) {
3446      if (CurrentPad == UnresolvedAncestorPad) {
3447        // When CurrentPad is FPI itself, we don't mark it as resolved even if
3448        // we've found an unwind edge that exits it, because we need to verify
3449        // all direct uses of FPI.
3450        assert(CurrentPad == &FPI);
3451        continue;
3452      }
3453      // Pop off the worklist any nested pads that we've found an unwind
3454      // destination for.  The pads on the worklist are the uncles,
3455      // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3456      // for all ancestors of CurrentPad up to but not including
3457      // UnresolvedAncestorPad.
3458      Value *ResolvedPad = CurrentPad;
3459      while (!Worklist.empty()) {
3460        Value *UnclePad = Worklist.back();
3461        Value *AncestorPad = getParentPad(UnclePad);
3462        // Walk ResolvedPad up the ancestor list until we either find the
3463        // uncle's parent or the last resolved ancestor.
3464        while (ResolvedPad != AncestorPad) {
3465          Value *ResolvedParent = getParentPad(ResolvedPad);
3466          if (ResolvedParent == UnresolvedAncestorPad) {
3467            break;
3468          }
3469          ResolvedPad = ResolvedParent;
3470        }
3471        // If the resolved ancestor search didn't find the uncle's parent,
3472        // then the uncle is not yet resolved.
3473        if (ResolvedPad != AncestorPad)
3474          break;
3475        // This uncle is resolved, so pop it from the worklist.
3476        Worklist.pop_back();
3477      }
3478    }
3479  }
3480
3481  if (FirstUnwindPad) {
3482    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3483      BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3484      Value *SwitchUnwindPad;
3485      if (SwitchUnwindDest)
3486        SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3487      else
3488        SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3489      Assert(SwitchUnwindPad == FirstUnwindPad,
3490             "Unwind edges out of a catch must have the same unwind dest as "
3491             "the parent catchswitch",
3492             &FPI, FirstUser, CatchSwitch);
3493    }
3494  }
3495
3496  visitInstruction(FPI);
3497}
3498
3499void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3500  BasicBlock *BB = CatchSwitch.getParent();
3501
3502  Function *F = BB->getParent();
3503  Assert(F->hasPersonalityFn(),
3504         "CatchSwitchInst needs to be in a function with a personality.",
3505         &CatchSwitch);
3506
3507  // The catchswitch instruction must be the first non-PHI instruction in the
3508  // block.
3509  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3510         "CatchSwitchInst not the first non-PHI instruction in the block.",
3511         &CatchSwitch);
3512
3513  auto *ParentPad = CatchSwitch.getParentPad();
3514  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3515         "CatchSwitchInst has an invalid parent.", ParentPad);
3516
3517  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3518    Instruction *I = UnwindDest->getFirstNonPHI();
3519    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3520           "CatchSwitchInst must unwind to an EH block which is not a "
3521           "landingpad.",
3522           &CatchSwitch);
3523
3524    // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3525    if (getParentPad(I) == ParentPad)
3526      SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3527  }
3528
3529  Assert(CatchSwitch.getNumHandlers() != 0,
3530         "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3531
3532  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3533    Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3534           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3535  }
3536
3537  visitEHPadPredecessors(CatchSwitch);
3538  visitTerminatorInst(CatchSwitch);
3539}
3540
3541void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3542  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3543         "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3544         CRI.getOperand(0));
3545
3546  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3547    Instruction *I = UnwindDest->getFirstNonPHI();
3548    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3549           "CleanupReturnInst must unwind to an EH block which is not a "
3550           "landingpad.",
3551           &CRI);
3552  }
3553
3554  visitTerminatorInst(CRI);
3555}
3556
3557void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3558  Instruction *Op = cast<Instruction>(I.getOperand(i));
3559  // If the we have an invalid invoke, don't try to compute the dominance.
3560  // We already reject it in the invoke specific checks and the dominance
3561  // computation doesn't handle multiple edges.
3562  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3563    if (II->getNormalDest() == II->getUnwindDest())
3564      return;
3565  }
3566
3567  // Quick check whether the def has already been encountered in the same block.
3568  // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3569  // uses are defined to happen on the incoming edge, not at the instruction.
3570  //
3571  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3572  // wrapping an SSA value, assert that we've already encountered it.  See
3573  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3574  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3575    return;
3576
3577  const Use &U = I.getOperandUse(i);
3578  Assert(DT.dominates(Op, U),
3579         "Instruction does not dominate all uses!", Op, &I);
3580}
3581
3582void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3583  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3584         "apply only to pointer types", &I);
3585  Assert(isa<LoadInst>(I),
3586         "dereferenceable, dereferenceable_or_null apply only to load"
3587         " instructions, use attributes for calls or invokes", &I);
3588  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3589         "take one operand!", &I);
3590  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3591  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3592         "dereferenceable_or_null metadata value must be an i64!", &I);
3593}
3594
3595/// verifyInstruction - Verify that an instruction is well formed.
3596///
3597void Verifier::visitInstruction(Instruction &I) {
3598  BasicBlock *BB = I.getParent();
3599  Assert(BB, "Instruction not embedded in basic block!", &I);
3600
3601  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
3602    for (User *U : I.users()) {
3603      Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3604             "Only PHI nodes may reference their own value!", &I);
3605    }
3606  }
3607
3608  // Check that void typed values don't have names
3609  Assert(!I.getType()->isVoidTy() || !I.hasName(),
3610         "Instruction has a name, but provides a void value!", &I);
3611
3612  // Check that the return value of the instruction is either void or a legal
3613  // value type.
3614  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3615         "Instruction returns a non-scalar type!", &I);
3616
3617  // Check that the instruction doesn't produce metadata. Calls are already
3618  // checked against the callee type.
3619  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3620         "Invalid use of metadata!", &I);
3621
3622  // Check that all uses of the instruction, if they are instructions
3623  // themselves, actually have parent basic blocks.  If the use is not an
3624  // instruction, it is an error!
3625  for (Use &U : I.uses()) {
3626    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3627      Assert(Used->getParent() != nullptr,
3628             "Instruction referencing"
3629             " instruction not embedded in a basic block!",
3630             &I, Used);
3631    else {
3632      CheckFailed("Use of instruction is not an instruction!", U);
3633      return;
3634    }
3635  }
3636
3637  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3638    Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3639
3640    // Check to make sure that only first-class-values are operands to
3641    // instructions.
3642    if (!I.getOperand(i)->getType()->isFirstClassType()) {
3643      Assert(0, "Instruction operands must be first-class values!", &I);
3644    }
3645
3646    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3647      // Check to make sure that the "address of" an intrinsic function is never
3648      // taken.
3649      Assert(
3650          !F->isIntrinsic() ||
3651              i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3652          "Cannot take the address of an intrinsic!", &I);
3653      Assert(
3654          !F->isIntrinsic() || isa<CallInst>(I) ||
3655              F->getIntrinsicID() == Intrinsic::donothing ||
3656              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3657              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3658              F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3659          "Cannot invoke an intrinsic other than donothing, patchpoint or "
3660          "statepoint",
3661          &I);
3662      Assert(F->getParent() == M, "Referencing function in another module!",
3663             &I, M, F, F->getParent());
3664    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3665      Assert(OpBB->getParent() == BB->getParent(),
3666             "Referring to a basic block in another function!", &I);
3667    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3668      Assert(OpArg->getParent() == BB->getParent(),
3669             "Referring to an argument in another function!", &I);
3670    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3671      Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent());
3672    } else if (isa<Instruction>(I.getOperand(i))) {
3673      verifyDominatesUse(I, i);
3674    } else if (isa<InlineAsm>(I.getOperand(i))) {
3675      Assert((i + 1 == e && isa<CallInst>(I)) ||
3676                 (i + 3 == e && isa<InvokeInst>(I)),
3677             "Cannot take the address of an inline asm!", &I);
3678    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3679      if (CE->getType()->isPtrOrPtrVectorTy()) {
3680        // If we have a ConstantExpr pointer, we need to see if it came from an
3681        // illegal bitcast (inttoptr <constant int> )
3682        visitConstantExprsRecursively(CE);
3683      }
3684    }
3685  }
3686
3687  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3688    Assert(I.getType()->isFPOrFPVectorTy(),
3689           "fpmath requires a floating point result!", &I);
3690    Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3691    if (ConstantFP *CFP0 =
3692            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3693      const APFloat &Accuracy = CFP0->getValueAPF();
3694      Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle,
3695             "fpmath accuracy must have float type", &I);
3696      Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3697             "fpmath accuracy not a positive number!", &I);
3698    } else {
3699      Assert(false, "invalid fpmath accuracy!", &I);
3700    }
3701  }
3702
3703  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3704    Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3705           "Ranges are only for loads, calls and invokes!", &I);
3706    visitRangeMetadata(I, Range, I.getType());
3707  }
3708
3709  if (I.getMetadata(LLVMContext::MD_nonnull)) {
3710    Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3711           &I);
3712    Assert(isa<LoadInst>(I),
3713           "nonnull applies only to load instructions, use attributes"
3714           " for calls or invokes",
3715           &I);
3716  }
3717
3718  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3719    visitDereferenceableMetadata(I, MD);
3720
3721  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3722    visitDereferenceableMetadata(I, MD);
3723
3724  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3725    Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3726           &I);
3727    Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3728           "use attributes for calls or invokes", &I);
3729    Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3730    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3731    Assert(CI && CI->getType()->isIntegerTy(64),
3732           "align metadata value must be an i64!", &I);
3733    uint64_t Align = CI->getZExtValue();
3734    Assert(isPowerOf2_64(Align),
3735           "align metadata value must be a power of 2!", &I);
3736    Assert(Align <= Value::MaximumAlignment,
3737           "alignment is larger that implementation defined limit", &I);
3738  }
3739
3740  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3741    AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3742    visitMDNode(*N);
3743  }
3744
3745  if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3746    verifyBitPieceExpression(*DII);
3747
3748  InstsInThisBlock.insert(&I);
3749}
3750
3751/// Allow intrinsics to be verified in different ways.
3752void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3753  Function *IF = CS.getCalledFunction();
3754  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3755         IF);
3756
3757  // Verify that the intrinsic prototype lines up with what the .td files
3758  // describe.
3759  FunctionType *IFTy = IF->getFunctionType();
3760  bool IsVarArg = IFTy->isVarArg();
3761
3762  SmallVector<Intrinsic::IITDescriptor, 8> Table;
3763  getIntrinsicInfoTableEntries(ID, Table);
3764  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3765
3766  SmallVector<Type *, 4> ArgTys;
3767  Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
3768                                        TableRef, ArgTys),
3769         "Intrinsic has incorrect return type!", IF);
3770  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3771    Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
3772                                          TableRef, ArgTys),
3773           "Intrinsic has incorrect argument type!", IF);
3774
3775  // Verify if the intrinsic call matches the vararg property.
3776  if (IsVarArg)
3777    Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3778           "Intrinsic was not defined with variable arguments!", IF);
3779  else
3780    Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3781           "Callsite was not defined with variable arguments!", IF);
3782
3783  // All descriptors should be absorbed by now.
3784  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3785
3786  // Now that we have the intrinsic ID and the actual argument types (and we
3787  // know they are legal for the intrinsic!) get the intrinsic name through the
3788  // usual means.  This allows us to verify the mangling of argument types into
3789  // the name.
3790  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3791  Assert(ExpectedName == IF->getName(),
3792         "Intrinsic name not mangled correctly for type arguments! "
3793         "Should be: " +
3794             ExpectedName,
3795         IF);
3796
3797  // If the intrinsic takes MDNode arguments, verify that they are either global
3798  // or are local to *this* function.
3799  for (Value *V : CS.args())
3800    if (auto *MD = dyn_cast<MetadataAsValue>(V))
3801      visitMetadataAsValue(*MD, CS.getCaller());
3802
3803  switch (ID) {
3804  default:
3805    break;
3806  case Intrinsic::ctlz:  // llvm.ctlz
3807  case Intrinsic::cttz:  // llvm.cttz
3808    Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3809           "is_zero_undef argument of bit counting intrinsics must be a "
3810           "constant int",
3811           CS);
3812    break;
3813  case Intrinsic::dbg_declare: // llvm.dbg.declare
3814    Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
3815           "invalid llvm.dbg.declare intrinsic call 1", CS);
3816    visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3817    break;
3818  case Intrinsic::dbg_value: // llvm.dbg.value
3819    visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3820    break;
3821  case Intrinsic::memcpy:
3822  case Intrinsic::memmove:
3823  case Intrinsic::memset: {
3824    ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3825    Assert(AlignCI,
3826           "alignment argument of memory intrinsics must be a constant int",
3827           CS);
3828    const APInt &AlignVal = AlignCI->getValue();
3829    Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
3830           "alignment argument of memory intrinsics must be a power of 2", CS);
3831    Assert(isa<ConstantInt>(CS.getArgOperand(4)),
3832           "isvolatile argument of memory intrinsics must be a constant int",
3833           CS);
3834    break;
3835  }
3836  case Intrinsic::gcroot:
3837  case Intrinsic::gcwrite:
3838  case Intrinsic::gcread:
3839    if (ID == Intrinsic::gcroot) {
3840      AllocaInst *AI =
3841        dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
3842      Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
3843      Assert(isa<Constant>(CS.getArgOperand(1)),
3844             "llvm.gcroot parameter #2 must be a constant.", CS);
3845      if (!AI->getAllocatedType()->isPointerTy()) {
3846        Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
3847               "llvm.gcroot parameter #1 must either be a pointer alloca, "
3848               "or argument #2 must be a non-null constant.",
3849               CS);
3850      }
3851    }
3852
3853    Assert(CS.getParent()->getParent()->hasGC(),
3854           "Enclosing function does not use GC.", CS);
3855    break;
3856  case Intrinsic::init_trampoline:
3857    Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
3858           "llvm.init_trampoline parameter #2 must resolve to a function.",
3859           CS);
3860    break;
3861  case Intrinsic::prefetch:
3862    Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
3863               isa<ConstantInt>(CS.getArgOperand(2)) &&
3864               cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
3865               cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
3866           "invalid arguments to llvm.prefetch", CS);
3867    break;
3868  case Intrinsic::stackprotector:
3869    Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
3870           "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
3871    break;
3872  case Intrinsic::lifetime_start:
3873  case Intrinsic::lifetime_end:
3874  case Intrinsic::invariant_start:
3875    Assert(isa<ConstantInt>(CS.getArgOperand(0)),
3876           "size argument of memory use markers must be a constant integer",
3877           CS);
3878    break;
3879  case Intrinsic::invariant_end:
3880    Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3881           "llvm.invariant.end parameter #2 must be a constant integer", CS);
3882    break;
3883
3884  case Intrinsic::localescape: {
3885    BasicBlock *BB = CS.getParent();
3886    Assert(BB == &BB->getParent()->front(),
3887           "llvm.localescape used outside of entry block", CS);
3888    Assert(!SawFrameEscape,
3889           "multiple calls to llvm.localescape in one function", CS);
3890    for (Value *Arg : CS.args()) {
3891      if (isa<ConstantPointerNull>(Arg))
3892        continue; // Null values are allowed as placeholders.
3893      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
3894      Assert(AI && AI->isStaticAlloca(),
3895             "llvm.localescape only accepts static allocas", CS);
3896    }
3897    FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
3898    SawFrameEscape = true;
3899    break;
3900  }
3901  case Intrinsic::localrecover: {
3902    Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
3903    Function *Fn = dyn_cast<Function>(FnArg);
3904    Assert(Fn && !Fn->isDeclaration(),
3905           "llvm.localrecover first "
3906           "argument must be function defined in this module",
3907           CS);
3908    auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
3909    Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
3910           CS);
3911    auto &Entry = FrameEscapeInfo[Fn];
3912    Entry.second = unsigned(
3913        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
3914    break;
3915  }
3916
3917  case Intrinsic::experimental_gc_statepoint:
3918    Assert(!CS.isInlineAsm(),
3919           "gc.statepoint support for inline assembly unimplemented", CS);
3920    Assert(CS.getParent()->getParent()->hasGC(),
3921           "Enclosing function does not use GC.", CS);
3922
3923    verifyStatepoint(CS);
3924    break;
3925  case Intrinsic::experimental_gc_result: {
3926    Assert(CS.getParent()->getParent()->hasGC(),
3927           "Enclosing function does not use GC.", CS);
3928    // Are we tied to a statepoint properly?
3929    CallSite StatepointCS(CS.getArgOperand(0));
3930    const Function *StatepointFn =
3931      StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
3932    Assert(StatepointFn && StatepointFn->isDeclaration() &&
3933               StatepointFn->getIntrinsicID() ==
3934                   Intrinsic::experimental_gc_statepoint,
3935           "gc.result operand #1 must be from a statepoint", CS,
3936           CS.getArgOperand(0));
3937
3938    // Assert that result type matches wrapped callee.
3939    const Value *Target = StatepointCS.getArgument(2);
3940    auto *PT = cast<PointerType>(Target->getType());
3941    auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
3942    Assert(CS.getType() == TargetFuncType->getReturnType(),
3943           "gc.result result type does not match wrapped callee", CS);
3944    break;
3945  }
3946  case Intrinsic::experimental_gc_relocate: {
3947    Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
3948
3949    Assert(isa<PointerType>(CS.getType()->getScalarType()),
3950           "gc.relocate must return a pointer or a vector of pointers", CS);
3951
3952    // Check that this relocate is correctly tied to the statepoint
3953
3954    // This is case for relocate on the unwinding path of an invoke statepoint
3955    if (LandingPadInst *LandingPad =
3956          dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
3957
3958      const BasicBlock *InvokeBB =
3959          LandingPad->getParent()->getUniquePredecessor();
3960
3961      // Landingpad relocates should have only one predecessor with invoke
3962      // statepoint terminator
3963      Assert(InvokeBB, "safepoints should have unique landingpads",
3964             LandingPad->getParent());
3965      Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
3966             InvokeBB);
3967      Assert(isStatepoint(InvokeBB->getTerminator()),
3968             "gc relocate should be linked to a statepoint", InvokeBB);
3969    }
3970    else {
3971      // In all other cases relocate should be tied to the statepoint directly.
3972      // This covers relocates on a normal return path of invoke statepoint and
3973      // relocates of a call statepoint.
3974      auto Token = CS.getArgOperand(0);
3975      Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
3976             "gc relocate is incorrectly tied to the statepoint", CS, Token);
3977    }
3978
3979    // Verify rest of the relocate arguments.
3980
3981    ImmutableCallSite StatepointCS(
3982        cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
3983
3984    // Both the base and derived must be piped through the safepoint.
3985    Value* Base = CS.getArgOperand(1);
3986    Assert(isa<ConstantInt>(Base),
3987           "gc.relocate operand #2 must be integer offset", CS);
3988
3989    Value* Derived = CS.getArgOperand(2);
3990    Assert(isa<ConstantInt>(Derived),
3991           "gc.relocate operand #3 must be integer offset", CS);
3992
3993    const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
3994    const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
3995    // Check the bounds
3996    Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
3997           "gc.relocate: statepoint base index out of bounds", CS);
3998    Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
3999           "gc.relocate: statepoint derived index out of bounds", CS);
4000
4001    // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4002    // section of the statepoint's argument.
4003    Assert(StatepointCS.arg_size() > 0,
4004           "gc.statepoint: insufficient arguments");
4005    Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4006           "gc.statement: number of call arguments must be constant integer");
4007    const unsigned NumCallArgs =
4008        cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4009    Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4010           "gc.statepoint: mismatch in number of call arguments");
4011    Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4012           "gc.statepoint: number of transition arguments must be "
4013           "a constant integer");
4014    const int NumTransitionArgs =
4015        cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4016            ->getZExtValue();
4017    const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4018    Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4019           "gc.statepoint: number of deoptimization arguments must be "
4020           "a constant integer");
4021    const int NumDeoptArgs =
4022        cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4023            ->getZExtValue();
4024    const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4025    const int GCParamArgsEnd = StatepointCS.arg_size();
4026    Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4027           "gc.relocate: statepoint base index doesn't fall within the "
4028           "'gc parameters' section of the statepoint call",
4029           CS);
4030    Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4031           "gc.relocate: statepoint derived index doesn't fall within the "
4032           "'gc parameters' section of the statepoint call",
4033           CS);
4034
4035    // Relocated value must be either a pointer type or vector-of-pointer type,
4036    // but gc_relocate does not need to return the same pointer type as the
4037    // relocated pointer. It can be casted to the correct type later if it's
4038    // desired. However, they must have the same address space and 'vectorness'
4039    GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4040    Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),
4041           "gc.relocate: relocated value must be a gc pointer", CS);
4042
4043    auto ResultType = CS.getType();
4044    auto DerivedType = Relocate.getDerivedPtr()->getType();
4045    Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4046           "gc.relocate: vector relocates to vector and pointer to pointer",
4047           CS);
4048    Assert(
4049        ResultType->getPointerAddressSpace() ==
4050            DerivedType->getPointerAddressSpace(),
4051        "gc.relocate: relocating a pointer shouldn't change its address space",
4052        CS);
4053    break;
4054  }
4055  case Intrinsic::eh_exceptioncode:
4056  case Intrinsic::eh_exceptionpointer: {
4057    Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4058           "eh.exceptionpointer argument must be a catchpad", CS);
4059    break;
4060  }
4061  case Intrinsic::masked_load: {
4062    Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4063
4064    Value *Ptr = CS.getArgOperand(0);
4065    //Value *Alignment = CS.getArgOperand(1);
4066    Value *Mask = CS.getArgOperand(2);
4067    Value *PassThru = CS.getArgOperand(3);
4068    Assert(Mask->getType()->isVectorTy(),
4069           "masked_load: mask must be vector", CS);
4070
4071    // DataTy is the overloaded type
4072    Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4073    Assert(DataTy == CS.getType(),
4074           "masked_load: return must match pointer type", CS);
4075    Assert(PassThru->getType() == DataTy,
4076           "masked_load: pass through and data type must match", CS);
4077    Assert(Mask->getType()->getVectorNumElements() ==
4078           DataTy->getVectorNumElements(),
4079           "masked_load: vector mask must be same length as data", CS);
4080    break;
4081  }
4082  case Intrinsic::masked_store: {
4083    Value *Val = CS.getArgOperand(0);
4084    Value *Ptr = CS.getArgOperand(1);
4085    //Value *Alignment = CS.getArgOperand(2);
4086    Value *Mask = CS.getArgOperand(3);
4087    Assert(Mask->getType()->isVectorTy(),
4088           "masked_store: mask must be vector", CS);
4089
4090    // DataTy is the overloaded type
4091    Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4092    Assert(DataTy == Val->getType(),
4093           "masked_store: storee must match pointer type", CS);
4094    Assert(Mask->getType()->getVectorNumElements() ==
4095           DataTy->getVectorNumElements(),
4096           "masked_store: vector mask must be same length as data", CS);
4097    break;
4098  }
4099
4100  case Intrinsic::experimental_guard: {
4101    Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4102    Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4103           "experimental_guard must have exactly one "
4104           "\"deopt\" operand bundle");
4105    break;
4106  }
4107
4108  case Intrinsic::experimental_deoptimize: {
4109    Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4110    Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4111           "experimental_deoptimize must have exactly one "
4112           "\"deopt\" operand bundle");
4113    Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),
4114           "experimental_deoptimize return type must match caller return type");
4115
4116    if (CS.isCall()) {
4117      auto *DeoptCI = CS.getInstruction();
4118      auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4119      Assert(RI,
4120             "calls to experimental_deoptimize must be followed by a return");
4121
4122      if (!CS.getType()->isVoidTy() && RI)
4123        Assert(RI->getReturnValue() == DeoptCI,
4124               "calls to experimental_deoptimize must be followed by a return "
4125               "of the value computed by experimental_deoptimize");
4126    }
4127
4128    break;
4129  }
4130  };
4131}
4132
4133/// \brief Carefully grab the subprogram from a local scope.
4134///
4135/// This carefully grabs the subprogram from a local scope, avoiding the
4136/// built-in assertions that would typically fire.
4137static DISubprogram *getSubprogram(Metadata *LocalScope) {
4138  if (!LocalScope)
4139    return nullptr;
4140
4141  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4142    return SP;
4143
4144  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4145    return getSubprogram(LB->getRawScope());
4146
4147  // Just return null; broken scope chains are checked elsewhere.
4148  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4149  return nullptr;
4150}
4151
4152template <class DbgIntrinsicTy>
4153void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4154  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4155  AssertDI(isa<ValueAsMetadata>(MD) ||
4156             (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4157         "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4158  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4159         "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4160         DII.getRawVariable());
4161  AssertDI(isa<DIExpression>(DII.getRawExpression()),
4162         "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4163         DII.getRawExpression());
4164
4165  // Ignore broken !dbg attachments; they're checked elsewhere.
4166  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4167    if (!isa<DILocation>(N))
4168      return;
4169
4170  BasicBlock *BB = DII.getParent();
4171  Function *F = BB ? BB->getParent() : nullptr;
4172
4173  // The scopes for variables and !dbg attachments must agree.
4174  DILocalVariable *Var = DII.getVariable();
4175  DILocation *Loc = DII.getDebugLoc();
4176  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4177         &DII, BB, F);
4178
4179  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4180  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4181  if (!VarSP || !LocSP)
4182    return; // Broken scope chains are checked elsewhere.
4183
4184  Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4185                             " variable and !dbg attachment",
4186         &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4187         Loc->getScope()->getSubprogram());
4188}
4189
4190static uint64_t getVariableSize(const DILocalVariable &V) {
4191  // Be careful of broken types (checked elsewhere).
4192  const Metadata *RawType = V.getRawType();
4193  while (RawType) {
4194    // Try to get the size directly.
4195    if (auto *T = dyn_cast<DIType>(RawType))
4196      if (uint64_t Size = T->getSizeInBits())
4197        return Size;
4198
4199    if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4200      // Look at the base type.
4201      RawType = DT->getRawBaseType();
4202      continue;
4203    }
4204
4205    // Missing type or size.
4206    break;
4207  }
4208
4209  // Fail gracefully.
4210  return 0;
4211}
4212
4213void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I) {
4214  DILocalVariable *V;
4215  DIExpression *E;
4216  if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4217    V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4218    E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4219  } else {
4220    auto *DDI = cast<DbgDeclareInst>(&I);
4221    V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4222    E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4223  }
4224
4225  // We don't know whether this intrinsic verified correctly.
4226  if (!V || !E || !E->isValid())
4227    return;
4228
4229  // Nothing to do if this isn't a bit piece expression.
4230  if (!E->isBitPiece())
4231    return;
4232
4233  // The frontend helps out GDB by emitting the members of local anonymous
4234  // unions as artificial local variables with shared storage. When SROA splits
4235  // the storage for artificial local variables that are smaller than the entire
4236  // union, the overhang piece will be outside of the allotted space for the
4237  // variable and this check fails.
4238  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4239  if (V->isArtificial())
4240    return;
4241
4242  // If there's no size, the type is broken, but that should be checked
4243  // elsewhere.
4244  uint64_t VarSize = getVariableSize(*V);
4245  if (!VarSize)
4246    return;
4247
4248  unsigned PieceSize = E->getBitPieceSize();
4249  unsigned PieceOffset = E->getBitPieceOffset();
4250  Assert(PieceSize + PieceOffset <= VarSize,
4251         "piece is larger than or outside of variable", &I, V, E);
4252  Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
4253}
4254
4255void Verifier::verifyCompileUnits() {
4256  auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
4257  SmallPtrSet<const Metadata *, 2> Listed;
4258  if (CUs)
4259    Listed.insert(CUs->op_begin(), CUs->op_end());
4260  Assert(
4261      std::all_of(CUVisited.begin(), CUVisited.end(),
4262                  [&Listed](const Metadata *CU) { return Listed.count(CU); }),
4263      "All DICompileUnits must be listed in llvm.dbg.cu");
4264  CUVisited.clear();
4265}
4266
4267void Verifier::verifyDeoptimizeCallingConvs() {
4268  if (DeoptimizeDeclarations.empty())
4269    return;
4270
4271  const Function *First = DeoptimizeDeclarations[0];
4272  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4273    Assert(First->getCallingConv() == F->getCallingConv(),
4274           "All llvm.experimental.deoptimize declarations must have the same "
4275           "calling convention",
4276           First, F);
4277  }
4278}
4279
4280//===----------------------------------------------------------------------===//
4281//  Implement the public interfaces to this file...
4282//===----------------------------------------------------------------------===//
4283
4284bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4285  Function &F = const_cast<Function &>(f);
4286
4287  // Don't use a raw_null_ostream.  Printing IR is expensive.
4288  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true);
4289
4290  // Note that this function's return value is inverted from what you would
4291  // expect of a function called "verify".
4292  return !V.verify(F);
4293}
4294
4295bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4296                        bool *BrokenDebugInfo) {
4297  // Don't use a raw_null_ostream.  Printing IR is expensive.
4298  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo);
4299
4300  bool Broken = false;
4301  for (const Function &F : M)
4302    Broken |= !V.verify(F);
4303
4304  Broken |= !V.verify(M);
4305  if (BrokenDebugInfo)
4306    *BrokenDebugInfo = V.hasBrokenDebugInfo();
4307  // Note that this function's return value is inverted from what you would
4308  // expect of a function called "verify".
4309  return Broken;
4310}
4311
4312namespace {
4313struct VerifierLegacyPass : public FunctionPass {
4314  static char ID;
4315
4316  Verifier V;
4317  bool FatalErrors = true;
4318
4319  VerifierLegacyPass()
4320      : FunctionPass(ID),
4321        V(&dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false) {
4322    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4323  }
4324  explicit VerifierLegacyPass(bool FatalErrors)
4325      : FunctionPass(ID),
4326        V(&dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false),
4327        FatalErrors(FatalErrors) {
4328    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4329  }
4330
4331  bool runOnFunction(Function &F) override {
4332    if (!V.verify(F) && FatalErrors)
4333      report_fatal_error("Broken function found, compilation aborted!");
4334
4335    return false;
4336  }
4337
4338  bool doFinalization(Module &M) override {
4339    bool HasErrors = false;
4340    for (Function &F : M)
4341      if (F.isDeclaration())
4342        HasErrors |= !V.verify(F);
4343
4344    HasErrors |= !V.verify(M);
4345    if (FatalErrors) {
4346      if (HasErrors)
4347        report_fatal_error("Broken module found, compilation aborted!");
4348      assert(!V.hasBrokenDebugInfo() && "Module contains invalid debug info");
4349    }
4350
4351    // Strip broken debug info.
4352    if (V.hasBrokenDebugInfo()) {
4353      DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4354      M.getContext().diagnose(DiagInvalid);
4355      if (!StripDebugInfo(M))
4356        report_fatal_error("Failed to strip malformed debug info");
4357    }
4358    return false;
4359  }
4360
4361  void getAnalysisUsage(AnalysisUsage &AU) const override {
4362    AU.setPreservesAll();
4363  }
4364};
4365}
4366
4367char VerifierLegacyPass::ID = 0;
4368INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
4369
4370FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4371  return new VerifierLegacyPass(FatalErrors);
4372}
4373
4374char VerifierAnalysis::PassID;
4375VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
4376                                               ModuleAnalysisManager &) {
4377  Result Res;
4378  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4379  return Res;
4380}
4381
4382VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
4383                                               FunctionAnalysisManager &) {
4384  return { llvm::verifyFunction(F, &dbgs()), false };
4385}
4386
4387PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
4388  auto Res = AM.getResult<VerifierAnalysis>(M);
4389  if (FatalErrors) {
4390    if (Res.IRBroken)
4391      report_fatal_error("Broken module found, compilation aborted!");
4392    assert(!Res.DebugInfoBroken && "Module contains invalid debug info");
4393  }
4394
4395  // Strip broken debug info.
4396  if (Res.DebugInfoBroken) {
4397    DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4398    M.getContext().diagnose(DiagInvalid);
4399    if (!StripDebugInfo(M))
4400      report_fatal_error("Failed to strip malformed debug info");
4401  }
4402  return PreservedAnalyses::all();
4403}
4404
4405PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
4406  auto res = AM.getResult<VerifierAnalysis>(F);
4407  if (res.IRBroken && FatalErrors)
4408    report_fatal_error("Broken function found, compilation aborted!");
4409
4410  return PreservedAnalyses::all();
4411}
4412