Verifier.cpp revision 296417
1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16//  * Both of a binary operator's parameters are of the same type
17//  * Verify that the indices of mem access instructions match other operands
18//  * Verify that arithmetic and other things are only performed on first-class
19//    types.  Verify that shifts & logicals only happen on integrals f.e.
20//  * All of the constants in a switch statement are of the correct type
21//  * The code is in valid SSA form
22//  * It should be illegal to put a label into any other type (like a structure)
23//    or to return one. [except constant arrays!]
24//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25//  * PHI nodes must have an entry for each predecessor, with no extras.
26//  * PHI nodes must be the first thing in a basic block, all grouped together
27//  * PHI nodes must have at least one entry
28//  * All basic blocks should only end with terminator insts, not contain them
29//  * The entry node to a function must not have predecessors
30//  * All Instructions must be embedded into a basic block
31//  * Functions cannot take a void-typed parameter
32//  * Verify that a function's argument list agrees with it's declared type.
33//  * It is illegal to specify a name for a void value.
34//  * It is illegal to have a internal global value with no initializer
35//  * It is illegal to have a ret instruction that returns a value that does not
36//    agree with the function return value type.
37//  * Function call argument types match the function prototype
38//  * A landing pad is defined by a landingpad instruction, and can be jumped to
39//    only by the unwind edge of an invoke instruction.
40//  * A landingpad instruction must be the first non-PHI instruction in the
41//    block.
42//  * Landingpad instructions must be in a function with a personality function.
43//  * All other things that are tested by asserts spread about the code...
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/IR/Verifier.h"
48#include "llvm/ADT/MapVector.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/IR/CFG.h"
55#include "llvm/IR/CallSite.h"
56#include "llvm/IR/CallingConv.h"
57#include "llvm/IR/ConstantRange.h"
58#include "llvm/IR/Constants.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/DebugInfo.h"
61#include "llvm/IR/DerivedTypes.h"
62#include "llvm/IR/Dominators.h"
63#include "llvm/IR/InlineAsm.h"
64#include "llvm/IR/InstIterator.h"
65#include "llvm/IR/InstVisitor.h"
66#include "llvm/IR/IntrinsicInst.h"
67#include "llvm/IR/LLVMContext.h"
68#include "llvm/IR/Metadata.h"
69#include "llvm/IR/Module.h"
70#include "llvm/IR/PassManager.h"
71#include "llvm/IR/Statepoint.h"
72#include "llvm/Pass.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Debug.h"
75#include "llvm/Support/ErrorHandling.h"
76#include "llvm/Support/raw_ostream.h"
77#include <algorithm>
78#include <cstdarg>
79using namespace llvm;
80
81static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
82
83namespace {
84struct VerifierSupport {
85  raw_ostream &OS;
86  const Module *M;
87
88  /// \brief Track the brokenness of the module while recursively visiting.
89  bool Broken;
90
91  explicit VerifierSupport(raw_ostream &OS)
92      : OS(OS), M(nullptr), Broken(false) {}
93
94private:
95  template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) {
96    Write(&*I);
97  }
98
99  void Write(const Module *M) {
100    if (!M)
101      return;
102    OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
103  }
104
105  void Write(const Value *V) {
106    if (!V)
107      return;
108    if (isa<Instruction>(V)) {
109      OS << *V << '\n';
110    } else {
111      V->printAsOperand(OS, true, M);
112      OS << '\n';
113    }
114  }
115  void Write(ImmutableCallSite CS) {
116    Write(CS.getInstruction());
117  }
118
119  void Write(const Metadata *MD) {
120    if (!MD)
121      return;
122    MD->print(OS, M);
123    OS << '\n';
124  }
125
126  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
127    Write(MD.get());
128  }
129
130  void Write(const NamedMDNode *NMD) {
131    if (!NMD)
132      return;
133    NMD->print(OS);
134    OS << '\n';
135  }
136
137  void Write(Type *T) {
138    if (!T)
139      return;
140    OS << ' ' << *T;
141  }
142
143  void Write(const Comdat *C) {
144    if (!C)
145      return;
146    OS << *C;
147  }
148
149  template <typename T> void Write(ArrayRef<T> Vs) {
150    for (const T &V : Vs)
151      Write(V);
152  }
153
154  template <typename T1, typename... Ts>
155  void WriteTs(const T1 &V1, const Ts &... Vs) {
156    Write(V1);
157    WriteTs(Vs...);
158  }
159
160  template <typename... Ts> void WriteTs() {}
161
162public:
163  /// \brief A check failed, so printout out the condition and the message.
164  ///
165  /// This provides a nice place to put a breakpoint if you want to see why
166  /// something is not correct.
167  void CheckFailed(const Twine &Message) {
168    OS << Message << '\n';
169    Broken = true;
170  }
171
172  /// \brief A check failed (with values to print).
173  ///
174  /// This calls the Message-only version so that the above is easier to set a
175  /// breakpoint on.
176  template <typename T1, typename... Ts>
177  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
178    CheckFailed(Message);
179    WriteTs(V1, Vs...);
180  }
181};
182
183class Verifier : public InstVisitor<Verifier>, VerifierSupport {
184  friend class InstVisitor<Verifier>;
185
186  LLVMContext *Context;
187  DominatorTree DT;
188
189  /// \brief When verifying a basic block, keep track of all of the
190  /// instructions we have seen so far.
191  ///
192  /// This allows us to do efficient dominance checks for the case when an
193  /// instruction has an operand that is an instruction in the same block.
194  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
195
196  /// \brief Keep track of the metadata nodes that have been checked already.
197  SmallPtrSet<const Metadata *, 32> MDNodes;
198
199  /// \brief Track unresolved string-based type references.
200  SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
201
202  /// \brief The result type for a landingpad.
203  Type *LandingPadResultTy;
204
205  /// \brief Whether we've seen a call to @llvm.localescape in this function
206  /// already.
207  bool SawFrameEscape;
208
209  /// Stores the count of how many objects were passed to llvm.localescape for a
210  /// given function and the largest index passed to llvm.localrecover.
211  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
212
213  // Maps catchswitches and cleanuppads that unwind to siblings to the
214  // terminators that indicate the unwind, used to detect cycles therein.
215  MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
216
217  /// Cache of constants visited in search of ConstantExprs.
218  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
219
220  void checkAtomicMemAccessSize(const Module *M, Type *Ty,
221                                const Instruction *I);
222public:
223  explicit Verifier(raw_ostream &OS)
224      : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
225        SawFrameEscape(false) {}
226
227  bool verify(const Function &F) {
228    M = F.getParent();
229    Context = &M->getContext();
230
231    // First ensure the function is well-enough formed to compute dominance
232    // information.
233    if (F.empty()) {
234      OS << "Function '" << F.getName()
235         << "' does not contain an entry block!\n";
236      return false;
237    }
238    for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
239      if (I->empty() || !I->back().isTerminator()) {
240        OS << "Basic Block in function '" << F.getName()
241           << "' does not have terminator!\n";
242        I->printAsOperand(OS, true);
243        OS << "\n";
244        return false;
245      }
246    }
247
248    // Now directly compute a dominance tree. We don't rely on the pass
249    // manager to provide this as it isolates us from a potentially
250    // out-of-date dominator tree and makes it significantly more complex to
251    // run this code outside of a pass manager.
252    // FIXME: It's really gross that we have to cast away constness here.
253    DT.recalculate(const_cast<Function &>(F));
254
255    Broken = false;
256    // FIXME: We strip const here because the inst visitor strips const.
257    visit(const_cast<Function &>(F));
258    verifySiblingFuncletUnwinds();
259    InstsInThisBlock.clear();
260    LandingPadResultTy = nullptr;
261    SawFrameEscape = false;
262    SiblingFuncletInfo.clear();
263
264    return !Broken;
265  }
266
267  bool verify(const Module &M) {
268    this->M = &M;
269    Context = &M.getContext();
270    Broken = false;
271
272    // Scan through, checking all of the external function's linkage now...
273    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
274      visitGlobalValue(*I);
275
276      // Check to make sure function prototypes are okay.
277      if (I->isDeclaration())
278        visitFunction(*I);
279    }
280
281    // Now that we've visited every function, verify that we never asked to
282    // recover a frame index that wasn't escaped.
283    verifyFrameRecoverIndices();
284
285    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
286         I != E; ++I)
287      visitGlobalVariable(*I);
288
289    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
290         I != E; ++I)
291      visitGlobalAlias(*I);
292
293    for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
294                                               E = M.named_metadata_end();
295         I != E; ++I)
296      visitNamedMDNode(*I);
297
298    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
299      visitComdat(SMEC.getValue());
300
301    visitModuleFlags(M);
302    visitModuleIdents(M);
303
304    // Verify type referneces last.
305    verifyTypeRefs();
306
307    return !Broken;
308  }
309
310private:
311  // Verification methods...
312  void visitGlobalValue(const GlobalValue &GV);
313  void visitGlobalVariable(const GlobalVariable &GV);
314  void visitGlobalAlias(const GlobalAlias &GA);
315  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
316  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
317                           const GlobalAlias &A, const Constant &C);
318  void visitNamedMDNode(const NamedMDNode &NMD);
319  void visitMDNode(const MDNode &MD);
320  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
321  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
322  void visitComdat(const Comdat &C);
323  void visitModuleIdents(const Module &M);
324  void visitModuleFlags(const Module &M);
325  void visitModuleFlag(const MDNode *Op,
326                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
327                       SmallVectorImpl<const MDNode *> &Requirements);
328  void visitFunction(const Function &F);
329  void visitBasicBlock(BasicBlock &BB);
330  void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
331  void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
332
333  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
334#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
335#include "llvm/IR/Metadata.def"
336  void visitDIScope(const DIScope &N);
337  void visitDIVariable(const DIVariable &N);
338  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
339  void visitDITemplateParameter(const DITemplateParameter &N);
340
341  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
342
343  /// \brief Check for a valid string-based type reference.
344  ///
345  /// Checks if \c MD is a string-based type reference.  If it is, keeps track
346  /// of it (and its user, \c N) for error messages later.
347  bool isValidUUID(const MDNode &N, const Metadata *MD);
348
349  /// \brief Check for a valid type reference.
350  ///
351  /// Checks for subclasses of \a DIType, or \a isValidUUID().
352  bool isTypeRef(const MDNode &N, const Metadata *MD);
353
354  /// \brief Check for a valid scope reference.
355  ///
356  /// Checks for subclasses of \a DIScope, or \a isValidUUID().
357  bool isScopeRef(const MDNode &N, const Metadata *MD);
358
359  /// \brief Check for a valid debug info reference.
360  ///
361  /// Checks for subclasses of \a DINode, or \a isValidUUID().
362  bool isDIRef(const MDNode &N, const Metadata *MD);
363
364  // InstVisitor overrides...
365  using InstVisitor<Verifier>::visit;
366  void visit(Instruction &I);
367
368  void visitTruncInst(TruncInst &I);
369  void visitZExtInst(ZExtInst &I);
370  void visitSExtInst(SExtInst &I);
371  void visitFPTruncInst(FPTruncInst &I);
372  void visitFPExtInst(FPExtInst &I);
373  void visitFPToUIInst(FPToUIInst &I);
374  void visitFPToSIInst(FPToSIInst &I);
375  void visitUIToFPInst(UIToFPInst &I);
376  void visitSIToFPInst(SIToFPInst &I);
377  void visitIntToPtrInst(IntToPtrInst &I);
378  void visitPtrToIntInst(PtrToIntInst &I);
379  void visitBitCastInst(BitCastInst &I);
380  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
381  void visitPHINode(PHINode &PN);
382  void visitBinaryOperator(BinaryOperator &B);
383  void visitICmpInst(ICmpInst &IC);
384  void visitFCmpInst(FCmpInst &FC);
385  void visitExtractElementInst(ExtractElementInst &EI);
386  void visitInsertElementInst(InsertElementInst &EI);
387  void visitShuffleVectorInst(ShuffleVectorInst &EI);
388  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
389  void visitCallInst(CallInst &CI);
390  void visitInvokeInst(InvokeInst &II);
391  void visitGetElementPtrInst(GetElementPtrInst &GEP);
392  void visitLoadInst(LoadInst &LI);
393  void visitStoreInst(StoreInst &SI);
394  void verifyDominatesUse(Instruction &I, unsigned i);
395  void visitInstruction(Instruction &I);
396  void visitTerminatorInst(TerminatorInst &I);
397  void visitBranchInst(BranchInst &BI);
398  void visitReturnInst(ReturnInst &RI);
399  void visitSwitchInst(SwitchInst &SI);
400  void visitIndirectBrInst(IndirectBrInst &BI);
401  void visitSelectInst(SelectInst &SI);
402  void visitUserOp1(Instruction &I);
403  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
404  void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
405  template <class DbgIntrinsicTy>
406  void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
407  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
408  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
409  void visitFenceInst(FenceInst &FI);
410  void visitAllocaInst(AllocaInst &AI);
411  void visitExtractValueInst(ExtractValueInst &EVI);
412  void visitInsertValueInst(InsertValueInst &IVI);
413  void visitEHPadPredecessors(Instruction &I);
414  void visitLandingPadInst(LandingPadInst &LPI);
415  void visitCatchPadInst(CatchPadInst &CPI);
416  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
417  void visitCleanupPadInst(CleanupPadInst &CPI);
418  void visitFuncletPadInst(FuncletPadInst &FPI);
419  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
420  void visitCleanupReturnInst(CleanupReturnInst &CRI);
421
422  void VerifyCallSite(CallSite CS);
423  void verifyMustTailCall(CallInst &CI);
424  bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
425                        unsigned ArgNo, std::string &Suffix);
426  bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
427                           SmallVectorImpl<Type *> &ArgTys);
428  bool VerifyIntrinsicIsVarArg(bool isVarArg,
429                               ArrayRef<Intrinsic::IITDescriptor> &Infos);
430  bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
431  void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
432                            const Value *V);
433  void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
434                            bool isReturnValue, const Value *V);
435  void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
436                           const Value *V);
437  void VerifyFunctionMetadata(
438      const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
439
440  void visitConstantExprsRecursively(const Constant *EntryC);
441  void visitConstantExpr(const ConstantExpr *CE);
442  void VerifyStatepoint(ImmutableCallSite CS);
443  void verifyFrameRecoverIndices();
444  void verifySiblingFuncletUnwinds();
445
446  // Module-level debug info verification...
447  void verifyTypeRefs();
448  template <class MapTy>
449  void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
450                                const MapTy &TypeRefs);
451  void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
452};
453} // End anonymous namespace
454
455// Assert - We know that cond should be true, if not print an error message.
456#define Assert(C, ...) \
457  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
458
459void Verifier::visit(Instruction &I) {
460  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
461    Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
462  InstVisitor<Verifier>::visit(I);
463}
464
465
466void Verifier::visitGlobalValue(const GlobalValue &GV) {
467  Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
468             GV.hasExternalWeakLinkage(),
469         "Global is external, but doesn't have external or weak linkage!", &GV);
470
471  Assert(GV.getAlignment() <= Value::MaximumAlignment,
472         "huge alignment values are unsupported", &GV);
473  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
474         "Only global variables can have appending linkage!", &GV);
475
476  if (GV.hasAppendingLinkage()) {
477    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
478    Assert(GVar && GVar->getValueType()->isArrayTy(),
479           "Only global arrays can have appending linkage!", GVar);
480  }
481
482  if (GV.isDeclarationForLinker())
483    Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
484}
485
486void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
487  if (GV.hasInitializer()) {
488    Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
489           "Global variable initializer type does not match global "
490           "variable type!",
491           &GV);
492
493    // If the global has common linkage, it must have a zero initializer and
494    // cannot be constant.
495    if (GV.hasCommonLinkage()) {
496      Assert(GV.getInitializer()->isNullValue(),
497             "'common' global must have a zero initializer!", &GV);
498      Assert(!GV.isConstant(), "'common' global may not be marked constant!",
499             &GV);
500      Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
501    }
502  } else {
503    Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
504           "invalid linkage type for global declaration", &GV);
505  }
506
507  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
508                       GV.getName() == "llvm.global_dtors")) {
509    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
510           "invalid linkage for intrinsic global variable", &GV);
511    // Don't worry about emitting an error for it not being an array,
512    // visitGlobalValue will complain on appending non-array.
513    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
514      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
515      PointerType *FuncPtrTy =
516          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
517      // FIXME: Reject the 2-field form in LLVM 4.0.
518      Assert(STy &&
519                 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
520                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
521                 STy->getTypeAtIndex(1) == FuncPtrTy,
522             "wrong type for intrinsic global variable", &GV);
523      if (STy->getNumElements() == 3) {
524        Type *ETy = STy->getTypeAtIndex(2);
525        Assert(ETy->isPointerTy() &&
526                   cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
527               "wrong type for intrinsic global variable", &GV);
528      }
529    }
530  }
531
532  if (GV.hasName() && (GV.getName() == "llvm.used" ||
533                       GV.getName() == "llvm.compiler.used")) {
534    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
535           "invalid linkage for intrinsic global variable", &GV);
536    Type *GVType = GV.getValueType();
537    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
538      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
539      Assert(PTy, "wrong type for intrinsic global variable", &GV);
540      if (GV.hasInitializer()) {
541        const Constant *Init = GV.getInitializer();
542        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
543        Assert(InitArray, "wrong initalizer for intrinsic global variable",
544               Init);
545        for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
546          Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
547          Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
548                     isa<GlobalAlias>(V),
549                 "invalid llvm.used member", V);
550          Assert(V->hasName(), "members of llvm.used must be named", V);
551        }
552      }
553    }
554  }
555
556  Assert(!GV.hasDLLImportStorageClass() ||
557             (GV.isDeclaration() && GV.hasExternalLinkage()) ||
558             GV.hasAvailableExternallyLinkage(),
559         "Global is marked as dllimport, but not external", &GV);
560
561  if (!GV.hasInitializer()) {
562    visitGlobalValue(GV);
563    return;
564  }
565
566  // Walk any aggregate initializers looking for bitcasts between address spaces
567  visitConstantExprsRecursively(GV.getInitializer());
568
569  visitGlobalValue(GV);
570}
571
572void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
573  SmallPtrSet<const GlobalAlias*, 4> Visited;
574  Visited.insert(&GA);
575  visitAliaseeSubExpr(Visited, GA, C);
576}
577
578void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
579                                   const GlobalAlias &GA, const Constant &C) {
580  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
581    Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
582           &GA);
583
584    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
585      Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
586
587      Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
588             &GA);
589    } else {
590      // Only continue verifying subexpressions of GlobalAliases.
591      // Do not recurse into global initializers.
592      return;
593    }
594  }
595
596  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
597    visitConstantExprsRecursively(CE);
598
599  for (const Use &U : C.operands()) {
600    Value *V = &*U;
601    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
602      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
603    else if (const auto *C2 = dyn_cast<Constant>(V))
604      visitAliaseeSubExpr(Visited, GA, *C2);
605  }
606}
607
608void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
609  Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
610         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
611         "weak_odr, or external linkage!",
612         &GA);
613  const Constant *Aliasee = GA.getAliasee();
614  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
615  Assert(GA.getType() == Aliasee->getType(),
616         "Alias and aliasee types should match!", &GA);
617
618  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
619         "Aliasee should be either GlobalValue or ConstantExpr", &GA);
620
621  visitAliaseeSubExpr(GA, *Aliasee);
622
623  visitGlobalValue(GA);
624}
625
626void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
627  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
628    MDNode *MD = NMD.getOperand(i);
629
630    if (NMD.getName() == "llvm.dbg.cu") {
631      Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
632    }
633
634    if (!MD)
635      continue;
636
637    visitMDNode(*MD);
638  }
639}
640
641void Verifier::visitMDNode(const MDNode &MD) {
642  // Only visit each node once.  Metadata can be mutually recursive, so this
643  // avoids infinite recursion here, as well as being an optimization.
644  if (!MDNodes.insert(&MD).second)
645    return;
646
647  switch (MD.getMetadataID()) {
648  default:
649    llvm_unreachable("Invalid MDNode subclass");
650  case Metadata::MDTupleKind:
651    break;
652#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
653  case Metadata::CLASS##Kind:                                                  \
654    visit##CLASS(cast<CLASS>(MD));                                             \
655    break;
656#include "llvm/IR/Metadata.def"
657  }
658
659  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
660    Metadata *Op = MD.getOperand(i);
661    if (!Op)
662      continue;
663    Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
664           &MD, Op);
665    if (auto *N = dyn_cast<MDNode>(Op)) {
666      visitMDNode(*N);
667      continue;
668    }
669    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
670      visitValueAsMetadata(*V, nullptr);
671      continue;
672    }
673  }
674
675  // Check these last, so we diagnose problems in operands first.
676  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
677  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
678}
679
680void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
681  Assert(MD.getValue(), "Expected valid value", &MD);
682  Assert(!MD.getValue()->getType()->isMetadataTy(),
683         "Unexpected metadata round-trip through values", &MD, MD.getValue());
684
685  auto *L = dyn_cast<LocalAsMetadata>(&MD);
686  if (!L)
687    return;
688
689  Assert(F, "function-local metadata used outside a function", L);
690
691  // If this was an instruction, bb, or argument, verify that it is in the
692  // function that we expect.
693  Function *ActualF = nullptr;
694  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
695    Assert(I->getParent(), "function-local metadata not in basic block", L, I);
696    ActualF = I->getParent()->getParent();
697  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
698    ActualF = BB->getParent();
699  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
700    ActualF = A->getParent();
701  assert(ActualF && "Unimplemented function local metadata case!");
702
703  Assert(ActualF == F, "function-local metadata used in wrong function", L);
704}
705
706void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
707  Metadata *MD = MDV.getMetadata();
708  if (auto *N = dyn_cast<MDNode>(MD)) {
709    visitMDNode(*N);
710    return;
711  }
712
713  // Only visit each node once.  Metadata can be mutually recursive, so this
714  // avoids infinite recursion here, as well as being an optimization.
715  if (!MDNodes.insert(MD).second)
716    return;
717
718  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
719    visitValueAsMetadata(*V, F);
720}
721
722bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
723  auto *S = dyn_cast<MDString>(MD);
724  if (!S)
725    return false;
726  if (S->getString().empty())
727    return false;
728
729  // Keep track of names of types referenced via UUID so we can check that they
730  // actually exist.
731  UnresolvedTypeRefs.insert(std::make_pair(S, &N));
732  return true;
733}
734
735/// \brief Check if a value can be a reference to a type.
736bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
737  return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
738}
739
740/// \brief Check if a value can be a ScopeRef.
741bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
742  return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
743}
744
745/// \brief Check if a value can be a debug info ref.
746bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
747  return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
748}
749
750template <class Ty>
751bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
752  for (Metadata *MD : N.operands()) {
753    if (MD) {
754      if (!isa<Ty>(MD))
755        return false;
756    } else {
757      if (!AllowNull)
758        return false;
759    }
760  }
761  return true;
762}
763
764template <class Ty>
765bool isValidMetadataArray(const MDTuple &N) {
766  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
767}
768
769template <class Ty>
770bool isValidMetadataNullArray(const MDTuple &N) {
771  return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
772}
773
774void Verifier::visitDILocation(const DILocation &N) {
775  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
776         "location requires a valid scope", &N, N.getRawScope());
777  if (auto *IA = N.getRawInlinedAt())
778    Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
779}
780
781void Verifier::visitGenericDINode(const GenericDINode &N) {
782  Assert(N.getTag(), "invalid tag", &N);
783}
784
785void Verifier::visitDIScope(const DIScope &N) {
786  if (auto *F = N.getRawFile())
787    Assert(isa<DIFile>(F), "invalid file", &N, F);
788}
789
790void Verifier::visitDISubrange(const DISubrange &N) {
791  Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
792  Assert(N.getCount() >= -1, "invalid subrange count", &N);
793}
794
795void Verifier::visitDIEnumerator(const DIEnumerator &N) {
796  Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
797}
798
799void Verifier::visitDIBasicType(const DIBasicType &N) {
800  Assert(N.getTag() == dwarf::DW_TAG_base_type ||
801             N.getTag() == dwarf::DW_TAG_unspecified_type,
802         "invalid tag", &N);
803}
804
805void Verifier::visitDIDerivedType(const DIDerivedType &N) {
806  // Common scope checks.
807  visitDIScope(N);
808
809  Assert(N.getTag() == dwarf::DW_TAG_typedef ||
810             N.getTag() == dwarf::DW_TAG_pointer_type ||
811             N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
812             N.getTag() == dwarf::DW_TAG_reference_type ||
813             N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
814             N.getTag() == dwarf::DW_TAG_const_type ||
815             N.getTag() == dwarf::DW_TAG_volatile_type ||
816             N.getTag() == dwarf::DW_TAG_restrict_type ||
817             N.getTag() == dwarf::DW_TAG_member ||
818             N.getTag() == dwarf::DW_TAG_inheritance ||
819             N.getTag() == dwarf::DW_TAG_friend,
820         "invalid tag", &N);
821  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
822    Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
823           N.getExtraData());
824  }
825
826  Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
827  Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
828         N.getBaseType());
829}
830
831static bool hasConflictingReferenceFlags(unsigned Flags) {
832  return (Flags & DINode::FlagLValueReference) &&
833         (Flags & DINode::FlagRValueReference);
834}
835
836void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
837  auto *Params = dyn_cast<MDTuple>(&RawParams);
838  Assert(Params, "invalid template params", &N, &RawParams);
839  for (Metadata *Op : Params->operands()) {
840    Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
841           Params, Op);
842  }
843}
844
845void Verifier::visitDICompositeType(const DICompositeType &N) {
846  // Common scope checks.
847  visitDIScope(N);
848
849  Assert(N.getTag() == dwarf::DW_TAG_array_type ||
850             N.getTag() == dwarf::DW_TAG_structure_type ||
851             N.getTag() == dwarf::DW_TAG_union_type ||
852             N.getTag() == dwarf::DW_TAG_enumeration_type ||
853             N.getTag() == dwarf::DW_TAG_class_type,
854         "invalid tag", &N);
855
856  Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
857  Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
858         N.getBaseType());
859
860  Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
861         "invalid composite elements", &N, N.getRawElements());
862  Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
863         N.getRawVTableHolder());
864  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
865         &N);
866  if (auto *Params = N.getRawTemplateParams())
867    visitTemplateParams(N, *Params);
868
869  if (N.getTag() == dwarf::DW_TAG_class_type ||
870      N.getTag() == dwarf::DW_TAG_union_type) {
871    Assert(N.getFile() && !N.getFile()->getFilename().empty(),
872           "class/union requires a filename", &N, N.getFile());
873  }
874}
875
876void Verifier::visitDISubroutineType(const DISubroutineType &N) {
877  Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
878  if (auto *Types = N.getRawTypeArray()) {
879    Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
880    for (Metadata *Ty : N.getTypeArray()->operands()) {
881      Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
882    }
883  }
884  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
885         &N);
886}
887
888void Verifier::visitDIFile(const DIFile &N) {
889  Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
890}
891
892void Verifier::visitDICompileUnit(const DICompileUnit &N) {
893  Assert(N.isDistinct(), "compile units must be distinct", &N);
894  Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
895
896  // Don't bother verifying the compilation directory or producer string
897  // as those could be empty.
898  Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
899         N.getRawFile());
900  Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
901         N.getFile());
902
903  if (auto *Array = N.getRawEnumTypes()) {
904    Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
905    for (Metadata *Op : N.getEnumTypes()->operands()) {
906      auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
907      Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
908             "invalid enum type", &N, N.getEnumTypes(), Op);
909    }
910  }
911  if (auto *Array = N.getRawRetainedTypes()) {
912    Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
913    for (Metadata *Op : N.getRetainedTypes()->operands()) {
914      Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
915    }
916  }
917  if (auto *Array = N.getRawSubprograms()) {
918    Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
919    for (Metadata *Op : N.getSubprograms()->operands()) {
920      Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
921    }
922  }
923  if (auto *Array = N.getRawGlobalVariables()) {
924    Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
925    for (Metadata *Op : N.getGlobalVariables()->operands()) {
926      Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
927             Op);
928    }
929  }
930  if (auto *Array = N.getRawImportedEntities()) {
931    Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
932    for (Metadata *Op : N.getImportedEntities()->operands()) {
933      Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
934             Op);
935    }
936  }
937  if (auto *Array = N.getRawMacros()) {
938    Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
939    for (Metadata *Op : N.getMacros()->operands()) {
940      Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
941    }
942  }
943}
944
945void Verifier::visitDISubprogram(const DISubprogram &N) {
946  Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
947  Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
948  if (auto *T = N.getRawType())
949    Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
950  Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
951         N.getRawContainingType());
952  if (auto *Params = N.getRawTemplateParams())
953    visitTemplateParams(N, *Params);
954  if (auto *S = N.getRawDeclaration()) {
955    Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
956           "invalid subprogram declaration", &N, S);
957  }
958  if (auto *RawVars = N.getRawVariables()) {
959    auto *Vars = dyn_cast<MDTuple>(RawVars);
960    Assert(Vars, "invalid variable list", &N, RawVars);
961    for (Metadata *Op : Vars->operands()) {
962      Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
963             Op);
964    }
965  }
966  Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
967         &N);
968
969  if (N.isDefinition())
970    Assert(N.isDistinct(), "subprogram definitions must be distinct", &N);
971}
972
973void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
974  Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
975  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
976         "invalid local scope", &N, N.getRawScope());
977}
978
979void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
980  visitDILexicalBlockBase(N);
981
982  Assert(N.getLine() || !N.getColumn(),
983         "cannot have column info without line info", &N);
984}
985
986void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
987  visitDILexicalBlockBase(N);
988}
989
990void Verifier::visitDINamespace(const DINamespace &N) {
991  Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
992  if (auto *S = N.getRawScope())
993    Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
994}
995
996void Verifier::visitDIMacro(const DIMacro &N) {
997  Assert(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
998         N.getMacinfoType() == dwarf::DW_MACINFO_undef,
999         "invalid macinfo type", &N);
1000  Assert(!N.getName().empty(), "anonymous macro", &N);
1001  if (!N.getValue().empty()) {
1002    assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1003  }
1004}
1005
1006void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1007  Assert(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1008         "invalid macinfo type", &N);
1009  if (auto *F = N.getRawFile())
1010    Assert(isa<DIFile>(F), "invalid file", &N, F);
1011
1012  if (auto *Array = N.getRawElements()) {
1013    Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1014    for (Metadata *Op : N.getElements()->operands()) {
1015      Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1016    }
1017  }
1018}
1019
1020void Verifier::visitDIModule(const DIModule &N) {
1021  Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1022  Assert(!N.getName().empty(), "anonymous module", &N);
1023}
1024
1025void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1026  Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
1027}
1028
1029void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1030  visitDITemplateParameter(N);
1031
1032  Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1033         &N);
1034}
1035
1036void Verifier::visitDITemplateValueParameter(
1037    const DITemplateValueParameter &N) {
1038  visitDITemplateParameter(N);
1039
1040  Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1041             N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1042             N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1043         "invalid tag", &N);
1044}
1045
1046void Verifier::visitDIVariable(const DIVariable &N) {
1047  if (auto *S = N.getRawScope())
1048    Assert(isa<DIScope>(S), "invalid scope", &N, S);
1049  Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
1050  if (auto *F = N.getRawFile())
1051    Assert(isa<DIFile>(F), "invalid file", &N, F);
1052}
1053
1054void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1055  // Checks common to all variables.
1056  visitDIVariable(N);
1057
1058  Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1059  Assert(!N.getName().empty(), "missing global variable name", &N);
1060  if (auto *V = N.getRawVariable()) {
1061    Assert(isa<ConstantAsMetadata>(V) &&
1062               !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
1063           "invalid global varaible ref", &N, V);
1064  }
1065  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1066    Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
1067           &N, Member);
1068  }
1069}
1070
1071void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1072  // Checks common to all variables.
1073  visitDIVariable(N);
1074
1075  Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1076  Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1077         "local variable requires a valid scope", &N, N.getRawScope());
1078}
1079
1080void Verifier::visitDIExpression(const DIExpression &N) {
1081  Assert(N.isValid(), "invalid expression", &N);
1082}
1083
1084void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1085  Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1086  if (auto *T = N.getRawType())
1087    Assert(isTypeRef(N, T), "invalid type ref", &N, T);
1088  if (auto *F = N.getRawFile())
1089    Assert(isa<DIFile>(F), "invalid file", &N, F);
1090}
1091
1092void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1093  Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
1094             N.getTag() == dwarf::DW_TAG_imported_declaration,
1095         "invalid tag", &N);
1096  if (auto *S = N.getRawScope())
1097    Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1098  Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
1099         N.getEntity());
1100}
1101
1102void Verifier::visitComdat(const Comdat &C) {
1103  // The Module is invalid if the GlobalValue has private linkage.  Entities
1104  // with private linkage don't have entries in the symbol table.
1105  if (const GlobalValue *GV = M->getNamedValue(C.getName()))
1106    Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1107           GV);
1108}
1109
1110void Verifier::visitModuleIdents(const Module &M) {
1111  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1112  if (!Idents)
1113    return;
1114
1115  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1116  // Scan each llvm.ident entry and make sure that this requirement is met.
1117  for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
1118    const MDNode *N = Idents->getOperand(i);
1119    Assert(N->getNumOperands() == 1,
1120           "incorrect number of operands in llvm.ident metadata", N);
1121    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1122           ("invalid value for llvm.ident metadata entry operand"
1123            "(the operand should be a string)"),
1124           N->getOperand(0));
1125  }
1126}
1127
1128void Verifier::visitModuleFlags(const Module &M) {
1129  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1130  if (!Flags) return;
1131
1132  // Scan each flag, and track the flags and requirements.
1133  DenseMap<const MDString*, const MDNode*> SeenIDs;
1134  SmallVector<const MDNode*, 16> Requirements;
1135  for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
1136    visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
1137  }
1138
1139  // Validate that the requirements in the module are valid.
1140  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1141    const MDNode *Requirement = Requirements[I];
1142    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1143    const Metadata *ReqValue = Requirement->getOperand(1);
1144
1145    const MDNode *Op = SeenIDs.lookup(Flag);
1146    if (!Op) {
1147      CheckFailed("invalid requirement on flag, flag is not present in module",
1148                  Flag);
1149      continue;
1150    }
1151
1152    if (Op->getOperand(2) != ReqValue) {
1153      CheckFailed(("invalid requirement on flag, "
1154                   "flag does not have the required value"),
1155                  Flag);
1156      continue;
1157    }
1158  }
1159}
1160
1161void
1162Verifier::visitModuleFlag(const MDNode *Op,
1163                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
1164                          SmallVectorImpl<const MDNode *> &Requirements) {
1165  // Each module flag should have three arguments, the merge behavior (a
1166  // constant int), the flag ID (an MDString), and the value.
1167  Assert(Op->getNumOperands() == 3,
1168         "incorrect number of operands in module flag", Op);
1169  Module::ModFlagBehavior MFB;
1170  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1171    Assert(
1172        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1173        "invalid behavior operand in module flag (expected constant integer)",
1174        Op->getOperand(0));
1175    Assert(false,
1176           "invalid behavior operand in module flag (unexpected constant)",
1177           Op->getOperand(0));
1178  }
1179  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1180  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1181         Op->getOperand(1));
1182
1183  // Sanity check the values for behaviors with additional requirements.
1184  switch (MFB) {
1185  case Module::Error:
1186  case Module::Warning:
1187  case Module::Override:
1188    // These behavior types accept any value.
1189    break;
1190
1191  case Module::Require: {
1192    // The value should itself be an MDNode with two operands, a flag ID (an
1193    // MDString), and a value.
1194    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1195    Assert(Value && Value->getNumOperands() == 2,
1196           "invalid value for 'require' module flag (expected metadata pair)",
1197           Op->getOperand(2));
1198    Assert(isa<MDString>(Value->getOperand(0)),
1199           ("invalid value for 'require' module flag "
1200            "(first value operand should be a string)"),
1201           Value->getOperand(0));
1202
1203    // Append it to the list of requirements, to check once all module flags are
1204    // scanned.
1205    Requirements.push_back(Value);
1206    break;
1207  }
1208
1209  case Module::Append:
1210  case Module::AppendUnique: {
1211    // These behavior types require the operand be an MDNode.
1212    Assert(isa<MDNode>(Op->getOperand(2)),
1213           "invalid value for 'append'-type module flag "
1214           "(expected a metadata node)",
1215           Op->getOperand(2));
1216    break;
1217  }
1218  }
1219
1220  // Unless this is a "requires" flag, check the ID is unique.
1221  if (MFB != Module::Require) {
1222    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1223    Assert(Inserted,
1224           "module flag identifiers must be unique (or of 'require' type)", ID);
1225  }
1226}
1227
1228void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1229                                    bool isFunction, const Value *V) {
1230  unsigned Slot = ~0U;
1231  for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1232    if (Attrs.getSlotIndex(I) == Idx) {
1233      Slot = I;
1234      break;
1235    }
1236
1237  assert(Slot != ~0U && "Attribute set inconsistency!");
1238
1239  for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1240         I != E; ++I) {
1241    if (I->isStringAttribute())
1242      continue;
1243
1244    if (I->getKindAsEnum() == Attribute::NoReturn ||
1245        I->getKindAsEnum() == Attribute::NoUnwind ||
1246        I->getKindAsEnum() == Attribute::NoInline ||
1247        I->getKindAsEnum() == Attribute::AlwaysInline ||
1248        I->getKindAsEnum() == Attribute::OptimizeForSize ||
1249        I->getKindAsEnum() == Attribute::StackProtect ||
1250        I->getKindAsEnum() == Attribute::StackProtectReq ||
1251        I->getKindAsEnum() == Attribute::StackProtectStrong ||
1252        I->getKindAsEnum() == Attribute::SafeStack ||
1253        I->getKindAsEnum() == Attribute::NoRedZone ||
1254        I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1255        I->getKindAsEnum() == Attribute::Naked ||
1256        I->getKindAsEnum() == Attribute::InlineHint ||
1257        I->getKindAsEnum() == Attribute::StackAlignment ||
1258        I->getKindAsEnum() == Attribute::UWTable ||
1259        I->getKindAsEnum() == Attribute::NonLazyBind ||
1260        I->getKindAsEnum() == Attribute::ReturnsTwice ||
1261        I->getKindAsEnum() == Attribute::SanitizeAddress ||
1262        I->getKindAsEnum() == Attribute::SanitizeThread ||
1263        I->getKindAsEnum() == Attribute::SanitizeMemory ||
1264        I->getKindAsEnum() == Attribute::MinSize ||
1265        I->getKindAsEnum() == Attribute::NoDuplicate ||
1266        I->getKindAsEnum() == Attribute::Builtin ||
1267        I->getKindAsEnum() == Attribute::NoBuiltin ||
1268        I->getKindAsEnum() == Attribute::Cold ||
1269        I->getKindAsEnum() == Attribute::OptimizeNone ||
1270        I->getKindAsEnum() == Attribute::JumpTable ||
1271        I->getKindAsEnum() == Attribute::Convergent ||
1272        I->getKindAsEnum() == Attribute::ArgMemOnly ||
1273        I->getKindAsEnum() == Attribute::NoRecurse ||
1274        I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1275        I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly) {
1276      if (!isFunction) {
1277        CheckFailed("Attribute '" + I->getAsString() +
1278                    "' only applies to functions!", V);
1279        return;
1280      }
1281    } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1282               I->getKindAsEnum() == Attribute::ReadNone) {
1283      if (Idx == 0) {
1284        CheckFailed("Attribute '" + I->getAsString() +
1285                    "' does not apply to function returns");
1286        return;
1287      }
1288    } else if (isFunction) {
1289      CheckFailed("Attribute '" + I->getAsString() +
1290                  "' does not apply to functions!", V);
1291      return;
1292    }
1293  }
1294}
1295
1296// VerifyParameterAttrs - Check the given attributes for an argument or return
1297// value of the specified type.  The value V is printed in error messages.
1298void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1299                                    bool isReturnValue, const Value *V) {
1300  if (!Attrs.hasAttributes(Idx))
1301    return;
1302
1303  VerifyAttributeTypes(Attrs, Idx, false, V);
1304
1305  if (isReturnValue)
1306    Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1307               !Attrs.hasAttribute(Idx, Attribute::Nest) &&
1308               !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1309               !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
1310               !Attrs.hasAttribute(Idx, Attribute::Returned) &&
1311               !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1312           "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
1313           "'returned' do not apply to return values!",
1314           V);
1315
1316  // Check for mutually incompatible attributes.  Only inreg is compatible with
1317  // sret.
1318  unsigned AttrCount = 0;
1319  AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1320  AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1321  AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1322               Attrs.hasAttribute(Idx, Attribute::InReg);
1323  AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1324  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1325                         "and 'sret' are incompatible!",
1326         V);
1327
1328  Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1329           Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1330         "Attributes "
1331         "'inalloca and readonly' are incompatible!",
1332         V);
1333
1334  Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1335           Attrs.hasAttribute(Idx, Attribute::Returned)),
1336         "Attributes "
1337         "'sret and returned' are incompatible!",
1338         V);
1339
1340  Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
1341           Attrs.hasAttribute(Idx, Attribute::SExt)),
1342         "Attributes "
1343         "'zeroext and signext' are incompatible!",
1344         V);
1345
1346  Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1347           Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1348         "Attributes "
1349         "'readnone and readonly' are incompatible!",
1350         V);
1351
1352  Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
1353           Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
1354         "Attributes "
1355         "'noinline and alwaysinline' are incompatible!",
1356         V);
1357
1358  Assert(!AttrBuilder(Attrs, Idx)
1359              .overlaps(AttributeFuncs::typeIncompatible(Ty)),
1360         "Wrong types for attribute: " +
1361         AttributeSet::get(*Context, Idx,
1362                        AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
1363         V);
1364
1365  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1366    SmallPtrSet<Type*, 4> Visited;
1367    if (!PTy->getElementType()->isSized(&Visited)) {
1368      Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1369                 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1370             "Attributes 'byval' and 'inalloca' do not support unsized types!",
1371             V);
1372    }
1373  } else {
1374    Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
1375           "Attribute 'byval' only applies to parameters with pointer type!",
1376           V);
1377  }
1378}
1379
1380// VerifyFunctionAttrs - Check parameter attributes against a function type.
1381// The value V is printed in error messages.
1382void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1383                                   const Value *V) {
1384  if (Attrs.isEmpty())
1385    return;
1386
1387  bool SawNest = false;
1388  bool SawReturned = false;
1389  bool SawSRet = false;
1390
1391  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1392    unsigned Idx = Attrs.getSlotIndex(i);
1393
1394    Type *Ty;
1395    if (Idx == 0)
1396      Ty = FT->getReturnType();
1397    else if (Idx-1 < FT->getNumParams())
1398      Ty = FT->getParamType(Idx-1);
1399    else
1400      break;  // VarArgs attributes, verified elsewhere.
1401
1402    VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1403
1404    if (Idx == 0)
1405      continue;
1406
1407    if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1408      Assert(!SawNest, "More than one parameter has attribute nest!", V);
1409      SawNest = true;
1410    }
1411
1412    if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1413      Assert(!SawReturned, "More than one parameter has attribute returned!",
1414             V);
1415      Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1416             "Incompatible "
1417             "argument and return types for 'returned' attribute",
1418             V);
1419      SawReturned = true;
1420    }
1421
1422    if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1423      Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1424      Assert(Idx == 1 || Idx == 2,
1425             "Attribute 'sret' is not on first or second parameter!", V);
1426      SawSRet = true;
1427    }
1428
1429    if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1430      Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
1431             V);
1432    }
1433  }
1434
1435  if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1436    return;
1437
1438  VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1439
1440  Assert(
1441      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1442        Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
1443      "Attributes 'readnone and readonly' are incompatible!", V);
1444
1445  Assert(
1446      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1447        Attrs.hasAttribute(AttributeSet::FunctionIndex,
1448                           Attribute::InaccessibleMemOrArgMemOnly)),
1449      "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
1450
1451  Assert(
1452      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1453        Attrs.hasAttribute(AttributeSet::FunctionIndex,
1454                           Attribute::InaccessibleMemOnly)),
1455      "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1456
1457  Assert(
1458      !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
1459        Attrs.hasAttribute(AttributeSet::FunctionIndex,
1460                           Attribute::AlwaysInline)),
1461      "Attributes 'noinline and alwaysinline' are incompatible!", V);
1462
1463  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1464                         Attribute::OptimizeNone)) {
1465    Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
1466           "Attribute 'optnone' requires 'noinline'!", V);
1467
1468    Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1469                               Attribute::OptimizeForSize),
1470           "Attributes 'optsize and optnone' are incompatible!", V);
1471
1472    Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
1473           "Attributes 'minsize and optnone' are incompatible!", V);
1474  }
1475
1476  if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1477                         Attribute::JumpTable)) {
1478    const GlobalValue *GV = cast<GlobalValue>(V);
1479    Assert(GV->hasUnnamedAddr(),
1480           "Attribute 'jumptable' requires 'unnamed_addr'", V);
1481  }
1482}
1483
1484void Verifier::VerifyFunctionMetadata(
1485    const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
1486  if (MDs.empty())
1487    return;
1488
1489  for (unsigned i = 0; i < MDs.size(); i++) {
1490    if (MDs[i].first == LLVMContext::MD_prof) {
1491      MDNode *MD = MDs[i].second;
1492      Assert(MD->getNumOperands() == 2,
1493             "!prof annotations should have exactly 2 operands", MD);
1494
1495      // Check first operand.
1496      Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1497             MD);
1498      Assert(isa<MDString>(MD->getOperand(0)),
1499             "expected string with name of the !prof annotation", MD);
1500      MDString *MDS = cast<MDString>(MD->getOperand(0));
1501      StringRef ProfName = MDS->getString();
1502      Assert(ProfName.equals("function_entry_count"),
1503             "first operand should be 'function_entry_count'", MD);
1504
1505      // Check second operand.
1506      Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1507             MD);
1508      Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1509             "expected integer argument to function_entry_count", MD);
1510    }
1511  }
1512}
1513
1514void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1515  if (!ConstantExprVisited.insert(EntryC).second)
1516    return;
1517
1518  SmallVector<const Constant *, 16> Stack;
1519  Stack.push_back(EntryC);
1520
1521  while (!Stack.empty()) {
1522    const Constant *C = Stack.pop_back_val();
1523
1524    // Check this constant expression.
1525    if (const auto *CE = dyn_cast<ConstantExpr>(C))
1526      visitConstantExpr(CE);
1527
1528    // Visit all sub-expressions.
1529    for (const Use &U : C->operands()) {
1530      const auto *OpC = dyn_cast<Constant>(U);
1531      if (!OpC)
1532        continue;
1533      if (isa<GlobalValue>(OpC))
1534        continue; // Global values get visited separately.
1535      if (!ConstantExprVisited.insert(OpC).second)
1536        continue;
1537      Stack.push_back(OpC);
1538    }
1539  }
1540}
1541
1542void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1543  if (CE->getOpcode() != Instruction::BitCast)
1544    return;
1545
1546  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1547                               CE->getType()),
1548         "Invalid bitcast", CE);
1549}
1550
1551bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1552  if (Attrs.getNumSlots() == 0)
1553    return true;
1554
1555  unsigned LastSlot = Attrs.getNumSlots() - 1;
1556  unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1557  if (LastIndex <= Params
1558      || (LastIndex == AttributeSet::FunctionIndex
1559          && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1560    return true;
1561
1562  return false;
1563}
1564
1565/// \brief Verify that statepoint intrinsic is well formed.
1566void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
1567  assert(CS.getCalledFunction() &&
1568         CS.getCalledFunction()->getIntrinsicID() ==
1569           Intrinsic::experimental_gc_statepoint);
1570
1571  const Instruction &CI = *CS.getInstruction();
1572
1573  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1574         !CS.onlyAccessesArgMemory(),
1575         "gc.statepoint must read and write all memory to preserve "
1576         "reordering restrictions required by safepoint semantics",
1577         &CI);
1578
1579  const Value *IDV = CS.getArgument(0);
1580  Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1581         &CI);
1582
1583  const Value *NumPatchBytesV = CS.getArgument(1);
1584  Assert(isa<ConstantInt>(NumPatchBytesV),
1585         "gc.statepoint number of patchable bytes must be a constant integer",
1586         &CI);
1587  const int64_t NumPatchBytes =
1588      cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1589  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1590  Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1591                             "positive",
1592         &CI);
1593
1594  const Value *Target = CS.getArgument(2);
1595  auto *PT = dyn_cast<PointerType>(Target->getType());
1596  Assert(PT && PT->getElementType()->isFunctionTy(),
1597         "gc.statepoint callee must be of function pointer type", &CI, Target);
1598  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1599
1600  const Value *NumCallArgsV = CS.getArgument(3);
1601  Assert(isa<ConstantInt>(NumCallArgsV),
1602         "gc.statepoint number of arguments to underlying call "
1603         "must be constant integer",
1604         &CI);
1605  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1606  Assert(NumCallArgs >= 0,
1607         "gc.statepoint number of arguments to underlying call "
1608         "must be positive",
1609         &CI);
1610  const int NumParams = (int)TargetFuncType->getNumParams();
1611  if (TargetFuncType->isVarArg()) {
1612    Assert(NumCallArgs >= NumParams,
1613           "gc.statepoint mismatch in number of vararg call args", &CI);
1614
1615    // TODO: Remove this limitation
1616    Assert(TargetFuncType->getReturnType()->isVoidTy(),
1617           "gc.statepoint doesn't support wrapping non-void "
1618           "vararg functions yet",
1619           &CI);
1620  } else
1621    Assert(NumCallArgs == NumParams,
1622           "gc.statepoint mismatch in number of call args", &CI);
1623
1624  const Value *FlagsV = CS.getArgument(4);
1625  Assert(isa<ConstantInt>(FlagsV),
1626         "gc.statepoint flags must be constant integer", &CI);
1627  const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1628  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1629         "unknown flag used in gc.statepoint flags argument", &CI);
1630
1631  // Verify that the types of the call parameter arguments match
1632  // the type of the wrapped callee.
1633  for (int i = 0; i < NumParams; i++) {
1634    Type *ParamType = TargetFuncType->getParamType(i);
1635    Type *ArgType = CS.getArgument(5 + i)->getType();
1636    Assert(ArgType == ParamType,
1637           "gc.statepoint call argument does not match wrapped "
1638           "function type",
1639           &CI);
1640  }
1641
1642  const int EndCallArgsInx = 4 + NumCallArgs;
1643
1644  const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1645  Assert(isa<ConstantInt>(NumTransitionArgsV),
1646         "gc.statepoint number of transition arguments "
1647         "must be constant integer",
1648         &CI);
1649  const int NumTransitionArgs =
1650      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1651  Assert(NumTransitionArgs >= 0,
1652         "gc.statepoint number of transition arguments must be positive", &CI);
1653  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1654
1655  const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1656  Assert(isa<ConstantInt>(NumDeoptArgsV),
1657         "gc.statepoint number of deoptimization arguments "
1658         "must be constant integer",
1659         &CI);
1660  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1661  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1662                            "must be positive",
1663         &CI);
1664
1665  const int ExpectedNumArgs =
1666      7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1667  Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1668         "gc.statepoint too few arguments according to length fields", &CI);
1669
1670  // Check that the only uses of this gc.statepoint are gc.result or
1671  // gc.relocate calls which are tied to this statepoint and thus part
1672  // of the same statepoint sequence
1673  for (const User *U : CI.users()) {
1674    const CallInst *Call = dyn_cast<const CallInst>(U);
1675    Assert(Call, "illegal use of statepoint token", &CI, U);
1676    if (!Call) continue;
1677    Assert(isa<GCRelocateInst>(Call) || isGCResult(Call),
1678           "gc.result or gc.relocate are the only value uses"
1679           "of a gc.statepoint",
1680           &CI, U);
1681    if (isGCResult(Call)) {
1682      Assert(Call->getArgOperand(0) == &CI,
1683             "gc.result connected to wrong gc.statepoint", &CI, Call);
1684    } else if (isa<GCRelocateInst>(Call)) {
1685      Assert(Call->getArgOperand(0) == &CI,
1686             "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1687    }
1688  }
1689
1690  // Note: It is legal for a single derived pointer to be listed multiple
1691  // times.  It's non-optimal, but it is legal.  It can also happen after
1692  // insertion if we strip a bitcast away.
1693  // Note: It is really tempting to check that each base is relocated and
1694  // that a derived pointer is never reused as a base pointer.  This turns
1695  // out to be problematic since optimizations run after safepoint insertion
1696  // can recognize equality properties that the insertion logic doesn't know
1697  // about.  See example statepoint.ll in the verifier subdirectory
1698}
1699
1700void Verifier::verifyFrameRecoverIndices() {
1701  for (auto &Counts : FrameEscapeInfo) {
1702    Function *F = Counts.first;
1703    unsigned EscapedObjectCount = Counts.second.first;
1704    unsigned MaxRecoveredIndex = Counts.second.second;
1705    Assert(MaxRecoveredIndex <= EscapedObjectCount,
1706           "all indices passed to llvm.localrecover must be less than the "
1707           "number of arguments passed ot llvm.localescape in the parent "
1708           "function",
1709           F);
1710  }
1711}
1712
1713static Instruction *getSuccPad(TerminatorInst *Terminator) {
1714  BasicBlock *UnwindDest;
1715  if (auto *II = dyn_cast<InvokeInst>(Terminator))
1716    UnwindDest = II->getUnwindDest();
1717  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1718    UnwindDest = CSI->getUnwindDest();
1719  else
1720    UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1721  return UnwindDest->getFirstNonPHI();
1722}
1723
1724void Verifier::verifySiblingFuncletUnwinds() {
1725  SmallPtrSet<Instruction *, 8> Visited;
1726  SmallPtrSet<Instruction *, 8> Active;
1727  for (const auto &Pair : SiblingFuncletInfo) {
1728    Instruction *PredPad = Pair.first;
1729    if (Visited.count(PredPad))
1730      continue;
1731    Active.insert(PredPad);
1732    TerminatorInst *Terminator = Pair.second;
1733    do {
1734      Instruction *SuccPad = getSuccPad(Terminator);
1735      if (Active.count(SuccPad)) {
1736        // Found a cycle; report error
1737        Instruction *CyclePad = SuccPad;
1738        SmallVector<Instruction *, 8> CycleNodes;
1739        do {
1740          CycleNodes.push_back(CyclePad);
1741          TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1742          if (CycleTerminator != CyclePad)
1743            CycleNodes.push_back(CycleTerminator);
1744          CyclePad = getSuccPad(CycleTerminator);
1745        } while (CyclePad != SuccPad);
1746        Assert(false, "EH pads can't handle each other's exceptions",
1747               ArrayRef<Instruction *>(CycleNodes));
1748      }
1749      // Don't re-walk a node we've already checked
1750      if (!Visited.insert(SuccPad).second)
1751        break;
1752      // Walk to this successor if it has a map entry.
1753      PredPad = SuccPad;
1754      auto TermI = SiblingFuncletInfo.find(PredPad);
1755      if (TermI == SiblingFuncletInfo.end())
1756        break;
1757      Terminator = TermI->second;
1758      Active.insert(PredPad);
1759    } while (true);
1760    // Each node only has one successor, so we've walked all the active
1761    // nodes' successors.
1762    Active.clear();
1763  }
1764}
1765
1766// visitFunction - Verify that a function is ok.
1767//
1768void Verifier::visitFunction(const Function &F) {
1769  // Check function arguments.
1770  FunctionType *FT = F.getFunctionType();
1771  unsigned NumArgs = F.arg_size();
1772
1773  Assert(Context == &F.getContext(),
1774         "Function context does not match Module context!", &F);
1775
1776  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1777  Assert(FT->getNumParams() == NumArgs,
1778         "# formal arguments must match # of arguments for function type!", &F,
1779         FT);
1780  Assert(F.getReturnType()->isFirstClassType() ||
1781             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1782         "Functions cannot return aggregate values!", &F);
1783
1784  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1785         "Invalid struct return type!", &F);
1786
1787  AttributeSet Attrs = F.getAttributes();
1788
1789  Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
1790         "Attribute after last parameter!", &F);
1791
1792  // Check function attributes.
1793  VerifyFunctionAttrs(FT, Attrs, &F);
1794
1795  // On function declarations/definitions, we do not support the builtin
1796  // attribute. We do not check this in VerifyFunctionAttrs since that is
1797  // checking for Attributes that can/can not ever be on functions.
1798  Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
1799         "Attribute 'builtin' can only be applied to a callsite.", &F);
1800
1801  // Check that this function meets the restrictions on this calling convention.
1802  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1803  // restrictions can be lifted.
1804  switch (F.getCallingConv()) {
1805  default:
1806  case CallingConv::C:
1807    break;
1808  case CallingConv::Fast:
1809  case CallingConv::Cold:
1810  case CallingConv::Intel_OCL_BI:
1811  case CallingConv::PTX_Kernel:
1812  case CallingConv::PTX_Device:
1813    Assert(!F.isVarArg(), "Calling convention does not support varargs or "
1814                          "perfect forwarding!",
1815           &F);
1816    break;
1817  }
1818
1819  bool isLLVMdotName = F.getName().size() >= 5 &&
1820                       F.getName().substr(0, 5) == "llvm.";
1821
1822  // Check that the argument values match the function type for this function...
1823  unsigned i = 0;
1824  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1825       ++I, ++i) {
1826    Assert(I->getType() == FT->getParamType(i),
1827           "Argument value does not match function argument type!", I,
1828           FT->getParamType(i));
1829    Assert(I->getType()->isFirstClassType(),
1830           "Function arguments must have first-class types!", I);
1831    if (!isLLVMdotName) {
1832      Assert(!I->getType()->isMetadataTy(),
1833             "Function takes metadata but isn't an intrinsic", I, &F);
1834      Assert(!I->getType()->isTokenTy(),
1835             "Function takes token but isn't an intrinsic", I, &F);
1836    }
1837  }
1838
1839  if (!isLLVMdotName)
1840    Assert(!F.getReturnType()->isTokenTy(),
1841           "Functions returns a token but isn't an intrinsic", &F);
1842
1843  // Get the function metadata attachments.
1844  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1845  F.getAllMetadata(MDs);
1846  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
1847  VerifyFunctionMetadata(MDs);
1848
1849  // Check validity of the personality function
1850  if (F.hasPersonalityFn()) {
1851    auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
1852    if (Per)
1853      Assert(Per->getParent() == F.getParent(),
1854             "Referencing personality function in another module!",
1855             &F, F.getParent(), Per, Per->getParent());
1856  }
1857
1858  if (F.isMaterializable()) {
1859    // Function has a body somewhere we can't see.
1860    Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
1861           MDs.empty() ? nullptr : MDs.front().second);
1862  } else if (F.isDeclaration()) {
1863    Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1864           "invalid linkage type for function declaration", &F);
1865    Assert(MDs.empty(), "function without a body cannot have metadata", &F,
1866           MDs.empty() ? nullptr : MDs.front().second);
1867    Assert(!F.hasPersonalityFn(),
1868           "Function declaration shouldn't have a personality routine", &F);
1869  } else {
1870    // Verify that this function (which has a body) is not named "llvm.*".  It
1871    // is not legal to define intrinsics.
1872    Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1873
1874    // Check the entry node
1875    const BasicBlock *Entry = &F.getEntryBlock();
1876    Assert(pred_empty(Entry),
1877           "Entry block to function must not have predecessors!", Entry);
1878
1879    // The address of the entry block cannot be taken, unless it is dead.
1880    if (Entry->hasAddressTaken()) {
1881      Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
1882             "blockaddress may not be used with the entry block!", Entry);
1883    }
1884
1885    // Visit metadata attachments.
1886    for (const auto &I : MDs) {
1887      // Verify that the attachment is legal.
1888      switch (I.first) {
1889      default:
1890        break;
1891      case LLVMContext::MD_dbg:
1892        Assert(isa<DISubprogram>(I.second),
1893               "function !dbg attachment must be a subprogram", &F, I.second);
1894        break;
1895      }
1896
1897      // Verify the metadata itself.
1898      visitMDNode(*I.second);
1899    }
1900  }
1901
1902  // If this function is actually an intrinsic, verify that it is only used in
1903  // direct call/invokes, never having its "address taken".
1904  // Only do this if the module is materialized, otherwise we don't have all the
1905  // uses.
1906  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
1907    const User *U;
1908    if (F.hasAddressTaken(&U))
1909      Assert(0, "Invalid user of intrinsic instruction!", U);
1910  }
1911
1912  Assert(!F.hasDLLImportStorageClass() ||
1913             (F.isDeclaration() && F.hasExternalLinkage()) ||
1914             F.hasAvailableExternallyLinkage(),
1915         "Function is marked as dllimport, but not external.", &F);
1916
1917  auto *N = F.getSubprogram();
1918  if (!N)
1919    return;
1920
1921  // Check that all !dbg attachments lead to back to N (or, at least, another
1922  // subprogram that describes the same function).
1923  //
1924  // FIXME: Check this incrementally while visiting !dbg attachments.
1925  // FIXME: Only check when N is the canonical subprogram for F.
1926  SmallPtrSet<const MDNode *, 32> Seen;
1927  for (auto &BB : F)
1928    for (auto &I : BB) {
1929      // Be careful about using DILocation here since we might be dealing with
1930      // broken code (this is the Verifier after all).
1931      DILocation *DL =
1932          dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
1933      if (!DL)
1934        continue;
1935      if (!Seen.insert(DL).second)
1936        continue;
1937
1938      DILocalScope *Scope = DL->getInlinedAtScope();
1939      if (Scope && !Seen.insert(Scope).second)
1940        continue;
1941
1942      DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
1943
1944      // Scope and SP could be the same MDNode and we don't want to skip
1945      // validation in that case
1946      if (SP && ((Scope != SP) && !Seen.insert(SP).second))
1947        continue;
1948
1949      // FIXME: Once N is canonical, check "SP == &N".
1950      Assert(SP->describes(&F),
1951             "!dbg attachment points at wrong subprogram for function", N, &F,
1952             &I, DL, Scope, SP);
1953    }
1954}
1955
1956// verifyBasicBlock - Verify that a basic block is well formed...
1957//
1958void Verifier::visitBasicBlock(BasicBlock &BB) {
1959  InstsInThisBlock.clear();
1960
1961  // Ensure that basic blocks have terminators!
1962  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1963
1964  // Check constraints that this basic block imposes on all of the PHI nodes in
1965  // it.
1966  if (isa<PHINode>(BB.front())) {
1967    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1968    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1969    std::sort(Preds.begin(), Preds.end());
1970    PHINode *PN;
1971    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1972      // Ensure that PHI nodes have at least one entry!
1973      Assert(PN->getNumIncomingValues() != 0,
1974             "PHI nodes must have at least one entry.  If the block is dead, "
1975             "the PHI should be removed!",
1976             PN);
1977      Assert(PN->getNumIncomingValues() == Preds.size(),
1978             "PHINode should have one entry for each predecessor of its "
1979             "parent basic block!",
1980             PN);
1981
1982      // Get and sort all incoming values in the PHI node...
1983      Values.clear();
1984      Values.reserve(PN->getNumIncomingValues());
1985      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1986        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1987                                        PN->getIncomingValue(i)));
1988      std::sort(Values.begin(), Values.end());
1989
1990      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1991        // Check to make sure that if there is more than one entry for a
1992        // particular basic block in this PHI node, that the incoming values are
1993        // all identical.
1994        //
1995        Assert(i == 0 || Values[i].first != Values[i - 1].first ||
1996                   Values[i].second == Values[i - 1].second,
1997               "PHI node has multiple entries for the same basic block with "
1998               "different incoming values!",
1999               PN, Values[i].first, Values[i].second, Values[i - 1].second);
2000
2001        // Check to make sure that the predecessors and PHI node entries are
2002        // matched up.
2003        Assert(Values[i].first == Preds[i],
2004               "PHI node entries do not match predecessors!", PN,
2005               Values[i].first, Preds[i]);
2006      }
2007    }
2008  }
2009
2010  // Check that all instructions have their parent pointers set up correctly.
2011  for (auto &I : BB)
2012  {
2013    Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2014  }
2015}
2016
2017void Verifier::visitTerminatorInst(TerminatorInst &I) {
2018  // Ensure that terminators only exist at the end of the basic block.
2019  Assert(&I == I.getParent()->getTerminator(),
2020         "Terminator found in the middle of a basic block!", I.getParent());
2021  visitInstruction(I);
2022}
2023
2024void Verifier::visitBranchInst(BranchInst &BI) {
2025  if (BI.isConditional()) {
2026    Assert(BI.getCondition()->getType()->isIntegerTy(1),
2027           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2028  }
2029  visitTerminatorInst(BI);
2030}
2031
2032void Verifier::visitReturnInst(ReturnInst &RI) {
2033  Function *F = RI.getParent()->getParent();
2034  unsigned N = RI.getNumOperands();
2035  if (F->getReturnType()->isVoidTy())
2036    Assert(N == 0,
2037           "Found return instr that returns non-void in Function of void "
2038           "return type!",
2039           &RI, F->getReturnType());
2040  else
2041    Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2042           "Function return type does not match operand "
2043           "type of return inst!",
2044           &RI, F->getReturnType());
2045
2046  // Check to make sure that the return value has necessary properties for
2047  // terminators...
2048  visitTerminatorInst(RI);
2049}
2050
2051void Verifier::visitSwitchInst(SwitchInst &SI) {
2052  // Check to make sure that all of the constants in the switch instruction
2053  // have the same type as the switched-on value.
2054  Type *SwitchTy = SI.getCondition()->getType();
2055  SmallPtrSet<ConstantInt*, 32> Constants;
2056  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
2057    Assert(i.getCaseValue()->getType() == SwitchTy,
2058           "Switch constants must all be same type as switch value!", &SI);
2059    Assert(Constants.insert(i.getCaseValue()).second,
2060           "Duplicate integer as switch case", &SI, i.getCaseValue());
2061  }
2062
2063  visitTerminatorInst(SI);
2064}
2065
2066void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2067  Assert(BI.getAddress()->getType()->isPointerTy(),
2068         "Indirectbr operand must have pointer type!", &BI);
2069  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2070    Assert(BI.getDestination(i)->getType()->isLabelTy(),
2071           "Indirectbr destinations must all have pointer type!", &BI);
2072
2073  visitTerminatorInst(BI);
2074}
2075
2076void Verifier::visitSelectInst(SelectInst &SI) {
2077  Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2078                                         SI.getOperand(2)),
2079         "Invalid operands for select instruction!", &SI);
2080
2081  Assert(SI.getTrueValue()->getType() == SI.getType(),
2082         "Select values must have same type as select instruction!", &SI);
2083  visitInstruction(SI);
2084}
2085
2086/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2087/// a pass, if any exist, it's an error.
2088///
2089void Verifier::visitUserOp1(Instruction &I) {
2090  Assert(0, "User-defined operators should not live outside of a pass!", &I);
2091}
2092
2093void Verifier::visitTruncInst(TruncInst &I) {
2094  // Get the source and destination types
2095  Type *SrcTy = I.getOperand(0)->getType();
2096  Type *DestTy = I.getType();
2097
2098  // Get the size of the types in bits, we'll need this later
2099  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2100  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2101
2102  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2103  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2104  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2105         "trunc source and destination must both be a vector or neither", &I);
2106  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2107
2108  visitInstruction(I);
2109}
2110
2111void Verifier::visitZExtInst(ZExtInst &I) {
2112  // Get the source and destination types
2113  Type *SrcTy = I.getOperand(0)->getType();
2114  Type *DestTy = I.getType();
2115
2116  // Get the size of the types in bits, we'll need this later
2117  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2118  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2119  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2120         "zext source and destination must both be a vector or neither", &I);
2121  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2122  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2123
2124  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2125
2126  visitInstruction(I);
2127}
2128
2129void Verifier::visitSExtInst(SExtInst &I) {
2130  // Get the source and destination types
2131  Type *SrcTy = I.getOperand(0)->getType();
2132  Type *DestTy = I.getType();
2133
2134  // Get the size of the types in bits, we'll need this later
2135  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2136  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2137
2138  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2139  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2140  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2141         "sext source and destination must both be a vector or neither", &I);
2142  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2143
2144  visitInstruction(I);
2145}
2146
2147void Verifier::visitFPTruncInst(FPTruncInst &I) {
2148  // Get the source and destination types
2149  Type *SrcTy = I.getOperand(0)->getType();
2150  Type *DestTy = I.getType();
2151  // Get the size of the types in bits, we'll need this later
2152  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2153  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2154
2155  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2156  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2157  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2158         "fptrunc source and destination must both be a vector or neither", &I);
2159  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2160
2161  visitInstruction(I);
2162}
2163
2164void Verifier::visitFPExtInst(FPExtInst &I) {
2165  // Get the source and destination types
2166  Type *SrcTy = I.getOperand(0)->getType();
2167  Type *DestTy = I.getType();
2168
2169  // Get the size of the types in bits, we'll need this later
2170  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2171  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2172
2173  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2174  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2175  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2176         "fpext source and destination must both be a vector or neither", &I);
2177  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2178
2179  visitInstruction(I);
2180}
2181
2182void Verifier::visitUIToFPInst(UIToFPInst &I) {
2183  // Get the source and destination types
2184  Type *SrcTy = I.getOperand(0)->getType();
2185  Type *DestTy = I.getType();
2186
2187  bool SrcVec = SrcTy->isVectorTy();
2188  bool DstVec = DestTy->isVectorTy();
2189
2190  Assert(SrcVec == DstVec,
2191         "UIToFP source and dest must both be vector or scalar", &I);
2192  Assert(SrcTy->isIntOrIntVectorTy(),
2193         "UIToFP source must be integer or integer vector", &I);
2194  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2195         &I);
2196
2197  if (SrcVec && DstVec)
2198    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2199               cast<VectorType>(DestTy)->getNumElements(),
2200           "UIToFP source and dest vector length mismatch", &I);
2201
2202  visitInstruction(I);
2203}
2204
2205void Verifier::visitSIToFPInst(SIToFPInst &I) {
2206  // Get the source and destination types
2207  Type *SrcTy = I.getOperand(0)->getType();
2208  Type *DestTy = I.getType();
2209
2210  bool SrcVec = SrcTy->isVectorTy();
2211  bool DstVec = DestTy->isVectorTy();
2212
2213  Assert(SrcVec == DstVec,
2214         "SIToFP source and dest must both be vector or scalar", &I);
2215  Assert(SrcTy->isIntOrIntVectorTy(),
2216         "SIToFP source must be integer or integer vector", &I);
2217  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2218         &I);
2219
2220  if (SrcVec && DstVec)
2221    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2222               cast<VectorType>(DestTy)->getNumElements(),
2223           "SIToFP source and dest vector length mismatch", &I);
2224
2225  visitInstruction(I);
2226}
2227
2228void Verifier::visitFPToUIInst(FPToUIInst &I) {
2229  // Get the source and destination types
2230  Type *SrcTy = I.getOperand(0)->getType();
2231  Type *DestTy = I.getType();
2232
2233  bool SrcVec = SrcTy->isVectorTy();
2234  bool DstVec = DestTy->isVectorTy();
2235
2236  Assert(SrcVec == DstVec,
2237         "FPToUI source and dest must both be vector or scalar", &I);
2238  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2239         &I);
2240  Assert(DestTy->isIntOrIntVectorTy(),
2241         "FPToUI result must be integer or integer vector", &I);
2242
2243  if (SrcVec && DstVec)
2244    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2245               cast<VectorType>(DestTy)->getNumElements(),
2246           "FPToUI source and dest vector length mismatch", &I);
2247
2248  visitInstruction(I);
2249}
2250
2251void Verifier::visitFPToSIInst(FPToSIInst &I) {
2252  // Get the source and destination types
2253  Type *SrcTy = I.getOperand(0)->getType();
2254  Type *DestTy = I.getType();
2255
2256  bool SrcVec = SrcTy->isVectorTy();
2257  bool DstVec = DestTy->isVectorTy();
2258
2259  Assert(SrcVec == DstVec,
2260         "FPToSI source and dest must both be vector or scalar", &I);
2261  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2262         &I);
2263  Assert(DestTy->isIntOrIntVectorTy(),
2264         "FPToSI result must be integer or integer vector", &I);
2265
2266  if (SrcVec && DstVec)
2267    Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2268               cast<VectorType>(DestTy)->getNumElements(),
2269           "FPToSI source and dest vector length mismatch", &I);
2270
2271  visitInstruction(I);
2272}
2273
2274void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2275  // Get the source and destination types
2276  Type *SrcTy = I.getOperand(0)->getType();
2277  Type *DestTy = I.getType();
2278
2279  Assert(SrcTy->getScalarType()->isPointerTy(),
2280         "PtrToInt source must be pointer", &I);
2281  Assert(DestTy->getScalarType()->isIntegerTy(),
2282         "PtrToInt result must be integral", &I);
2283  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2284         &I);
2285
2286  if (SrcTy->isVectorTy()) {
2287    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2288    VectorType *VDest = dyn_cast<VectorType>(DestTy);
2289    Assert(VSrc->getNumElements() == VDest->getNumElements(),
2290           "PtrToInt Vector width mismatch", &I);
2291  }
2292
2293  visitInstruction(I);
2294}
2295
2296void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2297  // Get the source and destination types
2298  Type *SrcTy = I.getOperand(0)->getType();
2299  Type *DestTy = I.getType();
2300
2301  Assert(SrcTy->getScalarType()->isIntegerTy(),
2302         "IntToPtr source must be an integral", &I);
2303  Assert(DestTy->getScalarType()->isPointerTy(),
2304         "IntToPtr result must be a pointer", &I);
2305  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2306         &I);
2307  if (SrcTy->isVectorTy()) {
2308    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2309    VectorType *VDest = dyn_cast<VectorType>(DestTy);
2310    Assert(VSrc->getNumElements() == VDest->getNumElements(),
2311           "IntToPtr Vector width mismatch", &I);
2312  }
2313  visitInstruction(I);
2314}
2315
2316void Verifier::visitBitCastInst(BitCastInst &I) {
2317  Assert(
2318      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2319      "Invalid bitcast", &I);
2320  visitInstruction(I);
2321}
2322
2323void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2324  Type *SrcTy = I.getOperand(0)->getType();
2325  Type *DestTy = I.getType();
2326
2327  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2328         &I);
2329  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2330         &I);
2331  Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2332         "AddrSpaceCast must be between different address spaces", &I);
2333  if (SrcTy->isVectorTy())
2334    Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2335           "AddrSpaceCast vector pointer number of elements mismatch", &I);
2336  visitInstruction(I);
2337}
2338
2339/// visitPHINode - Ensure that a PHI node is well formed.
2340///
2341void Verifier::visitPHINode(PHINode &PN) {
2342  // Ensure that the PHI nodes are all grouped together at the top of the block.
2343  // This can be tested by checking whether the instruction before this is
2344  // either nonexistent (because this is begin()) or is a PHI node.  If not,
2345  // then there is some other instruction before a PHI.
2346  Assert(&PN == &PN.getParent()->front() ||
2347             isa<PHINode>(--BasicBlock::iterator(&PN)),
2348         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2349
2350  // Check that a PHI doesn't yield a Token.
2351  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2352
2353  // Check that all of the values of the PHI node have the same type as the
2354  // result, and that the incoming blocks are really basic blocks.
2355  for (Value *IncValue : PN.incoming_values()) {
2356    Assert(PN.getType() == IncValue->getType(),
2357           "PHI node operands are not the same type as the result!", &PN);
2358  }
2359
2360  // All other PHI node constraints are checked in the visitBasicBlock method.
2361
2362  visitInstruction(PN);
2363}
2364
2365void Verifier::VerifyCallSite(CallSite CS) {
2366  Instruction *I = CS.getInstruction();
2367
2368  Assert(CS.getCalledValue()->getType()->isPointerTy(),
2369         "Called function must be a pointer!", I);
2370  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2371
2372  Assert(FPTy->getElementType()->isFunctionTy(),
2373         "Called function is not pointer to function type!", I);
2374
2375  Assert(FPTy->getElementType() == CS.getFunctionType(),
2376         "Called function is not the same type as the call!", I);
2377
2378  FunctionType *FTy = CS.getFunctionType();
2379
2380  // Verify that the correct number of arguments are being passed
2381  if (FTy->isVarArg())
2382    Assert(CS.arg_size() >= FTy->getNumParams(),
2383           "Called function requires more parameters than were provided!", I);
2384  else
2385    Assert(CS.arg_size() == FTy->getNumParams(),
2386           "Incorrect number of arguments passed to called function!", I);
2387
2388  // Verify that all arguments to the call match the function type.
2389  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2390    Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2391           "Call parameter type does not match function signature!",
2392           CS.getArgument(i), FTy->getParamType(i), I);
2393
2394  AttributeSet Attrs = CS.getAttributes();
2395
2396  Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
2397         "Attribute after last parameter!", I);
2398
2399  // Verify call attributes.
2400  VerifyFunctionAttrs(FTy, Attrs, I);
2401
2402  // Conservatively check the inalloca argument.
2403  // We have a bug if we can find that there is an underlying alloca without
2404  // inalloca.
2405  if (CS.hasInAllocaArgument()) {
2406    Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2407    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2408      Assert(AI->isUsedWithInAlloca(),
2409             "inalloca argument for call has mismatched alloca", AI, I);
2410  }
2411
2412  if (FTy->isVarArg()) {
2413    // FIXME? is 'nest' even legal here?
2414    bool SawNest = false;
2415    bool SawReturned = false;
2416
2417    for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2418      if (Attrs.hasAttribute(Idx, Attribute::Nest))
2419        SawNest = true;
2420      if (Attrs.hasAttribute(Idx, Attribute::Returned))
2421        SawReturned = true;
2422    }
2423
2424    // Check attributes on the varargs part.
2425    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2426      Type *Ty = CS.getArgument(Idx-1)->getType();
2427      VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
2428
2429      if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2430        Assert(!SawNest, "More than one parameter has attribute nest!", I);
2431        SawNest = true;
2432      }
2433
2434      if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2435        Assert(!SawReturned, "More than one parameter has attribute returned!",
2436               I);
2437        Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2438               "Incompatible argument and return types for 'returned' "
2439               "attribute",
2440               I);
2441        SawReturned = true;
2442      }
2443
2444      Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
2445             "Attribute 'sret' cannot be used for vararg call arguments!", I);
2446
2447      if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2448        Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
2449    }
2450  }
2451
2452  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2453  if (CS.getCalledFunction() == nullptr ||
2454      !CS.getCalledFunction()->getName().startswith("llvm.")) {
2455    for (Type *ParamTy : FTy->params()) {
2456      Assert(!ParamTy->isMetadataTy(),
2457             "Function has metadata parameter but isn't an intrinsic", I);
2458      Assert(!ParamTy->isTokenTy(),
2459             "Function has token parameter but isn't an intrinsic", I);
2460    }
2461  }
2462
2463  // Verify that indirect calls don't return tokens.
2464  if (CS.getCalledFunction() == nullptr)
2465    Assert(!FTy->getReturnType()->isTokenTy(),
2466           "Return type cannot be token for indirect call!");
2467
2468  if (Function *F = CS.getCalledFunction())
2469    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2470      visitIntrinsicCallSite(ID, CS);
2471
2472  // Verify that a callsite has at most one "deopt" and one "funclet" operand
2473  // bundle.
2474  bool FoundDeoptBundle = false, FoundFuncletBundle = false;
2475  for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2476    OperandBundleUse BU = CS.getOperandBundleAt(i);
2477    uint32_t Tag = BU.getTagID();
2478    if (Tag == LLVMContext::OB_deopt) {
2479      Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2480      FoundDeoptBundle = true;
2481    }
2482    if (Tag == LLVMContext::OB_funclet) {
2483      Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2484      FoundFuncletBundle = true;
2485      Assert(BU.Inputs.size() == 1,
2486             "Expected exactly one funclet bundle operand", I);
2487      Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2488             "Funclet bundle operands should correspond to a FuncletPadInst",
2489             I);
2490    }
2491  }
2492
2493  visitInstruction(*I);
2494}
2495
2496/// Two types are "congruent" if they are identical, or if they are both pointer
2497/// types with different pointee types and the same address space.
2498static bool isTypeCongruent(Type *L, Type *R) {
2499  if (L == R)
2500    return true;
2501  PointerType *PL = dyn_cast<PointerType>(L);
2502  PointerType *PR = dyn_cast<PointerType>(R);
2503  if (!PL || !PR)
2504    return false;
2505  return PL->getAddressSpace() == PR->getAddressSpace();
2506}
2507
2508static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2509  static const Attribute::AttrKind ABIAttrs[] = {
2510      Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2511      Attribute::InReg, Attribute::Returned};
2512  AttrBuilder Copy;
2513  for (auto AK : ABIAttrs) {
2514    if (Attrs.hasAttribute(I + 1, AK))
2515      Copy.addAttribute(AK);
2516  }
2517  if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2518    Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2519  return Copy;
2520}
2521
2522void Verifier::verifyMustTailCall(CallInst &CI) {
2523  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2524
2525  // - The caller and callee prototypes must match.  Pointer types of
2526  //   parameters or return types may differ in pointee type, but not
2527  //   address space.
2528  Function *F = CI.getParent()->getParent();
2529  FunctionType *CallerTy = F->getFunctionType();
2530  FunctionType *CalleeTy = CI.getFunctionType();
2531  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2532         "cannot guarantee tail call due to mismatched parameter counts", &CI);
2533  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2534         "cannot guarantee tail call due to mismatched varargs", &CI);
2535  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2536         "cannot guarantee tail call due to mismatched return types", &CI);
2537  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2538    Assert(
2539        isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2540        "cannot guarantee tail call due to mismatched parameter types", &CI);
2541  }
2542
2543  // - The calling conventions of the caller and callee must match.
2544  Assert(F->getCallingConv() == CI.getCallingConv(),
2545         "cannot guarantee tail call due to mismatched calling conv", &CI);
2546
2547  // - All ABI-impacting function attributes, such as sret, byval, inreg,
2548  //   returned, and inalloca, must match.
2549  AttributeSet CallerAttrs = F->getAttributes();
2550  AttributeSet CalleeAttrs = CI.getAttributes();
2551  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2552    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2553    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2554    Assert(CallerABIAttrs == CalleeABIAttrs,
2555           "cannot guarantee tail call due to mismatched ABI impacting "
2556           "function attributes",
2557           &CI, CI.getOperand(I));
2558  }
2559
2560  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2561  //   or a pointer bitcast followed by a ret instruction.
2562  // - The ret instruction must return the (possibly bitcasted) value
2563  //   produced by the call or void.
2564  Value *RetVal = &CI;
2565  Instruction *Next = CI.getNextNode();
2566
2567  // Handle the optional bitcast.
2568  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2569    Assert(BI->getOperand(0) == RetVal,
2570           "bitcast following musttail call must use the call", BI);
2571    RetVal = BI;
2572    Next = BI->getNextNode();
2573  }
2574
2575  // Check the return.
2576  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2577  Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2578         &CI);
2579  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2580         "musttail call result must be returned", Ret);
2581}
2582
2583void Verifier::visitCallInst(CallInst &CI) {
2584  VerifyCallSite(&CI);
2585
2586  if (CI.isMustTailCall())
2587    verifyMustTailCall(CI);
2588}
2589
2590void Verifier::visitInvokeInst(InvokeInst &II) {
2591  VerifyCallSite(&II);
2592
2593  // Verify that the first non-PHI instruction of the unwind destination is an
2594  // exception handling instruction.
2595  Assert(
2596      II.getUnwindDest()->isEHPad(),
2597      "The unwind destination does not have an exception handling instruction!",
2598      &II);
2599
2600  visitTerminatorInst(II);
2601}
2602
2603/// visitBinaryOperator - Check that both arguments to the binary operator are
2604/// of the same type!
2605///
2606void Verifier::visitBinaryOperator(BinaryOperator &B) {
2607  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2608         "Both operands to a binary operator are not of the same type!", &B);
2609
2610  switch (B.getOpcode()) {
2611  // Check that integer arithmetic operators are only used with
2612  // integral operands.
2613  case Instruction::Add:
2614  case Instruction::Sub:
2615  case Instruction::Mul:
2616  case Instruction::SDiv:
2617  case Instruction::UDiv:
2618  case Instruction::SRem:
2619  case Instruction::URem:
2620    Assert(B.getType()->isIntOrIntVectorTy(),
2621           "Integer arithmetic operators only work with integral types!", &B);
2622    Assert(B.getType() == B.getOperand(0)->getType(),
2623           "Integer arithmetic operators must have same type "
2624           "for operands and result!",
2625           &B);
2626    break;
2627  // Check that floating-point arithmetic operators are only used with
2628  // floating-point operands.
2629  case Instruction::FAdd:
2630  case Instruction::FSub:
2631  case Instruction::FMul:
2632  case Instruction::FDiv:
2633  case Instruction::FRem:
2634    Assert(B.getType()->isFPOrFPVectorTy(),
2635           "Floating-point arithmetic operators only work with "
2636           "floating-point types!",
2637           &B);
2638    Assert(B.getType() == B.getOperand(0)->getType(),
2639           "Floating-point arithmetic operators must have same type "
2640           "for operands and result!",
2641           &B);
2642    break;
2643  // Check that logical operators are only used with integral operands.
2644  case Instruction::And:
2645  case Instruction::Or:
2646  case Instruction::Xor:
2647    Assert(B.getType()->isIntOrIntVectorTy(),
2648           "Logical operators only work with integral types!", &B);
2649    Assert(B.getType() == B.getOperand(0)->getType(),
2650           "Logical operators must have same type for operands and result!",
2651           &B);
2652    break;
2653  case Instruction::Shl:
2654  case Instruction::LShr:
2655  case Instruction::AShr:
2656    Assert(B.getType()->isIntOrIntVectorTy(),
2657           "Shifts only work with integral types!", &B);
2658    Assert(B.getType() == B.getOperand(0)->getType(),
2659           "Shift return type must be same as operands!", &B);
2660    break;
2661  default:
2662    llvm_unreachable("Unknown BinaryOperator opcode!");
2663  }
2664
2665  visitInstruction(B);
2666}
2667
2668void Verifier::visitICmpInst(ICmpInst &IC) {
2669  // Check that the operands are the same type
2670  Type *Op0Ty = IC.getOperand(0)->getType();
2671  Type *Op1Ty = IC.getOperand(1)->getType();
2672  Assert(Op0Ty == Op1Ty,
2673         "Both operands to ICmp instruction are not of the same type!", &IC);
2674  // Check that the operands are the right type
2675  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
2676         "Invalid operand types for ICmp instruction", &IC);
2677  // Check that the predicate is valid.
2678  Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
2679             IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
2680         "Invalid predicate in ICmp instruction!", &IC);
2681
2682  visitInstruction(IC);
2683}
2684
2685void Verifier::visitFCmpInst(FCmpInst &FC) {
2686  // Check that the operands are the same type
2687  Type *Op0Ty = FC.getOperand(0)->getType();
2688  Type *Op1Ty = FC.getOperand(1)->getType();
2689  Assert(Op0Ty == Op1Ty,
2690         "Both operands to FCmp instruction are not of the same type!", &FC);
2691  // Check that the operands are the right type
2692  Assert(Op0Ty->isFPOrFPVectorTy(),
2693         "Invalid operand types for FCmp instruction", &FC);
2694  // Check that the predicate is valid.
2695  Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
2696             FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
2697         "Invalid predicate in FCmp instruction!", &FC);
2698
2699  visitInstruction(FC);
2700}
2701
2702void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2703  Assert(
2704      ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
2705      "Invalid extractelement operands!", &EI);
2706  visitInstruction(EI);
2707}
2708
2709void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2710  Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
2711                                            IE.getOperand(2)),
2712         "Invalid insertelement operands!", &IE);
2713  visitInstruction(IE);
2714}
2715
2716void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2717  Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
2718                                            SV.getOperand(2)),
2719         "Invalid shufflevector operands!", &SV);
2720  visitInstruction(SV);
2721}
2722
2723void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2724  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2725
2726  Assert(isa<PointerType>(TargetTy),
2727         "GEP base pointer is not a vector or a vector of pointers", &GEP);
2728  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
2729  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2730  Type *ElTy =
2731      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2732  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
2733
2734  Assert(GEP.getType()->getScalarType()->isPointerTy() &&
2735             GEP.getResultElementType() == ElTy,
2736         "GEP is not of right type for indices!", &GEP, ElTy);
2737
2738  if (GEP.getType()->isVectorTy()) {
2739    // Additional checks for vector GEPs.
2740    unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2741    if (GEP.getPointerOperandType()->isVectorTy())
2742      Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
2743             "Vector GEP result width doesn't match operand's", &GEP);
2744    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2745      Type *IndexTy = Idxs[i]->getType();
2746      if (IndexTy->isVectorTy()) {
2747        unsigned IndexWidth = IndexTy->getVectorNumElements();
2748        Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
2749      }
2750      Assert(IndexTy->getScalarType()->isIntegerTy(),
2751             "All GEP indices should be of integer type");
2752    }
2753  }
2754  visitInstruction(GEP);
2755}
2756
2757static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2758  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2759}
2760
2761void Verifier::visitRangeMetadata(Instruction& I,
2762                                  MDNode* Range, Type* Ty) {
2763  assert(Range &&
2764         Range == I.getMetadata(LLVMContext::MD_range) &&
2765         "precondition violation");
2766
2767  unsigned NumOperands = Range->getNumOperands();
2768  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
2769  unsigned NumRanges = NumOperands / 2;
2770  Assert(NumRanges >= 1, "It should have at least one range!", Range);
2771
2772  ConstantRange LastRange(1); // Dummy initial value
2773  for (unsigned i = 0; i < NumRanges; ++i) {
2774    ConstantInt *Low =
2775        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2776    Assert(Low, "The lower limit must be an integer!", Low);
2777    ConstantInt *High =
2778        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2779    Assert(High, "The upper limit must be an integer!", High);
2780    Assert(High->getType() == Low->getType() && High->getType() == Ty,
2781           "Range types must match instruction type!", &I);
2782
2783    APInt HighV = High->getValue();
2784    APInt LowV = Low->getValue();
2785    ConstantRange CurRange(LowV, HighV);
2786    Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
2787           "Range must not be empty!", Range);
2788    if (i != 0) {
2789      Assert(CurRange.intersectWith(LastRange).isEmptySet(),
2790             "Intervals are overlapping", Range);
2791      Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
2792             Range);
2793      Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
2794             Range);
2795    }
2796    LastRange = ConstantRange(LowV, HighV);
2797  }
2798  if (NumRanges > 2) {
2799    APInt FirstLow =
2800        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
2801    APInt FirstHigh =
2802        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
2803    ConstantRange FirstRange(FirstLow, FirstHigh);
2804    Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
2805           "Intervals are overlapping", Range);
2806    Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
2807           Range);
2808  }
2809}
2810
2811void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty,
2812                                        const Instruction *I) {
2813  unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty);
2814  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
2815  Assert(!(Size & (Size - 1)),
2816         "atomic memory access' operand must have a power-of-two size", Ty, I);
2817}
2818
2819void Verifier::visitLoadInst(LoadInst &LI) {
2820  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
2821  Assert(PTy, "Load operand must be a pointer.", &LI);
2822  Type *ElTy = LI.getType();
2823  Assert(LI.getAlignment() <= Value::MaximumAlignment,
2824         "huge alignment values are unsupported", &LI);
2825  if (LI.isAtomic()) {
2826    Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
2827           "Load cannot have Release ordering", &LI);
2828    Assert(LI.getAlignment() != 0,
2829           "Atomic load must specify explicit alignment", &LI);
2830    Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
2831               ElTy->isFloatingPointTy(),
2832           "atomic load operand must have integer, pointer, or floating point "
2833           "type!",
2834           ElTy, &LI);
2835    checkAtomicMemAccessSize(M, ElTy, &LI);
2836  } else {
2837    Assert(LI.getSynchScope() == CrossThread,
2838           "Non-atomic load cannot have SynchronizationScope specified", &LI);
2839  }
2840
2841  visitInstruction(LI);
2842}
2843
2844void Verifier::visitStoreInst(StoreInst &SI) {
2845  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
2846  Assert(PTy, "Store operand must be a pointer.", &SI);
2847  Type *ElTy = PTy->getElementType();
2848  Assert(ElTy == SI.getOperand(0)->getType(),
2849         "Stored value type does not match pointer operand type!", &SI, ElTy);
2850  Assert(SI.getAlignment() <= Value::MaximumAlignment,
2851         "huge alignment values are unsupported", &SI);
2852  if (SI.isAtomic()) {
2853    Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
2854           "Store cannot have Acquire ordering", &SI);
2855    Assert(SI.getAlignment() != 0,
2856           "Atomic store must specify explicit alignment", &SI);
2857    Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
2858               ElTy->isFloatingPointTy(),
2859           "atomic store operand must have integer, pointer, or floating point "
2860           "type!",
2861           ElTy, &SI);
2862    checkAtomicMemAccessSize(M, ElTy, &SI);
2863  } else {
2864    Assert(SI.getSynchScope() == CrossThread,
2865           "Non-atomic store cannot have SynchronizationScope specified", &SI);
2866  }
2867  visitInstruction(SI);
2868}
2869
2870void Verifier::visitAllocaInst(AllocaInst &AI) {
2871  SmallPtrSet<Type*, 4> Visited;
2872  PointerType *PTy = AI.getType();
2873  Assert(PTy->getAddressSpace() == 0,
2874         "Allocation instruction pointer not in the generic address space!",
2875         &AI);
2876  Assert(AI.getAllocatedType()->isSized(&Visited),
2877         "Cannot allocate unsized type", &AI);
2878  Assert(AI.getArraySize()->getType()->isIntegerTy(),
2879         "Alloca array size must have integer type", &AI);
2880  Assert(AI.getAlignment() <= Value::MaximumAlignment,
2881         "huge alignment values are unsupported", &AI);
2882
2883  visitInstruction(AI);
2884}
2885
2886void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
2887
2888  // FIXME: more conditions???
2889  Assert(CXI.getSuccessOrdering() != NotAtomic,
2890         "cmpxchg instructions must be atomic.", &CXI);
2891  Assert(CXI.getFailureOrdering() != NotAtomic,
2892         "cmpxchg instructions must be atomic.", &CXI);
2893  Assert(CXI.getSuccessOrdering() != Unordered,
2894         "cmpxchg instructions cannot be unordered.", &CXI);
2895  Assert(CXI.getFailureOrdering() != Unordered,
2896         "cmpxchg instructions cannot be unordered.", &CXI);
2897  Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
2898         "cmpxchg instructions be at least as constrained on success as fail",
2899         &CXI);
2900  Assert(CXI.getFailureOrdering() != Release &&
2901             CXI.getFailureOrdering() != AcquireRelease,
2902         "cmpxchg failure ordering cannot include release semantics", &CXI);
2903
2904  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
2905  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
2906  Type *ElTy = PTy->getElementType();
2907  Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
2908         ElTy);
2909  checkAtomicMemAccessSize(M, ElTy, &CXI);
2910  Assert(ElTy == CXI.getOperand(1)->getType(),
2911         "Expected value type does not match pointer operand type!", &CXI,
2912         ElTy);
2913  Assert(ElTy == CXI.getOperand(2)->getType(),
2914         "Stored value type does not match pointer operand type!", &CXI, ElTy);
2915  visitInstruction(CXI);
2916}
2917
2918void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
2919  Assert(RMWI.getOrdering() != NotAtomic,
2920         "atomicrmw instructions must be atomic.", &RMWI);
2921  Assert(RMWI.getOrdering() != Unordered,
2922         "atomicrmw instructions cannot be unordered.", &RMWI);
2923  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
2924  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
2925  Type *ElTy = PTy->getElementType();
2926  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
2927         &RMWI, ElTy);
2928  checkAtomicMemAccessSize(M, ElTy, &RMWI);
2929  Assert(ElTy == RMWI.getOperand(1)->getType(),
2930         "Argument value type does not match pointer operand type!", &RMWI,
2931         ElTy);
2932  Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
2933             RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
2934         "Invalid binary operation!", &RMWI);
2935  visitInstruction(RMWI);
2936}
2937
2938void Verifier::visitFenceInst(FenceInst &FI) {
2939  const AtomicOrdering Ordering = FI.getOrdering();
2940  Assert(Ordering == Acquire || Ordering == Release ||
2941             Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
2942         "fence instructions may only have "
2943         "acquire, release, acq_rel, or seq_cst ordering.",
2944         &FI);
2945  visitInstruction(FI);
2946}
2947
2948void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2949  Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
2950                                          EVI.getIndices()) == EVI.getType(),
2951         "Invalid ExtractValueInst operands!", &EVI);
2952
2953  visitInstruction(EVI);
2954}
2955
2956void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2957  Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
2958                                          IVI.getIndices()) ==
2959             IVI.getOperand(1)->getType(),
2960         "Invalid InsertValueInst operands!", &IVI);
2961
2962  visitInstruction(IVI);
2963}
2964
2965static Value *getParentPad(Value *EHPad) {
2966  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
2967    return FPI->getParentPad();
2968
2969  return cast<CatchSwitchInst>(EHPad)->getParentPad();
2970}
2971
2972void Verifier::visitEHPadPredecessors(Instruction &I) {
2973  assert(I.isEHPad());
2974
2975  BasicBlock *BB = I.getParent();
2976  Function *F = BB->getParent();
2977
2978  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
2979
2980  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
2981    // The landingpad instruction defines its parent as a landing pad block. The
2982    // landing pad block may be branched to only by the unwind edge of an
2983    // invoke.
2984    for (BasicBlock *PredBB : predecessors(BB)) {
2985      const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
2986      Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
2987             "Block containing LandingPadInst must be jumped to "
2988             "only by the unwind edge of an invoke.",
2989             LPI);
2990    }
2991    return;
2992  }
2993  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
2994    if (!pred_empty(BB))
2995      Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
2996             "Block containg CatchPadInst must be jumped to "
2997             "only by its catchswitch.",
2998             CPI);
2999    Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3000           "Catchswitch cannot unwind to one of its catchpads",
3001           CPI->getCatchSwitch(), CPI);
3002    return;
3003  }
3004
3005  // Verify that each pred has a legal terminator with a legal to/from EH
3006  // pad relationship.
3007  Instruction *ToPad = &I;
3008  Value *ToPadParent = getParentPad(ToPad);
3009  for (BasicBlock *PredBB : predecessors(BB)) {
3010    TerminatorInst *TI = PredBB->getTerminator();
3011    Value *FromPad;
3012    if (auto *II = dyn_cast<InvokeInst>(TI)) {
3013      Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3014             "EH pad must be jumped to via an unwind edge", ToPad, II);
3015      if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3016        FromPad = Bundle->Inputs[0];
3017      else
3018        FromPad = ConstantTokenNone::get(II->getContext());
3019    } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3020      FromPad = CRI->getCleanupPad();
3021      Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3022    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3023      FromPad = CSI;
3024    } else {
3025      Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3026    }
3027
3028    // The edge may exit from zero or more nested pads.
3029    for (;; FromPad = getParentPad(FromPad)) {
3030      Assert(FromPad != ToPad,
3031             "EH pad cannot handle exceptions raised within it", FromPad, TI);
3032      if (FromPad == ToPadParent) {
3033        // This is a legal unwind edge.
3034        break;
3035      }
3036      Assert(!isa<ConstantTokenNone>(FromPad),
3037             "A single unwind edge may only enter one EH pad", TI);
3038    }
3039  }
3040}
3041
3042void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3043  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3044  // isn't a cleanup.
3045  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3046         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3047
3048  visitEHPadPredecessors(LPI);
3049
3050  if (!LandingPadResultTy)
3051    LandingPadResultTy = LPI.getType();
3052  else
3053    Assert(LandingPadResultTy == LPI.getType(),
3054           "The landingpad instruction should have a consistent result type "
3055           "inside a function.",
3056           &LPI);
3057
3058  Function *F = LPI.getParent()->getParent();
3059  Assert(F->hasPersonalityFn(),
3060         "LandingPadInst needs to be in a function with a personality.", &LPI);
3061
3062  // The landingpad instruction must be the first non-PHI instruction in the
3063  // block.
3064  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3065         "LandingPadInst not the first non-PHI instruction in the block.",
3066         &LPI);
3067
3068  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3069    Constant *Clause = LPI.getClause(i);
3070    if (LPI.isCatch(i)) {
3071      Assert(isa<PointerType>(Clause->getType()),
3072             "Catch operand does not have pointer type!", &LPI);
3073    } else {
3074      Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3075      Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3076             "Filter operand is not an array of constants!", &LPI);
3077    }
3078  }
3079
3080  visitInstruction(LPI);
3081}
3082
3083void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3084  visitEHPadPredecessors(CPI);
3085
3086  BasicBlock *BB = CPI.getParent();
3087
3088  Function *F = BB->getParent();
3089  Assert(F->hasPersonalityFn(),
3090         "CatchPadInst needs to be in a function with a personality.", &CPI);
3091
3092  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3093         "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3094         CPI.getParentPad());
3095
3096  // The catchpad instruction must be the first non-PHI instruction in the
3097  // block.
3098  Assert(BB->getFirstNonPHI() == &CPI,
3099         "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3100
3101  visitFuncletPadInst(CPI);
3102}
3103
3104void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3105  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3106         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3107         CatchReturn.getOperand(0));
3108
3109  visitTerminatorInst(CatchReturn);
3110}
3111
3112void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3113  visitEHPadPredecessors(CPI);
3114
3115  BasicBlock *BB = CPI.getParent();
3116
3117  Function *F = BB->getParent();
3118  Assert(F->hasPersonalityFn(),
3119         "CleanupPadInst needs to be in a function with a personality.", &CPI);
3120
3121  // The cleanuppad instruction must be the first non-PHI instruction in the
3122  // block.
3123  Assert(BB->getFirstNonPHI() == &CPI,
3124         "CleanupPadInst not the first non-PHI instruction in the block.",
3125         &CPI);
3126
3127  auto *ParentPad = CPI.getParentPad();
3128  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3129         "CleanupPadInst has an invalid parent.", &CPI);
3130
3131  visitFuncletPadInst(CPI);
3132}
3133
3134void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3135  User *FirstUser = nullptr;
3136  Value *FirstUnwindPad = nullptr;
3137  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3138  while (!Worklist.empty()) {
3139    FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3140    Value *UnresolvedAncestorPad = nullptr;
3141    for (User *U : CurrentPad->users()) {
3142      BasicBlock *UnwindDest;
3143      if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3144        UnwindDest = CRI->getUnwindDest();
3145      } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3146        // We allow catchswitch unwind to caller to nest
3147        // within an outer pad that unwinds somewhere else,
3148        // because catchswitch doesn't have a nounwind variant.
3149        // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3150        if (CSI->unwindsToCaller())
3151          continue;
3152        UnwindDest = CSI->getUnwindDest();
3153      } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3154        UnwindDest = II->getUnwindDest();
3155      } else if (isa<CallInst>(U)) {
3156        // Calls which don't unwind may be found inside funclet
3157        // pads that unwind somewhere else.  We don't *require*
3158        // such calls to be annotated nounwind.
3159        continue;
3160      } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3161        // The unwind dest for a cleanup can only be found by
3162        // recursive search.  Add it to the worklist, and we'll
3163        // search for its first use that determines where it unwinds.
3164        Worklist.push_back(CPI);
3165        continue;
3166      } else {
3167        Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3168        continue;
3169      }
3170
3171      Value *UnwindPad;
3172      bool ExitsFPI;
3173      if (UnwindDest) {
3174        UnwindPad = UnwindDest->getFirstNonPHI();
3175        Value *UnwindParent = getParentPad(UnwindPad);
3176        // Ignore unwind edges that don't exit CurrentPad.
3177        if (UnwindParent == CurrentPad)
3178          continue;
3179        // Determine whether the original funclet pad is exited,
3180        // and if we are scanning nested pads determine how many
3181        // of them are exited so we can stop searching their
3182        // children.
3183        Value *ExitedPad = CurrentPad;
3184        ExitsFPI = false;
3185        do {
3186          if (ExitedPad == &FPI) {
3187            ExitsFPI = true;
3188            // Now we can resolve any ancestors of CurrentPad up to
3189            // FPI, but not including FPI since we need to make sure
3190            // to check all direct users of FPI for consistency.
3191            UnresolvedAncestorPad = &FPI;
3192            break;
3193          }
3194          Value *ExitedParent = getParentPad(ExitedPad);
3195          if (ExitedParent == UnwindParent) {
3196            // ExitedPad is the ancestor-most pad which this unwind
3197            // edge exits, so we can resolve up to it, meaning that
3198            // ExitedParent is the first ancestor still unresolved.
3199            UnresolvedAncestorPad = ExitedParent;
3200            break;
3201          }
3202          ExitedPad = ExitedParent;
3203        } while (!isa<ConstantTokenNone>(ExitedPad));
3204      } else {
3205        // Unwinding to caller exits all pads.
3206        UnwindPad = ConstantTokenNone::get(FPI.getContext());
3207        ExitsFPI = true;
3208        UnresolvedAncestorPad = &FPI;
3209      }
3210
3211      if (ExitsFPI) {
3212        // This unwind edge exits FPI.  Make sure it agrees with other
3213        // such edges.
3214        if (FirstUser) {
3215          Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3216                                              "pad must have the same unwind "
3217                                              "dest",
3218                 &FPI, U, FirstUser);
3219        } else {
3220          FirstUser = U;
3221          FirstUnwindPad = UnwindPad;
3222          // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3223          if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3224              getParentPad(UnwindPad) == getParentPad(&FPI))
3225            SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3226        }
3227      }
3228      // Make sure we visit all uses of FPI, but for nested pads stop as
3229      // soon as we know where they unwind to.
3230      if (CurrentPad != &FPI)
3231        break;
3232    }
3233    if (UnresolvedAncestorPad) {
3234      if (CurrentPad == UnresolvedAncestorPad) {
3235        // When CurrentPad is FPI itself, we don't mark it as resolved even if
3236        // we've found an unwind edge that exits it, because we need to verify
3237        // all direct uses of FPI.
3238        assert(CurrentPad == &FPI);
3239        continue;
3240      }
3241      // Pop off the worklist any nested pads that we've found an unwind
3242      // destination for.  The pads on the worklist are the uncles,
3243      // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3244      // for all ancestors of CurrentPad up to but not including
3245      // UnresolvedAncestorPad.
3246      Value *ResolvedPad = CurrentPad;
3247      while (!Worklist.empty()) {
3248        Value *UnclePad = Worklist.back();
3249        Value *AncestorPad = getParentPad(UnclePad);
3250        // Walk ResolvedPad up the ancestor list until we either find the
3251        // uncle's parent or the last resolved ancestor.
3252        while (ResolvedPad != AncestorPad) {
3253          Value *ResolvedParent = getParentPad(ResolvedPad);
3254          if (ResolvedParent == UnresolvedAncestorPad) {
3255            break;
3256          }
3257          ResolvedPad = ResolvedParent;
3258        }
3259        // If the resolved ancestor search didn't find the uncle's parent,
3260        // then the uncle is not yet resolved.
3261        if (ResolvedPad != AncestorPad)
3262          break;
3263        // This uncle is resolved, so pop it from the worklist.
3264        Worklist.pop_back();
3265      }
3266    }
3267  }
3268
3269  if (FirstUnwindPad) {
3270    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3271      BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3272      Value *SwitchUnwindPad;
3273      if (SwitchUnwindDest)
3274        SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3275      else
3276        SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3277      Assert(SwitchUnwindPad == FirstUnwindPad,
3278             "Unwind edges out of a catch must have the same unwind dest as "
3279             "the parent catchswitch",
3280             &FPI, FirstUser, CatchSwitch);
3281    }
3282  }
3283
3284  visitInstruction(FPI);
3285}
3286
3287void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3288  visitEHPadPredecessors(CatchSwitch);
3289
3290  BasicBlock *BB = CatchSwitch.getParent();
3291
3292  Function *F = BB->getParent();
3293  Assert(F->hasPersonalityFn(),
3294         "CatchSwitchInst needs to be in a function with a personality.",
3295         &CatchSwitch);
3296
3297  // The catchswitch instruction must be the first non-PHI instruction in the
3298  // block.
3299  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3300         "CatchSwitchInst not the first non-PHI instruction in the block.",
3301         &CatchSwitch);
3302
3303  auto *ParentPad = CatchSwitch.getParentPad();
3304  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3305         "CatchSwitchInst has an invalid parent.", ParentPad);
3306
3307  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3308    Instruction *I = UnwindDest->getFirstNonPHI();
3309    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3310           "CatchSwitchInst must unwind to an EH block which is not a "
3311           "landingpad.",
3312           &CatchSwitch);
3313
3314    // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3315    if (getParentPad(I) == ParentPad)
3316      SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3317  }
3318
3319  Assert(CatchSwitch.getNumHandlers() != 0,
3320         "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3321
3322  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3323    Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3324           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3325  }
3326
3327  visitTerminatorInst(CatchSwitch);
3328}
3329
3330void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3331  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3332         "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3333         CRI.getOperand(0));
3334
3335  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3336    Instruction *I = UnwindDest->getFirstNonPHI();
3337    Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3338           "CleanupReturnInst must unwind to an EH block which is not a "
3339           "landingpad.",
3340           &CRI);
3341  }
3342
3343  visitTerminatorInst(CRI);
3344}
3345
3346void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3347  Instruction *Op = cast<Instruction>(I.getOperand(i));
3348  // If the we have an invalid invoke, don't try to compute the dominance.
3349  // We already reject it in the invoke specific checks and the dominance
3350  // computation doesn't handle multiple edges.
3351  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3352    if (II->getNormalDest() == II->getUnwindDest())
3353      return;
3354  }
3355
3356  const Use &U = I.getOperandUse(i);
3357  Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
3358         "Instruction does not dominate all uses!", Op, &I);
3359}
3360
3361void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3362  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3363         "apply only to pointer types", &I);
3364  Assert(isa<LoadInst>(I),
3365         "dereferenceable, dereferenceable_or_null apply only to load"
3366         " instructions, use attributes for calls or invokes", &I);
3367  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3368         "take one operand!", &I);
3369  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3370  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3371         "dereferenceable_or_null metadata value must be an i64!", &I);
3372}
3373
3374/// verifyInstruction - Verify that an instruction is well formed.
3375///
3376void Verifier::visitInstruction(Instruction &I) {
3377  BasicBlock *BB = I.getParent();
3378  Assert(BB, "Instruction not embedded in basic block!", &I);
3379
3380  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
3381    for (User *U : I.users()) {
3382      Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3383             "Only PHI nodes may reference their own value!", &I);
3384    }
3385  }
3386
3387  // Check that void typed values don't have names
3388  Assert(!I.getType()->isVoidTy() || !I.hasName(),
3389         "Instruction has a name, but provides a void value!", &I);
3390
3391  // Check that the return value of the instruction is either void or a legal
3392  // value type.
3393  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3394         "Instruction returns a non-scalar type!", &I);
3395
3396  // Check that the instruction doesn't produce metadata. Calls are already
3397  // checked against the callee type.
3398  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3399         "Invalid use of metadata!", &I);
3400
3401  // Check that all uses of the instruction, if they are instructions
3402  // themselves, actually have parent basic blocks.  If the use is not an
3403  // instruction, it is an error!
3404  for (Use &U : I.uses()) {
3405    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3406      Assert(Used->getParent() != nullptr,
3407             "Instruction referencing"
3408             " instruction not embedded in a basic block!",
3409             &I, Used);
3410    else {
3411      CheckFailed("Use of instruction is not an instruction!", U);
3412      return;
3413    }
3414  }
3415
3416  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3417    Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3418
3419    // Check to make sure that only first-class-values are operands to
3420    // instructions.
3421    if (!I.getOperand(i)->getType()->isFirstClassType()) {
3422      Assert(0, "Instruction operands must be first-class values!", &I);
3423    }
3424
3425    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3426      // Check to make sure that the "address of" an intrinsic function is never
3427      // taken.
3428      Assert(
3429          !F->isIntrinsic() ||
3430              i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3431          "Cannot take the address of an intrinsic!", &I);
3432      Assert(
3433          !F->isIntrinsic() || isa<CallInst>(I) ||
3434              F->getIntrinsicID() == Intrinsic::donothing ||
3435              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3436              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3437              F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3438          "Cannot invoke an intrinsinc other than"
3439          " donothing or patchpoint",
3440          &I);
3441      Assert(F->getParent() == M, "Referencing function in another module!",
3442             &I, M, F, F->getParent());
3443    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3444      Assert(OpBB->getParent() == BB->getParent(),
3445             "Referring to a basic block in another function!", &I);
3446    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3447      Assert(OpArg->getParent() == BB->getParent(),
3448             "Referring to an argument in another function!", &I);
3449    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3450      Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent());
3451    } else if (isa<Instruction>(I.getOperand(i))) {
3452      verifyDominatesUse(I, i);
3453    } else if (isa<InlineAsm>(I.getOperand(i))) {
3454      Assert((i + 1 == e && isa<CallInst>(I)) ||
3455                 (i + 3 == e && isa<InvokeInst>(I)),
3456             "Cannot take the address of an inline asm!", &I);
3457    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3458      if (CE->getType()->isPtrOrPtrVectorTy()) {
3459        // If we have a ConstantExpr pointer, we need to see if it came from an
3460        // illegal bitcast (inttoptr <constant int> )
3461        visitConstantExprsRecursively(CE);
3462      }
3463    }
3464  }
3465
3466  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3467    Assert(I.getType()->isFPOrFPVectorTy(),
3468           "fpmath requires a floating point result!", &I);
3469    Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3470    if (ConstantFP *CFP0 =
3471            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3472      APFloat Accuracy = CFP0->getValueAPF();
3473      Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3474             "fpmath accuracy not a positive number!", &I);
3475    } else {
3476      Assert(false, "invalid fpmath accuracy!", &I);
3477    }
3478  }
3479
3480  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3481    Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3482           "Ranges are only for loads, calls and invokes!", &I);
3483    visitRangeMetadata(I, Range, I.getType());
3484  }
3485
3486  if (I.getMetadata(LLVMContext::MD_nonnull)) {
3487    Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3488           &I);
3489    Assert(isa<LoadInst>(I),
3490           "nonnull applies only to load instructions, use attributes"
3491           " for calls or invokes",
3492           &I);
3493  }
3494
3495  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3496    visitDereferenceableMetadata(I, MD);
3497
3498  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3499    visitDereferenceableMetadata(I, MD);
3500
3501  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3502    Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3503           &I);
3504    Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3505           "use attributes for calls or invokes", &I);
3506    Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3507    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3508    Assert(CI && CI->getType()->isIntegerTy(64),
3509           "align metadata value must be an i64!", &I);
3510    uint64_t Align = CI->getZExtValue();
3511    Assert(isPowerOf2_64(Align),
3512           "align metadata value must be a power of 2!", &I);
3513    Assert(Align <= Value::MaximumAlignment,
3514           "alignment is larger that implementation defined limit", &I);
3515  }
3516
3517  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3518    Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3519    visitMDNode(*N);
3520  }
3521
3522  InstsInThisBlock.insert(&I);
3523}
3524
3525/// VerifyIntrinsicType - Verify that the specified type (which comes from an
3526/// intrinsic argument or return value) matches the type constraints specified
3527/// by the .td file (e.g. an "any integer" argument really is an integer).
3528///
3529/// This return true on error but does not print a message.
3530bool Verifier::VerifyIntrinsicType(Type *Ty,
3531                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
3532                                   SmallVectorImpl<Type*> &ArgTys) {
3533  using namespace Intrinsic;
3534
3535  // If we ran out of descriptors, there are too many arguments.
3536  if (Infos.empty()) return true;
3537  IITDescriptor D = Infos.front();
3538  Infos = Infos.slice(1);
3539
3540  switch (D.Kind) {
3541  case IITDescriptor::Void: return !Ty->isVoidTy();
3542  case IITDescriptor::VarArg: return true;
3543  case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
3544  case IITDescriptor::Token: return !Ty->isTokenTy();
3545  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
3546  case IITDescriptor::Half: return !Ty->isHalfTy();
3547  case IITDescriptor::Float: return !Ty->isFloatTy();
3548  case IITDescriptor::Double: return !Ty->isDoubleTy();
3549  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
3550  case IITDescriptor::Vector: {
3551    VectorType *VT = dyn_cast<VectorType>(Ty);
3552    return !VT || VT->getNumElements() != D.Vector_Width ||
3553           VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
3554  }
3555  case IITDescriptor::Pointer: {
3556    PointerType *PT = dyn_cast<PointerType>(Ty);
3557    return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
3558           VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
3559  }
3560
3561  case IITDescriptor::Struct: {
3562    StructType *ST = dyn_cast<StructType>(Ty);
3563    if (!ST || ST->getNumElements() != D.Struct_NumElements)
3564      return true;
3565
3566    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
3567      if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
3568        return true;
3569    return false;
3570  }
3571
3572  case IITDescriptor::Argument:
3573    // Two cases here - If this is the second occurrence of an argument, verify
3574    // that the later instance matches the previous instance.
3575    if (D.getArgumentNumber() < ArgTys.size())
3576      return Ty != ArgTys[D.getArgumentNumber()];
3577
3578    // Otherwise, if this is the first instance of an argument, record it and
3579    // verify the "Any" kind.
3580    assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
3581    ArgTys.push_back(Ty);
3582
3583    switch (D.getArgumentKind()) {
3584    case IITDescriptor::AK_Any:        return false; // Success
3585    case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
3586    case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
3587    case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
3588    case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
3589    }
3590    llvm_unreachable("all argument kinds not covered");
3591
3592  case IITDescriptor::ExtendArgument: {
3593    // This may only be used when referring to a previous vector argument.
3594    if (D.getArgumentNumber() >= ArgTys.size())
3595      return true;
3596
3597    Type *NewTy = ArgTys[D.getArgumentNumber()];
3598    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3599      NewTy = VectorType::getExtendedElementVectorType(VTy);
3600    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3601      NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
3602    else
3603      return true;
3604
3605    return Ty != NewTy;
3606  }
3607  case IITDescriptor::TruncArgument: {
3608    // This may only be used when referring to a previous vector argument.
3609    if (D.getArgumentNumber() >= ArgTys.size())
3610      return true;
3611
3612    Type *NewTy = ArgTys[D.getArgumentNumber()];
3613    if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3614      NewTy = VectorType::getTruncatedElementVectorType(VTy);
3615    else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3616      NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
3617    else
3618      return true;
3619
3620    return Ty != NewTy;
3621  }
3622  case IITDescriptor::HalfVecArgument:
3623    // This may only be used when referring to a previous vector argument.
3624    return D.getArgumentNumber() >= ArgTys.size() ||
3625           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
3626           VectorType::getHalfElementsVectorType(
3627                         cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
3628  case IITDescriptor::SameVecWidthArgument: {
3629    if (D.getArgumentNumber() >= ArgTys.size())
3630      return true;
3631    VectorType * ReferenceType =
3632      dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
3633    VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
3634    if (!ThisArgType || !ReferenceType ||
3635        (ReferenceType->getVectorNumElements() !=
3636         ThisArgType->getVectorNumElements()))
3637      return true;
3638    return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
3639                               Infos, ArgTys);
3640  }
3641  case IITDescriptor::PtrToArgument: {
3642    if (D.getArgumentNumber() >= ArgTys.size())
3643      return true;
3644    Type * ReferenceType = ArgTys[D.getArgumentNumber()];
3645    PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
3646    return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
3647  }
3648  case IITDescriptor::VecOfPtrsToElt: {
3649    if (D.getArgumentNumber() >= ArgTys.size())
3650      return true;
3651    VectorType * ReferenceType =
3652      dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
3653    VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
3654    if (!ThisArgVecTy || !ReferenceType ||
3655        (ReferenceType->getVectorNumElements() !=
3656         ThisArgVecTy->getVectorNumElements()))
3657      return true;
3658    PointerType *ThisArgEltTy =
3659      dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
3660    if (!ThisArgEltTy)
3661      return true;
3662    return ThisArgEltTy->getElementType() !=
3663           ReferenceType->getVectorElementType();
3664  }
3665  }
3666  llvm_unreachable("unhandled");
3667}
3668
3669/// \brief Verify if the intrinsic has variable arguments.
3670/// This method is intended to be called after all the fixed arguments have been
3671/// verified first.
3672///
3673/// This method returns true on error and does not print an error message.
3674bool
3675Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
3676                                  ArrayRef<Intrinsic::IITDescriptor> &Infos) {
3677  using namespace Intrinsic;
3678
3679  // If there are no descriptors left, then it can't be a vararg.
3680  if (Infos.empty())
3681    return isVarArg;
3682
3683  // There should be only one descriptor remaining at this point.
3684  if (Infos.size() != 1)
3685    return true;
3686
3687  // Check and verify the descriptor.
3688  IITDescriptor D = Infos.front();
3689  Infos = Infos.slice(1);
3690  if (D.Kind == IITDescriptor::VarArg)
3691    return !isVarArg;
3692
3693  return true;
3694}
3695
3696/// Allow intrinsics to be verified in different ways.
3697void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3698  Function *IF = CS.getCalledFunction();
3699  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3700         IF);
3701
3702  // Verify that the intrinsic prototype lines up with what the .td files
3703  // describe.
3704  FunctionType *IFTy = IF->getFunctionType();
3705  bool IsVarArg = IFTy->isVarArg();
3706
3707  SmallVector<Intrinsic::IITDescriptor, 8> Table;
3708  getIntrinsicInfoTableEntries(ID, Table);
3709  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3710
3711  SmallVector<Type *, 4> ArgTys;
3712  Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
3713         "Intrinsic has incorrect return type!", IF);
3714  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3715    Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
3716           "Intrinsic has incorrect argument type!", IF);
3717
3718  // Verify if the intrinsic call matches the vararg property.
3719  if (IsVarArg)
3720    Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3721           "Intrinsic was not defined with variable arguments!", IF);
3722  else
3723    Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3724           "Callsite was not defined with variable arguments!", IF);
3725
3726  // All descriptors should be absorbed by now.
3727  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3728
3729  // Now that we have the intrinsic ID and the actual argument types (and we
3730  // know they are legal for the intrinsic!) get the intrinsic name through the
3731  // usual means.  This allows us to verify the mangling of argument types into
3732  // the name.
3733  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3734  Assert(ExpectedName == IF->getName(),
3735         "Intrinsic name not mangled correctly for type arguments! "
3736         "Should be: " +
3737             ExpectedName,
3738         IF);
3739
3740  // If the intrinsic takes MDNode arguments, verify that they are either global
3741  // or are local to *this* function.
3742  for (Value *V : CS.args())
3743    if (auto *MD = dyn_cast<MetadataAsValue>(V))
3744      visitMetadataAsValue(*MD, CS.getCaller());
3745
3746  switch (ID) {
3747  default:
3748    break;
3749  case Intrinsic::ctlz:  // llvm.ctlz
3750  case Intrinsic::cttz:  // llvm.cttz
3751    Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3752           "is_zero_undef argument of bit counting intrinsics must be a "
3753           "constant int",
3754           CS);
3755    break;
3756  case Intrinsic::dbg_declare: // llvm.dbg.declare
3757    Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
3758           "invalid llvm.dbg.declare intrinsic call 1", CS);
3759    visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3760    break;
3761  case Intrinsic::dbg_value: // llvm.dbg.value
3762    visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3763    break;
3764  case Intrinsic::memcpy:
3765  case Intrinsic::memmove:
3766  case Intrinsic::memset: {
3767    ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3768    Assert(AlignCI,
3769           "alignment argument of memory intrinsics must be a constant int",
3770           CS);
3771    const APInt &AlignVal = AlignCI->getValue();
3772    Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
3773           "alignment argument of memory intrinsics must be a power of 2", CS);
3774    Assert(isa<ConstantInt>(CS.getArgOperand(4)),
3775           "isvolatile argument of memory intrinsics must be a constant int",
3776           CS);
3777    break;
3778  }
3779  case Intrinsic::gcroot:
3780  case Intrinsic::gcwrite:
3781  case Intrinsic::gcread:
3782    if (ID == Intrinsic::gcroot) {
3783      AllocaInst *AI =
3784        dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
3785      Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
3786      Assert(isa<Constant>(CS.getArgOperand(1)),
3787             "llvm.gcroot parameter #2 must be a constant.", CS);
3788      if (!AI->getAllocatedType()->isPointerTy()) {
3789        Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
3790               "llvm.gcroot parameter #1 must either be a pointer alloca, "
3791               "or argument #2 must be a non-null constant.",
3792               CS);
3793      }
3794    }
3795
3796    Assert(CS.getParent()->getParent()->hasGC(),
3797           "Enclosing function does not use GC.", CS);
3798    break;
3799  case Intrinsic::init_trampoline:
3800    Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
3801           "llvm.init_trampoline parameter #2 must resolve to a function.",
3802           CS);
3803    break;
3804  case Intrinsic::prefetch:
3805    Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
3806               isa<ConstantInt>(CS.getArgOperand(2)) &&
3807               cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
3808               cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
3809           "invalid arguments to llvm.prefetch", CS);
3810    break;
3811  case Intrinsic::stackprotector:
3812    Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
3813           "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
3814    break;
3815  case Intrinsic::lifetime_start:
3816  case Intrinsic::lifetime_end:
3817  case Intrinsic::invariant_start:
3818    Assert(isa<ConstantInt>(CS.getArgOperand(0)),
3819           "size argument of memory use markers must be a constant integer",
3820           CS);
3821    break;
3822  case Intrinsic::invariant_end:
3823    Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3824           "llvm.invariant.end parameter #2 must be a constant integer", CS);
3825    break;
3826
3827  case Intrinsic::localescape: {
3828    BasicBlock *BB = CS.getParent();
3829    Assert(BB == &BB->getParent()->front(),
3830           "llvm.localescape used outside of entry block", CS);
3831    Assert(!SawFrameEscape,
3832           "multiple calls to llvm.localescape in one function", CS);
3833    for (Value *Arg : CS.args()) {
3834      if (isa<ConstantPointerNull>(Arg))
3835        continue; // Null values are allowed as placeholders.
3836      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
3837      Assert(AI && AI->isStaticAlloca(),
3838             "llvm.localescape only accepts static allocas", CS);
3839    }
3840    FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
3841    SawFrameEscape = true;
3842    break;
3843  }
3844  case Intrinsic::localrecover: {
3845    Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
3846    Function *Fn = dyn_cast<Function>(FnArg);
3847    Assert(Fn && !Fn->isDeclaration(),
3848           "llvm.localrecover first "
3849           "argument must be function defined in this module",
3850           CS);
3851    auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
3852    Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
3853           CS);
3854    auto &Entry = FrameEscapeInfo[Fn];
3855    Entry.second = unsigned(
3856        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
3857    break;
3858  }
3859
3860  case Intrinsic::experimental_gc_statepoint:
3861    Assert(!CS.isInlineAsm(),
3862           "gc.statepoint support for inline assembly unimplemented", CS);
3863    Assert(CS.getParent()->getParent()->hasGC(),
3864           "Enclosing function does not use GC.", CS);
3865
3866    VerifyStatepoint(CS);
3867    break;
3868  case Intrinsic::experimental_gc_result: {
3869    Assert(CS.getParent()->getParent()->hasGC(),
3870           "Enclosing function does not use GC.", CS);
3871    // Are we tied to a statepoint properly?
3872    CallSite StatepointCS(CS.getArgOperand(0));
3873    const Function *StatepointFn =
3874      StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
3875    Assert(StatepointFn && StatepointFn->isDeclaration() &&
3876               StatepointFn->getIntrinsicID() ==
3877                   Intrinsic::experimental_gc_statepoint,
3878           "gc.result operand #1 must be from a statepoint", CS,
3879           CS.getArgOperand(0));
3880
3881    // Assert that result type matches wrapped callee.
3882    const Value *Target = StatepointCS.getArgument(2);
3883    auto *PT = cast<PointerType>(Target->getType());
3884    auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
3885    Assert(CS.getType() == TargetFuncType->getReturnType(),
3886           "gc.result result type does not match wrapped callee", CS);
3887    break;
3888  }
3889  case Intrinsic::experimental_gc_relocate: {
3890    Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
3891
3892    Assert(isa<PointerType>(CS.getType()->getScalarType()),
3893           "gc.relocate must return a pointer or a vector of pointers", CS);
3894
3895    // Check that this relocate is correctly tied to the statepoint
3896
3897    // This is case for relocate on the unwinding path of an invoke statepoint
3898    if (LandingPadInst *LandingPad =
3899          dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
3900
3901      const BasicBlock *InvokeBB =
3902          LandingPad->getParent()->getUniquePredecessor();
3903
3904      // Landingpad relocates should have only one predecessor with invoke
3905      // statepoint terminator
3906      Assert(InvokeBB, "safepoints should have unique landingpads",
3907             LandingPad->getParent());
3908      Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
3909             InvokeBB);
3910      Assert(isStatepoint(InvokeBB->getTerminator()),
3911             "gc relocate should be linked to a statepoint", InvokeBB);
3912    }
3913    else {
3914      // In all other cases relocate should be tied to the statepoint directly.
3915      // This covers relocates on a normal return path of invoke statepoint and
3916      // relocates of a call statepoint
3917      auto Token = CS.getArgOperand(0);
3918      Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
3919             "gc relocate is incorrectly tied to the statepoint", CS, Token);
3920    }
3921
3922    // Verify rest of the relocate arguments
3923
3924    ImmutableCallSite StatepointCS(
3925        cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
3926
3927    // Both the base and derived must be piped through the safepoint
3928    Value* Base = CS.getArgOperand(1);
3929    Assert(isa<ConstantInt>(Base),
3930           "gc.relocate operand #2 must be integer offset", CS);
3931
3932    Value* Derived = CS.getArgOperand(2);
3933    Assert(isa<ConstantInt>(Derived),
3934           "gc.relocate operand #3 must be integer offset", CS);
3935
3936    const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
3937    const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
3938    // Check the bounds
3939    Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
3940           "gc.relocate: statepoint base index out of bounds", CS);
3941    Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
3942           "gc.relocate: statepoint derived index out of bounds", CS);
3943
3944    // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
3945    // section of the statepoint's argument
3946    Assert(StatepointCS.arg_size() > 0,
3947           "gc.statepoint: insufficient arguments");
3948    Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
3949           "gc.statement: number of call arguments must be constant integer");
3950    const unsigned NumCallArgs =
3951        cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
3952    Assert(StatepointCS.arg_size() > NumCallArgs + 5,
3953           "gc.statepoint: mismatch in number of call arguments");
3954    Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
3955           "gc.statepoint: number of transition arguments must be "
3956           "a constant integer");
3957    const int NumTransitionArgs =
3958        cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
3959            ->getZExtValue();
3960    const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
3961    Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
3962           "gc.statepoint: number of deoptimization arguments must be "
3963           "a constant integer");
3964    const int NumDeoptArgs =
3965      cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue();
3966    const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
3967    const int GCParamArgsEnd = StatepointCS.arg_size();
3968    Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
3969           "gc.relocate: statepoint base index doesn't fall within the "
3970           "'gc parameters' section of the statepoint call",
3971           CS);
3972    Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
3973           "gc.relocate: statepoint derived index doesn't fall within the "
3974           "'gc parameters' section of the statepoint call",
3975           CS);
3976
3977    // Relocated value must be either a pointer type or vector-of-pointer type,
3978    // but gc_relocate does not need to return the same pointer type as the
3979    // relocated pointer. It can be casted to the correct type later if it's
3980    // desired. However, they must have the same address space and 'vectorness'
3981    GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
3982    Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),
3983           "gc.relocate: relocated value must be a gc pointer", CS);
3984
3985    auto ResultType = CS.getType();
3986    auto DerivedType = Relocate.getDerivedPtr()->getType();
3987    Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
3988           "gc.relocate: vector relocates to vector and pointer to pointer", CS);
3989    Assert(ResultType->getPointerAddressSpace() ==
3990           DerivedType->getPointerAddressSpace(),
3991           "gc.relocate: relocating a pointer shouldn't change its address space", CS);
3992    break;
3993  }
3994  case Intrinsic::eh_exceptioncode:
3995  case Intrinsic::eh_exceptionpointer: {
3996    Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
3997           "eh.exceptionpointer argument must be a catchpad", CS);
3998    break;
3999  }
4000  };
4001}
4002
4003/// \brief Carefully grab the subprogram from a local scope.
4004///
4005/// This carefully grabs the subprogram from a local scope, avoiding the
4006/// built-in assertions that would typically fire.
4007static DISubprogram *getSubprogram(Metadata *LocalScope) {
4008  if (!LocalScope)
4009    return nullptr;
4010
4011  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4012    return SP;
4013
4014  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4015    return getSubprogram(LB->getRawScope());
4016
4017  // Just return null; broken scope chains are checked elsewhere.
4018  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4019  return nullptr;
4020}
4021
4022template <class DbgIntrinsicTy>
4023void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4024  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4025  Assert(isa<ValueAsMetadata>(MD) ||
4026             (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4027         "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4028  Assert(isa<DILocalVariable>(DII.getRawVariable()),
4029         "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4030         DII.getRawVariable());
4031  Assert(isa<DIExpression>(DII.getRawExpression()),
4032         "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4033         DII.getRawExpression());
4034
4035  // Ignore broken !dbg attachments; they're checked elsewhere.
4036  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4037    if (!isa<DILocation>(N))
4038      return;
4039
4040  BasicBlock *BB = DII.getParent();
4041  Function *F = BB ? BB->getParent() : nullptr;
4042
4043  // The scopes for variables and !dbg attachments must agree.
4044  DILocalVariable *Var = DII.getVariable();
4045  DILocation *Loc = DII.getDebugLoc();
4046  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4047         &DII, BB, F);
4048
4049  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4050  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4051  if (!VarSP || !LocSP)
4052    return; // Broken scope chains are checked elsewhere.
4053
4054  Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4055                             " variable and !dbg attachment",
4056         &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4057         Loc->getScope()->getSubprogram());
4058}
4059
4060template <class MapTy>
4061static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
4062  // Be careful of broken types (checked elsewhere).
4063  const Metadata *RawType = V.getRawType();
4064  while (RawType) {
4065    // Try to get the size directly.
4066    if (auto *T = dyn_cast<DIType>(RawType))
4067      if (uint64_t Size = T->getSizeInBits())
4068        return Size;
4069
4070    if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4071      // Look at the base type.
4072      RawType = DT->getRawBaseType();
4073      continue;
4074    }
4075
4076    if (auto *S = dyn_cast<MDString>(RawType)) {
4077      // Don't error on missing types (checked elsewhere).
4078      RawType = Map.lookup(S);
4079      continue;
4080    }
4081
4082    // Missing type or size.
4083    break;
4084  }
4085
4086  // Fail gracefully.
4087  return 0;
4088}
4089
4090template <class MapTy>
4091void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
4092                                        const MapTy &TypeRefs) {
4093  DILocalVariable *V;
4094  DIExpression *E;
4095  if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4096    V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4097    E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4098  } else {
4099    auto *DDI = cast<DbgDeclareInst>(&I);
4100    V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4101    E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4102  }
4103
4104  // We don't know whether this intrinsic verified correctly.
4105  if (!V || !E || !E->isValid())
4106    return;
4107
4108  // Nothing to do if this isn't a bit piece expression.
4109  if (!E->isBitPiece())
4110    return;
4111
4112  // The frontend helps out GDB by emitting the members of local anonymous
4113  // unions as artificial local variables with shared storage. When SROA splits
4114  // the storage for artificial local variables that are smaller than the entire
4115  // union, the overhang piece will be outside of the allotted space for the
4116  // variable and this check fails.
4117  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4118  if (V->isArtificial())
4119    return;
4120
4121  // If there's no size, the type is broken, but that should be checked
4122  // elsewhere.
4123  uint64_t VarSize = getVariableSize(*V, TypeRefs);
4124  if (!VarSize)
4125    return;
4126
4127  unsigned PieceSize = E->getBitPieceSize();
4128  unsigned PieceOffset = E->getBitPieceOffset();
4129  Assert(PieceSize + PieceOffset <= VarSize,
4130         "piece is larger than or outside of variable", &I, V, E);
4131  Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
4132}
4133
4134void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
4135  // This is in its own function so we get an error for each bad type ref (not
4136  // just the first).
4137  Assert(false, "unresolved type ref", S, N);
4138}
4139
4140void Verifier::verifyTypeRefs() {
4141  auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
4142  if (!CUs)
4143    return;
4144
4145  // Visit all the compile units again to map the type references.
4146  SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs;
4147  for (auto *CU : CUs->operands())
4148    if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
4149      for (DIType *Op : Ts)
4150        if (auto *T = dyn_cast_or_null<DICompositeType>(Op))
4151          if (auto *S = T->getRawIdentifier()) {
4152            UnresolvedTypeRefs.erase(S);
4153            TypeRefs.insert(std::make_pair(S, T));
4154          }
4155
4156  // Verify debug info intrinsic bit piece expressions.  This needs a second
4157  // pass through the intructions, since we haven't built TypeRefs yet when
4158  // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
4159  // later/now would queue up some that could be later deleted.
4160  for (const Function &F : *M)
4161    for (const BasicBlock &BB : F)
4162      for (const Instruction &I : BB)
4163        if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
4164          verifyBitPieceExpression(*DII, TypeRefs);
4165
4166  // Return early if all typerefs were resolved.
4167  if (UnresolvedTypeRefs.empty())
4168    return;
4169
4170  // Sort the unresolved references by name so the output is deterministic.
4171  typedef std::pair<const MDString *, const MDNode *> TypeRef;
4172  SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
4173                                      UnresolvedTypeRefs.end());
4174  std::sort(Unresolved.begin(), Unresolved.end(),
4175            [](const TypeRef &LHS, const TypeRef &RHS) {
4176    return LHS.first->getString() < RHS.first->getString();
4177  });
4178
4179  // Visit the unresolved refs (printing out the errors).
4180  for (const TypeRef &TR : Unresolved)
4181    visitUnresolvedTypeRef(TR.first, TR.second);
4182}
4183
4184//===----------------------------------------------------------------------===//
4185//  Implement the public interfaces to this file...
4186//===----------------------------------------------------------------------===//
4187
4188bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4189  Function &F = const_cast<Function &>(f);
4190  assert(!F.isDeclaration() && "Cannot verify external functions");
4191
4192  raw_null_ostream NullStr;
4193  Verifier V(OS ? *OS : NullStr);
4194
4195  // Note that this function's return value is inverted from what you would
4196  // expect of a function called "verify".
4197  return !V.verify(F);
4198}
4199
4200bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
4201  raw_null_ostream NullStr;
4202  Verifier V(OS ? *OS : NullStr);
4203
4204  bool Broken = false;
4205  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
4206    if (!I->isDeclaration() && !I->isMaterializable())
4207      Broken |= !V.verify(*I);
4208
4209  // Note that this function's return value is inverted from what you would
4210  // expect of a function called "verify".
4211  return !V.verify(M) || Broken;
4212}
4213
4214namespace {
4215struct VerifierLegacyPass : public FunctionPass {
4216  static char ID;
4217
4218  Verifier V;
4219  bool FatalErrors;
4220
4221  VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
4222    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4223  }
4224  explicit VerifierLegacyPass(bool FatalErrors)
4225      : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
4226    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4227  }
4228
4229  bool runOnFunction(Function &F) override {
4230    if (!V.verify(F) && FatalErrors)
4231      report_fatal_error("Broken function found, compilation aborted!");
4232
4233    return false;
4234  }
4235
4236  bool doFinalization(Module &M) override {
4237    if (!V.verify(M) && FatalErrors)
4238      report_fatal_error("Broken module found, compilation aborted!");
4239
4240    return false;
4241  }
4242
4243  void getAnalysisUsage(AnalysisUsage &AU) const override {
4244    AU.setPreservesAll();
4245  }
4246};
4247}
4248
4249char VerifierLegacyPass::ID = 0;
4250INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
4251
4252FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4253  return new VerifierLegacyPass(FatalErrors);
4254}
4255
4256PreservedAnalyses VerifierPass::run(Module &M) {
4257  if (verifyModule(M, &dbgs()) && FatalErrors)
4258    report_fatal_error("Broken module found, compilation aborted!");
4259
4260  return PreservedAnalyses::all();
4261}
4262
4263PreservedAnalyses VerifierPass::run(Function &F) {
4264  if (verifyFunction(F, &dbgs()) && FatalErrors)
4265    report_fatal_error("Broken function found, compilation aborted!");
4266
4267  return PreservedAnalyses::all();
4268}
4269