Verifier.cpp revision 249259
1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16//  * Both of a binary operator's parameters are of the same type
17//  * Verify that the indices of mem access instructions match other operands
18//  * Verify that arithmetic and other things are only performed on first-class
19//    types.  Verify that shifts & logicals only happen on integrals f.e.
20//  * All of the constants in a switch statement are of the correct type
21//  * The code is in valid SSA form
22//  * It should be illegal to put a label into any other type (like a structure)
23//    or to return one. [except constant arrays!]
24//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25//  * PHI nodes must have an entry for each predecessor, with no extras.
26//  * PHI nodes must be the first thing in a basic block, all grouped together
27//  * PHI nodes must have at least one entry
28//  * All basic blocks should only end with terminator insts, not contain them
29//  * The entry node to a function must not have predecessors
30//  * All Instructions must be embedded into a basic block
31//  * Functions cannot take a void-typed parameter
32//  * Verify that a function's argument list agrees with it's declared type.
33//  * It is illegal to specify a name for a void value.
34//  * It is illegal to have a internal global value with no initializer
35//  * It is illegal to have a ret instruction that returns a value that does not
36//    agree with the function return value type.
37//  * Function call argument types match the function prototype
38//  * A landing pad is defined by a landingpad instruction, and can be jumped to
39//    only by the unwind edge of an invoke instruction.
40//  * A landingpad instruction must be the first non-PHI instruction in the
41//    block.
42//  * All landingpad instructions must use the same personality function with
43//    the same function.
44//  * All other things that are tested by asserts spread about the code...
45//
46//===----------------------------------------------------------------------===//
47
48#include "llvm/Analysis/Verifier.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/Analysis/Dominators.h"
55#include "llvm/Assembly/Writer.h"
56#include "llvm/IR/CallingConv.h"
57#include "llvm/IR/Constants.h"
58#include "llvm/IR/DerivedTypes.h"
59#include "llvm/IR/InlineAsm.h"
60#include "llvm/IR/IntrinsicInst.h"
61#include "llvm/IR/LLVMContext.h"
62#include "llvm/IR/Metadata.h"
63#include "llvm/IR/Module.h"
64#include "llvm/InstVisitor.h"
65#include "llvm/Pass.h"
66#include "llvm/PassManager.h"
67#include "llvm/Support/CFG.h"
68#include "llvm/Support/CallSite.h"
69#include "llvm/Support/ConstantRange.h"
70#include "llvm/Support/Debug.h"
71#include "llvm/Support/ErrorHandling.h"
72#include "llvm/Support/raw_ostream.h"
73#include <algorithm>
74#include <cstdarg>
75using namespace llvm;
76
77namespace {  // Anonymous namespace for class
78  struct PreVerifier : public FunctionPass {
79    static char ID; // Pass ID, replacement for typeid
80
81    PreVerifier() : FunctionPass(ID) {
82      initializePreVerifierPass(*PassRegistry::getPassRegistry());
83    }
84
85    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86      AU.setPreservesAll();
87    }
88
89    // Check that the prerequisites for successful DominatorTree construction
90    // are satisfied.
91    bool runOnFunction(Function &F) {
92      bool Broken = false;
93
94      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
95        if (I->empty() || !I->back().isTerminator()) {
96          dbgs() << "Basic Block in function '" << F.getName()
97                 << "' does not have terminator!\n";
98          WriteAsOperand(dbgs(), I, true);
99          dbgs() << "\n";
100          Broken = true;
101        }
102      }
103
104      if (Broken)
105        report_fatal_error("Broken module, no Basic Block terminator!");
106
107      return false;
108    }
109  };
110}
111
112char PreVerifier::ID = 0;
113INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
114                false, false)
115static char &PreVerifyID = PreVerifier::ID;
116
117namespace {
118  struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
119    static char ID; // Pass ID, replacement for typeid
120    bool Broken;          // Is this module found to be broken?
121    VerifierFailureAction action;
122                          // What to do if verification fails.
123    Module *Mod;          // Module we are verifying right now
124    LLVMContext *Context; // Context within which we are verifying
125    DominatorTree *DT;    // Dominator Tree, caution can be null!
126
127    std::string Messages;
128    raw_string_ostream MessagesStr;
129
130    /// InstInThisBlock - when verifying a basic block, keep track of all of the
131    /// instructions we have seen so far.  This allows us to do efficient
132    /// dominance checks for the case when an instruction has an operand that is
133    /// an instruction in the same block.
134    SmallPtrSet<Instruction*, 16> InstsInThisBlock;
135
136    /// MDNodes - keep track of the metadata nodes that have been checked
137    /// already.
138    SmallPtrSet<MDNode *, 32> MDNodes;
139
140    /// PersonalityFn - The personality function referenced by the
141    /// LandingPadInsts. All LandingPadInsts within the same function must use
142    /// the same personality function.
143    const Value *PersonalityFn;
144
145    Verifier()
146      : FunctionPass(ID), Broken(false),
147        action(AbortProcessAction), Mod(0), Context(0), DT(0),
148        MessagesStr(Messages), PersonalityFn(0) {
149      initializeVerifierPass(*PassRegistry::getPassRegistry());
150    }
151    explicit Verifier(VerifierFailureAction ctn)
152      : FunctionPass(ID), Broken(false), action(ctn), Mod(0),
153        Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
154      initializeVerifierPass(*PassRegistry::getPassRegistry());
155    }
156
157    bool doInitialization(Module &M) {
158      Mod = &M;
159      Context = &M.getContext();
160
161      // We must abort before returning back to the pass manager, or else the
162      // pass manager may try to run other passes on the broken module.
163      return abortIfBroken();
164    }
165
166    bool runOnFunction(Function &F) {
167      // Get dominator information if we are being run by PassManager
168      DT = &getAnalysis<DominatorTree>();
169
170      Mod = F.getParent();
171      if (!Context) Context = &F.getContext();
172
173      visit(F);
174      InstsInThisBlock.clear();
175      PersonalityFn = 0;
176
177      // We must abort before returning back to the pass manager, or else the
178      // pass manager may try to run other passes on the broken module.
179      return abortIfBroken();
180    }
181
182    bool doFinalization(Module &M) {
183      // Scan through, checking all of the external function's linkage now...
184      for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
185        visitGlobalValue(*I);
186
187        // Check to make sure function prototypes are okay.
188        if (I->isDeclaration()) visitFunction(*I);
189      }
190
191      for (Module::global_iterator I = M.global_begin(), E = M.global_end();
192           I != E; ++I)
193        visitGlobalVariable(*I);
194
195      for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
196           I != E; ++I)
197        visitGlobalAlias(*I);
198
199      for (Module::named_metadata_iterator I = M.named_metadata_begin(),
200           E = M.named_metadata_end(); I != E; ++I)
201        visitNamedMDNode(*I);
202
203      visitModuleFlags(M);
204
205      // If the module is broken, abort at this time.
206      return abortIfBroken();
207    }
208
209    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
210      AU.setPreservesAll();
211      AU.addRequiredID(PreVerifyID);
212      AU.addRequired<DominatorTree>();
213    }
214
215    /// abortIfBroken - If the module is broken and we are supposed to abort on
216    /// this condition, do so.
217    ///
218    bool abortIfBroken() {
219      if (!Broken) return false;
220      MessagesStr << "Broken module found, ";
221      switch (action) {
222      case AbortProcessAction:
223        MessagesStr << "compilation aborted!\n";
224        dbgs() << MessagesStr.str();
225        // Client should choose different reaction if abort is not desired
226        abort();
227      case PrintMessageAction:
228        MessagesStr << "verification continues.\n";
229        dbgs() << MessagesStr.str();
230        return false;
231      case ReturnStatusAction:
232        MessagesStr << "compilation terminated.\n";
233        return true;
234      }
235      llvm_unreachable("Invalid action");
236    }
237
238
239    // Verification methods...
240    void visitGlobalValue(GlobalValue &GV);
241    void visitGlobalVariable(GlobalVariable &GV);
242    void visitGlobalAlias(GlobalAlias &GA);
243    void visitNamedMDNode(NamedMDNode &NMD);
244    void visitMDNode(MDNode &MD, Function *F);
245    void visitModuleFlags(Module &M);
246    void visitModuleFlag(MDNode *Op, DenseMap<MDString*, MDNode*> &SeenIDs,
247                         SmallVectorImpl<MDNode*> &Requirements);
248    void visitFunction(Function &F);
249    void visitBasicBlock(BasicBlock &BB);
250    using InstVisitor<Verifier>::visit;
251
252    void visit(Instruction &I);
253
254    void visitTruncInst(TruncInst &I);
255    void visitZExtInst(ZExtInst &I);
256    void visitSExtInst(SExtInst &I);
257    void visitFPTruncInst(FPTruncInst &I);
258    void visitFPExtInst(FPExtInst &I);
259    void visitFPToUIInst(FPToUIInst &I);
260    void visitFPToSIInst(FPToSIInst &I);
261    void visitUIToFPInst(UIToFPInst &I);
262    void visitSIToFPInst(SIToFPInst &I);
263    void visitIntToPtrInst(IntToPtrInst &I);
264    void visitPtrToIntInst(PtrToIntInst &I);
265    void visitBitCastInst(BitCastInst &I);
266    void visitPHINode(PHINode &PN);
267    void visitBinaryOperator(BinaryOperator &B);
268    void visitICmpInst(ICmpInst &IC);
269    void visitFCmpInst(FCmpInst &FC);
270    void visitExtractElementInst(ExtractElementInst &EI);
271    void visitInsertElementInst(InsertElementInst &EI);
272    void visitShuffleVectorInst(ShuffleVectorInst &EI);
273    void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
274    void visitCallInst(CallInst &CI);
275    void visitInvokeInst(InvokeInst &II);
276    void visitGetElementPtrInst(GetElementPtrInst &GEP);
277    void visitLoadInst(LoadInst &LI);
278    void visitStoreInst(StoreInst &SI);
279    void verifyDominatesUse(Instruction &I, unsigned i);
280    void visitInstruction(Instruction &I);
281    void visitTerminatorInst(TerminatorInst &I);
282    void visitBranchInst(BranchInst &BI);
283    void visitReturnInst(ReturnInst &RI);
284    void visitSwitchInst(SwitchInst &SI);
285    void visitIndirectBrInst(IndirectBrInst &BI);
286    void visitSelectInst(SelectInst &SI);
287    void visitUserOp1(Instruction &I);
288    void visitUserOp2(Instruction &I) { visitUserOp1(I); }
289    void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
290    void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
291    void visitAtomicRMWInst(AtomicRMWInst &RMWI);
292    void visitFenceInst(FenceInst &FI);
293    void visitAllocaInst(AllocaInst &AI);
294    void visitExtractValueInst(ExtractValueInst &EVI);
295    void visitInsertValueInst(InsertValueInst &IVI);
296    void visitLandingPadInst(LandingPadInst &LPI);
297
298    void VerifyCallSite(CallSite CS);
299    bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
300                          int VT, unsigned ArgNo, std::string &Suffix);
301    bool VerifyIntrinsicType(Type *Ty,
302                             ArrayRef<Intrinsic::IITDescriptor> &Infos,
303                             SmallVectorImpl<Type*> &ArgTys);
304    void VerifyParameterAttrs(AttributeSet Attrs, uint64_t Idx, Type *Ty,
305                              bool isReturnValue, const Value *V);
306    void VerifyFunctionAttrs(FunctionType *FT, const AttributeSet &Attrs,
307                             const Value *V);
308
309    void WriteValue(const Value *V) {
310      if (!V) return;
311      if (isa<Instruction>(V)) {
312        MessagesStr << *V << '\n';
313      } else {
314        WriteAsOperand(MessagesStr, V, true, Mod);
315        MessagesStr << '\n';
316      }
317    }
318
319    void WriteType(Type *T) {
320      if (!T) return;
321      MessagesStr << ' ' << *T;
322    }
323
324
325    // CheckFailed - A check failed, so print out the condition and the message
326    // that failed.  This provides a nice place to put a breakpoint if you want
327    // to see why something is not correct.
328    void CheckFailed(const Twine &Message,
329                     const Value *V1 = 0, const Value *V2 = 0,
330                     const Value *V3 = 0, const Value *V4 = 0) {
331      MessagesStr << Message.str() << "\n";
332      WriteValue(V1);
333      WriteValue(V2);
334      WriteValue(V3);
335      WriteValue(V4);
336      Broken = true;
337    }
338
339    void CheckFailed(const Twine &Message, const Value *V1,
340                     Type *T2, const Value *V3 = 0) {
341      MessagesStr << Message.str() << "\n";
342      WriteValue(V1);
343      WriteType(T2);
344      WriteValue(V3);
345      Broken = true;
346    }
347
348    void CheckFailed(const Twine &Message, Type *T1,
349                     Type *T2 = 0, Type *T3 = 0) {
350      MessagesStr << Message.str() << "\n";
351      WriteType(T1);
352      WriteType(T2);
353      WriteType(T3);
354      Broken = true;
355    }
356  };
357} // End anonymous namespace
358
359char Verifier::ID = 0;
360INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
361INITIALIZE_PASS_DEPENDENCY(PreVerifier)
362INITIALIZE_PASS_DEPENDENCY(DominatorTree)
363INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
364
365// Assert - We know that cond should be true, if not print an error message.
366#define Assert(C, M) \
367  do { if (!(C)) { CheckFailed(M); return; } } while (0)
368#define Assert1(C, M, V1) \
369  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
370#define Assert2(C, M, V1, V2) \
371  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
372#define Assert3(C, M, V1, V2, V3) \
373  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
374#define Assert4(C, M, V1, V2, V3, V4) \
375  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
376
377void Verifier::visit(Instruction &I) {
378  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
379    Assert1(I.getOperand(i) != 0, "Operand is null", &I);
380  InstVisitor<Verifier>::visit(I);
381}
382
383
384void Verifier::visitGlobalValue(GlobalValue &GV) {
385  Assert1(!GV.isDeclaration() ||
386          GV.isMaterializable() ||
387          GV.hasExternalLinkage() ||
388          GV.hasDLLImportLinkage() ||
389          GV.hasExternalWeakLinkage() ||
390          (isa<GlobalAlias>(GV) &&
391           (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
392  "Global is external, but doesn't have external or dllimport or weak linkage!",
393          &GV);
394
395  Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
396          "Global is marked as dllimport, but not external", &GV);
397
398  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
399          "Only global variables can have appending linkage!", &GV);
400
401  if (GV.hasAppendingLinkage()) {
402    GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
403    Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
404            "Only global arrays can have appending linkage!", GVar);
405  }
406
407  Assert1(!GV.hasLinkOnceODRAutoHideLinkage() || GV.hasDefaultVisibility(),
408          "linkonce_odr_auto_hide can only have default visibility!",
409          &GV);
410}
411
412void Verifier::visitGlobalVariable(GlobalVariable &GV) {
413  if (GV.hasInitializer()) {
414    Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
415            "Global variable initializer type does not match global "
416            "variable type!", &GV);
417
418    // If the global has common linkage, it must have a zero initializer and
419    // cannot be constant.
420    if (GV.hasCommonLinkage()) {
421      Assert1(GV.getInitializer()->isNullValue(),
422              "'common' global must have a zero initializer!", &GV);
423      Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
424              &GV);
425    }
426  } else {
427    Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
428            GV.hasExternalWeakLinkage(),
429            "invalid linkage type for global declaration", &GV);
430  }
431
432  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
433                       GV.getName() == "llvm.global_dtors")) {
434    Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
435            "invalid linkage for intrinsic global variable", &GV);
436    // Don't worry about emitting an error for it not being an array,
437    // visitGlobalValue will complain on appending non-array.
438    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
439      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
440      PointerType *FuncPtrTy =
441          FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
442      Assert1(STy && STy->getNumElements() == 2 &&
443              STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
444              STy->getTypeAtIndex(1) == FuncPtrTy,
445              "wrong type for intrinsic global variable", &GV);
446    }
447  }
448
449  visitGlobalValue(GV);
450}
451
452void Verifier::visitGlobalAlias(GlobalAlias &GA) {
453  Assert1(!GA.getName().empty(),
454          "Alias name cannot be empty!", &GA);
455  Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
456          GA.hasWeakLinkage(),
457          "Alias should have external or external weak linkage!", &GA);
458  Assert1(GA.getAliasee(),
459          "Aliasee cannot be NULL!", &GA);
460  Assert1(GA.getType() == GA.getAliasee()->getType(),
461          "Alias and aliasee types should match!", &GA);
462  Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
463
464  if (!isa<GlobalValue>(GA.getAliasee())) {
465    const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
466    Assert1(CE &&
467            (CE->getOpcode() == Instruction::BitCast ||
468             CE->getOpcode() == Instruction::GetElementPtr) &&
469            isa<GlobalValue>(CE->getOperand(0)),
470            "Aliasee should be either GlobalValue or bitcast of GlobalValue",
471            &GA);
472  }
473
474  const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
475  Assert1(Aliasee,
476          "Aliasing chain should end with function or global variable", &GA);
477
478  visitGlobalValue(GA);
479}
480
481void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
482  for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
483    MDNode *MD = NMD.getOperand(i);
484    if (!MD)
485      continue;
486
487    Assert1(!MD->isFunctionLocal(),
488            "Named metadata operand cannot be function local!", MD);
489    visitMDNode(*MD, 0);
490  }
491}
492
493void Verifier::visitMDNode(MDNode &MD, Function *F) {
494  // Only visit each node once.  Metadata can be mutually recursive, so this
495  // avoids infinite recursion here, as well as being an optimization.
496  if (!MDNodes.insert(&MD))
497    return;
498
499  for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
500    Value *Op = MD.getOperand(i);
501    if (!Op)
502      continue;
503    if (isa<Constant>(Op) || isa<MDString>(Op))
504      continue;
505    if (MDNode *N = dyn_cast<MDNode>(Op)) {
506      Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
507              "Global metadata operand cannot be function local!", &MD, N);
508      visitMDNode(*N, F);
509      continue;
510    }
511    Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
512
513    // If this was an instruction, bb, or argument, verify that it is in the
514    // function that we expect.
515    Function *ActualF = 0;
516    if (Instruction *I = dyn_cast<Instruction>(Op))
517      ActualF = I->getParent()->getParent();
518    else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
519      ActualF = BB->getParent();
520    else if (Argument *A = dyn_cast<Argument>(Op))
521      ActualF = A->getParent();
522    assert(ActualF && "Unimplemented function local metadata case!");
523
524    Assert2(ActualF == F, "function-local metadata used in wrong function",
525            &MD, Op);
526  }
527}
528
529void Verifier::visitModuleFlags(Module &M) {
530  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
531  if (!Flags) return;
532
533  // Scan each flag, and track the flags and requirements.
534  DenseMap<MDString*, MDNode*> SeenIDs;
535  SmallVector<MDNode*, 16> Requirements;
536  for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
537    visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
538  }
539
540  // Validate that the requirements in the module are valid.
541  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
542    MDNode *Requirement = Requirements[I];
543    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
544    Value *ReqValue = Requirement->getOperand(1);
545
546    MDNode *Op = SeenIDs.lookup(Flag);
547    if (!Op) {
548      CheckFailed("invalid requirement on flag, flag is not present in module",
549                  Flag);
550      continue;
551    }
552
553    if (Op->getOperand(2) != ReqValue) {
554      CheckFailed(("invalid requirement on flag, "
555                   "flag does not have the required value"),
556                  Flag);
557      continue;
558    }
559  }
560}
561
562void Verifier::visitModuleFlag(MDNode *Op, DenseMap<MDString*, MDNode*>&SeenIDs,
563                               SmallVectorImpl<MDNode*> &Requirements) {
564  // Each module flag should have three arguments, the merge behavior (a
565  // constant int), the flag ID (an MDString), and the value.
566  Assert1(Op->getNumOperands() == 3,
567          "incorrect number of operands in module flag", Op);
568  ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
569  MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
570  Assert1(Behavior,
571          "invalid behavior operand in module flag (expected constant integer)",
572          Op->getOperand(0));
573  unsigned BehaviorValue = Behavior->getZExtValue();
574  Assert1(ID,
575          "invalid ID operand in module flag (expected metadata string)",
576          Op->getOperand(1));
577
578  // Sanity check the values for behaviors with additional requirements.
579  switch (BehaviorValue) {
580  default:
581    Assert1(false,
582            "invalid behavior operand in module flag (unexpected constant)",
583            Op->getOperand(0));
584    break;
585
586  case Module::Error:
587  case Module::Warning:
588  case Module::Override:
589    // These behavior types accept any value.
590    break;
591
592  case Module::Require: {
593    // The value should itself be an MDNode with two operands, a flag ID (an
594    // MDString), and a value.
595    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
596    Assert1(Value && Value->getNumOperands() == 2,
597            "invalid value for 'require' module flag (expected metadata pair)",
598            Op->getOperand(2));
599    Assert1(isa<MDString>(Value->getOperand(0)),
600            ("invalid value for 'require' module flag "
601             "(first value operand should be a string)"),
602            Value->getOperand(0));
603
604    // Append it to the list of requirements, to check once all module flags are
605    // scanned.
606    Requirements.push_back(Value);
607    break;
608  }
609
610  case Module::Append:
611  case Module::AppendUnique: {
612    // These behavior types require the operand be an MDNode.
613    Assert1(isa<MDNode>(Op->getOperand(2)),
614            "invalid value for 'append'-type module flag "
615            "(expected a metadata node)", Op->getOperand(2));
616    break;
617  }
618  }
619
620  // Unless this is a "requires" flag, check the ID is unique.
621  if (BehaviorValue != Module::Require) {
622    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
623    Assert1(Inserted,
624            "module flag identifiers must be unique (or of 'require' type)",
625            ID);
626  }
627}
628
629// VerifyParameterAttrs - Check the given attributes for an argument or return
630// value of the specified type.  The value V is printed in error messages.
631void Verifier::VerifyParameterAttrs(AttributeSet Attrs, uint64_t Idx, Type *Ty,
632                                    bool isReturnValue, const Value *V) {
633  if (!Attrs.hasAttributes(Idx))
634    return;
635
636  Assert1(!Attrs.hasAttribute(Idx, Attribute::NoReturn) &&
637          !Attrs.hasAttribute(Idx, Attribute::NoUnwind) &&
638          !Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
639          !Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
640          !Attrs.hasAttribute(Idx, Attribute::NoInline) &&
641          !Attrs.hasAttribute(Idx, Attribute::AlwaysInline) &&
642          !Attrs.hasAttribute(Idx, Attribute::OptimizeForSize) &&
643          !Attrs.hasAttribute(Idx, Attribute::StackProtect) &&
644          !Attrs.hasAttribute(Idx, Attribute::StackProtectReq) &&
645          !Attrs.hasAttribute(Idx, Attribute::NoRedZone) &&
646          !Attrs.hasAttribute(Idx, Attribute::NoImplicitFloat) &&
647          !Attrs.hasAttribute(Idx, Attribute::Naked) &&
648          !Attrs.hasAttribute(Idx, Attribute::InlineHint) &&
649          !Attrs.hasAttribute(Idx, Attribute::StackAlignment) &&
650          !Attrs.hasAttribute(Idx, Attribute::UWTable) &&
651          !Attrs.hasAttribute(Idx, Attribute::NonLazyBind) &&
652          !Attrs.hasAttribute(Idx, Attribute::ReturnsTwice) &&
653          !Attrs.hasAttribute(Idx, Attribute::SanitizeAddress) &&
654          !Attrs.hasAttribute(Idx, Attribute::SanitizeThread) &&
655          !Attrs.hasAttribute(Idx, Attribute::SanitizeMemory) &&
656          !Attrs.hasAttribute(Idx, Attribute::MinSize) &&
657          !Attrs.hasAttribute(Idx, Attribute::NoBuiltin),
658          "Some attributes in '" + Attrs.getAsString(Idx) +
659          "' only apply to functions!", V);
660
661  if (isReturnValue)
662    Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
663            !Attrs.hasAttribute(Idx, Attribute::Nest) &&
664            !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
665            !Attrs.hasAttribute(Idx, Attribute::NoCapture),
666            "Attribute 'byval', 'nest', 'sret', and 'nocapture' "
667            "do not apply to return values!", V);
668
669  // Check for mutually incompatible attributes.
670  Assert1(!((Attrs.hasAttribute(Idx, Attribute::ByVal) &&
671             Attrs.hasAttribute(Idx, Attribute::Nest)) ||
672            (Attrs.hasAttribute(Idx, Attribute::ByVal) &&
673             Attrs.hasAttribute(Idx, Attribute::StructRet)) ||
674            (Attrs.hasAttribute(Idx, Attribute::Nest) &&
675             Attrs.hasAttribute(Idx, Attribute::StructRet))), "Attributes "
676          "'byval, nest, and sret' are incompatible!", V);
677
678  Assert1(!((Attrs.hasAttribute(Idx, Attribute::ByVal) &&
679             Attrs.hasAttribute(Idx, Attribute::Nest)) ||
680            (Attrs.hasAttribute(Idx, Attribute::ByVal) &&
681             Attrs.hasAttribute(Idx, Attribute::InReg)) ||
682            (Attrs.hasAttribute(Idx, Attribute::Nest) &&
683             Attrs.hasAttribute(Idx, Attribute::InReg))), "Attributes "
684          "'byval, nest, and inreg' are incompatible!", V);
685
686  Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
687            Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
688          "'zeroext and signext' are incompatible!", V);
689
690  Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
691            Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
692          "'readnone and readonly' are incompatible!", V);
693
694  Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
695            Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
696          "'noinline and alwaysinline' are incompatible!", V);
697
698  Assert1(!AttrBuilder(Attrs, Idx).
699            hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
700          "Wrong types for attribute: " +
701          AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
702
703  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
704    Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) ||
705            PTy->getElementType()->isSized(),
706            "Attribute 'byval' does not support unsized types!", V);
707  else
708    Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
709            "Attribute 'byval' only applies to parameters with pointer type!",
710            V);
711}
712
713// VerifyFunctionAttrs - Check parameter attributes against a function type.
714// The value V is printed in error messages.
715void Verifier::VerifyFunctionAttrs(FunctionType *FT,
716                                   const AttributeSet &Attrs,
717                                   const Value *V) {
718  if (Attrs.isEmpty())
719    return;
720
721  bool SawNest = false;
722
723  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
724    unsigned Index = Attrs.getSlotIndex(i);
725
726    Type *Ty;
727    if (Index == 0)
728      Ty = FT->getReturnType();
729    else if (Index-1 < FT->getNumParams())
730      Ty = FT->getParamType(Index-1);
731    else
732      break;  // VarArgs attributes, verified elsewhere.
733
734    VerifyParameterAttrs(Attrs, Index, Ty, Index == 0, V);
735
736    if (Attrs.hasAttribute(i, Attribute::Nest)) {
737      Assert1(!SawNest, "More than one parameter has attribute nest!", V);
738      SawNest = true;
739    }
740
741    if (Attrs.hasAttribute(Index, Attribute::StructRet))
742      Assert1(Index == 1, "Attribute sret is not on first parameter!", V);
743  }
744
745  if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
746    return;
747
748  AttrBuilder NotFn(Attrs, AttributeSet::FunctionIndex);
749  NotFn.removeFunctionOnlyAttrs();
750  Assert1(NotFn.empty(), "Attributes '" +
751          AttributeSet::get(V->getContext(),
752                            AttributeSet::FunctionIndex,
753                            NotFn).getAsString(AttributeSet::FunctionIndex) +
754          "' do not apply to the function!", V);
755
756  // Check for mutually incompatible attributes.
757  Assert1(!((Attrs.hasAttribute(AttributeSet::FunctionIndex,
758                                Attribute::ByVal) &&
759             Attrs.hasAttribute(AttributeSet::FunctionIndex,
760                                Attribute::Nest)) ||
761            (Attrs.hasAttribute(AttributeSet::FunctionIndex,
762                                Attribute::ByVal) &&
763             Attrs.hasAttribute(AttributeSet::FunctionIndex,
764                                Attribute::StructRet)) ||
765            (Attrs.hasAttribute(AttributeSet::FunctionIndex,
766                                Attribute::Nest) &&
767             Attrs.hasAttribute(AttributeSet::FunctionIndex,
768                                Attribute::StructRet))),
769          "Attributes 'byval, nest, and sret' are incompatible!", V);
770
771  Assert1(!((Attrs.hasAttribute(AttributeSet::FunctionIndex,
772                                Attribute::ByVal) &&
773             Attrs.hasAttribute(AttributeSet::FunctionIndex,
774                                Attribute::Nest)) ||
775            (Attrs.hasAttribute(AttributeSet::FunctionIndex,
776                                Attribute::ByVal) &&
777             Attrs.hasAttribute(AttributeSet::FunctionIndex,
778                                Attribute::InReg)) ||
779            (Attrs.hasAttribute(AttributeSet::FunctionIndex,
780                                Attribute::Nest) &&
781             Attrs.hasAttribute(AttributeSet::FunctionIndex,
782                                Attribute::InReg))),
783          "Attributes 'byval, nest, and inreg' are incompatible!", V);
784
785  Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
786                               Attribute::ZExt) &&
787            Attrs.hasAttribute(AttributeSet::FunctionIndex,
788                               Attribute::SExt)),
789          "Attributes 'zeroext and signext' are incompatible!", V);
790
791  Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
792                               Attribute::ReadNone) &&
793            Attrs.hasAttribute(AttributeSet::FunctionIndex,
794                               Attribute::ReadOnly)),
795          "Attributes 'readnone and readonly' are incompatible!", V);
796
797  Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
798                               Attribute::NoInline) &&
799            Attrs.hasAttribute(AttributeSet::FunctionIndex,
800                               Attribute::AlwaysInline)),
801          "Attributes 'noinline and alwaysinline' are incompatible!", V);
802}
803
804static bool VerifyAttributeCount(const AttributeSet &Attrs, unsigned Params) {
805  if (Attrs.getNumSlots() == 0)
806    return true;
807
808  unsigned LastSlot = Attrs.getNumSlots() - 1;
809  unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
810  if (LastIndex <= Params
811      || (LastIndex == AttributeSet::FunctionIndex
812          && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
813    return true;
814
815  return false;
816}
817
818// visitFunction - Verify that a function is ok.
819//
820void Verifier::visitFunction(Function &F) {
821  // Check function arguments.
822  FunctionType *FT = F.getFunctionType();
823  unsigned NumArgs = F.arg_size();
824
825  Assert1(Context == &F.getContext(),
826          "Function context does not match Module context!", &F);
827
828  Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
829  Assert2(FT->getNumParams() == NumArgs,
830          "# formal arguments must match # of arguments for function type!",
831          &F, FT);
832  Assert1(F.getReturnType()->isFirstClassType() ||
833          F.getReturnType()->isVoidTy() ||
834          F.getReturnType()->isStructTy(),
835          "Functions cannot return aggregate values!", &F);
836
837  Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
838          "Invalid struct return type!", &F);
839
840  const AttributeSet &Attrs = F.getAttributes();
841
842  Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
843          "Attribute after last parameter!", &F);
844
845  // Check function attributes.
846  VerifyFunctionAttrs(FT, Attrs, &F);
847
848  // Check that this function meets the restrictions on this calling convention.
849  switch (F.getCallingConv()) {
850  default:
851    break;
852  case CallingConv::C:
853    break;
854  case CallingConv::Fast:
855  case CallingConv::Cold:
856  case CallingConv::X86_FastCall:
857  case CallingConv::X86_ThisCall:
858  case CallingConv::Intel_OCL_BI:
859  case CallingConv::PTX_Kernel:
860  case CallingConv::PTX_Device:
861    Assert1(!F.isVarArg(),
862            "Varargs functions must have C calling conventions!", &F);
863    break;
864  }
865
866  bool isLLVMdotName = F.getName().size() >= 5 &&
867                       F.getName().substr(0, 5) == "llvm.";
868
869  // Check that the argument values match the function type for this function...
870  unsigned i = 0;
871  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
872       I != E; ++I, ++i) {
873    Assert2(I->getType() == FT->getParamType(i),
874            "Argument value does not match function argument type!",
875            I, FT->getParamType(i));
876    Assert1(I->getType()->isFirstClassType(),
877            "Function arguments must have first-class types!", I);
878    if (!isLLVMdotName)
879      Assert2(!I->getType()->isMetadataTy(),
880              "Function takes metadata but isn't an intrinsic", I, &F);
881  }
882
883  if (F.isMaterializable()) {
884    // Function has a body somewhere we can't see.
885  } else if (F.isDeclaration()) {
886    Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
887            F.hasExternalWeakLinkage(),
888            "invalid linkage type for function declaration", &F);
889  } else {
890    // Verify that this function (which has a body) is not named "llvm.*".  It
891    // is not legal to define intrinsics.
892    Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
893
894    // Check the entry node
895    BasicBlock *Entry = &F.getEntryBlock();
896    Assert1(pred_begin(Entry) == pred_end(Entry),
897            "Entry block to function must not have predecessors!", Entry);
898
899    // The address of the entry block cannot be taken, unless it is dead.
900    if (Entry->hasAddressTaken()) {
901      Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
902              "blockaddress may not be used with the entry block!", Entry);
903    }
904  }
905
906  // If this function is actually an intrinsic, verify that it is only used in
907  // direct call/invokes, never having its "address taken".
908  if (F.getIntrinsicID()) {
909    const User *U;
910    if (F.hasAddressTaken(&U))
911      Assert1(0, "Invalid user of intrinsic instruction!", U);
912  }
913}
914
915// verifyBasicBlock - Verify that a basic block is well formed...
916//
917void Verifier::visitBasicBlock(BasicBlock &BB) {
918  InstsInThisBlock.clear();
919
920  // Ensure that basic blocks have terminators!
921  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
922
923  // Check constraints that this basic block imposes on all of the PHI nodes in
924  // it.
925  if (isa<PHINode>(BB.front())) {
926    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
927    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
928    std::sort(Preds.begin(), Preds.end());
929    PHINode *PN;
930    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
931      // Ensure that PHI nodes have at least one entry!
932      Assert1(PN->getNumIncomingValues() != 0,
933              "PHI nodes must have at least one entry.  If the block is dead, "
934              "the PHI should be removed!", PN);
935      Assert1(PN->getNumIncomingValues() == Preds.size(),
936              "PHINode should have one entry for each predecessor of its "
937              "parent basic block!", PN);
938
939      // Get and sort all incoming values in the PHI node...
940      Values.clear();
941      Values.reserve(PN->getNumIncomingValues());
942      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
943        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
944                                        PN->getIncomingValue(i)));
945      std::sort(Values.begin(), Values.end());
946
947      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
948        // Check to make sure that if there is more than one entry for a
949        // particular basic block in this PHI node, that the incoming values are
950        // all identical.
951        //
952        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
953                Values[i].second == Values[i-1].second,
954                "PHI node has multiple entries for the same basic block with "
955                "different incoming values!", PN, Values[i].first,
956                Values[i].second, Values[i-1].second);
957
958        // Check to make sure that the predecessors and PHI node entries are
959        // matched up.
960        Assert3(Values[i].first == Preds[i],
961                "PHI node entries do not match predecessors!", PN,
962                Values[i].first, Preds[i]);
963      }
964    }
965  }
966}
967
968void Verifier::visitTerminatorInst(TerminatorInst &I) {
969  // Ensure that terminators only exist at the end of the basic block.
970  Assert1(&I == I.getParent()->getTerminator(),
971          "Terminator found in the middle of a basic block!", I.getParent());
972  visitInstruction(I);
973}
974
975void Verifier::visitBranchInst(BranchInst &BI) {
976  if (BI.isConditional()) {
977    Assert2(BI.getCondition()->getType()->isIntegerTy(1),
978            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
979  }
980  visitTerminatorInst(BI);
981}
982
983void Verifier::visitReturnInst(ReturnInst &RI) {
984  Function *F = RI.getParent()->getParent();
985  unsigned N = RI.getNumOperands();
986  if (F->getReturnType()->isVoidTy())
987    Assert2(N == 0,
988            "Found return instr that returns non-void in Function of void "
989            "return type!", &RI, F->getReturnType());
990  else
991    Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
992            "Function return type does not match operand "
993            "type of return inst!", &RI, F->getReturnType());
994
995  // Check to make sure that the return value has necessary properties for
996  // terminators...
997  visitTerminatorInst(RI);
998}
999
1000void Verifier::visitSwitchInst(SwitchInst &SI) {
1001  // Check to make sure that all of the constants in the switch instruction
1002  // have the same type as the switched-on value.
1003  Type *SwitchTy = SI.getCondition()->getType();
1004  IntegerType *IntTy = cast<IntegerType>(SwitchTy);
1005  IntegersSubsetToBB Mapping;
1006  std::map<IntegersSubset::Range, unsigned> RangeSetMap;
1007  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1008    IntegersSubset CaseRanges = i.getCaseValueEx();
1009    for (unsigned ri = 0, rie = CaseRanges.getNumItems(); ri < rie; ++ri) {
1010      IntegersSubset::Range r = CaseRanges.getItem(ri);
1011      Assert1(((const APInt&)r.getLow()).getBitWidth() == IntTy->getBitWidth(),
1012              "Switch constants must all be same type as switch value!", &SI);
1013      Assert1(((const APInt&)r.getHigh()).getBitWidth() == IntTy->getBitWidth(),
1014              "Switch constants must all be same type as switch value!", &SI);
1015      Mapping.add(r);
1016      RangeSetMap[r] = i.getCaseIndex();
1017    }
1018  }
1019
1020  IntegersSubsetToBB::RangeIterator errItem;
1021  if (!Mapping.verify(errItem)) {
1022    unsigned CaseIndex = RangeSetMap[errItem->first];
1023    SwitchInst::CaseIt i(&SI, CaseIndex);
1024    Assert2(false, "Duplicate integer as switch case", &SI, i.getCaseValueEx());
1025  }
1026
1027  visitTerminatorInst(SI);
1028}
1029
1030void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1031  Assert1(BI.getAddress()->getType()->isPointerTy(),
1032          "Indirectbr operand must have pointer type!", &BI);
1033  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1034    Assert1(BI.getDestination(i)->getType()->isLabelTy(),
1035            "Indirectbr destinations must all have pointer type!", &BI);
1036
1037  visitTerminatorInst(BI);
1038}
1039
1040void Verifier::visitSelectInst(SelectInst &SI) {
1041  Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
1042                                          SI.getOperand(2)),
1043          "Invalid operands for select instruction!", &SI);
1044
1045  Assert1(SI.getTrueValue()->getType() == SI.getType(),
1046          "Select values must have same type as select instruction!", &SI);
1047  visitInstruction(SI);
1048}
1049
1050/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1051/// a pass, if any exist, it's an error.
1052///
1053void Verifier::visitUserOp1(Instruction &I) {
1054  Assert1(0, "User-defined operators should not live outside of a pass!", &I);
1055}
1056
1057void Verifier::visitTruncInst(TruncInst &I) {
1058  // Get the source and destination types
1059  Type *SrcTy = I.getOperand(0)->getType();
1060  Type *DestTy = I.getType();
1061
1062  // Get the size of the types in bits, we'll need this later
1063  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1064  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1065
1066  Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
1067  Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
1068  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1069          "trunc source and destination must both be a vector or neither", &I);
1070  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
1071
1072  visitInstruction(I);
1073}
1074
1075void Verifier::visitZExtInst(ZExtInst &I) {
1076  // Get the source and destination types
1077  Type *SrcTy = I.getOperand(0)->getType();
1078  Type *DestTy = I.getType();
1079
1080  // Get the size of the types in bits, we'll need this later
1081  Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
1082  Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
1083  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1084          "zext source and destination must both be a vector or neither", &I);
1085  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1086  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1087
1088  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
1089
1090  visitInstruction(I);
1091}
1092
1093void Verifier::visitSExtInst(SExtInst &I) {
1094  // Get the source and destination types
1095  Type *SrcTy = I.getOperand(0)->getType();
1096  Type *DestTy = I.getType();
1097
1098  // Get the size of the types in bits, we'll need this later
1099  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1100  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1101
1102  Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
1103  Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
1104  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1105          "sext source and destination must both be a vector or neither", &I);
1106  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
1107
1108  visitInstruction(I);
1109}
1110
1111void Verifier::visitFPTruncInst(FPTruncInst &I) {
1112  // Get the source and destination types
1113  Type *SrcTy = I.getOperand(0)->getType();
1114  Type *DestTy = I.getType();
1115  // Get the size of the types in bits, we'll need this later
1116  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1117  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1118
1119  Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
1120  Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
1121  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1122          "fptrunc source and destination must both be a vector or neither",&I);
1123  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
1124
1125  visitInstruction(I);
1126}
1127
1128void Verifier::visitFPExtInst(FPExtInst &I) {
1129  // Get the source and destination types
1130  Type *SrcTy = I.getOperand(0)->getType();
1131  Type *DestTy = I.getType();
1132
1133  // Get the size of the types in bits, we'll need this later
1134  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1135  unsigned DestBitSize = DestTy->getScalarSizeInBits();
1136
1137  Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
1138  Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
1139  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1140          "fpext source and destination must both be a vector or neither", &I);
1141  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
1142
1143  visitInstruction(I);
1144}
1145
1146void Verifier::visitUIToFPInst(UIToFPInst &I) {
1147  // Get the source and destination types
1148  Type *SrcTy = I.getOperand(0)->getType();
1149  Type *DestTy = I.getType();
1150
1151  bool SrcVec = SrcTy->isVectorTy();
1152  bool DstVec = DestTy->isVectorTy();
1153
1154  Assert1(SrcVec == DstVec,
1155          "UIToFP source and dest must both be vector or scalar", &I);
1156  Assert1(SrcTy->isIntOrIntVectorTy(),
1157          "UIToFP source must be integer or integer vector", &I);
1158  Assert1(DestTy->isFPOrFPVectorTy(),
1159          "UIToFP result must be FP or FP vector", &I);
1160
1161  if (SrcVec && DstVec)
1162    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1163            cast<VectorType>(DestTy)->getNumElements(),
1164            "UIToFP source and dest vector length mismatch", &I);
1165
1166  visitInstruction(I);
1167}
1168
1169void Verifier::visitSIToFPInst(SIToFPInst &I) {
1170  // Get the source and destination types
1171  Type *SrcTy = I.getOperand(0)->getType();
1172  Type *DestTy = I.getType();
1173
1174  bool SrcVec = SrcTy->isVectorTy();
1175  bool DstVec = DestTy->isVectorTy();
1176
1177  Assert1(SrcVec == DstVec,
1178          "SIToFP source and dest must both be vector or scalar", &I);
1179  Assert1(SrcTy->isIntOrIntVectorTy(),
1180          "SIToFP source must be integer or integer vector", &I);
1181  Assert1(DestTy->isFPOrFPVectorTy(),
1182          "SIToFP result must be FP or FP vector", &I);
1183
1184  if (SrcVec && DstVec)
1185    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1186            cast<VectorType>(DestTy)->getNumElements(),
1187            "SIToFP source and dest vector length mismatch", &I);
1188
1189  visitInstruction(I);
1190}
1191
1192void Verifier::visitFPToUIInst(FPToUIInst &I) {
1193  // Get the source and destination types
1194  Type *SrcTy = I.getOperand(0)->getType();
1195  Type *DestTy = I.getType();
1196
1197  bool SrcVec = SrcTy->isVectorTy();
1198  bool DstVec = DestTy->isVectorTy();
1199
1200  Assert1(SrcVec == DstVec,
1201          "FPToUI source and dest must both be vector or scalar", &I);
1202  Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1203          &I);
1204  Assert1(DestTy->isIntOrIntVectorTy(),
1205          "FPToUI result must be integer or integer vector", &I);
1206
1207  if (SrcVec && DstVec)
1208    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1209            cast<VectorType>(DestTy)->getNumElements(),
1210            "FPToUI source and dest vector length mismatch", &I);
1211
1212  visitInstruction(I);
1213}
1214
1215void Verifier::visitFPToSIInst(FPToSIInst &I) {
1216  // Get the source and destination types
1217  Type *SrcTy = I.getOperand(0)->getType();
1218  Type *DestTy = I.getType();
1219
1220  bool SrcVec = SrcTy->isVectorTy();
1221  bool DstVec = DestTy->isVectorTy();
1222
1223  Assert1(SrcVec == DstVec,
1224          "FPToSI source and dest must both be vector or scalar", &I);
1225  Assert1(SrcTy->isFPOrFPVectorTy(),
1226          "FPToSI source must be FP or FP vector", &I);
1227  Assert1(DestTy->isIntOrIntVectorTy(),
1228          "FPToSI result must be integer or integer vector", &I);
1229
1230  if (SrcVec && DstVec)
1231    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1232            cast<VectorType>(DestTy)->getNumElements(),
1233            "FPToSI source and dest vector length mismatch", &I);
1234
1235  visitInstruction(I);
1236}
1237
1238void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1239  // Get the source and destination types
1240  Type *SrcTy = I.getOperand(0)->getType();
1241  Type *DestTy = I.getType();
1242
1243  Assert1(SrcTy->getScalarType()->isPointerTy(),
1244          "PtrToInt source must be pointer", &I);
1245  Assert1(DestTy->getScalarType()->isIntegerTy(),
1246          "PtrToInt result must be integral", &I);
1247  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1248          "PtrToInt type mismatch", &I);
1249
1250  if (SrcTy->isVectorTy()) {
1251    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1252    VectorType *VDest = dyn_cast<VectorType>(DestTy);
1253    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1254          "PtrToInt Vector width mismatch", &I);
1255  }
1256
1257  visitInstruction(I);
1258}
1259
1260void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1261  // Get the source and destination types
1262  Type *SrcTy = I.getOperand(0)->getType();
1263  Type *DestTy = I.getType();
1264
1265  Assert1(SrcTy->getScalarType()->isIntegerTy(),
1266          "IntToPtr source must be an integral", &I);
1267  Assert1(DestTy->getScalarType()->isPointerTy(),
1268          "IntToPtr result must be a pointer",&I);
1269  Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1270          "IntToPtr type mismatch", &I);
1271  if (SrcTy->isVectorTy()) {
1272    VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1273    VectorType *VDest = dyn_cast<VectorType>(DestTy);
1274    Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1275          "IntToPtr Vector width mismatch", &I);
1276  }
1277  visitInstruction(I);
1278}
1279
1280void Verifier::visitBitCastInst(BitCastInst &I) {
1281  // Get the source and destination types
1282  Type *SrcTy = I.getOperand(0)->getType();
1283  Type *DestTy = I.getType();
1284
1285  // Get the size of the types in bits, we'll need this later
1286  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1287  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
1288
1289  // BitCast implies a no-op cast of type only. No bits change.
1290  // However, you can't cast pointers to anything but pointers.
1291  Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
1292          "Bitcast requires both operands to be pointer or neither", &I);
1293  Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
1294
1295  // Disallow aggregates.
1296  Assert1(!SrcTy->isAggregateType(),
1297          "Bitcast operand must not be aggregate", &I);
1298  Assert1(!DestTy->isAggregateType(),
1299          "Bitcast type must not be aggregate", &I);
1300
1301  visitInstruction(I);
1302}
1303
1304/// visitPHINode - Ensure that a PHI node is well formed.
1305///
1306void Verifier::visitPHINode(PHINode &PN) {
1307  // Ensure that the PHI nodes are all grouped together at the top of the block.
1308  // This can be tested by checking whether the instruction before this is
1309  // either nonexistent (because this is begin()) or is a PHI node.  If not,
1310  // then there is some other instruction before a PHI.
1311  Assert2(&PN == &PN.getParent()->front() ||
1312          isa<PHINode>(--BasicBlock::iterator(&PN)),
1313          "PHI nodes not grouped at top of basic block!",
1314          &PN, PN.getParent());
1315
1316  // Check that all of the values of the PHI node have the same type as the
1317  // result, and that the incoming blocks are really basic blocks.
1318  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1319    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1320            "PHI node operands are not the same type as the result!", &PN);
1321  }
1322
1323  // All other PHI node constraints are checked in the visitBasicBlock method.
1324
1325  visitInstruction(PN);
1326}
1327
1328void Verifier::VerifyCallSite(CallSite CS) {
1329  Instruction *I = CS.getInstruction();
1330
1331  Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1332          "Called function must be a pointer!", I);
1333  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1334
1335  Assert1(FPTy->getElementType()->isFunctionTy(),
1336          "Called function is not pointer to function type!", I);
1337  FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1338
1339  // Verify that the correct number of arguments are being passed
1340  if (FTy->isVarArg())
1341    Assert1(CS.arg_size() >= FTy->getNumParams(),
1342            "Called function requires more parameters than were provided!",I);
1343  else
1344    Assert1(CS.arg_size() == FTy->getNumParams(),
1345            "Incorrect number of arguments passed to called function!", I);
1346
1347  // Verify that all arguments to the call match the function type.
1348  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1349    Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1350            "Call parameter type does not match function signature!",
1351            CS.getArgument(i), FTy->getParamType(i), I);
1352
1353  const AttributeSet &Attrs = CS.getAttributes();
1354
1355  Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1356          "Attribute after last parameter!", I);
1357
1358  // Verify call attributes.
1359  VerifyFunctionAttrs(FTy, Attrs, I);
1360
1361  if (FTy->isVarArg())
1362    // Check attributes on the varargs part.
1363    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1364      VerifyParameterAttrs(Attrs, Idx, CS.getArgument(Idx-1)->getType(),
1365                           false, I);
1366
1367      Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
1368              "Attribute 'sret' cannot be used for vararg call arguments!", I);
1369    }
1370
1371  // Verify that there's no metadata unless it's a direct call to an intrinsic.
1372  if (CS.getCalledFunction() == 0 ||
1373      !CS.getCalledFunction()->getName().startswith("llvm.")) {
1374    for (FunctionType::param_iterator PI = FTy->param_begin(),
1375           PE = FTy->param_end(); PI != PE; ++PI)
1376      Assert1(!(*PI)->isMetadataTy(),
1377              "Function has metadata parameter but isn't an intrinsic", I);
1378  }
1379
1380  visitInstruction(*I);
1381}
1382
1383void Verifier::visitCallInst(CallInst &CI) {
1384  VerifyCallSite(&CI);
1385
1386  if (Function *F = CI.getCalledFunction())
1387    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1388      visitIntrinsicFunctionCall(ID, CI);
1389}
1390
1391void Verifier::visitInvokeInst(InvokeInst &II) {
1392  VerifyCallSite(&II);
1393
1394  // Verify that there is a landingpad instruction as the first non-PHI
1395  // instruction of the 'unwind' destination.
1396  Assert1(II.getUnwindDest()->isLandingPad(),
1397          "The unwind destination does not have a landingpad instruction!",&II);
1398
1399  visitTerminatorInst(II);
1400}
1401
1402/// visitBinaryOperator - Check that both arguments to the binary operator are
1403/// of the same type!
1404///
1405void Verifier::visitBinaryOperator(BinaryOperator &B) {
1406  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1407          "Both operands to a binary operator are not of the same type!", &B);
1408
1409  switch (B.getOpcode()) {
1410  // Check that integer arithmetic operators are only used with
1411  // integral operands.
1412  case Instruction::Add:
1413  case Instruction::Sub:
1414  case Instruction::Mul:
1415  case Instruction::SDiv:
1416  case Instruction::UDiv:
1417  case Instruction::SRem:
1418  case Instruction::URem:
1419    Assert1(B.getType()->isIntOrIntVectorTy(),
1420            "Integer arithmetic operators only work with integral types!", &B);
1421    Assert1(B.getType() == B.getOperand(0)->getType(),
1422            "Integer arithmetic operators must have same type "
1423            "for operands and result!", &B);
1424    break;
1425  // Check that floating-point arithmetic operators are only used with
1426  // floating-point operands.
1427  case Instruction::FAdd:
1428  case Instruction::FSub:
1429  case Instruction::FMul:
1430  case Instruction::FDiv:
1431  case Instruction::FRem:
1432    Assert1(B.getType()->isFPOrFPVectorTy(),
1433            "Floating-point arithmetic operators only work with "
1434            "floating-point types!", &B);
1435    Assert1(B.getType() == B.getOperand(0)->getType(),
1436            "Floating-point arithmetic operators must have same type "
1437            "for operands and result!", &B);
1438    break;
1439  // Check that logical operators are only used with integral operands.
1440  case Instruction::And:
1441  case Instruction::Or:
1442  case Instruction::Xor:
1443    Assert1(B.getType()->isIntOrIntVectorTy(),
1444            "Logical operators only work with integral types!", &B);
1445    Assert1(B.getType() == B.getOperand(0)->getType(),
1446            "Logical operators must have same type for operands and result!",
1447            &B);
1448    break;
1449  case Instruction::Shl:
1450  case Instruction::LShr:
1451  case Instruction::AShr:
1452    Assert1(B.getType()->isIntOrIntVectorTy(),
1453            "Shifts only work with integral types!", &B);
1454    Assert1(B.getType() == B.getOperand(0)->getType(),
1455            "Shift return type must be same as operands!", &B);
1456    break;
1457  default:
1458    llvm_unreachable("Unknown BinaryOperator opcode!");
1459  }
1460
1461  visitInstruction(B);
1462}
1463
1464void Verifier::visitICmpInst(ICmpInst &IC) {
1465  // Check that the operands are the same type
1466  Type *Op0Ty = IC.getOperand(0)->getType();
1467  Type *Op1Ty = IC.getOperand(1)->getType();
1468  Assert1(Op0Ty == Op1Ty,
1469          "Both operands to ICmp instruction are not of the same type!", &IC);
1470  // Check that the operands are the right type
1471  Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
1472          "Invalid operand types for ICmp instruction", &IC);
1473  // Check that the predicate is valid.
1474  Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1475          IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1476          "Invalid predicate in ICmp instruction!", &IC);
1477
1478  visitInstruction(IC);
1479}
1480
1481void Verifier::visitFCmpInst(FCmpInst &FC) {
1482  // Check that the operands are the same type
1483  Type *Op0Ty = FC.getOperand(0)->getType();
1484  Type *Op1Ty = FC.getOperand(1)->getType();
1485  Assert1(Op0Ty == Op1Ty,
1486          "Both operands to FCmp instruction are not of the same type!", &FC);
1487  // Check that the operands are the right type
1488  Assert1(Op0Ty->isFPOrFPVectorTy(),
1489          "Invalid operand types for FCmp instruction", &FC);
1490  // Check that the predicate is valid.
1491  Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1492          FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1493          "Invalid predicate in FCmp instruction!", &FC);
1494
1495  visitInstruction(FC);
1496}
1497
1498void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1499  Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1500                                              EI.getOperand(1)),
1501          "Invalid extractelement operands!", &EI);
1502  visitInstruction(EI);
1503}
1504
1505void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1506  Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1507                                             IE.getOperand(1),
1508                                             IE.getOperand(2)),
1509          "Invalid insertelement operands!", &IE);
1510  visitInstruction(IE);
1511}
1512
1513void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1514  Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1515                                             SV.getOperand(2)),
1516          "Invalid shufflevector operands!", &SV);
1517  visitInstruction(SV);
1518}
1519
1520void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1521  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
1522
1523  Assert1(isa<PointerType>(TargetTy),
1524    "GEP base pointer is not a vector or a vector of pointers", &GEP);
1525  Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
1526          "GEP into unsized type!", &GEP);
1527  Assert1(GEP.getPointerOperandType()->isVectorTy() ==
1528          GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
1529          &GEP);
1530
1531  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1532  Type *ElTy =
1533    GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
1534  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1535
1536  Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
1537          cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
1538          == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
1539
1540  if (GEP.getPointerOperandType()->isVectorTy()) {
1541    // Additional checks for vector GEPs.
1542    unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
1543    Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
1544            "Vector GEP result width doesn't match operand's", &GEP);
1545    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1546      Type *IndexTy = Idxs[i]->getType();
1547      Assert1(IndexTy->isVectorTy(),
1548              "Vector GEP must have vector indices!", &GEP);
1549      unsigned IndexWidth = IndexTy->getVectorNumElements();
1550      Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
1551    }
1552  }
1553  visitInstruction(GEP);
1554}
1555
1556static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1557  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1558}
1559
1560void Verifier::visitLoadInst(LoadInst &LI) {
1561  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1562  Assert1(PTy, "Load operand must be a pointer.", &LI);
1563  Type *ElTy = PTy->getElementType();
1564  Assert2(ElTy == LI.getType(),
1565          "Load result type does not match pointer operand type!", &LI, ElTy);
1566  if (LI.isAtomic()) {
1567    Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
1568            "Load cannot have Release ordering", &LI);
1569    Assert1(LI.getAlignment() != 0,
1570            "Atomic load must specify explicit alignment", &LI);
1571    if (!ElTy->isPointerTy()) {
1572      Assert2(ElTy->isIntegerTy(),
1573              "atomic store operand must have integer type!",
1574              &LI, ElTy);
1575      unsigned Size = ElTy->getPrimitiveSizeInBits();
1576      Assert2(Size >= 8 && !(Size & (Size - 1)),
1577              "atomic store operand must be power-of-two byte-sized integer",
1578              &LI, ElTy);
1579    }
1580  } else {
1581    Assert1(LI.getSynchScope() == CrossThread,
1582            "Non-atomic load cannot have SynchronizationScope specified", &LI);
1583  }
1584
1585  if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
1586    unsigned NumOperands = Range->getNumOperands();
1587    Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
1588    unsigned NumRanges = NumOperands / 2;
1589    Assert1(NumRanges >= 1, "It should have at least one range!", Range);
1590
1591    ConstantRange LastRange(1); // Dummy initial value
1592    for (unsigned i = 0; i < NumRanges; ++i) {
1593      ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
1594      Assert1(Low, "The lower limit must be an integer!", Low);
1595      ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
1596      Assert1(High, "The upper limit must be an integer!", High);
1597      Assert1(High->getType() == Low->getType() &&
1598              High->getType() == ElTy, "Range types must match load type!",
1599              &LI);
1600
1601      APInt HighV = High->getValue();
1602      APInt LowV = Low->getValue();
1603      ConstantRange CurRange(LowV, HighV);
1604      Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
1605              "Range must not be empty!", Range);
1606      if (i != 0) {
1607        Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
1608                "Intervals are overlapping", Range);
1609        Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
1610                Range);
1611        Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
1612                Range);
1613      }
1614      LastRange = ConstantRange(LowV, HighV);
1615    }
1616    if (NumRanges > 2) {
1617      APInt FirstLow =
1618        dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
1619      APInt FirstHigh =
1620        dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
1621      ConstantRange FirstRange(FirstLow, FirstHigh);
1622      Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
1623              "Intervals are overlapping", Range);
1624      Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
1625              Range);
1626    }
1627
1628
1629  }
1630
1631  visitInstruction(LI);
1632}
1633
1634void Verifier::visitStoreInst(StoreInst &SI) {
1635  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1636  Assert1(PTy, "Store operand must be a pointer.", &SI);
1637  Type *ElTy = PTy->getElementType();
1638  Assert2(ElTy == SI.getOperand(0)->getType(),
1639          "Stored value type does not match pointer operand type!",
1640          &SI, ElTy);
1641  if (SI.isAtomic()) {
1642    Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
1643            "Store cannot have Acquire ordering", &SI);
1644    Assert1(SI.getAlignment() != 0,
1645            "Atomic store must specify explicit alignment", &SI);
1646    if (!ElTy->isPointerTy()) {
1647      Assert2(ElTy->isIntegerTy(),
1648              "atomic store operand must have integer type!",
1649              &SI, ElTy);
1650      unsigned Size = ElTy->getPrimitiveSizeInBits();
1651      Assert2(Size >= 8 && !(Size & (Size - 1)),
1652              "atomic store operand must be power-of-two byte-sized integer",
1653              &SI, ElTy);
1654    }
1655  } else {
1656    Assert1(SI.getSynchScope() == CrossThread,
1657            "Non-atomic store cannot have SynchronizationScope specified", &SI);
1658  }
1659  visitInstruction(SI);
1660}
1661
1662void Verifier::visitAllocaInst(AllocaInst &AI) {
1663  PointerType *PTy = AI.getType();
1664  Assert1(PTy->getAddressSpace() == 0,
1665          "Allocation instruction pointer not in the generic address space!",
1666          &AI);
1667  Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
1668          &AI);
1669  Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1670          "Alloca array size must have integer type", &AI);
1671  visitInstruction(AI);
1672}
1673
1674void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
1675  Assert1(CXI.getOrdering() != NotAtomic,
1676          "cmpxchg instructions must be atomic.", &CXI);
1677  Assert1(CXI.getOrdering() != Unordered,
1678          "cmpxchg instructions cannot be unordered.", &CXI);
1679  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
1680  Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
1681  Type *ElTy = PTy->getElementType();
1682  Assert2(ElTy->isIntegerTy(),
1683          "cmpxchg operand must have integer type!",
1684          &CXI, ElTy);
1685  unsigned Size = ElTy->getPrimitiveSizeInBits();
1686  Assert2(Size >= 8 && !(Size & (Size - 1)),
1687          "cmpxchg operand must be power-of-two byte-sized integer",
1688          &CXI, ElTy);
1689  Assert2(ElTy == CXI.getOperand(1)->getType(),
1690          "Expected value type does not match pointer operand type!",
1691          &CXI, ElTy);
1692  Assert2(ElTy == CXI.getOperand(2)->getType(),
1693          "Stored value type does not match pointer operand type!",
1694          &CXI, ElTy);
1695  visitInstruction(CXI);
1696}
1697
1698void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
1699  Assert1(RMWI.getOrdering() != NotAtomic,
1700          "atomicrmw instructions must be atomic.", &RMWI);
1701  Assert1(RMWI.getOrdering() != Unordered,
1702          "atomicrmw instructions cannot be unordered.", &RMWI);
1703  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
1704  Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
1705  Type *ElTy = PTy->getElementType();
1706  Assert2(ElTy->isIntegerTy(),
1707          "atomicrmw operand must have integer type!",
1708          &RMWI, ElTy);
1709  unsigned Size = ElTy->getPrimitiveSizeInBits();
1710  Assert2(Size >= 8 && !(Size & (Size - 1)),
1711          "atomicrmw operand must be power-of-two byte-sized integer",
1712          &RMWI, ElTy);
1713  Assert2(ElTy == RMWI.getOperand(1)->getType(),
1714          "Argument value type does not match pointer operand type!",
1715          &RMWI, ElTy);
1716  Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
1717          RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
1718          "Invalid binary operation!", &RMWI);
1719  visitInstruction(RMWI);
1720}
1721
1722void Verifier::visitFenceInst(FenceInst &FI) {
1723  const AtomicOrdering Ordering = FI.getOrdering();
1724  Assert1(Ordering == Acquire || Ordering == Release ||
1725          Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
1726          "fence instructions may only have "
1727          "acquire, release, acq_rel, or seq_cst ordering.", &FI);
1728  visitInstruction(FI);
1729}
1730
1731void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1732  Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1733                                           EVI.getIndices()) ==
1734          EVI.getType(),
1735          "Invalid ExtractValueInst operands!", &EVI);
1736
1737  visitInstruction(EVI);
1738}
1739
1740void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1741  Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1742                                           IVI.getIndices()) ==
1743          IVI.getOperand(1)->getType(),
1744          "Invalid InsertValueInst operands!", &IVI);
1745
1746  visitInstruction(IVI);
1747}
1748
1749void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
1750  BasicBlock *BB = LPI.getParent();
1751
1752  // The landingpad instruction is ill-formed if it doesn't have any clauses and
1753  // isn't a cleanup.
1754  Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
1755          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
1756
1757  // The landingpad instruction defines its parent as a landing pad block. The
1758  // landing pad block may be branched to only by the unwind edge of an invoke.
1759  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1760    const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
1761    Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
1762            "Block containing LandingPadInst must be jumped to "
1763            "only by the unwind edge of an invoke.", &LPI);
1764  }
1765
1766  // The landingpad instruction must be the first non-PHI instruction in the
1767  // block.
1768  Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
1769          "LandingPadInst not the first non-PHI instruction in the block.",
1770          &LPI);
1771
1772  // The personality functions for all landingpad instructions within the same
1773  // function should match.
1774  if (PersonalityFn)
1775    Assert1(LPI.getPersonalityFn() == PersonalityFn,
1776            "Personality function doesn't match others in function", &LPI);
1777  PersonalityFn = LPI.getPersonalityFn();
1778
1779  // All operands must be constants.
1780  Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
1781          &LPI);
1782  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
1783    Value *Clause = LPI.getClause(i);
1784    Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
1785    if (LPI.isCatch(i)) {
1786      Assert1(isa<PointerType>(Clause->getType()),
1787              "Catch operand does not have pointer type!", &LPI);
1788    } else {
1789      Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
1790      Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
1791              "Filter operand is not an array of constants!", &LPI);
1792    }
1793  }
1794
1795  visitInstruction(LPI);
1796}
1797
1798void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
1799  Instruction *Op = cast<Instruction>(I.getOperand(i));
1800  // If the we have an invalid invoke, don't try to compute the dominance.
1801  // We already reject it in the invoke specific checks and the dominance
1802  // computation doesn't handle multiple edges.
1803  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1804    if (II->getNormalDest() == II->getUnwindDest())
1805      return;
1806  }
1807
1808  const Use &U = I.getOperandUse(i);
1809  Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
1810          "Instruction does not dominate all uses!", Op, &I);
1811}
1812
1813/// verifyInstruction - Verify that an instruction is well formed.
1814///
1815void Verifier::visitInstruction(Instruction &I) {
1816  BasicBlock *BB = I.getParent();
1817  Assert1(BB, "Instruction not embedded in basic block!", &I);
1818
1819  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
1820    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
1821         UI != UE; ++UI)
1822      Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
1823              "Only PHI nodes may reference their own value!", &I);
1824  }
1825
1826  // Check that void typed values don't have names
1827  Assert1(!I.getType()->isVoidTy() || !I.hasName(),
1828          "Instruction has a name, but provides a void value!", &I);
1829
1830  // Check that the return value of the instruction is either void or a legal
1831  // value type.
1832  Assert1(I.getType()->isVoidTy() ||
1833          I.getType()->isFirstClassType(),
1834          "Instruction returns a non-scalar type!", &I);
1835
1836  // Check that the instruction doesn't produce metadata. Calls are already
1837  // checked against the callee type.
1838  Assert1(!I.getType()->isMetadataTy() ||
1839          isa<CallInst>(I) || isa<InvokeInst>(I),
1840          "Invalid use of metadata!", &I);
1841
1842  // Check that all uses of the instruction, if they are instructions
1843  // themselves, actually have parent basic blocks.  If the use is not an
1844  // instruction, it is an error!
1845  for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
1846       UI != UE; ++UI) {
1847    if (Instruction *Used = dyn_cast<Instruction>(*UI))
1848      Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
1849              " embedded in a basic block!", &I, Used);
1850    else {
1851      CheckFailed("Use of instruction is not an instruction!", *UI);
1852      return;
1853    }
1854  }
1855
1856  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1857    Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
1858
1859    // Check to make sure that only first-class-values are operands to
1860    // instructions.
1861    if (!I.getOperand(i)->getType()->isFirstClassType()) {
1862      Assert1(0, "Instruction operands must be first-class values!", &I);
1863    }
1864
1865    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
1866      // Check to make sure that the "address of" an intrinsic function is never
1867      // taken.
1868      Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
1869              "Cannot take the address of an intrinsic!", &I);
1870      Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
1871              F->getIntrinsicID() == Intrinsic::donothing,
1872              "Cannot invoke an intrinsinc other than donothing", &I);
1873      Assert1(F->getParent() == Mod, "Referencing function in another module!",
1874              &I);
1875    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1876      Assert1(OpBB->getParent() == BB->getParent(),
1877              "Referring to a basic block in another function!", &I);
1878    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1879      Assert1(OpArg->getParent() == BB->getParent(),
1880              "Referring to an argument in another function!", &I);
1881    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1882      Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1883              &I);
1884    } else if (isa<Instruction>(I.getOperand(i))) {
1885      verifyDominatesUse(I, i);
1886    } else if (isa<InlineAsm>(I.getOperand(i))) {
1887      Assert1((i + 1 == e && isa<CallInst>(I)) ||
1888              (i + 3 == e && isa<InvokeInst>(I)),
1889              "Cannot take the address of an inline asm!", &I);
1890    }
1891  }
1892
1893  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
1894    Assert1(I.getType()->isFPOrFPVectorTy(),
1895            "fpmath requires a floating point result!", &I);
1896    Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
1897    Value *Op0 = MD->getOperand(0);
1898    if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
1899      APFloat Accuracy = CFP0->getValueAPF();
1900      Assert1(Accuracy.isNormal() && !Accuracy.isNegative(),
1901              "fpmath accuracy not a positive number!", &I);
1902    } else {
1903      Assert1(false, "invalid fpmath accuracy!", &I);
1904    }
1905  }
1906
1907  MDNode *MD = I.getMetadata(LLVMContext::MD_range);
1908  Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
1909
1910  InstsInThisBlock.insert(&I);
1911}
1912
1913/// VerifyIntrinsicType - Verify that the specified type (which comes from an
1914/// intrinsic argument or return value) matches the type constraints specified
1915/// by the .td file (e.g. an "any integer" argument really is an integer).
1916///
1917/// This return true on error but does not print a message.
1918bool Verifier::VerifyIntrinsicType(Type *Ty,
1919                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
1920                                   SmallVectorImpl<Type*> &ArgTys) {
1921  using namespace Intrinsic;
1922
1923  // If we ran out of descriptors, there are too many arguments.
1924  if (Infos.empty()) return true;
1925  IITDescriptor D = Infos.front();
1926  Infos = Infos.slice(1);
1927
1928  switch (D.Kind) {
1929  case IITDescriptor::Void: return !Ty->isVoidTy();
1930  case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1931  case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1932  case IITDescriptor::Half: return !Ty->isHalfTy();
1933  case IITDescriptor::Float: return !Ty->isFloatTy();
1934  case IITDescriptor::Double: return !Ty->isDoubleTy();
1935  case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1936  case IITDescriptor::Vector: {
1937    VectorType *VT = dyn_cast<VectorType>(Ty);
1938    return VT == 0 || VT->getNumElements() != D.Vector_Width ||
1939           VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
1940  }
1941  case IITDescriptor::Pointer: {
1942    PointerType *PT = dyn_cast<PointerType>(Ty);
1943    return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1944           VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
1945  }
1946
1947  case IITDescriptor::Struct: {
1948    StructType *ST = dyn_cast<StructType>(Ty);
1949    if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
1950      return true;
1951
1952    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1953      if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1954        return true;
1955    return false;
1956  }
1957
1958  case IITDescriptor::Argument:
1959    // Two cases here - If this is the second occurrence of an argument, verify
1960    // that the later instance matches the previous instance.
1961    if (D.getArgumentNumber() < ArgTys.size())
1962      return Ty != ArgTys[D.getArgumentNumber()];
1963
1964    // Otherwise, if this is the first instance of an argument, record it and
1965    // verify the "Any" kind.
1966    assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1967    ArgTys.push_back(Ty);
1968
1969    switch (D.getArgumentKind()) {
1970    case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1971    case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1972    case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1973    case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1974    }
1975    llvm_unreachable("all argument kinds not covered");
1976
1977  case IITDescriptor::ExtendVecArgument:
1978    // This may only be used when referring to a previous vector argument.
1979    return D.getArgumentNumber() >= ArgTys.size() ||
1980           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1981           VectorType::getExtendedElementVectorType(
1982                       cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1983
1984  case IITDescriptor::TruncVecArgument:
1985    // This may only be used when referring to a previous vector argument.
1986    return D.getArgumentNumber() >= ArgTys.size() ||
1987           !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1988           VectorType::getTruncatedElementVectorType(
1989                         cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1990  }
1991  llvm_unreachable("unhandled");
1992}
1993
1994/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1995///
1996void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1997  Function *IF = CI.getCalledFunction();
1998  Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1999          IF);
2000
2001  // Verify that the intrinsic prototype lines up with what the .td files
2002  // describe.
2003  FunctionType *IFTy = IF->getFunctionType();
2004  Assert1(!IFTy->isVarArg(), "Intrinsic prototypes are not varargs", IF);
2005
2006  SmallVector<Intrinsic::IITDescriptor, 8> Table;
2007  getIntrinsicInfoTableEntries(ID, Table);
2008  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
2009
2010  SmallVector<Type *, 4> ArgTys;
2011  Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
2012          "Intrinsic has incorrect return type!", IF);
2013  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
2014    Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
2015            "Intrinsic has incorrect argument type!", IF);
2016  Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
2017
2018  // Now that we have the intrinsic ID and the actual argument types (and we
2019  // know they are legal for the intrinsic!) get the intrinsic name through the
2020  // usual means.  This allows us to verify the mangling of argument types into
2021  // the name.
2022  Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(),
2023          "Intrinsic name not mangled correctly for type arguments!", IF);
2024
2025  // If the intrinsic takes MDNode arguments, verify that they are either global
2026  // or are local to *this* function.
2027  for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
2028    if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
2029      visitMDNode(*MD, CI.getParent()->getParent());
2030
2031  switch (ID) {
2032  default:
2033    break;
2034  case Intrinsic::ctlz:  // llvm.ctlz
2035  case Intrinsic::cttz:  // llvm.cttz
2036    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2037            "is_zero_undef argument of bit counting intrinsics must be a "
2038            "constant int", &CI);
2039    break;
2040  case Intrinsic::dbg_declare: {  // llvm.dbg.declare
2041    Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
2042                "invalid llvm.dbg.declare intrinsic call 1", &CI);
2043    MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
2044    Assert1(MD->getNumOperands() == 1,
2045                "invalid llvm.dbg.declare intrinsic call 2", &CI);
2046  } break;
2047  case Intrinsic::memcpy:
2048  case Intrinsic::memmove:
2049  case Intrinsic::memset:
2050    Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
2051            "alignment argument of memory intrinsics must be a constant int",
2052            &CI);
2053    Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
2054            "isvolatile argument of memory intrinsics must be a constant int",
2055            &CI);
2056    break;
2057  case Intrinsic::gcroot:
2058  case Intrinsic::gcwrite:
2059  case Intrinsic::gcread:
2060    if (ID == Intrinsic::gcroot) {
2061      AllocaInst *AI =
2062        dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
2063      Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
2064      Assert1(isa<Constant>(CI.getArgOperand(1)),
2065              "llvm.gcroot parameter #2 must be a constant.", &CI);
2066      if (!AI->getType()->getElementType()->isPointerTy()) {
2067        Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
2068                "llvm.gcroot parameter #1 must either be a pointer alloca, "
2069                "or argument #2 must be a non-null constant.", &CI);
2070      }
2071    }
2072
2073    Assert1(CI.getParent()->getParent()->hasGC(),
2074            "Enclosing function does not use GC.", &CI);
2075    break;
2076  case Intrinsic::init_trampoline:
2077    Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
2078            "llvm.init_trampoline parameter #2 must resolve to a function.",
2079            &CI);
2080    break;
2081  case Intrinsic::prefetch:
2082    Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
2083            isa<ConstantInt>(CI.getArgOperand(2)) &&
2084            cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
2085            cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
2086            "invalid arguments to llvm.prefetch",
2087            &CI);
2088    break;
2089  case Intrinsic::stackprotector:
2090    Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
2091            "llvm.stackprotector parameter #2 must resolve to an alloca.",
2092            &CI);
2093    break;
2094  case Intrinsic::lifetime_start:
2095  case Intrinsic::lifetime_end:
2096  case Intrinsic::invariant_start:
2097    Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
2098            "size argument of memory use markers must be a constant integer",
2099            &CI);
2100    break;
2101  case Intrinsic::invariant_end:
2102    Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2103            "llvm.invariant.end parameter #2 must be a constant integer", &CI);
2104    break;
2105  }
2106}
2107
2108//===----------------------------------------------------------------------===//
2109//  Implement the public interfaces to this file...
2110//===----------------------------------------------------------------------===//
2111
2112FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
2113  return new Verifier(action);
2114}
2115
2116
2117/// verifyFunction - Check a function for errors, printing messages on stderr.
2118/// Return true if the function is corrupt.
2119///
2120bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
2121  Function &F = const_cast<Function&>(f);
2122  assert(!F.isDeclaration() && "Cannot verify external functions");
2123
2124  FunctionPassManager FPM(F.getParent());
2125  Verifier *V = new Verifier(action);
2126  FPM.add(V);
2127  FPM.run(F);
2128  return V->Broken;
2129}
2130
2131/// verifyModule - Check a module for errors, printing messages on stderr.
2132/// Return true if the module is corrupt.
2133///
2134bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
2135                        std::string *ErrorInfo) {
2136  PassManager PM;
2137  Verifier *V = new Verifier(action);
2138  PM.add(V);
2139  PM.run(const_cast<Module&>(M));
2140
2141  if (ErrorInfo && V->Broken)
2142    *ErrorInfo = V->MessagesStr.str();
2143  return V->Broken;
2144}
2145