1//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of the MC-JIT runtime dynamic linker.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ExecutionEngine/RuntimeDyld.h"
14#include "RuntimeDyldCOFF.h"
15#include "RuntimeDyldELF.h"
16#include "RuntimeDyldImpl.h"
17#include "RuntimeDyldMachO.h"
18#include "llvm/Object/COFF.h"
19#include "llvm/Object/ELFObjectFile.h"
20#include "llvm/Support/Alignment.h"
21#include "llvm/Support/MSVCErrorWorkarounds.h"
22#include "llvm/Support/ManagedStatic.h"
23#include "llvm/Support/MathExtras.h"
24#include <mutex>
25
26#include <future>
27
28using namespace llvm;
29using namespace llvm::object;
30
31#define DEBUG_TYPE "dyld"
32
33namespace {
34
35enum RuntimeDyldErrorCode {
36  GenericRTDyldError = 1
37};
38
39// FIXME: This class is only here to support the transition to llvm::Error. It
40// will be removed once this transition is complete. Clients should prefer to
41// deal with the Error value directly, rather than converting to error_code.
42class RuntimeDyldErrorCategory : public std::error_category {
43public:
44  const char *name() const noexcept override { return "runtimedyld"; }
45
46  std::string message(int Condition) const override {
47    switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
48      case GenericRTDyldError: return "Generic RuntimeDyld error";
49    }
50    llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
51  }
52};
53
54static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
55
56}
57
58char RuntimeDyldError::ID = 0;
59
60void RuntimeDyldError::log(raw_ostream &OS) const {
61  OS << ErrMsg << "\n";
62}
63
64std::error_code RuntimeDyldError::convertToErrorCode() const {
65  return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
66}
67
68// Empty out-of-line virtual destructor as the key function.
69RuntimeDyldImpl::~RuntimeDyldImpl() {}
70
71// Pin LoadedObjectInfo's vtables to this file.
72void RuntimeDyld::LoadedObjectInfo::anchor() {}
73
74namespace llvm {
75
76void RuntimeDyldImpl::registerEHFrames() {}
77
78void RuntimeDyldImpl::deregisterEHFrames() {
79  MemMgr.deregisterEHFrames();
80}
81
82#ifndef NDEBUG
83static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
84  dbgs() << "----- Contents of section " << S.getName() << " " << State
85         << " -----";
86
87  if (S.getAddress() == nullptr) {
88    dbgs() << "\n          <section not emitted>\n";
89    return;
90  }
91
92  const unsigned ColsPerRow = 16;
93
94  uint8_t *DataAddr = S.getAddress();
95  uint64_t LoadAddr = S.getLoadAddress();
96
97  unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
98  unsigned BytesRemaining = S.getSize();
99
100  if (StartPadding) {
101    dbgs() << "\n" << format("0x%016" PRIx64,
102                             LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
103    while (StartPadding--)
104      dbgs() << "   ";
105  }
106
107  while (BytesRemaining > 0) {
108    if ((LoadAddr & (ColsPerRow - 1)) == 0)
109      dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
110
111    dbgs() << " " << format("%02x", *DataAddr);
112
113    ++DataAddr;
114    ++LoadAddr;
115    --BytesRemaining;
116  }
117
118  dbgs() << "\n";
119}
120#endif
121
122// Resolve the relocations for all symbols we currently know about.
123void RuntimeDyldImpl::resolveRelocations() {
124  std::lock_guard<sys::Mutex> locked(lock);
125
126  // Print out the sections prior to relocation.
127  LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
128                 dumpSectionMemory(Sections[i], "before relocations"););
129
130  // First, resolve relocations associated with external symbols.
131  if (auto Err = resolveExternalSymbols()) {
132    HasError = true;
133    ErrorStr = toString(std::move(Err));
134  }
135
136  resolveLocalRelocations();
137
138  // Print out sections after relocation.
139  LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
140                 dumpSectionMemory(Sections[i], "after relocations"););
141}
142
143void RuntimeDyldImpl::resolveLocalRelocations() {
144  // Iterate over all outstanding relocations
145  for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
146    // The Section here (Sections[i]) refers to the section in which the
147    // symbol for the relocation is located.  The SectionID in the relocation
148    // entry provides the section to which the relocation will be applied.
149    int Idx = it->first;
150    uint64_t Addr = Sections[Idx].getLoadAddress();
151    LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
152                      << format("%p", (uintptr_t)Addr) << "\n");
153    resolveRelocationList(it->second, Addr);
154  }
155  Relocations.clear();
156}
157
158void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
159                                        uint64_t TargetAddress) {
160  std::lock_guard<sys::Mutex> locked(lock);
161  for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
162    if (Sections[i].getAddress() == LocalAddress) {
163      reassignSectionAddress(i, TargetAddress);
164      return;
165    }
166  }
167  llvm_unreachable("Attempting to remap address of unknown section!");
168}
169
170static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
171                       uint64_t &Result) {
172  Expected<uint64_t> AddressOrErr = Sym.getAddress();
173  if (!AddressOrErr)
174    return AddressOrErr.takeError();
175  Result = *AddressOrErr - Sec.getAddress();
176  return Error::success();
177}
178
179Expected<RuntimeDyldImpl::ObjSectionToIDMap>
180RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
181  std::lock_guard<sys::Mutex> locked(lock);
182
183  // Save information about our target
184  Arch = (Triple::ArchType)Obj.getArch();
185  IsTargetLittleEndian = Obj.isLittleEndian();
186  setMipsABI(Obj);
187
188  // Compute the memory size required to load all sections to be loaded
189  // and pass this information to the memory manager
190  if (MemMgr.needsToReserveAllocationSpace()) {
191    uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
192    uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
193    if (auto Err = computeTotalAllocSize(Obj,
194                                         CodeSize, CodeAlign,
195                                         RODataSize, RODataAlign,
196                                         RWDataSize, RWDataAlign))
197      return std::move(Err);
198    MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199                                  RWDataSize, RWDataAlign);
200  }
201
202  // Used sections from the object file
203  ObjSectionToIDMap LocalSections;
204
205  // Common symbols requiring allocation, with their sizes and alignments
206  CommonSymbolList CommonSymbolsToAllocate;
207
208  uint64_t CommonSize = 0;
209  uint32_t CommonAlign = 0;
210
211  // First, collect all weak and common symbols. We need to know if stronger
212  // definitions occur elsewhere.
213  JITSymbolResolver::LookupSet ResponsibilitySet;
214  {
215    JITSymbolResolver::LookupSet Symbols;
216    for (auto &Sym : Obj.symbols()) {
217      uint32_t Flags = Sym.getFlags();
218      if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
219        // Get symbol name.
220        if (auto NameOrErr = Sym.getName())
221          Symbols.insert(*NameOrErr);
222        else
223          return NameOrErr.takeError();
224      }
225    }
226
227    if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
228      ResponsibilitySet = std::move(*ResultOrErr);
229    else
230      return ResultOrErr.takeError();
231  }
232
233  // Parse symbols
234  LLVM_DEBUG(dbgs() << "Parse symbols:\n");
235  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
236       ++I) {
237    uint32_t Flags = I->getFlags();
238
239    // Skip undefined symbols.
240    if (Flags & SymbolRef::SF_Undefined)
241      continue;
242
243    // Get the symbol type.
244    object::SymbolRef::Type SymType;
245    if (auto SymTypeOrErr = I->getType())
246      SymType = *SymTypeOrErr;
247    else
248      return SymTypeOrErr.takeError();
249
250    // Get symbol name.
251    StringRef Name;
252    if (auto NameOrErr = I->getName())
253      Name = *NameOrErr;
254    else
255      return NameOrErr.takeError();
256
257    // Compute JIT symbol flags.
258    auto JITSymFlags = getJITSymbolFlags(*I);
259    if (!JITSymFlags)
260      return JITSymFlags.takeError();
261
262    // If this is a weak definition, check to see if there's a strong one.
263    // If there is, skip this symbol (we won't be providing it: the strong
264    // definition will). If there's no strong definition, make this definition
265    // strong.
266    if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
267      // First check whether there's already a definition in this instance.
268      if (GlobalSymbolTable.count(Name))
269        continue;
270
271      // If we're not responsible for this symbol, skip it.
272      if (!ResponsibilitySet.count(Name))
273        continue;
274
275      // Otherwise update the flags on the symbol to make this definition
276      // strong.
277      if (JITSymFlags->isWeak())
278        *JITSymFlags &= ~JITSymbolFlags::Weak;
279      if (JITSymFlags->isCommon()) {
280        *JITSymFlags &= ~JITSymbolFlags::Common;
281        uint32_t Align = I->getAlignment();
282        uint64_t Size = I->getCommonSize();
283        if (!CommonAlign)
284          CommonAlign = Align;
285        CommonSize = alignTo(CommonSize, Align) + Size;
286        CommonSymbolsToAllocate.push_back(*I);
287      }
288    }
289
290    if (Flags & SymbolRef::SF_Absolute &&
291        SymType != object::SymbolRef::ST_File) {
292      uint64_t Addr = 0;
293      if (auto AddrOrErr = I->getAddress())
294        Addr = *AddrOrErr;
295      else
296        return AddrOrErr.takeError();
297
298      unsigned SectionID = AbsoluteSymbolSection;
299
300      LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
301                        << " SID: " << SectionID
302                        << " Offset: " << format("%p", (uintptr_t)Addr)
303                        << " flags: " << Flags << "\n");
304      GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
305    } else if (SymType == object::SymbolRef::ST_Function ||
306               SymType == object::SymbolRef::ST_Data ||
307               SymType == object::SymbolRef::ST_Unknown ||
308               SymType == object::SymbolRef::ST_Other) {
309
310      section_iterator SI = Obj.section_end();
311      if (auto SIOrErr = I->getSection())
312        SI = *SIOrErr;
313      else
314        return SIOrErr.takeError();
315
316      if (SI == Obj.section_end())
317        continue;
318
319      // Get symbol offset.
320      uint64_t SectOffset;
321      if (auto Err = getOffset(*I, *SI, SectOffset))
322        return std::move(Err);
323
324      bool IsCode = SI->isText();
325      unsigned SectionID;
326      if (auto SectionIDOrErr =
327              findOrEmitSection(Obj, *SI, IsCode, LocalSections))
328        SectionID = *SectionIDOrErr;
329      else
330        return SectionIDOrErr.takeError();
331
332      LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
333                        << " SID: " << SectionID
334                        << " Offset: " << format("%p", (uintptr_t)SectOffset)
335                        << " flags: " << Flags << "\n");
336      GlobalSymbolTable[Name] =
337          SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
338    }
339  }
340
341  // Allocate common symbols
342  if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
343                                   CommonAlign))
344    return std::move(Err);
345
346  // Parse and process relocations
347  LLVM_DEBUG(dbgs() << "Parse relocations:\n");
348  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
349       SI != SE; ++SI) {
350    StubMap Stubs;
351
352    Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
353    if (!RelSecOrErr)
354      return RelSecOrErr.takeError();
355
356    section_iterator RelocatedSection = *RelSecOrErr;
357    if (RelocatedSection == SE)
358      continue;
359
360    relocation_iterator I = SI->relocation_begin();
361    relocation_iterator E = SI->relocation_end();
362
363    if (I == E && !ProcessAllSections)
364      continue;
365
366    bool IsCode = RelocatedSection->isText();
367    unsigned SectionID = 0;
368    if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
369                                                LocalSections))
370      SectionID = *SectionIDOrErr;
371    else
372      return SectionIDOrErr.takeError();
373
374    LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
375
376    for (; I != E;)
377      if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
378        I = *IOrErr;
379      else
380        return IOrErr.takeError();
381
382    // If there is a NotifyStubEmitted callback set, call it to register any
383    // stubs created for this section.
384    if (NotifyStubEmitted) {
385      StringRef FileName = Obj.getFileName();
386      StringRef SectionName = Sections[SectionID].getName();
387      for (auto &KV : Stubs) {
388
389        auto &VR = KV.first;
390        uint64_t StubAddr = KV.second;
391
392        // If this is a named stub, just call NotifyStubEmitted.
393        if (VR.SymbolName) {
394          NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
395                            StubAddr);
396          continue;
397        }
398
399        // Otherwise we will have to try a reverse lookup on the globla symbol table.
400        for (auto &GSTMapEntry : GlobalSymbolTable) {
401          StringRef SymbolName = GSTMapEntry.first();
402          auto &GSTEntry = GSTMapEntry.second;
403          if (GSTEntry.getSectionID() == VR.SectionID &&
404              GSTEntry.getOffset() == VR.Offset) {
405            NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
406                              StubAddr);
407            break;
408          }
409        }
410      }
411    }
412  }
413
414  // Process remaining sections
415  if (ProcessAllSections) {
416    LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
417    for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
418         SI != SE; ++SI) {
419
420      /* Ignore already loaded sections */
421      if (LocalSections.find(*SI) != LocalSections.end())
422        continue;
423
424      bool IsCode = SI->isText();
425      if (auto SectionIDOrErr =
426              findOrEmitSection(Obj, *SI, IsCode, LocalSections))
427        LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
428      else
429        return SectionIDOrErr.takeError();
430    }
431  }
432
433  // Give the subclasses a chance to tie-up any loose ends.
434  if (auto Err = finalizeLoad(Obj, LocalSections))
435    return std::move(Err);
436
437//   for (auto E : LocalSections)
438//     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
439
440  return LocalSections;
441}
442
443// A helper method for computeTotalAllocSize.
444// Computes the memory size required to allocate sections with the given sizes,
445// assuming that all sections are allocated with the given alignment
446static uint64_t
447computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
448                                 uint64_t Alignment) {
449  uint64_t TotalSize = 0;
450  for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
451    uint64_t AlignedSize =
452        (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
453    TotalSize += AlignedSize;
454  }
455  return TotalSize;
456}
457
458static bool isRequiredForExecution(const SectionRef Section) {
459  const ObjectFile *Obj = Section.getObject();
460  if (isa<object::ELFObjectFileBase>(Obj))
461    return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
462  if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
463    const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
464    // Avoid loading zero-sized COFF sections.
465    // In PE files, VirtualSize gives the section size, and SizeOfRawData
466    // may be zero for sections with content. In Obj files, SizeOfRawData
467    // gives the section size, and VirtualSize is always zero. Hence
468    // the need to check for both cases below.
469    bool HasContent =
470        (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
471    bool IsDiscardable =
472        CoffSection->Characteristics &
473        (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
474    return HasContent && !IsDiscardable;
475  }
476
477  assert(isa<MachOObjectFile>(Obj));
478  return true;
479}
480
481static bool isReadOnlyData(const SectionRef Section) {
482  const ObjectFile *Obj = Section.getObject();
483  if (isa<object::ELFObjectFileBase>(Obj))
484    return !(ELFSectionRef(Section).getFlags() &
485             (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
486  if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
487    return ((COFFObj->getCOFFSection(Section)->Characteristics &
488             (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
489             | COFF::IMAGE_SCN_MEM_READ
490             | COFF::IMAGE_SCN_MEM_WRITE))
491             ==
492             (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
493             | COFF::IMAGE_SCN_MEM_READ));
494
495  assert(isa<MachOObjectFile>(Obj));
496  return false;
497}
498
499static bool isZeroInit(const SectionRef Section) {
500  const ObjectFile *Obj = Section.getObject();
501  if (isa<object::ELFObjectFileBase>(Obj))
502    return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
503  if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
504    return COFFObj->getCOFFSection(Section)->Characteristics &
505            COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
506
507  auto *MachO = cast<MachOObjectFile>(Obj);
508  unsigned SectionType = MachO->getSectionType(Section);
509  return SectionType == MachO::S_ZEROFILL ||
510         SectionType == MachO::S_GB_ZEROFILL;
511}
512
513// Compute an upper bound of the memory size that is required to load all
514// sections
515Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
516                                             uint64_t &CodeSize,
517                                             uint32_t &CodeAlign,
518                                             uint64_t &RODataSize,
519                                             uint32_t &RODataAlign,
520                                             uint64_t &RWDataSize,
521                                             uint32_t &RWDataAlign) {
522  // Compute the size of all sections required for execution
523  std::vector<uint64_t> CodeSectionSizes;
524  std::vector<uint64_t> ROSectionSizes;
525  std::vector<uint64_t> RWSectionSizes;
526
527  // Collect sizes of all sections to be loaded;
528  // also determine the max alignment of all sections
529  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
530       SI != SE; ++SI) {
531    const SectionRef &Section = *SI;
532
533    bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
534
535    // Consider only the sections that are required to be loaded for execution
536    if (IsRequired) {
537      uint64_t DataSize = Section.getSize();
538      uint64_t Alignment64 = Section.getAlignment();
539      unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
540      bool IsCode = Section.isText();
541      bool IsReadOnly = isReadOnlyData(Section);
542
543      Expected<StringRef> NameOrErr = Section.getName();
544      if (!NameOrErr)
545        return NameOrErr.takeError();
546      StringRef Name = *NameOrErr;
547
548      uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
549
550      uint64_t PaddingSize = 0;
551      if (Name == ".eh_frame")
552        PaddingSize += 4;
553      if (StubBufSize != 0)
554        PaddingSize += getStubAlignment() - 1;
555
556      uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
557
558      // The .eh_frame section (at least on Linux) needs an extra four bytes
559      // padded
560      // with zeroes added at the end.  For MachO objects, this section has a
561      // slightly different name, so this won't have any effect for MachO
562      // objects.
563      if (Name == ".eh_frame")
564        SectionSize += 4;
565
566      if (!SectionSize)
567        SectionSize = 1;
568
569      if (IsCode) {
570        CodeAlign = std::max(CodeAlign, Alignment);
571        CodeSectionSizes.push_back(SectionSize);
572      } else if (IsReadOnly) {
573        RODataAlign = std::max(RODataAlign, Alignment);
574        ROSectionSizes.push_back(SectionSize);
575      } else {
576        RWDataAlign = std::max(RWDataAlign, Alignment);
577        RWSectionSizes.push_back(SectionSize);
578      }
579    }
580  }
581
582  // Compute Global Offset Table size. If it is not zero we
583  // also update alignment, which is equal to a size of a
584  // single GOT entry.
585  if (unsigned GotSize = computeGOTSize(Obj)) {
586    RWSectionSizes.push_back(GotSize);
587    RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
588  }
589
590  // Compute the size of all common symbols
591  uint64_t CommonSize = 0;
592  uint32_t CommonAlign = 1;
593  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
594       ++I) {
595    uint32_t Flags = I->getFlags();
596    if (Flags & SymbolRef::SF_Common) {
597      // Add the common symbols to a list.  We'll allocate them all below.
598      uint64_t Size = I->getCommonSize();
599      uint32_t Align = I->getAlignment();
600      // If this is the first common symbol, use its alignment as the alignment
601      // for the common symbols section.
602      if (CommonSize == 0)
603        CommonAlign = Align;
604      CommonSize = alignTo(CommonSize, Align) + Size;
605    }
606  }
607  if (CommonSize != 0) {
608    RWSectionSizes.push_back(CommonSize);
609    RWDataAlign = std::max(RWDataAlign, CommonAlign);
610  }
611
612  // Compute the required allocation space for each different type of sections
613  // (code, read-only data, read-write data) assuming that all sections are
614  // allocated with the max alignment. Note that we cannot compute with the
615  // individual alignments of the sections, because then the required size
616  // depends on the order, in which the sections are allocated.
617  CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
618  RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
619  RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
620
621  return Error::success();
622}
623
624// compute GOT size
625unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
626  size_t GotEntrySize = getGOTEntrySize();
627  if (!GotEntrySize)
628    return 0;
629
630  size_t GotSize = 0;
631  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
632       SI != SE; ++SI) {
633
634    for (const RelocationRef &Reloc : SI->relocations())
635      if (relocationNeedsGot(Reloc))
636        GotSize += GotEntrySize;
637  }
638
639  return GotSize;
640}
641
642// compute stub buffer size for the given section
643unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
644                                                    const SectionRef &Section) {
645  unsigned StubSize = getMaxStubSize();
646  if (StubSize == 0) {
647    return 0;
648  }
649  // FIXME: this is an inefficient way to handle this. We should computed the
650  // necessary section allocation size in loadObject by walking all the sections
651  // once.
652  unsigned StubBufSize = 0;
653  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
654       SI != SE; ++SI) {
655
656    Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
657    if (!RelSecOrErr)
658      report_fatal_error(toString(RelSecOrErr.takeError()));
659
660    section_iterator RelSecI = *RelSecOrErr;
661    if (!(RelSecI == Section))
662      continue;
663
664    for (const RelocationRef &Reloc : SI->relocations())
665      if (relocationNeedsStub(Reloc))
666        StubBufSize += StubSize;
667  }
668
669  // Get section data size and alignment
670  uint64_t DataSize = Section.getSize();
671  uint64_t Alignment64 = Section.getAlignment();
672
673  // Add stubbuf size alignment
674  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
675  unsigned StubAlignment = getStubAlignment();
676  unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
677  if (StubAlignment > EndAlignment)
678    StubBufSize += StubAlignment - EndAlignment;
679  return StubBufSize;
680}
681
682uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
683                                             unsigned Size) const {
684  uint64_t Result = 0;
685  if (IsTargetLittleEndian) {
686    Src += Size - 1;
687    while (Size--)
688      Result = (Result << 8) | *Src--;
689  } else
690    while (Size--)
691      Result = (Result << 8) | *Src++;
692
693  return Result;
694}
695
696void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
697                                          unsigned Size) const {
698  if (IsTargetLittleEndian) {
699    while (Size--) {
700      *Dst++ = Value & 0xFF;
701      Value >>= 8;
702    }
703  } else {
704    Dst += Size - 1;
705    while (Size--) {
706      *Dst-- = Value & 0xFF;
707      Value >>= 8;
708    }
709  }
710}
711
712Expected<JITSymbolFlags>
713RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
714  return JITSymbolFlags::fromObjectSymbol(SR);
715}
716
717Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
718                                         CommonSymbolList &SymbolsToAllocate,
719                                         uint64_t CommonSize,
720                                         uint32_t CommonAlign) {
721  if (SymbolsToAllocate.empty())
722    return Error::success();
723
724  // Allocate memory for the section
725  unsigned SectionID = Sections.size();
726  uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
727                                             "<common symbols>", false);
728  if (!Addr)
729    report_fatal_error("Unable to allocate memory for common symbols!");
730  uint64_t Offset = 0;
731  Sections.push_back(
732      SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
733  memset(Addr, 0, CommonSize);
734
735  LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
736                    << " new addr: " << format("%p", Addr)
737                    << " DataSize: " << CommonSize << "\n");
738
739  // Assign the address of each symbol
740  for (auto &Sym : SymbolsToAllocate) {
741    uint32_t Alignment = Sym.getAlignment();
742    uint64_t Size = Sym.getCommonSize();
743    StringRef Name;
744    if (auto NameOrErr = Sym.getName())
745      Name = *NameOrErr;
746    else
747      return NameOrErr.takeError();
748    if (Alignment) {
749      // This symbol has an alignment requirement.
750      uint64_t AlignOffset =
751          offsetToAlignment((uint64_t)Addr, Align(Alignment));
752      Addr += AlignOffset;
753      Offset += AlignOffset;
754    }
755    auto JITSymFlags = getJITSymbolFlags(Sym);
756
757    if (!JITSymFlags)
758      return JITSymFlags.takeError();
759
760    LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
761                      << format("%p", Addr) << "\n");
762    GlobalSymbolTable[Name] =
763        SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
764    Offset += Size;
765    Addr += Size;
766  }
767
768  return Error::success();
769}
770
771Expected<unsigned>
772RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
773                             const SectionRef &Section,
774                             bool IsCode) {
775  StringRef data;
776  uint64_t Alignment64 = Section.getAlignment();
777
778  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
779  unsigned PaddingSize = 0;
780  unsigned StubBufSize = 0;
781  bool IsRequired = isRequiredForExecution(Section);
782  bool IsVirtual = Section.isVirtual();
783  bool IsZeroInit = isZeroInit(Section);
784  bool IsReadOnly = isReadOnlyData(Section);
785  uint64_t DataSize = Section.getSize();
786
787  // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
788  // while being more "polite".  Other formats do not support 0-aligned sections
789  // anyway, so we should guarantee that the alignment is always at least 1.
790  Alignment = std::max(1u, Alignment);
791
792  Expected<StringRef> NameOrErr = Section.getName();
793  if (!NameOrErr)
794    return NameOrErr.takeError();
795  StringRef Name = *NameOrErr;
796
797  StubBufSize = computeSectionStubBufSize(Obj, Section);
798
799  // The .eh_frame section (at least on Linux) needs an extra four bytes padded
800  // with zeroes added at the end.  For MachO objects, this section has a
801  // slightly different name, so this won't have any effect for MachO objects.
802  if (Name == ".eh_frame")
803    PaddingSize = 4;
804
805  uintptr_t Allocate;
806  unsigned SectionID = Sections.size();
807  uint8_t *Addr;
808  const char *pData = nullptr;
809
810  // If this section contains any bits (i.e. isn't a virtual or bss section),
811  // grab a reference to them.
812  if (!IsVirtual && !IsZeroInit) {
813    // In either case, set the location of the unrelocated section in memory,
814    // since we still process relocations for it even if we're not applying them.
815    if (Expected<StringRef> E = Section.getContents())
816      data = *E;
817    else
818      return E.takeError();
819    pData = data.data();
820  }
821
822  // If there are any stubs then the section alignment needs to be at least as
823  // high as stub alignment or padding calculations may by incorrect when the
824  // section is remapped.
825  if (StubBufSize != 0) {
826    Alignment = std::max(Alignment, getStubAlignment());
827    PaddingSize += getStubAlignment() - 1;
828  }
829
830  // Some sections, such as debug info, don't need to be loaded for execution.
831  // Process those only if explicitly requested.
832  if (IsRequired || ProcessAllSections) {
833    Allocate = DataSize + PaddingSize + StubBufSize;
834    if (!Allocate)
835      Allocate = 1;
836    Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
837                                               Name)
838                  : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
839                                               Name, IsReadOnly);
840    if (!Addr)
841      report_fatal_error("Unable to allocate section memory!");
842
843    // Zero-initialize or copy the data from the image
844    if (IsZeroInit || IsVirtual)
845      memset(Addr, 0, DataSize);
846    else
847      memcpy(Addr, pData, DataSize);
848
849    // Fill in any extra bytes we allocated for padding
850    if (PaddingSize != 0) {
851      memset(Addr + DataSize, 0, PaddingSize);
852      // Update the DataSize variable to include padding.
853      DataSize += PaddingSize;
854
855      // Align DataSize to stub alignment if we have any stubs (PaddingSize will
856      // have been increased above to account for this).
857      if (StubBufSize > 0)
858        DataSize &= -(uint64_t)getStubAlignment();
859    }
860
861    LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
862                      << Name << " obj addr: " << format("%p", pData)
863                      << " new addr: " << format("%p", Addr) << " DataSize: "
864                      << DataSize << " StubBufSize: " << StubBufSize
865                      << " Allocate: " << Allocate << "\n");
866  } else {
867    // Even if we didn't load the section, we need to record an entry for it
868    // to handle later processing (and by 'handle' I mean don't do anything
869    // with these sections).
870    Allocate = 0;
871    Addr = nullptr;
872    LLVM_DEBUG(
873        dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
874               << " obj addr: " << format("%p", data.data()) << " new addr: 0"
875               << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
876               << " Allocate: " << Allocate << "\n");
877  }
878
879  Sections.push_back(
880      SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
881
882  // Debug info sections are linked as if their load address was zero
883  if (!IsRequired)
884    Sections.back().setLoadAddress(0);
885
886  return SectionID;
887}
888
889Expected<unsigned>
890RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
891                                   const SectionRef &Section,
892                                   bool IsCode,
893                                   ObjSectionToIDMap &LocalSections) {
894
895  unsigned SectionID = 0;
896  ObjSectionToIDMap::iterator i = LocalSections.find(Section);
897  if (i != LocalSections.end())
898    SectionID = i->second;
899  else {
900    if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
901      SectionID = *SectionIDOrErr;
902    else
903      return SectionIDOrErr.takeError();
904    LocalSections[Section] = SectionID;
905  }
906  return SectionID;
907}
908
909void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
910                                              unsigned SectionID) {
911  Relocations[SectionID].push_back(RE);
912}
913
914void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
915                                             StringRef SymbolName) {
916  // Relocation by symbol.  If the symbol is found in the global symbol table,
917  // create an appropriate section relocation.  Otherwise, add it to
918  // ExternalSymbolRelocations.
919  RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
920  if (Loc == GlobalSymbolTable.end()) {
921    ExternalSymbolRelocations[SymbolName].push_back(RE);
922  } else {
923    // Copy the RE since we want to modify its addend.
924    RelocationEntry RECopy = RE;
925    const auto &SymInfo = Loc->second;
926    RECopy.Addend += SymInfo.getOffset();
927    Relocations[SymInfo.getSectionID()].push_back(RECopy);
928  }
929}
930
931uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
932                                             unsigned AbiVariant) {
933  if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
934      Arch == Triple::aarch64_32) {
935    // This stub has to be able to access the full address space,
936    // since symbol lookup won't necessarily find a handy, in-range,
937    // PLT stub for functions which could be anywhere.
938    // Stub can use ip0 (== x16) to calculate address
939    writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
940    writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
941    writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
942    writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
943    writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
944
945    return Addr;
946  } else if (Arch == Triple::arm || Arch == Triple::armeb) {
947    // TODO: There is only ARM far stub now. We should add the Thumb stub,
948    // and stubs for branches Thumb - ARM and ARM - Thumb.
949    writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
950    return Addr + 4;
951  } else if (IsMipsO32ABI || IsMipsN32ABI) {
952    // 0:   3c190000        lui     t9,%hi(addr).
953    // 4:   27390000        addiu   t9,t9,%lo(addr).
954    // 8:   03200008        jr      t9.
955    // c:   00000000        nop.
956    const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
957    const unsigned NopInstr = 0x0;
958    unsigned JrT9Instr = 0x03200008;
959    if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
960        (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
961      JrT9Instr = 0x03200009;
962
963    writeBytesUnaligned(LuiT9Instr, Addr, 4);
964    writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
965    writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
966    writeBytesUnaligned(NopInstr, Addr + 12, 4);
967    return Addr;
968  } else if (IsMipsN64ABI) {
969    // 0:   3c190000        lui     t9,%highest(addr).
970    // 4:   67390000        daddiu  t9,t9,%higher(addr).
971    // 8:   0019CC38        dsll    t9,t9,16.
972    // c:   67390000        daddiu  t9,t9,%hi(addr).
973    // 10:  0019CC38        dsll    t9,t9,16.
974    // 14:  67390000        daddiu  t9,t9,%lo(addr).
975    // 18:  03200008        jr      t9.
976    // 1c:  00000000        nop.
977    const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
978                   DsllT9Instr = 0x19CC38;
979    const unsigned NopInstr = 0x0;
980    unsigned JrT9Instr = 0x03200008;
981    if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
982      JrT9Instr = 0x03200009;
983
984    writeBytesUnaligned(LuiT9Instr, Addr, 4);
985    writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
986    writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
987    writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
988    writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
989    writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
990    writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
991    writeBytesUnaligned(NopInstr, Addr + 28, 4);
992    return Addr;
993  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
994    // Depending on which version of the ELF ABI is in use, we need to
995    // generate one of two variants of the stub.  They both start with
996    // the same sequence to load the target address into r12.
997    writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
998    writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
999    writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
1000    writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
1001    writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
1002    if (AbiVariant == 2) {
1003      // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1004      // The address is already in r12 as required by the ABI.  Branch to it.
1005      writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
1006      writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
1007      writeInt32BE(Addr+28, 0x4E800420); // bctr
1008    } else {
1009      // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1010      // Load the function address on r11 and sets it to control register. Also
1011      // loads the function TOC in r2 and environment pointer to r11.
1012      writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
1013      writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
1014      writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
1015      writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1016      writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
1017      writeInt32BE(Addr+40, 0x4E800420); // bctr
1018    }
1019    return Addr;
1020  } else if (Arch == Triple::systemz) {
1021    writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
1022    writeInt16BE(Addr+2,  0x0000);
1023    writeInt16BE(Addr+4,  0x0004);
1024    writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
1025    // 8-byte address stored at Addr + 8
1026    return Addr;
1027  } else if (Arch == Triple::x86_64) {
1028    *Addr      = 0xFF; // jmp
1029    *(Addr+1)  = 0x25; // rip
1030    // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1031  } else if (Arch == Triple::x86) {
1032    *Addr      = 0xE9; // 32-bit pc-relative jump.
1033  }
1034  return Addr;
1035}
1036
1037// Assign an address to a symbol name and resolve all the relocations
1038// associated with it.
1039void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1040                                             uint64_t Addr) {
1041  // The address to use for relocation resolution is not
1042  // the address of the local section buffer. We must be doing
1043  // a remote execution environment of some sort. Relocations can't
1044  // be applied until all the sections have been moved.  The client must
1045  // trigger this with a call to MCJIT::finalize() or
1046  // RuntimeDyld::resolveRelocations().
1047  //
1048  // Addr is a uint64_t because we can't assume the pointer width
1049  // of the target is the same as that of the host. Just use a generic
1050  // "big enough" type.
1051  LLVM_DEBUG(
1052      dbgs() << "Reassigning address for section " << SectionID << " ("
1053             << Sections[SectionID].getName() << "): "
1054             << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1055             << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1056  Sections[SectionID].setLoadAddress(Addr);
1057}
1058
1059void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1060                                            uint64_t Value) {
1061  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1062    const RelocationEntry &RE = Relocs[i];
1063    // Ignore relocations for sections that were not loaded
1064    if (Sections[RE.SectionID].getAddress() == nullptr)
1065      continue;
1066    resolveRelocation(RE, Value);
1067  }
1068}
1069
1070void RuntimeDyldImpl::applyExternalSymbolRelocations(
1071    const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1072  while (!ExternalSymbolRelocations.empty()) {
1073
1074    StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1075
1076    StringRef Name = i->first();
1077    if (Name.size() == 0) {
1078      // This is an absolute symbol, use an address of zero.
1079      LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1080                        << "\n");
1081      RelocationList &Relocs = i->second;
1082      resolveRelocationList(Relocs, 0);
1083    } else {
1084      uint64_t Addr = 0;
1085      JITSymbolFlags Flags;
1086      RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1087      if (Loc == GlobalSymbolTable.end()) {
1088        auto RRI = ExternalSymbolMap.find(Name);
1089        assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1090        Addr = RRI->second.getAddress();
1091        Flags = RRI->second.getFlags();
1092        // The call to getSymbolAddress may have caused additional modules to
1093        // be loaded, which may have added new entries to the
1094        // ExternalSymbolRelocations map.  Consquently, we need to update our
1095        // iterator.  This is also why retrieval of the relocation list
1096        // associated with this symbol is deferred until below this point.
1097        // New entries may have been added to the relocation list.
1098        i = ExternalSymbolRelocations.find(Name);
1099      } else {
1100        // We found the symbol in our global table.  It was probably in a
1101        // Module that we loaded previously.
1102        const auto &SymInfo = Loc->second;
1103        Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1104               SymInfo.getOffset();
1105        Flags = SymInfo.getFlags();
1106      }
1107
1108      // FIXME: Implement error handling that doesn't kill the host program!
1109      if (!Addr)
1110        report_fatal_error("Program used external function '" + Name +
1111                           "' which could not be resolved!");
1112
1113      // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1114      // manually and we shouldn't resolve its relocations.
1115      if (Addr != UINT64_MAX) {
1116
1117        // Tweak the address based on the symbol flags if necessary.
1118        // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1119        // if the target symbol is Thumb.
1120        Addr = modifyAddressBasedOnFlags(Addr, Flags);
1121
1122        LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1123                          << format("0x%lx", Addr) << "\n");
1124        // This list may have been updated when we called getSymbolAddress, so
1125        // don't change this code to get the list earlier.
1126        RelocationList &Relocs = i->second;
1127        resolveRelocationList(Relocs, Addr);
1128      }
1129    }
1130
1131    ExternalSymbolRelocations.erase(i);
1132  }
1133}
1134
1135Error RuntimeDyldImpl::resolveExternalSymbols() {
1136  StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1137
1138  // Resolution can trigger emission of more symbols, so iterate until
1139  // we've resolved *everything*.
1140  {
1141    JITSymbolResolver::LookupSet ResolvedSymbols;
1142
1143    while (true) {
1144      JITSymbolResolver::LookupSet NewSymbols;
1145
1146      for (auto &RelocKV : ExternalSymbolRelocations) {
1147        StringRef Name = RelocKV.first();
1148        if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1149            !ResolvedSymbols.count(Name))
1150          NewSymbols.insert(Name);
1151      }
1152
1153      if (NewSymbols.empty())
1154        break;
1155
1156#ifdef _MSC_VER
1157      using ExpectedLookupResult =
1158          MSVCPExpected<JITSymbolResolver::LookupResult>;
1159#else
1160      using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1161#endif
1162
1163      auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1164      auto NewSymbolsF = NewSymbolsP->get_future();
1165      Resolver.lookup(NewSymbols,
1166                      [=](Expected<JITSymbolResolver::LookupResult> Result) {
1167                        NewSymbolsP->set_value(std::move(Result));
1168                      });
1169
1170      auto NewResolverResults = NewSymbolsF.get();
1171
1172      if (!NewResolverResults)
1173        return NewResolverResults.takeError();
1174
1175      assert(NewResolverResults->size() == NewSymbols.size() &&
1176             "Should have errored on unresolved symbols");
1177
1178      for (auto &RRKV : *NewResolverResults) {
1179        assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1180        ExternalSymbolMap.insert(RRKV);
1181        ResolvedSymbols.insert(RRKV.first);
1182      }
1183    }
1184  }
1185
1186  applyExternalSymbolRelocations(ExternalSymbolMap);
1187
1188  return Error::success();
1189}
1190
1191void RuntimeDyldImpl::finalizeAsync(
1192    std::unique_ptr<RuntimeDyldImpl> This,
1193    unique_function<void(Error)> OnEmitted,
1194    std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
1195
1196  auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1197  auto PostResolveContinuation =
1198      [SharedThis, OnEmitted = std::move(OnEmitted),
1199       UnderlyingBuffer = std::move(UnderlyingBuffer)](
1200          Expected<JITSymbolResolver::LookupResult> Result) mutable {
1201        if (!Result) {
1202          OnEmitted(Result.takeError());
1203          return;
1204        }
1205
1206        /// Copy the result into a StringMap, where the keys are held by value.
1207        StringMap<JITEvaluatedSymbol> Resolved;
1208        for (auto &KV : *Result)
1209          Resolved[KV.first] = KV.second;
1210
1211        SharedThis->applyExternalSymbolRelocations(Resolved);
1212        SharedThis->resolveLocalRelocations();
1213        SharedThis->registerEHFrames();
1214        std::string ErrMsg;
1215        if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1216          OnEmitted(make_error<StringError>(std::move(ErrMsg),
1217                                            inconvertibleErrorCode()));
1218        else
1219          OnEmitted(Error::success());
1220      };
1221
1222  JITSymbolResolver::LookupSet Symbols;
1223
1224  for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1225    StringRef Name = RelocKV.first();
1226    assert(!Name.empty() && "Symbol has no name?");
1227    assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1228           "Name already processed. RuntimeDyld instances can not be re-used "
1229           "when finalizing with finalizeAsync.");
1230    Symbols.insert(Name);
1231  }
1232
1233  if (!Symbols.empty()) {
1234    SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1235  } else
1236    PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1237}
1238
1239//===----------------------------------------------------------------------===//
1240// RuntimeDyld class implementation
1241
1242uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1243                                          const object::SectionRef &Sec) const {
1244
1245  auto I = ObjSecToIDMap.find(Sec);
1246  if (I != ObjSecToIDMap.end())
1247    return RTDyld.Sections[I->second].getLoadAddress();
1248
1249  return 0;
1250}
1251
1252void RuntimeDyld::MemoryManager::anchor() {}
1253void JITSymbolResolver::anchor() {}
1254void LegacyJITSymbolResolver::anchor() {}
1255
1256RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1257                         JITSymbolResolver &Resolver)
1258    : MemMgr(MemMgr), Resolver(Resolver) {
1259  // FIXME: There's a potential issue lurking here if a single instance of
1260  // RuntimeDyld is used to load multiple objects.  The current implementation
1261  // associates a single memory manager with a RuntimeDyld instance.  Even
1262  // though the public class spawns a new 'impl' instance for each load,
1263  // they share a single memory manager.  This can become a problem when page
1264  // permissions are applied.
1265  Dyld = nullptr;
1266  ProcessAllSections = false;
1267}
1268
1269RuntimeDyld::~RuntimeDyld() {}
1270
1271static std::unique_ptr<RuntimeDyldCOFF>
1272createRuntimeDyldCOFF(
1273                     Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1274                     JITSymbolResolver &Resolver, bool ProcessAllSections,
1275                     RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1276  std::unique_ptr<RuntimeDyldCOFF> Dyld =
1277    RuntimeDyldCOFF::create(Arch, MM, Resolver);
1278  Dyld->setProcessAllSections(ProcessAllSections);
1279  Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1280  return Dyld;
1281}
1282
1283static std::unique_ptr<RuntimeDyldELF>
1284createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1285                     JITSymbolResolver &Resolver, bool ProcessAllSections,
1286                     RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1287  std::unique_ptr<RuntimeDyldELF> Dyld =
1288      RuntimeDyldELF::create(Arch, MM, Resolver);
1289  Dyld->setProcessAllSections(ProcessAllSections);
1290  Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1291  return Dyld;
1292}
1293
1294static std::unique_ptr<RuntimeDyldMachO>
1295createRuntimeDyldMachO(
1296                     Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1297                     JITSymbolResolver &Resolver,
1298                     bool ProcessAllSections,
1299                     RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1300  std::unique_ptr<RuntimeDyldMachO> Dyld =
1301    RuntimeDyldMachO::create(Arch, MM, Resolver);
1302  Dyld->setProcessAllSections(ProcessAllSections);
1303  Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1304  return Dyld;
1305}
1306
1307std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1308RuntimeDyld::loadObject(const ObjectFile &Obj) {
1309  if (!Dyld) {
1310    if (Obj.isELF())
1311      Dyld =
1312          createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1313                               MemMgr, Resolver, ProcessAllSections,
1314                               std::move(NotifyStubEmitted));
1315    else if (Obj.isMachO())
1316      Dyld = createRuntimeDyldMachO(
1317               static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1318               ProcessAllSections, std::move(NotifyStubEmitted));
1319    else if (Obj.isCOFF())
1320      Dyld = createRuntimeDyldCOFF(
1321               static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1322               ProcessAllSections, std::move(NotifyStubEmitted));
1323    else
1324      report_fatal_error("Incompatible object format!");
1325  }
1326
1327  if (!Dyld->isCompatibleFile(Obj))
1328    report_fatal_error("Incompatible object format!");
1329
1330  auto LoadedObjInfo = Dyld->loadObject(Obj);
1331  MemMgr.notifyObjectLoaded(*this, Obj);
1332  return LoadedObjInfo;
1333}
1334
1335void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1336  if (!Dyld)
1337    return nullptr;
1338  return Dyld->getSymbolLocalAddress(Name);
1339}
1340
1341unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1342  assert(Dyld && "No RuntimeDyld instance attached");
1343  return Dyld->getSymbolSectionID(Name);
1344}
1345
1346JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1347  if (!Dyld)
1348    return nullptr;
1349  return Dyld->getSymbol(Name);
1350}
1351
1352std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1353  if (!Dyld)
1354    return std::map<StringRef, JITEvaluatedSymbol>();
1355  return Dyld->getSymbolTable();
1356}
1357
1358void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1359
1360void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1361  Dyld->reassignSectionAddress(SectionID, Addr);
1362}
1363
1364void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1365                                    uint64_t TargetAddress) {
1366  Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1367}
1368
1369bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1370
1371StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1372
1373void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1374  bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1375  MemMgr.FinalizationLocked = true;
1376  resolveRelocations();
1377  registerEHFrames();
1378  if (!MemoryFinalizationLocked) {
1379    MemMgr.finalizeMemory();
1380    MemMgr.FinalizationLocked = false;
1381  }
1382}
1383
1384StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1385  assert(Dyld && "No Dyld instance attached");
1386  return Dyld->getSectionContent(SectionID);
1387}
1388
1389uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1390  assert(Dyld && "No Dyld instance attached");
1391  return Dyld->getSectionLoadAddress(SectionID);
1392}
1393
1394void RuntimeDyld::registerEHFrames() {
1395  if (Dyld)
1396    Dyld->registerEHFrames();
1397}
1398
1399void RuntimeDyld::deregisterEHFrames() {
1400  if (Dyld)
1401    Dyld->deregisterEHFrames();
1402}
1403// FIXME: Kill this with fire once we have a new JIT linker: this is only here
1404// so that we can re-use RuntimeDyld's implementation without twisting the
1405// interface any further for ORC's purposes.
1406void jitLinkForORC(object::ObjectFile &Obj,
1407                   std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
1408                   RuntimeDyld::MemoryManager &MemMgr,
1409                   JITSymbolResolver &Resolver, bool ProcessAllSections,
1410                   unique_function<Error(
1411                       std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
1412                       std::map<StringRef, JITEvaluatedSymbol>)>
1413                       OnLoaded,
1414                   unique_function<void(Error)> OnEmitted) {
1415
1416  RuntimeDyld RTDyld(MemMgr, Resolver);
1417  RTDyld.setProcessAllSections(ProcessAllSections);
1418
1419  auto Info = RTDyld.loadObject(Obj);
1420
1421  if (RTDyld.hasError()) {
1422    OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
1423                                      inconvertibleErrorCode()));
1424    return;
1425  }
1426
1427  if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
1428    OnEmitted(std::move(Err));
1429
1430  RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1431                                 std::move(UnderlyingBuffer));
1432}
1433
1434} // end namespace llvm
1435