1//===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the TwoAddress instruction pass which is used
10// by most register allocators. Two-Address instructions are rewritten
11// from:
12//
13//     A = B op C
14//
15// to:
16//
17//     A = B
18//     A op= C
19//
20// Note that if a register allocator chooses to use this pass, that it
21// has to be capable of handling the non-SSA nature of these rewritten
22// virtual registers.
23//
24// It is also worth noting that the duplicate operand of the two
25// address instruction is removed.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/iterator_range.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/CodeGen/LiveInterval.h"
37#include "llvm/CodeGen/LiveIntervals.h"
38#include "llvm/CodeGen/LiveVariables.h"
39#include "llvm/CodeGen/MachineBasicBlock.h"
40#include "llvm/CodeGen/MachineFunction.h"
41#include "llvm/CodeGen/MachineFunctionPass.h"
42#include "llvm/CodeGen/MachineInstr.h"
43#include "llvm/CodeGen/MachineInstrBuilder.h"
44#include "llvm/CodeGen/MachineOperand.h"
45#include "llvm/CodeGen/MachineRegisterInfo.h"
46#include "llvm/CodeGen/Passes.h"
47#include "llvm/CodeGen/SlotIndexes.h"
48#include "llvm/CodeGen/TargetInstrInfo.h"
49#include "llvm/CodeGen/TargetOpcodes.h"
50#include "llvm/CodeGen/TargetRegisterInfo.h"
51#include "llvm/CodeGen/TargetSubtargetInfo.h"
52#include "llvm/MC/MCInstrDesc.h"
53#include "llvm/MC/MCInstrItineraries.h"
54#include "llvm/Pass.h"
55#include "llvm/Support/CodeGen.h"
56#include "llvm/Support/CommandLine.h"
57#include "llvm/Support/Debug.h"
58#include "llvm/Support/ErrorHandling.h"
59#include "llvm/Support/raw_ostream.h"
60#include "llvm/Target/TargetMachine.h"
61#include <cassert>
62#include <iterator>
63#include <utility>
64
65using namespace llvm;
66
67#define DEBUG_TYPE "twoaddressinstruction"
68
69STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
70STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
71STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
72STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
73STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
74STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
75STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
76
77// Temporary flag to disable rescheduling.
78static cl::opt<bool>
79EnableRescheduling("twoaddr-reschedule",
80                   cl::desc("Coalesce copies by rescheduling (default=true)"),
81                   cl::init(true), cl::Hidden);
82
83// Limit the number of dataflow edges to traverse when evaluating the benefit
84// of commuting operands.
85static cl::opt<unsigned> MaxDataFlowEdge(
86    "dataflow-edge-limit", cl::Hidden, cl::init(3),
87    cl::desc("Maximum number of dataflow edges to traverse when evaluating "
88             "the benefit of commuting operands"));
89
90namespace {
91
92class TwoAddressInstructionPass : public MachineFunctionPass {
93  MachineFunction *MF;
94  const TargetInstrInfo *TII;
95  const TargetRegisterInfo *TRI;
96  const InstrItineraryData *InstrItins;
97  MachineRegisterInfo *MRI;
98  LiveVariables *LV;
99  LiveIntervals *LIS;
100  AliasAnalysis *AA;
101  CodeGenOpt::Level OptLevel;
102
103  // The current basic block being processed.
104  MachineBasicBlock *MBB;
105
106  // Keep track the distance of a MI from the start of the current basic block.
107  DenseMap<MachineInstr*, unsigned> DistanceMap;
108
109  // Set of already processed instructions in the current block.
110  SmallPtrSet<MachineInstr*, 8> Processed;
111
112  // Set of instructions converted to three-address by target and then sunk
113  // down current basic block.
114  SmallPtrSet<MachineInstr*, 8> SunkInstrs;
115
116  // A map from virtual registers to physical registers which are likely targets
117  // to be coalesced to due to copies from physical registers to virtual
118  // registers. e.g. v1024 = move r0.
119  DenseMap<unsigned, unsigned> SrcRegMap;
120
121  // A map from virtual registers to physical registers which are likely targets
122  // to be coalesced to due to copies to physical registers from virtual
123  // registers. e.g. r1 = move v1024.
124  DenseMap<unsigned, unsigned> DstRegMap;
125
126  bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
127                            MachineBasicBlock::iterator OldPos);
128
129  bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen);
130
131  bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
132
133  bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
134                             MachineInstr *MI, unsigned Dist);
135
136  bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
137                          unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
138
139  bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
140
141  bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
142                          MachineBasicBlock::iterator &nmi,
143                          unsigned RegA, unsigned RegB, unsigned Dist);
144
145  bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
146
147  bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
148                             MachineBasicBlock::iterator &nmi,
149                             unsigned Reg);
150  bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
151                             MachineBasicBlock::iterator &nmi,
152                             unsigned Reg);
153
154  bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
155                               MachineBasicBlock::iterator &nmi,
156                               unsigned SrcIdx, unsigned DstIdx,
157                               unsigned Dist, bool shouldOnlyCommute);
158
159  bool tryInstructionCommute(MachineInstr *MI,
160                             unsigned DstOpIdx,
161                             unsigned BaseOpIdx,
162                             bool BaseOpKilled,
163                             unsigned Dist);
164  void scanUses(unsigned DstReg);
165
166  void processCopy(MachineInstr *MI);
167
168  using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
169  using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
170
171  bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
172  void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
173  void eliminateRegSequence(MachineBasicBlock::iterator&);
174
175public:
176  static char ID; // Pass identification, replacement for typeid
177
178  TwoAddressInstructionPass() : MachineFunctionPass(ID) {
179    initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
180  }
181
182  void getAnalysisUsage(AnalysisUsage &AU) const override {
183    AU.setPreservesCFG();
184    AU.addUsedIfAvailable<AAResultsWrapperPass>();
185    AU.addUsedIfAvailable<LiveVariables>();
186    AU.addPreserved<LiveVariables>();
187    AU.addPreserved<SlotIndexes>();
188    AU.addPreserved<LiveIntervals>();
189    AU.addPreservedID(MachineLoopInfoID);
190    AU.addPreservedID(MachineDominatorsID);
191    MachineFunctionPass::getAnalysisUsage(AU);
192  }
193
194  /// Pass entry point.
195  bool runOnMachineFunction(MachineFunction&) override;
196};
197
198} // end anonymous namespace
199
200char TwoAddressInstructionPass::ID = 0;
201
202char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
203
204INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
205                "Two-Address instruction pass", false, false)
206INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
207INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
208                "Two-Address instruction pass", false, false)
209
210static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
211
212/// A two-address instruction has been converted to a three-address instruction
213/// to avoid clobbering a register. Try to sink it past the instruction that
214/// would kill the above mentioned register to reduce register pressure.
215bool TwoAddressInstructionPass::
216sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
217                     MachineBasicBlock::iterator OldPos) {
218  // FIXME: Shouldn't we be trying to do this before we three-addressify the
219  // instruction?  After this transformation is done, we no longer need
220  // the instruction to be in three-address form.
221
222  // Check if it's safe to move this instruction.
223  bool SeenStore = true; // Be conservative.
224  if (!MI->isSafeToMove(AA, SeenStore))
225    return false;
226
227  unsigned DefReg = 0;
228  SmallSet<unsigned, 4> UseRegs;
229
230  for (const MachineOperand &MO : MI->operands()) {
231    if (!MO.isReg())
232      continue;
233    Register MOReg = MO.getReg();
234    if (!MOReg)
235      continue;
236    if (MO.isUse() && MOReg != SavedReg)
237      UseRegs.insert(MO.getReg());
238    if (!MO.isDef())
239      continue;
240    if (MO.isImplicit())
241      // Don't try to move it if it implicitly defines a register.
242      return false;
243    if (DefReg)
244      // For now, don't move any instructions that define multiple registers.
245      return false;
246    DefReg = MO.getReg();
247  }
248
249  // Find the instruction that kills SavedReg.
250  MachineInstr *KillMI = nullptr;
251  if (LIS) {
252    LiveInterval &LI = LIS->getInterval(SavedReg);
253    assert(LI.end() != LI.begin() &&
254           "Reg should not have empty live interval.");
255
256    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
257    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
258    if (I != LI.end() && I->start < MBBEndIdx)
259      return false;
260
261    --I;
262    KillMI = LIS->getInstructionFromIndex(I->end);
263  }
264  if (!KillMI) {
265    for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) {
266      if (!UseMO.isKill())
267        continue;
268      KillMI = UseMO.getParent();
269      break;
270    }
271  }
272
273  // If we find the instruction that kills SavedReg, and it is in an
274  // appropriate location, we can try to sink the current instruction
275  // past it.
276  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
277      MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator())
278    return false;
279
280  // If any of the definitions are used by another instruction between the
281  // position and the kill use, then it's not safe to sink it.
282  //
283  // FIXME: This can be sped up if there is an easy way to query whether an
284  // instruction is before or after another instruction. Then we can use
285  // MachineRegisterInfo def / use instead.
286  MachineOperand *KillMO = nullptr;
287  MachineBasicBlock::iterator KillPos = KillMI;
288  ++KillPos;
289
290  unsigned NumVisited = 0;
291  for (MachineInstr &OtherMI : make_range(std::next(OldPos), KillPos)) {
292    // Debug instructions cannot be counted against the limit.
293    if (OtherMI.isDebugInstr())
294      continue;
295    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
296      return false;
297    ++NumVisited;
298    for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) {
299      MachineOperand &MO = OtherMI.getOperand(i);
300      if (!MO.isReg())
301        continue;
302      Register MOReg = MO.getReg();
303      if (!MOReg)
304        continue;
305      if (DefReg == MOReg)
306        return false;
307
308      if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) {
309        if (&OtherMI == KillMI && MOReg == SavedReg)
310          // Save the operand that kills the register. We want to unset the kill
311          // marker if we can sink MI past it.
312          KillMO = &MO;
313        else if (UseRegs.count(MOReg))
314          // One of the uses is killed before the destination.
315          return false;
316      }
317    }
318  }
319  assert(KillMO && "Didn't find kill");
320
321  if (!LIS) {
322    // Update kill and LV information.
323    KillMO->setIsKill(false);
324    KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
325    KillMO->setIsKill(true);
326
327    if (LV)
328      LV->replaceKillInstruction(SavedReg, *KillMI, *MI);
329  }
330
331  // Move instruction to its destination.
332  MBB->remove(MI);
333  MBB->insert(KillPos, MI);
334
335  if (LIS)
336    LIS->handleMove(*MI);
337
338  ++Num3AddrSunk;
339  return true;
340}
341
342/// Return the MachineInstr* if it is the single def of the Reg in current BB.
343static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB,
344                                  const MachineRegisterInfo *MRI) {
345  MachineInstr *Ret = nullptr;
346  for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
347    if (DefMI.getParent() != BB || DefMI.isDebugValue())
348      continue;
349    if (!Ret)
350      Ret = &DefMI;
351    else if (Ret != &DefMI)
352      return nullptr;
353  }
354  return Ret;
355}
356
357/// Check if there is a reversed copy chain from FromReg to ToReg:
358/// %Tmp1 = copy %Tmp2;
359/// %FromReg = copy %Tmp1;
360/// %ToReg = add %FromReg ...
361/// %Tmp2 = copy %ToReg;
362/// MaxLen specifies the maximum length of the copy chain the func
363/// can walk through.
364bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg,
365                                               int Maxlen) {
366  unsigned TmpReg = FromReg;
367  for (int i = 0; i < Maxlen; i++) {
368    MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
369    if (!Def || !Def->isCopy())
370      return false;
371
372    TmpReg = Def->getOperand(1).getReg();
373
374    if (TmpReg == ToReg)
375      return true;
376  }
377  return false;
378}
379
380/// Return true if there are no intervening uses between the last instruction
381/// in the MBB that defines the specified register and the two-address
382/// instruction which is being processed. It also returns the last def location
383/// by reference.
384bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
385                                                  unsigned &LastDef) {
386  LastDef = 0;
387  unsigned LastUse = Dist;
388  for (MachineOperand &MO : MRI->reg_operands(Reg)) {
389    MachineInstr *MI = MO.getParent();
390    if (MI->getParent() != MBB || MI->isDebugValue())
391      continue;
392    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
393    if (DI == DistanceMap.end())
394      continue;
395    if (MO.isUse() && DI->second < LastUse)
396      LastUse = DI->second;
397    if (MO.isDef() && DI->second > LastDef)
398      LastDef = DI->second;
399  }
400
401  return !(LastUse > LastDef && LastUse < Dist);
402}
403
404/// Return true if the specified MI is a copy instruction or an extract_subreg
405/// instruction. It also returns the source and destination registers and
406/// whether they are physical registers by reference.
407static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
408                        unsigned &SrcReg, unsigned &DstReg,
409                        bool &IsSrcPhys, bool &IsDstPhys) {
410  SrcReg = 0;
411  DstReg = 0;
412  if (MI.isCopy()) {
413    DstReg = MI.getOperand(0).getReg();
414    SrcReg = MI.getOperand(1).getReg();
415  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
416    DstReg = MI.getOperand(0).getReg();
417    SrcReg = MI.getOperand(2).getReg();
418  } else
419    return false;
420
421  IsSrcPhys = Register::isPhysicalRegister(SrcReg);
422  IsDstPhys = Register::isPhysicalRegister(DstReg);
423  return true;
424}
425
426/// Test if the given register value, which is used by the
427/// given instruction, is killed by the given instruction.
428static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
429                            LiveIntervals *LIS) {
430  if (LIS && Register::isVirtualRegister(Reg) && !LIS->isNotInMIMap(*MI)) {
431    // FIXME: Sometimes tryInstructionTransform() will add instructions and
432    // test whether they can be folded before keeping them. In this case it
433    // sets a kill before recursively calling tryInstructionTransform() again.
434    // If there is no interval available, we assume that this instruction is
435    // one of those. A kill flag is manually inserted on the operand so the
436    // check below will handle it.
437    LiveInterval &LI = LIS->getInterval(Reg);
438    // This is to match the kill flag version where undefs don't have kill
439    // flags.
440    if (!LI.hasAtLeastOneValue())
441      return false;
442
443    SlotIndex useIdx = LIS->getInstructionIndex(*MI);
444    LiveInterval::const_iterator I = LI.find(useIdx);
445    assert(I != LI.end() && "Reg must be live-in to use.");
446    return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
447  }
448
449  return MI->killsRegister(Reg);
450}
451
452/// Test if the given register value, which is used by the given
453/// instruction, is killed by the given instruction. This looks through
454/// coalescable copies to see if the original value is potentially not killed.
455///
456/// For example, in this code:
457///
458///   %reg1034 = copy %reg1024
459///   %reg1035 = copy killed %reg1025
460///   %reg1036 = add killed %reg1034, killed %reg1035
461///
462/// %reg1034 is not considered to be killed, since it is copied from a
463/// register which is not killed. Treating it as not killed lets the
464/// normal heuristics commute the (two-address) add, which lets
465/// coalescing eliminate the extra copy.
466///
467/// If allowFalsePositives is true then likely kills are treated as kills even
468/// if it can't be proven that they are kills.
469static bool isKilled(MachineInstr &MI, unsigned Reg,
470                     const MachineRegisterInfo *MRI,
471                     const TargetInstrInfo *TII,
472                     LiveIntervals *LIS,
473                     bool allowFalsePositives) {
474  MachineInstr *DefMI = &MI;
475  while (true) {
476    // All uses of physical registers are likely to be kills.
477    if (Register::isPhysicalRegister(Reg) &&
478        (allowFalsePositives || MRI->hasOneUse(Reg)))
479      return true;
480    if (!isPlainlyKilled(DefMI, Reg, LIS))
481      return false;
482    if (Register::isPhysicalRegister(Reg))
483      return true;
484    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
485    // If there are multiple defs, we can't do a simple analysis, so just
486    // go with what the kill flag says.
487    if (std::next(Begin) != MRI->def_end())
488      return true;
489    DefMI = Begin->getParent();
490    bool IsSrcPhys, IsDstPhys;
491    unsigned SrcReg,  DstReg;
492    // If the def is something other than a copy, then it isn't going to
493    // be coalesced, so follow the kill flag.
494    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
495      return true;
496    Reg = SrcReg;
497  }
498}
499
500/// Return true if the specified MI uses the specified register as a two-address
501/// use. If so, return the destination register by reference.
502static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
503  for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
504    const MachineOperand &MO = MI.getOperand(i);
505    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
506      continue;
507    unsigned ti;
508    if (MI.isRegTiedToDefOperand(i, &ti)) {
509      DstReg = MI.getOperand(ti).getReg();
510      return true;
511    }
512  }
513  return false;
514}
515
516/// Given a register, if has a single in-basic block use, return the use
517/// instruction if it's a copy or a two-address use.
518static
519MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
520                                     MachineRegisterInfo *MRI,
521                                     const TargetInstrInfo *TII,
522                                     bool &IsCopy,
523                                     unsigned &DstReg, bool &IsDstPhys) {
524  if (!MRI->hasOneNonDBGUse(Reg))
525    // None or more than one use.
526    return nullptr;
527  MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
528  if (UseMI.getParent() != MBB)
529    return nullptr;
530  unsigned SrcReg;
531  bool IsSrcPhys;
532  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
533    IsCopy = true;
534    return &UseMI;
535  }
536  IsDstPhys = false;
537  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
538    IsDstPhys = Register::isPhysicalRegister(DstReg);
539    return &UseMI;
540  }
541  return nullptr;
542}
543
544/// Return the physical register the specified virtual register might be mapped
545/// to.
546static unsigned
547getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
548  while (Register::isVirtualRegister(Reg)) {
549    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
550    if (SI == RegMap.end())
551      return 0;
552    Reg = SI->second;
553  }
554  if (Register::isPhysicalRegister(Reg))
555    return Reg;
556  return 0;
557}
558
559/// Return true if the two registers are equal or aliased.
560static bool
561regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
562  if (RegA == RegB)
563    return true;
564  if (!RegA || !RegB)
565    return false;
566  return TRI->regsOverlap(RegA, RegB);
567}
568
569// Returns true if Reg is equal or aliased to at least one register in Set.
570static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg,
571                           const TargetRegisterInfo *TRI) {
572  for (unsigned R : Set)
573    if (TRI->regsOverlap(R, Reg))
574      return true;
575
576  return false;
577}
578
579/// Return true if it's potentially profitable to commute the two-address
580/// instruction that's being processed.
581bool
582TwoAddressInstructionPass::
583isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
584                      MachineInstr *MI, unsigned Dist) {
585  if (OptLevel == CodeGenOpt::None)
586    return false;
587
588  // Determine if it's profitable to commute this two address instruction. In
589  // general, we want no uses between this instruction and the definition of
590  // the two-address register.
591  // e.g.
592  // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
593  // %reg1029 = COPY %reg1028
594  // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
595  // insert => %reg1030 = COPY %reg1028
596  // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
597  // In this case, it might not be possible to coalesce the second COPY
598  // instruction if the first one is coalesced. So it would be profitable to
599  // commute it:
600  // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
601  // %reg1029 = COPY %reg1028
602  // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
603  // insert => %reg1030 = COPY %reg1029
604  // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
605
606  if (!isPlainlyKilled(MI, regC, LIS))
607    return false;
608
609  // Ok, we have something like:
610  // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
611  // let's see if it's worth commuting it.
612
613  // Look for situations like this:
614  // %reg1024 = MOV r1
615  // %reg1025 = MOV r0
616  // %reg1026 = ADD %reg1024, %reg1025
617  // r0            = MOV %reg1026
618  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
619  unsigned ToRegA = getMappedReg(regA, DstRegMap);
620  if (ToRegA) {
621    unsigned FromRegB = getMappedReg(regB, SrcRegMap);
622    unsigned FromRegC = getMappedReg(regC, SrcRegMap);
623    bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
624    bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
625
626    // Compute if any of the following are true:
627    // -RegB is not tied to a register and RegC is compatible with RegA.
628    // -RegB is tied to the wrong physical register, but RegC is.
629    // -RegB is tied to the wrong physical register, and RegC isn't tied.
630    if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
631      return true;
632    // Don't compute if any of the following are true:
633    // -RegC is not tied to a register and RegB is compatible with RegA.
634    // -RegC is tied to the wrong physical register, but RegB is.
635    // -RegC is tied to the wrong physical register, and RegB isn't tied.
636    if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
637      return false;
638  }
639
640  // If there is a use of regC between its last def (could be livein) and this
641  // instruction, then bail.
642  unsigned LastDefC = 0;
643  if (!noUseAfterLastDef(regC, Dist, LastDefC))
644    return false;
645
646  // If there is a use of regB between its last def (could be livein) and this
647  // instruction, then go ahead and make this transformation.
648  unsigned LastDefB = 0;
649  if (!noUseAfterLastDef(regB, Dist, LastDefB))
650    return true;
651
652  // Look for situation like this:
653  // %reg101 = MOV %reg100
654  // %reg102 = ...
655  // %reg103 = ADD %reg102, %reg101
656  // ... = %reg103 ...
657  // %reg100 = MOV %reg103
658  // If there is a reversed copy chain from reg101 to reg103, commute the ADD
659  // to eliminate an otherwise unavoidable copy.
660  // FIXME:
661  // We can extend the logic further: If an pair of operands in an insn has
662  // been merged, the insn could be regarded as a virtual copy, and the virtual
663  // copy could also be used to construct a copy chain.
664  // To more generally minimize register copies, ideally the logic of two addr
665  // instruction pass should be integrated with register allocation pass where
666  // interference graph is available.
667  if (isRevCopyChain(regC, regA, MaxDataFlowEdge))
668    return true;
669
670  if (isRevCopyChain(regB, regA, MaxDataFlowEdge))
671    return false;
672
673  // Since there are no intervening uses for both registers, then commute
674  // if the def of regC is closer. Its live interval is shorter.
675  return LastDefB && LastDefC && LastDefC > LastDefB;
676}
677
678/// Commute a two-address instruction and update the basic block, distance map,
679/// and live variables if needed. Return true if it is successful.
680bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
681                                                   unsigned DstIdx,
682                                                   unsigned RegBIdx,
683                                                   unsigned RegCIdx,
684                                                   unsigned Dist) {
685  Register RegC = MI->getOperand(RegCIdx).getReg();
686  LLVM_DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
687  MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
688
689  if (NewMI == nullptr) {
690    LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
691    return false;
692  }
693
694  LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
695  assert(NewMI == MI &&
696         "TargetInstrInfo::commuteInstruction() should not return a new "
697         "instruction unless it was requested.");
698
699  // Update source register map.
700  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
701  if (FromRegC) {
702    Register RegA = MI->getOperand(DstIdx).getReg();
703    SrcRegMap[RegA] = FromRegC;
704  }
705
706  return true;
707}
708
709/// Return true if it is profitable to convert the given 2-address instruction
710/// to a 3-address one.
711bool
712TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
713  // Look for situations like this:
714  // %reg1024 = MOV r1
715  // %reg1025 = MOV r0
716  // %reg1026 = ADD %reg1024, %reg1025
717  // r2            = MOV %reg1026
718  // Turn ADD into a 3-address instruction to avoid a copy.
719  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
720  if (!FromRegB)
721    return false;
722  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
723  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
724}
725
726/// Convert the specified two-address instruction into a three address one.
727/// Return true if this transformation was successful.
728bool
729TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
730                                              MachineBasicBlock::iterator &nmi,
731                                              unsigned RegA, unsigned RegB,
732                                              unsigned Dist) {
733  // FIXME: Why does convertToThreeAddress() need an iterator reference?
734  MachineFunction::iterator MFI = MBB->getIterator();
735  MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV);
736  assert(MBB->getIterator() == MFI &&
737         "convertToThreeAddress changed iterator reference");
738  if (!NewMI)
739    return false;
740
741  LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
742  LLVM_DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
743  bool Sunk = false;
744
745  if (LIS)
746    LIS->ReplaceMachineInstrInMaps(*mi, *NewMI);
747
748  if (NewMI->findRegisterUseOperand(RegB, false, TRI))
749    // FIXME: Temporary workaround. If the new instruction doesn't
750    // uses RegB, convertToThreeAddress must have created more
751    // then one instruction.
752    Sunk = sink3AddrInstruction(NewMI, RegB, mi);
753
754  MBB->erase(mi); // Nuke the old inst.
755
756  if (!Sunk) {
757    DistanceMap.insert(std::make_pair(NewMI, Dist));
758    mi = NewMI;
759    nmi = std::next(mi);
760  }
761  else
762    SunkInstrs.insert(NewMI);
763
764  // Update source and destination register maps.
765  SrcRegMap.erase(RegA);
766  DstRegMap.erase(RegB);
767  return true;
768}
769
770/// Scan forward recursively for only uses, update maps if the use is a copy or
771/// a two-address instruction.
772void
773TwoAddressInstructionPass::scanUses(unsigned DstReg) {
774  SmallVector<unsigned, 4> VirtRegPairs;
775  bool IsDstPhys;
776  bool IsCopy = false;
777  unsigned NewReg = 0;
778  unsigned Reg = DstReg;
779  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
780                                                      NewReg, IsDstPhys)) {
781    if (IsCopy && !Processed.insert(UseMI).second)
782      break;
783
784    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
785    if (DI != DistanceMap.end())
786      // Earlier in the same MBB.Reached via a back edge.
787      break;
788
789    if (IsDstPhys) {
790      VirtRegPairs.push_back(NewReg);
791      break;
792    }
793    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
794    if (!isNew)
795      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
796    VirtRegPairs.push_back(NewReg);
797    Reg = NewReg;
798  }
799
800  if (!VirtRegPairs.empty()) {
801    unsigned ToReg = VirtRegPairs.back();
802    VirtRegPairs.pop_back();
803    while (!VirtRegPairs.empty()) {
804      unsigned FromReg = VirtRegPairs.back();
805      VirtRegPairs.pop_back();
806      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
807      if (!isNew)
808        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
809      ToReg = FromReg;
810    }
811    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
812    if (!isNew)
813      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
814  }
815}
816
817/// If the specified instruction is not yet processed, process it if it's a
818/// copy. For a copy instruction, we find the physical registers the
819/// source and destination registers might be mapped to. These are kept in
820/// point-to maps used to determine future optimizations. e.g.
821/// v1024 = mov r0
822/// v1025 = mov r1
823/// v1026 = add v1024, v1025
824/// r1    = mov r1026
825/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
826/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
827/// potentially joined with r1 on the output side. It's worthwhile to commute
828/// 'add' to eliminate a copy.
829void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
830  if (Processed.count(MI))
831    return;
832
833  bool IsSrcPhys, IsDstPhys;
834  unsigned SrcReg, DstReg;
835  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
836    return;
837
838  if (IsDstPhys && !IsSrcPhys)
839    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
840  else if (!IsDstPhys && IsSrcPhys) {
841    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
842    if (!isNew)
843      assert(SrcRegMap[DstReg] == SrcReg &&
844             "Can't map to two src physical registers!");
845
846    scanUses(DstReg);
847  }
848
849  Processed.insert(MI);
850}
851
852/// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
853/// consider moving the instruction below the kill instruction in order to
854/// eliminate the need for the copy.
855bool TwoAddressInstructionPass::
856rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
857                      MachineBasicBlock::iterator &nmi,
858                      unsigned Reg) {
859  // Bail immediately if we don't have LV or LIS available. We use them to find
860  // kills efficiently.
861  if (!LV && !LIS)
862    return false;
863
864  MachineInstr *MI = &*mi;
865  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
866  if (DI == DistanceMap.end())
867    // Must be created from unfolded load. Don't waste time trying this.
868    return false;
869
870  MachineInstr *KillMI = nullptr;
871  if (LIS) {
872    LiveInterval &LI = LIS->getInterval(Reg);
873    assert(LI.end() != LI.begin() &&
874           "Reg should not have empty live interval.");
875
876    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
877    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
878    if (I != LI.end() && I->start < MBBEndIdx)
879      return false;
880
881    --I;
882    KillMI = LIS->getInstructionFromIndex(I->end);
883  } else {
884    KillMI = LV->getVarInfo(Reg).findKill(MBB);
885  }
886  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
887    // Don't mess with copies, they may be coalesced later.
888    return false;
889
890  if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
891      KillMI->isBranch() || KillMI->isTerminator())
892    // Don't move pass calls, etc.
893    return false;
894
895  unsigned DstReg;
896  if (isTwoAddrUse(*KillMI, Reg, DstReg))
897    return false;
898
899  bool SeenStore = true;
900  if (!MI->isSafeToMove(AA, SeenStore))
901    return false;
902
903  if (TII->getInstrLatency(InstrItins, *MI) > 1)
904    // FIXME: Needs more sophisticated heuristics.
905    return false;
906
907  SmallVector<unsigned, 2> Uses;
908  SmallVector<unsigned, 2> Kills;
909  SmallVector<unsigned, 2> Defs;
910  for (const MachineOperand &MO : MI->operands()) {
911    if (!MO.isReg())
912      continue;
913    Register MOReg = MO.getReg();
914    if (!MOReg)
915      continue;
916    if (MO.isDef())
917      Defs.push_back(MOReg);
918    else {
919      Uses.push_back(MOReg);
920      if (MOReg != Reg && (MO.isKill() ||
921                           (LIS && isPlainlyKilled(MI, MOReg, LIS))))
922        Kills.push_back(MOReg);
923    }
924  }
925
926  // Move the copies connected to MI down as well.
927  MachineBasicBlock::iterator Begin = MI;
928  MachineBasicBlock::iterator AfterMI = std::next(Begin);
929  MachineBasicBlock::iterator End = AfterMI;
930  while (End != MBB->end()) {
931    End = skipDebugInstructionsForward(End, MBB->end());
932    if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI))
933      Defs.push_back(End->getOperand(0).getReg());
934    else
935      break;
936    ++End;
937  }
938
939  // Check if the reschedule will not break dependencies.
940  unsigned NumVisited = 0;
941  MachineBasicBlock::iterator KillPos = KillMI;
942  ++KillPos;
943  for (MachineInstr &OtherMI : make_range(End, KillPos)) {
944    // Debug instructions cannot be counted against the limit.
945    if (OtherMI.isDebugInstr())
946      continue;
947    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
948      return false;
949    ++NumVisited;
950    if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
951        OtherMI.isBranch() || OtherMI.isTerminator())
952      // Don't move pass calls, etc.
953      return false;
954    for (const MachineOperand &MO : OtherMI.operands()) {
955      if (!MO.isReg())
956        continue;
957      Register MOReg = MO.getReg();
958      if (!MOReg)
959        continue;
960      if (MO.isDef()) {
961        if (regOverlapsSet(Uses, MOReg, TRI))
962          // Physical register use would be clobbered.
963          return false;
964        if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI))
965          // May clobber a physical register def.
966          // FIXME: This may be too conservative. It's ok if the instruction
967          // is sunken completely below the use.
968          return false;
969      } else {
970        if (regOverlapsSet(Defs, MOReg, TRI))
971          return false;
972        bool isKill =
973            MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS));
974        if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) ||
975                             regOverlapsSet(Kills, MOReg, TRI)))
976          // Don't want to extend other live ranges and update kills.
977          return false;
978        if (MOReg == Reg && !isKill)
979          // We can't schedule across a use of the register in question.
980          return false;
981        // Ensure that if this is register in question, its the kill we expect.
982        assert((MOReg != Reg || &OtherMI == KillMI) &&
983               "Found multiple kills of a register in a basic block");
984      }
985    }
986  }
987
988  // Move debug info as well.
989  while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
990    --Begin;
991
992  nmi = End;
993  MachineBasicBlock::iterator InsertPos = KillPos;
994  if (LIS) {
995    // We have to move the copies first so that the MBB is still well-formed
996    // when calling handleMove().
997    for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
998      auto CopyMI = MBBI++;
999      MBB->splice(InsertPos, MBB, CopyMI);
1000      LIS->handleMove(*CopyMI);
1001      InsertPos = CopyMI;
1002    }
1003    End = std::next(MachineBasicBlock::iterator(MI));
1004  }
1005
1006  // Copies following MI may have been moved as well.
1007  MBB->splice(InsertPos, MBB, Begin, End);
1008  DistanceMap.erase(DI);
1009
1010  // Update live variables
1011  if (LIS) {
1012    LIS->handleMove(*MI);
1013  } else {
1014    LV->removeVirtualRegisterKilled(Reg, *KillMI);
1015    LV->addVirtualRegisterKilled(Reg, *MI);
1016  }
1017
1018  LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
1019  return true;
1020}
1021
1022/// Return true if the re-scheduling will put the given instruction too close
1023/// to the defs of its register dependencies.
1024bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
1025                                              MachineInstr *MI) {
1026  for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
1027    if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
1028      continue;
1029    if (&DefMI == MI)
1030      return true; // MI is defining something KillMI uses
1031    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
1032    if (DDI == DistanceMap.end())
1033      return true;  // Below MI
1034    unsigned DefDist = DDI->second;
1035    assert(Dist > DefDist && "Visited def already?");
1036    if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
1037      return true;
1038  }
1039  return false;
1040}
1041
1042/// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
1043/// consider moving the kill instruction above the current two-address
1044/// instruction in order to eliminate the need for the copy.
1045bool TwoAddressInstructionPass::
1046rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
1047                      MachineBasicBlock::iterator &nmi,
1048                      unsigned Reg) {
1049  // Bail immediately if we don't have LV or LIS available. We use them to find
1050  // kills efficiently.
1051  if (!LV && !LIS)
1052    return false;
1053
1054  MachineInstr *MI = &*mi;
1055  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1056  if (DI == DistanceMap.end())
1057    // Must be created from unfolded load. Don't waste time trying this.
1058    return false;
1059
1060  MachineInstr *KillMI = nullptr;
1061  if (LIS) {
1062    LiveInterval &LI = LIS->getInterval(Reg);
1063    assert(LI.end() != LI.begin() &&
1064           "Reg should not have empty live interval.");
1065
1066    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
1067    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
1068    if (I != LI.end() && I->start < MBBEndIdx)
1069      return false;
1070
1071    --I;
1072    KillMI = LIS->getInstructionFromIndex(I->end);
1073  } else {
1074    KillMI = LV->getVarInfo(Reg).findKill(MBB);
1075  }
1076  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1077    // Don't mess with copies, they may be coalesced later.
1078    return false;
1079
1080  unsigned DstReg;
1081  if (isTwoAddrUse(*KillMI, Reg, DstReg))
1082    return false;
1083
1084  bool SeenStore = true;
1085  if (!KillMI->isSafeToMove(AA, SeenStore))
1086    return false;
1087
1088  SmallSet<unsigned, 2> Uses;
1089  SmallSet<unsigned, 2> Kills;
1090  SmallSet<unsigned, 2> Defs;
1091  SmallSet<unsigned, 2> LiveDefs;
1092  for (const MachineOperand &MO : KillMI->operands()) {
1093    if (!MO.isReg())
1094      continue;
1095    Register MOReg = MO.getReg();
1096    if (MO.isUse()) {
1097      if (!MOReg)
1098        continue;
1099      if (isDefTooClose(MOReg, DI->second, MI))
1100        return false;
1101      bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
1102      if (MOReg == Reg && !isKill)
1103        return false;
1104      Uses.insert(MOReg);
1105      if (isKill && MOReg != Reg)
1106        Kills.insert(MOReg);
1107    } else if (Register::isPhysicalRegister(MOReg)) {
1108      Defs.insert(MOReg);
1109      if (!MO.isDead())
1110        LiveDefs.insert(MOReg);
1111    }
1112  }
1113
1114  // Check if the reschedule will not break depedencies.
1115  unsigned NumVisited = 0;
1116  for (MachineInstr &OtherMI :
1117       make_range(mi, MachineBasicBlock::iterator(KillMI))) {
1118    // Debug instructions cannot be counted against the limit.
1119    if (OtherMI.isDebugInstr())
1120      continue;
1121    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1122      return false;
1123    ++NumVisited;
1124    if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
1125        OtherMI.isBranch() || OtherMI.isTerminator())
1126      // Don't move pass calls, etc.
1127      return false;
1128    SmallVector<unsigned, 2> OtherDefs;
1129    for (const MachineOperand &MO : OtherMI.operands()) {
1130      if (!MO.isReg())
1131        continue;
1132      Register MOReg = MO.getReg();
1133      if (!MOReg)
1134        continue;
1135      if (MO.isUse()) {
1136        if (Defs.count(MOReg))
1137          // Moving KillMI can clobber the physical register if the def has
1138          // not been seen.
1139          return false;
1140        if (Kills.count(MOReg))
1141          // Don't want to extend other live ranges and update kills.
1142          return false;
1143        if (&OtherMI != MI && MOReg == Reg &&
1144            !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))))
1145          // We can't schedule across a use of the register in question.
1146          return false;
1147      } else {
1148        OtherDefs.push_back(MOReg);
1149      }
1150    }
1151
1152    for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1153      unsigned MOReg = OtherDefs[i];
1154      if (Uses.count(MOReg))
1155        return false;
1156      if (Register::isPhysicalRegister(MOReg) && LiveDefs.count(MOReg))
1157        return false;
1158      // Physical register def is seen.
1159      Defs.erase(MOReg);
1160    }
1161  }
1162
1163  // Move the old kill above MI, don't forget to move debug info as well.
1164  MachineBasicBlock::iterator InsertPos = mi;
1165  while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
1166    --InsertPos;
1167  MachineBasicBlock::iterator From = KillMI;
1168  MachineBasicBlock::iterator To = std::next(From);
1169  while (std::prev(From)->isDebugInstr())
1170    --From;
1171  MBB->splice(InsertPos, MBB, From, To);
1172
1173  nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1174  DistanceMap.erase(DI);
1175
1176  // Update live variables
1177  if (LIS) {
1178    LIS->handleMove(*KillMI);
1179  } else {
1180    LV->removeVirtualRegisterKilled(Reg, *KillMI);
1181    LV->addVirtualRegisterKilled(Reg, *MI);
1182  }
1183
1184  LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1185  return true;
1186}
1187
1188/// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1189/// given machine instruction to improve opportunities for coalescing and
1190/// elimination of a register to register copy.
1191///
1192/// 'DstOpIdx' specifies the index of MI def operand.
1193/// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1194/// operand is killed by the given instruction.
1195/// The 'Dist' arguments provides the distance of MI from the start of the
1196/// current basic block and it is used to determine if it is profitable
1197/// to commute operands in the instruction.
1198///
1199/// Returns true if the transformation happened. Otherwise, returns false.
1200bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1201                                                      unsigned DstOpIdx,
1202                                                      unsigned BaseOpIdx,
1203                                                      bool BaseOpKilled,
1204                                                      unsigned Dist) {
1205  if (!MI->isCommutable())
1206    return false;
1207
1208  bool MadeChange = false;
1209  Register DstOpReg = MI->getOperand(DstOpIdx).getReg();
1210  Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1211  unsigned OpsNum = MI->getDesc().getNumOperands();
1212  unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1213  for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1214    // The call of findCommutedOpIndices below only checks if BaseOpIdx
1215    // and OtherOpIdx are commutable, it does not really search for
1216    // other commutable operands and does not change the values of passed
1217    // variables.
1218    if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
1219        !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
1220      continue;
1221
1222    Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1223    bool AggressiveCommute = false;
1224
1225    // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1226    // operands. This makes the live ranges of DstOp and OtherOp joinable.
1227    bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
1228    bool DoCommute = !BaseOpKilled && OtherOpKilled;
1229
1230    if (!DoCommute &&
1231        isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1232      DoCommute = true;
1233      AggressiveCommute = true;
1234    }
1235
1236    // If it's profitable to commute, try to do so.
1237    if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
1238                                        Dist)) {
1239      MadeChange = true;
1240      ++NumCommuted;
1241      if (AggressiveCommute) {
1242        ++NumAggrCommuted;
1243        // There might be more than two commutable operands, update BaseOp and
1244        // continue scanning.
1245        // FIXME: This assumes that the new instruction's operands are in the
1246        // same positions and were simply swapped.
1247        BaseOpReg = OtherOpReg;
1248        BaseOpKilled = OtherOpKilled;
1249        // Resamples OpsNum in case the number of operands was reduced. This
1250        // happens with X86.
1251        OpsNum = MI->getDesc().getNumOperands();
1252        continue;
1253      }
1254      // If this was a commute based on kill, we won't do better continuing.
1255      return MadeChange;
1256    }
1257  }
1258  return MadeChange;
1259}
1260
1261/// For the case where an instruction has a single pair of tied register
1262/// operands, attempt some transformations that may either eliminate the tied
1263/// operands or improve the opportunities for coalescing away the register copy.
1264/// Returns true if no copy needs to be inserted to untie mi's operands
1265/// (either because they were untied, or because mi was rescheduled, and will
1266/// be visited again later). If the shouldOnlyCommute flag is true, only
1267/// instruction commutation is attempted.
1268bool TwoAddressInstructionPass::
1269tryInstructionTransform(MachineBasicBlock::iterator &mi,
1270                        MachineBasicBlock::iterator &nmi,
1271                        unsigned SrcIdx, unsigned DstIdx,
1272                        unsigned Dist, bool shouldOnlyCommute) {
1273  if (OptLevel == CodeGenOpt::None)
1274    return false;
1275
1276  MachineInstr &MI = *mi;
1277  Register regA = MI.getOperand(DstIdx).getReg();
1278  Register regB = MI.getOperand(SrcIdx).getReg();
1279
1280  assert(Register::isVirtualRegister(regB) &&
1281         "cannot make instruction into two-address form");
1282  bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1283
1284  if (Register::isVirtualRegister(regA))
1285    scanUses(regA);
1286
1287  bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1288
1289  // If the instruction is convertible to 3 Addr, instead
1290  // of returning try 3 Addr transformation aggressively and
1291  // use this variable to check later. Because it might be better.
1292  // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1293  // instead of the following code.
1294  //   addl     %esi, %edi
1295  //   movl     %edi, %eax
1296  //   ret
1297  if (Commuted && !MI.isConvertibleTo3Addr())
1298    return false;
1299
1300  if (shouldOnlyCommute)
1301    return false;
1302
1303  // If there is one more use of regB later in the same MBB, consider
1304  // re-schedule this MI below it.
1305  if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1306    ++NumReSchedDowns;
1307    return true;
1308  }
1309
1310  // If we commuted, regB may have changed so we should re-sample it to avoid
1311  // confusing the three address conversion below.
1312  if (Commuted) {
1313    regB = MI.getOperand(SrcIdx).getReg();
1314    regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1315  }
1316
1317  if (MI.isConvertibleTo3Addr()) {
1318    // This instruction is potentially convertible to a true
1319    // three-address instruction.  Check if it is profitable.
1320    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1321      // Try to convert it.
1322      if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1323        ++NumConvertedTo3Addr;
1324        return true; // Done with this instruction.
1325      }
1326    }
1327  }
1328
1329  // Return if it is commuted but 3 addr conversion is failed.
1330  if (Commuted)
1331    return false;
1332
1333  // If there is one more use of regB later in the same MBB, consider
1334  // re-schedule it before this MI if it's legal.
1335  if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1336    ++NumReSchedUps;
1337    return true;
1338  }
1339
1340  // If this is an instruction with a load folded into it, try unfolding
1341  // the load, e.g. avoid this:
1342  //   movq %rdx, %rcx
1343  //   addq (%rax), %rcx
1344  // in favor of this:
1345  //   movq (%rax), %rcx
1346  //   addq %rdx, %rcx
1347  // because it's preferable to schedule a load than a register copy.
1348  if (MI.mayLoad() && !regBKilled) {
1349    // Determine if a load can be unfolded.
1350    unsigned LoadRegIndex;
1351    unsigned NewOpc =
1352      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1353                                      /*UnfoldLoad=*/true,
1354                                      /*UnfoldStore=*/false,
1355                                      &LoadRegIndex);
1356    if (NewOpc != 0) {
1357      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1358      if (UnfoldMCID.getNumDefs() == 1) {
1359        // Unfold the load.
1360        LLVM_DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1361        const TargetRegisterClass *RC =
1362          TRI->getAllocatableClass(
1363            TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1364        Register Reg = MRI->createVirtualRegister(RC);
1365        SmallVector<MachineInstr *, 2> NewMIs;
1366        if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
1367                                      /*UnfoldLoad=*/true,
1368                                      /*UnfoldStore=*/false, NewMIs)) {
1369          LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1370          return false;
1371        }
1372        assert(NewMIs.size() == 2 &&
1373               "Unfolded a load into multiple instructions!");
1374        // The load was previously folded, so this is the only use.
1375        NewMIs[1]->addRegisterKilled(Reg, TRI);
1376
1377        // Tentatively insert the instructions into the block so that they
1378        // look "normal" to the transformation logic.
1379        MBB->insert(mi, NewMIs[0]);
1380        MBB->insert(mi, NewMIs[1]);
1381
1382        LLVM_DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1383                          << "2addr:    NEW INST: " << *NewMIs[1]);
1384
1385        // Transform the instruction, now that it no longer has a load.
1386        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1387        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1388        MachineBasicBlock::iterator NewMI = NewMIs[1];
1389        bool TransformResult =
1390          tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1391        (void)TransformResult;
1392        assert(!TransformResult &&
1393               "tryInstructionTransform() should return false.");
1394        if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1395          // Success, or at least we made an improvement. Keep the unfolded
1396          // instructions and discard the original.
1397          if (LV) {
1398            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1399              MachineOperand &MO = MI.getOperand(i);
1400              if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
1401                if (MO.isUse()) {
1402                  if (MO.isKill()) {
1403                    if (NewMIs[0]->killsRegister(MO.getReg()))
1404                      LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
1405                    else {
1406                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1407                             "Kill missing after load unfold!");
1408                      LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
1409                    }
1410                  }
1411                } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
1412                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1413                    LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
1414                  else {
1415                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1416                           "Dead flag missing after load unfold!");
1417                    LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
1418                  }
1419                }
1420              }
1421            }
1422            LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
1423          }
1424
1425          SmallVector<unsigned, 4> OrigRegs;
1426          if (LIS) {
1427            for (const MachineOperand &MO : MI.operands()) {
1428              if (MO.isReg())
1429                OrigRegs.push_back(MO.getReg());
1430            }
1431          }
1432
1433          MI.eraseFromParent();
1434
1435          // Update LiveIntervals.
1436          if (LIS) {
1437            MachineBasicBlock::iterator Begin(NewMIs[0]);
1438            MachineBasicBlock::iterator End(NewMIs[1]);
1439            LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1440          }
1441
1442          mi = NewMIs[1];
1443        } else {
1444          // Transforming didn't eliminate the tie and didn't lead to an
1445          // improvement. Clean up the unfolded instructions and keep the
1446          // original.
1447          LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1448          NewMIs[0]->eraseFromParent();
1449          NewMIs[1]->eraseFromParent();
1450        }
1451      }
1452    }
1453  }
1454
1455  return false;
1456}
1457
1458// Collect tied operands of MI that need to be handled.
1459// Rewrite trivial cases immediately.
1460// Return true if any tied operands where found, including the trivial ones.
1461bool TwoAddressInstructionPass::
1462collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1463  const MCInstrDesc &MCID = MI->getDesc();
1464  bool AnyOps = false;
1465  unsigned NumOps = MI->getNumOperands();
1466
1467  for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1468    unsigned DstIdx = 0;
1469    if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1470      continue;
1471    AnyOps = true;
1472    MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1473    MachineOperand &DstMO = MI->getOperand(DstIdx);
1474    Register SrcReg = SrcMO.getReg();
1475    Register DstReg = DstMO.getReg();
1476    // Tied constraint already satisfied?
1477    if (SrcReg == DstReg)
1478      continue;
1479
1480    assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1481
1482    // Deal with undef uses immediately - simply rewrite the src operand.
1483    if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1484      // Constrain the DstReg register class if required.
1485      if (Register::isVirtualRegister(DstReg))
1486        if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1487                                                             TRI, *MF))
1488          MRI->constrainRegClass(DstReg, RC);
1489      SrcMO.setReg(DstReg);
1490      SrcMO.setSubReg(0);
1491      LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1492      continue;
1493    }
1494    TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1495  }
1496  return AnyOps;
1497}
1498
1499// Process a list of tied MI operands that all use the same source register.
1500// The tied pairs are of the form (SrcIdx, DstIdx).
1501void
1502TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1503                                            TiedPairList &TiedPairs,
1504                                            unsigned &Dist) {
1505  bool IsEarlyClobber = false;
1506  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1507    const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1508    IsEarlyClobber |= DstMO.isEarlyClobber();
1509  }
1510
1511  bool RemovedKillFlag = false;
1512  bool AllUsesCopied = true;
1513  unsigned LastCopiedReg = 0;
1514  SlotIndex LastCopyIdx;
1515  unsigned RegB = 0;
1516  unsigned SubRegB = 0;
1517  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1518    unsigned SrcIdx = TiedPairs[tpi].first;
1519    unsigned DstIdx = TiedPairs[tpi].second;
1520
1521    const MachineOperand &DstMO = MI->getOperand(DstIdx);
1522    Register RegA = DstMO.getReg();
1523
1524    // Grab RegB from the instruction because it may have changed if the
1525    // instruction was commuted.
1526    RegB = MI->getOperand(SrcIdx).getReg();
1527    SubRegB = MI->getOperand(SrcIdx).getSubReg();
1528
1529    if (RegA == RegB) {
1530      // The register is tied to multiple destinations (or else we would
1531      // not have continued this far), but this use of the register
1532      // already matches the tied destination.  Leave it.
1533      AllUsesCopied = false;
1534      continue;
1535    }
1536    LastCopiedReg = RegA;
1537
1538    assert(Register::isVirtualRegister(RegB) &&
1539           "cannot make instruction into two-address form");
1540
1541#ifndef NDEBUG
1542    // First, verify that we don't have a use of "a" in the instruction
1543    // (a = b + a for example) because our transformation will not
1544    // work. This should never occur because we are in SSA form.
1545    for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1546      assert(i == DstIdx ||
1547             !MI->getOperand(i).isReg() ||
1548             MI->getOperand(i).getReg() != RegA);
1549#endif
1550
1551    // Emit a copy.
1552    MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1553                                      TII->get(TargetOpcode::COPY), RegA);
1554    // If this operand is folding a truncation, the truncation now moves to the
1555    // copy so that the register classes remain valid for the operands.
1556    MIB.addReg(RegB, 0, SubRegB);
1557    const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1558    if (SubRegB) {
1559      if (Register::isVirtualRegister(RegA)) {
1560        assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1561                                             SubRegB) &&
1562               "tied subregister must be a truncation");
1563        // The superreg class will not be used to constrain the subreg class.
1564        RC = nullptr;
1565      } else {
1566        assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1567               && "tied subregister must be a truncation");
1568      }
1569    }
1570
1571    // Update DistanceMap.
1572    MachineBasicBlock::iterator PrevMI = MI;
1573    --PrevMI;
1574    DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
1575    DistanceMap[MI] = ++Dist;
1576
1577    if (LIS) {
1578      LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
1579
1580      if (Register::isVirtualRegister(RegA)) {
1581        LiveInterval &LI = LIS->getInterval(RegA);
1582        VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1583        SlotIndex endIdx =
1584            LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
1585        LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1586      }
1587    }
1588
1589    LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1590
1591    MachineOperand &MO = MI->getOperand(SrcIdx);
1592    assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1593           "inconsistent operand info for 2-reg pass");
1594    if (MO.isKill()) {
1595      MO.setIsKill(false);
1596      RemovedKillFlag = true;
1597    }
1598
1599    // Make sure regA is a legal regclass for the SrcIdx operand.
1600    if (Register::isVirtualRegister(RegA) && Register::isVirtualRegister(RegB))
1601      MRI->constrainRegClass(RegA, RC);
1602    MO.setReg(RegA);
1603    // The getMatchingSuper asserts guarantee that the register class projected
1604    // by SubRegB is compatible with RegA with no subregister. So regardless of
1605    // whether the dest oper writes a subreg, the source oper should not.
1606    MO.setSubReg(0);
1607
1608    // Propagate SrcRegMap.
1609    SrcRegMap[RegA] = RegB;
1610  }
1611
1612  if (AllUsesCopied) {
1613    bool ReplacedAllUntiedUses = true;
1614    if (!IsEarlyClobber) {
1615      // Replace other (un-tied) uses of regB with LastCopiedReg.
1616      for (MachineOperand &MO : MI->operands()) {
1617        if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1618          if (MO.getSubReg() == SubRegB) {
1619            if (MO.isKill()) {
1620              MO.setIsKill(false);
1621              RemovedKillFlag = true;
1622            }
1623            MO.setReg(LastCopiedReg);
1624            MO.setSubReg(0);
1625          } else {
1626            ReplacedAllUntiedUses = false;
1627          }
1628        }
1629      }
1630    }
1631
1632    // Update live variables for regB.
1633    if (RemovedKillFlag && ReplacedAllUntiedUses &&
1634        LV && LV->getVarInfo(RegB).removeKill(*MI)) {
1635      MachineBasicBlock::iterator PrevMI = MI;
1636      --PrevMI;
1637      LV->addVirtualRegisterKilled(RegB, *PrevMI);
1638    }
1639
1640    // Update LiveIntervals.
1641    if (LIS) {
1642      LiveInterval &LI = LIS->getInterval(RegB);
1643      SlotIndex MIIdx = LIS->getInstructionIndex(*MI);
1644      LiveInterval::const_iterator I = LI.find(MIIdx);
1645      assert(I != LI.end() && "RegB must be live-in to use.");
1646
1647      SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1648      if (I->end == UseIdx)
1649        LI.removeSegment(LastCopyIdx, UseIdx);
1650    }
1651  } else if (RemovedKillFlag) {
1652    // Some tied uses of regB matched their destination registers, so
1653    // regB is still used in this instruction, but a kill flag was
1654    // removed from a different tied use of regB, so now we need to add
1655    // a kill flag to one of the remaining uses of regB.
1656    for (MachineOperand &MO : MI->operands()) {
1657      if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1658        MO.setIsKill(true);
1659        break;
1660      }
1661    }
1662  }
1663}
1664
1665/// Reduce two-address instructions to two operands.
1666bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1667  MF = &Func;
1668  const TargetMachine &TM = MF->getTarget();
1669  MRI = &MF->getRegInfo();
1670  TII = MF->getSubtarget().getInstrInfo();
1671  TRI = MF->getSubtarget().getRegisterInfo();
1672  InstrItins = MF->getSubtarget().getInstrItineraryData();
1673  LV = getAnalysisIfAvailable<LiveVariables>();
1674  LIS = getAnalysisIfAvailable<LiveIntervals>();
1675  if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
1676    AA = &AAPass->getAAResults();
1677  else
1678    AA = nullptr;
1679  OptLevel = TM.getOptLevel();
1680  // Disable optimizations if requested. We cannot skip the whole pass as some
1681  // fixups are necessary for correctness.
1682  if (skipFunction(Func.getFunction()))
1683    OptLevel = CodeGenOpt::None;
1684
1685  bool MadeChange = false;
1686
1687  LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1688  LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
1689
1690  // This pass takes the function out of SSA form.
1691  MRI->leaveSSA();
1692
1693  TiedOperandMap TiedOperands;
1694  for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1695       MBBI != MBBE; ++MBBI) {
1696    MBB = &*MBBI;
1697    unsigned Dist = 0;
1698    DistanceMap.clear();
1699    SrcRegMap.clear();
1700    DstRegMap.clear();
1701    Processed.clear();
1702    SunkInstrs.clear();
1703    for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1704         mi != me; ) {
1705      MachineBasicBlock::iterator nmi = std::next(mi);
1706      // Don't revisit an instruction previously converted by target. It may
1707      // contain undef register operands (%noreg), which are not handled.
1708      if (mi->isDebugInstr() || SunkInstrs.count(&*mi)) {
1709        mi = nmi;
1710        continue;
1711      }
1712
1713      // Expand REG_SEQUENCE instructions. This will position mi at the first
1714      // expanded instruction.
1715      if (mi->isRegSequence())
1716        eliminateRegSequence(mi);
1717
1718      DistanceMap.insert(std::make_pair(&*mi, ++Dist));
1719
1720      processCopy(&*mi);
1721
1722      // First scan through all the tied register uses in this instruction
1723      // and record a list of pairs of tied operands for each register.
1724      if (!collectTiedOperands(&*mi, TiedOperands)) {
1725        mi = nmi;
1726        continue;
1727      }
1728
1729      ++NumTwoAddressInstrs;
1730      MadeChange = true;
1731      LLVM_DEBUG(dbgs() << '\t' << *mi);
1732
1733      // If the instruction has a single pair of tied operands, try some
1734      // transformations that may either eliminate the tied operands or
1735      // improve the opportunities for coalescing away the register copy.
1736      if (TiedOperands.size() == 1) {
1737        SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
1738          = TiedOperands.begin()->second;
1739        if (TiedPairs.size() == 1) {
1740          unsigned SrcIdx = TiedPairs[0].first;
1741          unsigned DstIdx = TiedPairs[0].second;
1742          Register SrcReg = mi->getOperand(SrcIdx).getReg();
1743          Register DstReg = mi->getOperand(DstIdx).getReg();
1744          if (SrcReg != DstReg &&
1745              tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1746            // The tied operands have been eliminated or shifted further down
1747            // the block to ease elimination. Continue processing with 'nmi'.
1748            TiedOperands.clear();
1749            mi = nmi;
1750            continue;
1751          }
1752        }
1753      }
1754
1755      // Now iterate over the information collected above.
1756      for (auto &TO : TiedOperands) {
1757        processTiedPairs(&*mi, TO.second, Dist);
1758        LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1759      }
1760
1761      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1762      if (mi->isInsertSubreg()) {
1763        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1764        // To   %reg:subidx = COPY %subreg
1765        unsigned SubIdx = mi->getOperand(3).getImm();
1766        mi->RemoveOperand(3);
1767        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1768        mi->getOperand(0).setSubReg(SubIdx);
1769        mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1770        mi->RemoveOperand(1);
1771        mi->setDesc(TII->get(TargetOpcode::COPY));
1772        LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1773      }
1774
1775      // Clear TiedOperands here instead of at the top of the loop
1776      // since most instructions do not have tied operands.
1777      TiedOperands.clear();
1778      mi = nmi;
1779    }
1780  }
1781
1782  if (LIS)
1783    MF->verify(this, "After two-address instruction pass");
1784
1785  return MadeChange;
1786}
1787
1788/// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1789///
1790/// The instruction is turned into a sequence of sub-register copies:
1791///
1792///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1793///
1794/// Becomes:
1795///
1796///   undef %dst:ssub0 = COPY %v1
1797///   %dst:ssub1 = COPY %v2
1798void TwoAddressInstructionPass::
1799eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1800  MachineInstr &MI = *MBBI;
1801  Register DstReg = MI.getOperand(0).getReg();
1802  if (MI.getOperand(0).getSubReg() || Register::isPhysicalRegister(DstReg) ||
1803      !(MI.getNumOperands() & 1)) {
1804    LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI);
1805    llvm_unreachable(nullptr);
1806  }
1807
1808  SmallVector<unsigned, 4> OrigRegs;
1809  if (LIS) {
1810    OrigRegs.push_back(MI.getOperand(0).getReg());
1811    for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
1812      OrigRegs.push_back(MI.getOperand(i).getReg());
1813  }
1814
1815  bool DefEmitted = false;
1816  for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
1817    MachineOperand &UseMO = MI.getOperand(i);
1818    Register SrcReg = UseMO.getReg();
1819    unsigned SubIdx = MI.getOperand(i+1).getImm();
1820    // Nothing needs to be inserted for undef operands.
1821    if (UseMO.isUndef())
1822      continue;
1823
1824    // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1825    // might insert a COPY that uses SrcReg after is was killed.
1826    bool isKill = UseMO.isKill();
1827    if (isKill)
1828      for (unsigned j = i + 2; j < e; j += 2)
1829        if (MI.getOperand(j).getReg() == SrcReg) {
1830          MI.getOperand(j).setIsKill();
1831          UseMO.setIsKill(false);
1832          isKill = false;
1833          break;
1834        }
1835
1836    // Insert the sub-register copy.
1837    MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1838                                   TII->get(TargetOpcode::COPY))
1839                               .addReg(DstReg, RegState::Define, SubIdx)
1840                               .add(UseMO);
1841
1842    // The first def needs an undef flag because there is no live register
1843    // before it.
1844    if (!DefEmitted) {
1845      CopyMI->getOperand(0).setIsUndef(true);
1846      // Return an iterator pointing to the first inserted instr.
1847      MBBI = CopyMI;
1848    }
1849    DefEmitted = true;
1850
1851    // Update LiveVariables' kill info.
1852    if (LV && isKill && !Register::isPhysicalRegister(SrcReg))
1853      LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
1854
1855    LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
1856  }
1857
1858  MachineBasicBlock::iterator EndMBBI =
1859      std::next(MachineBasicBlock::iterator(MI));
1860
1861  if (!DefEmitted) {
1862    LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
1863    MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1864    for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
1865      MI.RemoveOperand(j);
1866  } else {
1867    LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
1868    MI.eraseFromParent();
1869  }
1870
1871  // Udpate LiveIntervals.
1872  if (LIS)
1873    LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1874}
1875