ShrinkWrap.cpp revision 321369
1//===-- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for safe point where the prologue and epilogue can be
11// inserted.
12// The safe point for the prologue (resp. epilogue) is called Save
13// (resp. Restore).
14// A point is safe for prologue (resp. epilogue) if and only if
15// it 1) dominates (resp. post-dominates) all the frame related operations and
16// between 2) two executions of the Save (resp. Restore) point there is an
17// execution of the Restore (resp. Save) point.
18//
19// For instance, the following points are safe:
20// for (int i = 0; i < 10; ++i) {
21//   Save
22//   ...
23//   Restore
24// }
25// Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
26// And the following points are not:
27// for (int i = 0; i < 10; ++i) {
28//   Save
29//   ...
30// }
31// for (int i = 0; i < 10; ++i) {
32//   ...
33//   Restore
34// }
35// Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
36//
37// This pass also ensures that the safe points are 3) cheaper than the regular
38// entry and exits blocks.
39//
40// Property #1 is ensured via the use of MachineDominatorTree and
41// MachinePostDominatorTree.
42// Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
43// points must be in the same loop.
44// Property #3 is ensured via the MachineBlockFrequencyInfo.
45//
46// If this pass found points matching all these properties, then
47// MachineFrameInfo is updated with this information.
48//===----------------------------------------------------------------------===//
49#include "llvm/ADT/BitVector.h"
50#include "llvm/ADT/PostOrderIterator.h"
51#include "llvm/ADT/SetVector.h"
52#include "llvm/ADT/Statistic.h"
53// To check for profitability.
54#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
55// For property #1 for Save.
56#include "llvm/CodeGen/MachineDominators.h"
57#include "llvm/CodeGen/MachineFunctionPass.h"
58// To record the result of the analysis.
59#include "llvm/CodeGen/MachineFrameInfo.h"
60// For property #2.
61#include "llvm/CodeGen/MachineLoopInfo.h"
62// For property #1 for Restore.
63#include "llvm/CodeGen/MachinePostDominators.h"
64#include "llvm/CodeGen/Passes.h"
65// To know about callee-saved.
66#include "llvm/CodeGen/RegisterClassInfo.h"
67#include "llvm/CodeGen/RegisterScavenging.h"
68#include "llvm/MC/MCAsmInfo.h"
69#include "llvm/Support/Debug.h"
70// To query the target about frame lowering.
71#include "llvm/Target/TargetFrameLowering.h"
72// To know about frame setup operation.
73#include "llvm/Target/TargetInstrInfo.h"
74#include "llvm/Target/TargetMachine.h"
75// To access TargetInstrInfo.
76#include "llvm/Target/TargetSubtargetInfo.h"
77
78#define DEBUG_TYPE "shrink-wrap"
79
80using namespace llvm;
81
82STATISTIC(NumFunc, "Number of functions");
83STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
84STATISTIC(NumCandidatesDropped,
85          "Number of shrink-wrapping candidates dropped because of frequency");
86
87static cl::opt<cl::boolOrDefault>
88    EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
89                        cl::desc("enable the shrink-wrapping pass"));
90
91namespace {
92/// \brief Class to determine where the safe point to insert the
93/// prologue and epilogue are.
94/// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
95/// shrink-wrapping term for prologue/epilogue placement, this pass
96/// does not rely on expensive data-flow analysis. Instead we use the
97/// dominance properties and loop information to decide which point
98/// are safe for such insertion.
99class ShrinkWrap : public MachineFunctionPass {
100  /// Hold callee-saved information.
101  RegisterClassInfo RCI;
102  MachineDominatorTree *MDT;
103  MachinePostDominatorTree *MPDT;
104  /// Current safe point found for the prologue.
105  /// The prologue will be inserted before the first instruction
106  /// in this basic block.
107  MachineBasicBlock *Save;
108  /// Current safe point found for the epilogue.
109  /// The epilogue will be inserted before the first terminator instruction
110  /// in this basic block.
111  MachineBasicBlock *Restore;
112  /// Hold the information of the basic block frequency.
113  /// Use to check the profitability of the new points.
114  MachineBlockFrequencyInfo *MBFI;
115  /// Hold the loop information. Used to determine if Save and Restore
116  /// are in the same loop.
117  MachineLoopInfo *MLI;
118  /// Frequency of the Entry block.
119  uint64_t EntryFreq;
120  /// Current opcode for frame setup.
121  unsigned FrameSetupOpcode;
122  /// Current opcode for frame destroy.
123  unsigned FrameDestroyOpcode;
124  /// Entry block.
125  const MachineBasicBlock *Entry;
126  typedef SmallSetVector<unsigned, 16> SetOfRegs;
127  /// Registers that need to be saved for the current function.
128  mutable SetOfRegs CurrentCSRs;
129  /// Current MachineFunction.
130  MachineFunction *MachineFunc;
131
132  /// \brief Check if \p MI uses or defines a callee-saved register or
133  /// a frame index. If this is the case, this means \p MI must happen
134  /// after Save and before Restore.
135  bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
136
137  const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
138    if (CurrentCSRs.empty()) {
139      BitVector SavedRegs;
140      const TargetFrameLowering *TFI =
141          MachineFunc->getSubtarget().getFrameLowering();
142
143      TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
144
145      for (int Reg = SavedRegs.find_first(); Reg != -1;
146           Reg = SavedRegs.find_next(Reg))
147        CurrentCSRs.insert((unsigned)Reg);
148    }
149    return CurrentCSRs;
150  }
151
152  /// \brief Update the Save and Restore points such that \p MBB is in
153  /// the region that is dominated by Save and post-dominated by Restore
154  /// and Save and Restore still match the safe point definition.
155  /// Such point may not exist and Save and/or Restore may be null after
156  /// this call.
157  void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
158
159  /// \brief Initialize the pass for \p MF.
160  void init(MachineFunction &MF) {
161    RCI.runOnMachineFunction(MF);
162    MDT = &getAnalysis<MachineDominatorTree>();
163    MPDT = &getAnalysis<MachinePostDominatorTree>();
164    Save = nullptr;
165    Restore = nullptr;
166    MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
167    MLI = &getAnalysis<MachineLoopInfo>();
168    EntryFreq = MBFI->getEntryFreq();
169    const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
170    FrameSetupOpcode = TII.getCallFrameSetupOpcode();
171    FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
172    Entry = &MF.front();
173    CurrentCSRs.clear();
174    MachineFunc = &MF;
175
176    ++NumFunc;
177  }
178
179  /// Check whether or not Save and Restore points are still interesting for
180  /// shrink-wrapping.
181  bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
182
183  /// \brief Check if shrink wrapping is enabled for this target and function.
184  static bool isShrinkWrapEnabled(const MachineFunction &MF);
185
186public:
187  static char ID;
188
189  ShrinkWrap() : MachineFunctionPass(ID) {
190    initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
191  }
192
193  void getAnalysisUsage(AnalysisUsage &AU) const override {
194    AU.setPreservesAll();
195    AU.addRequired<MachineBlockFrequencyInfo>();
196    AU.addRequired<MachineDominatorTree>();
197    AU.addRequired<MachinePostDominatorTree>();
198    AU.addRequired<MachineLoopInfo>();
199    MachineFunctionPass::getAnalysisUsage(AU);
200  }
201
202  StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
203
204  /// \brief Perform the shrink-wrapping analysis and update
205  /// the MachineFrameInfo attached to \p MF with the results.
206  bool runOnMachineFunction(MachineFunction &MF) override;
207};
208} // End anonymous namespace.
209
210char ShrinkWrap::ID = 0;
211char &llvm::ShrinkWrapID = ShrinkWrap::ID;
212
213INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
214INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
215INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
216INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
217INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
218INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
219
220bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
221                                 RegScavenger *RS) const {
222  if (MI.getOpcode() == FrameSetupOpcode ||
223      MI.getOpcode() == FrameDestroyOpcode) {
224    DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
225    return true;
226  }
227  for (const MachineOperand &MO : MI.operands()) {
228    bool UseOrDefCSR = false;
229    if (MO.isReg()) {
230      unsigned PhysReg = MO.getReg();
231      if (!PhysReg)
232        continue;
233      assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
234             "Unallocated register?!");
235      UseOrDefCSR = RCI.getLastCalleeSavedAlias(PhysReg);
236    } else if (MO.isRegMask()) {
237      // Check if this regmask clobbers any of the CSRs.
238      for (unsigned Reg : getCurrentCSRs(RS)) {
239        if (MO.clobbersPhysReg(Reg)) {
240          UseOrDefCSR = true;
241          break;
242        }
243      }
244    }
245    if (UseOrDefCSR || MO.isFI()) {
246      DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
247                   << MO.isFI() << "): " << MI << '\n');
248      return true;
249    }
250  }
251  return false;
252}
253
254/// \brief Helper function to find the immediate (post) dominator.
255template <typename ListOfBBs, typename DominanceAnalysis>
256static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
257                                   DominanceAnalysis &Dom) {
258  MachineBasicBlock *IDom = &Block;
259  for (MachineBasicBlock *BB : BBs) {
260    IDom = Dom.findNearestCommonDominator(IDom, BB);
261    if (!IDom)
262      break;
263  }
264  if (IDom == &Block)
265    return nullptr;
266  return IDom;
267}
268
269void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
270                                         RegScavenger *RS) {
271  // Get rid of the easy cases first.
272  if (!Save)
273    Save = &MBB;
274  else
275    Save = MDT->findNearestCommonDominator(Save, &MBB);
276
277  if (!Save) {
278    DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
279    return;
280  }
281
282  if (!Restore)
283    Restore = &MBB;
284  else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
285                                // means the block never returns. If that's the
286                                // case, we don't want to call
287                                // `findNearestCommonDominator`, which will
288                                // return `Restore`.
289    Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
290  else
291    Restore = nullptr; // Abort, we can't find a restore point in this case.
292
293  // Make sure we would be able to insert the restore code before the
294  // terminator.
295  if (Restore == &MBB) {
296    for (const MachineInstr &Terminator : MBB.terminators()) {
297      if (!useOrDefCSROrFI(Terminator, RS))
298        continue;
299      // One of the terminator needs to happen before the restore point.
300      if (MBB.succ_empty()) {
301        Restore = nullptr; // Abort, we can't find a restore point in this case.
302        break;
303      }
304      // Look for a restore point that post-dominates all the successors.
305      // The immediate post-dominator is what we are looking for.
306      Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
307      break;
308    }
309  }
310
311  if (!Restore) {
312    DEBUG(dbgs() << "Restore point needs to be spanned on several blocks\n");
313    return;
314  }
315
316  // Make sure Save and Restore are suitable for shrink-wrapping:
317  // 1. all path from Save needs to lead to Restore before exiting.
318  // 2. all path to Restore needs to go through Save from Entry.
319  // We achieve that by making sure that:
320  // A. Save dominates Restore.
321  // B. Restore post-dominates Save.
322  // C. Save and Restore are in the same loop.
323  bool SaveDominatesRestore = false;
324  bool RestorePostDominatesSave = false;
325  while (Save && Restore &&
326         (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
327          !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
328          // Post-dominance is not enough in loops to ensure that all uses/defs
329          // are after the prologue and before the epilogue at runtime.
330          // E.g.,
331          // while(1) {
332          //  Save
333          //  Restore
334          //   if (...)
335          //     break;
336          //  use/def CSRs
337          // }
338          // All the uses/defs of CSRs are dominated by Save and post-dominated
339          // by Restore. However, the CSRs uses are still reachable after
340          // Restore and before Save are executed.
341          //
342          // For now, just push the restore/save points outside of loops.
343          // FIXME: Refine the criteria to still find interesting cases
344          // for loops.
345          MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
346    // Fix (A).
347    if (!SaveDominatesRestore) {
348      Save = MDT->findNearestCommonDominator(Save, Restore);
349      continue;
350    }
351    // Fix (B).
352    if (!RestorePostDominatesSave)
353      Restore = MPDT->findNearestCommonDominator(Restore, Save);
354
355    // Fix (C).
356    if (Save && Restore &&
357        (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
358      if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
359        // Push Save outside of this loop if immediate dominator is different
360        // from save block. If immediate dominator is not different, bail out.
361        Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
362        if (!Save)
363          break;
364      } else {
365        // If the loop does not exit, there is no point in looking
366        // for a post-dominator outside the loop.
367        SmallVector<MachineBasicBlock*, 4> ExitBlocks;
368        MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
369        // Push Restore outside of this loop.
370        // Look for the immediate post-dominator of the loop exits.
371        MachineBasicBlock *IPdom = Restore;
372        for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
373          IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
374          if (!IPdom)
375            break;
376        }
377        // If the immediate post-dominator is not in a less nested loop,
378        // then we are stuck in a program with an infinite loop.
379        // In that case, we will not find a safe point, hence, bail out.
380        if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
381          Restore = IPdom;
382        else {
383          Restore = nullptr;
384          break;
385        }
386      }
387    }
388  }
389}
390
391/// Check whether the edge (\p SrcBB, \p DestBB) is a backedge according to MLI.
392/// I.e., check if it exists a loop that contains SrcBB and where DestBB is the
393/// loop header.
394static bool isProperBackedge(const MachineLoopInfo &MLI,
395                             const MachineBasicBlock *SrcBB,
396                             const MachineBasicBlock *DestBB) {
397  for (const MachineLoop *Loop = MLI.getLoopFor(SrcBB); Loop;
398       Loop = Loop->getParentLoop()) {
399    if (Loop->getHeader() == DestBB)
400      return true;
401  }
402  return false;
403}
404
405/// Check if the CFG of \p MF is irreducible.
406static bool isIrreducibleCFG(const MachineFunction &MF,
407                             const MachineLoopInfo &MLI) {
408  const MachineBasicBlock *Entry = &*MF.begin();
409  ReversePostOrderTraversal<const MachineBasicBlock *> RPOT(Entry);
410  BitVector VisitedBB(MF.getNumBlockIDs());
411  for (const MachineBasicBlock *MBB : RPOT) {
412    VisitedBB.set(MBB->getNumber());
413    for (const MachineBasicBlock *SuccBB : MBB->successors()) {
414      if (!VisitedBB.test(SuccBB->getNumber()))
415        continue;
416      // We already visited SuccBB, thus MBB->SuccBB must be a backedge.
417      // Check that the head matches what we have in the loop information.
418      // Otherwise, we have an irreducible graph.
419      if (!isProperBackedge(MLI, MBB, SuccBB))
420        return true;
421    }
422  }
423  return false;
424}
425
426bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
427  if (skipFunction(*MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
428    return false;
429
430  DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
431
432  init(MF);
433
434  if (isIrreducibleCFG(MF, *MLI)) {
435    // If MF is irreducible, a block may be in a loop without
436    // MachineLoopInfo reporting it. I.e., we may use the
437    // post-dominance property in loops, which lead to incorrect
438    // results. Moreover, we may miss that the prologue and
439    // epilogue are not in the same loop, leading to unbalanced
440    // construction/deconstruction of the stack frame.
441    DEBUG(dbgs() << "Irreducible CFGs are not supported yet\n");
442    return false;
443  }
444
445  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
446  std::unique_ptr<RegScavenger> RS(
447      TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
448
449  for (MachineBasicBlock &MBB : MF) {
450    DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' << MBB.getName()
451                 << '\n');
452
453    if (MBB.isEHFuncletEntry()) {
454      DEBUG(dbgs() << "EH Funclets are not supported yet.\n");
455      return false;
456    }
457
458    for (const MachineInstr &MI : MBB) {
459      if (!useOrDefCSROrFI(MI, RS.get()))
460        continue;
461      // Save (resp. restore) point must dominate (resp. post dominate)
462      // MI. Look for the proper basic block for those.
463      updateSaveRestorePoints(MBB, RS.get());
464      // If we are at a point where we cannot improve the placement of
465      // save/restore instructions, just give up.
466      if (!ArePointsInteresting()) {
467        DEBUG(dbgs() << "No Shrink wrap candidate found\n");
468        return false;
469      }
470      // No need to look for other instructions, this basic block
471      // will already be part of the handled region.
472      break;
473    }
474  }
475  if (!ArePointsInteresting()) {
476    // If the points are not interesting at this point, then they must be null
477    // because it means we did not encounter any frame/CSR related code.
478    // Otherwise, we would have returned from the previous loop.
479    assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
480    DEBUG(dbgs() << "Nothing to shrink-wrap\n");
481    return false;
482  }
483
484  DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
485               << '\n');
486
487  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
488  do {
489    DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
490                 << Save->getNumber() << ' ' << Save->getName() << ' '
491                 << MBFI->getBlockFreq(Save).getFrequency() << "\nRestore: "
492                 << Restore->getNumber() << ' ' << Restore->getName() << ' '
493                 << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
494
495    bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
496    if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
497         EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
498        ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
499         TFI->canUseAsEpilogue(*Restore)))
500      break;
501    DEBUG(dbgs() << "New points are too expensive or invalid for the target\n");
502    MachineBasicBlock *NewBB;
503    if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
504      Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
505      if (!Save)
506        break;
507      NewBB = Save;
508    } else {
509      // Restore is expensive.
510      Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
511      if (!Restore)
512        break;
513      NewBB = Restore;
514    }
515    updateSaveRestorePoints(*NewBB, RS.get());
516  } while (Save && Restore);
517
518  if (!ArePointsInteresting()) {
519    ++NumCandidatesDropped;
520    return false;
521  }
522
523  DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " << Save->getNumber()
524               << ' ' << Save->getName() << "\nRestore: "
525               << Restore->getNumber() << ' ' << Restore->getName() << '\n');
526
527  MachineFrameInfo &MFI = MF.getFrameInfo();
528  MFI.setSavePoint(Save);
529  MFI.setRestorePoint(Restore);
530  ++NumCandidates;
531  return false;
532}
533
534bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
535  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
536
537  switch (EnableShrinkWrapOpt) {
538  case cl::BOU_UNSET:
539    return TFI->enableShrinkWrapping(MF) &&
540      // Windows with CFI has some limitations that make it impossible
541      // to use shrink-wrapping.
542      !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
543      // Sanitizers look at the value of the stack at the location
544      // of the crash. Since a crash can happen anywhere, the
545      // frame must be lowered before anything else happen for the
546      // sanitizers to be able to get a correct stack frame.
547      !(MF.getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
548        MF.getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
549        MF.getFunction()->hasFnAttribute(Attribute::SanitizeMemory));
550  // If EnableShrinkWrap is set, it takes precedence on whatever the
551  // target sets. The rational is that we assume we want to test
552  // something related to shrink-wrapping.
553  case cl::BOU_TRUE:
554    return true;
555  case cl::BOU_FALSE:
556    return false;
557  }
558  llvm_unreachable("Invalid shrink-wrapping state");
559}
560