1//===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements routines for translating from LLVM IR into SelectionDAG IR.
10//
11//===----------------------------------------------------------------------===//
12
13#include "SelectionDAGBuilder.h"
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallSet.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/Triple.h"
28#include "llvm/ADT/Twine.h"
29#include "llvm/Analysis/AliasAnalysis.h"
30#include "llvm/Analysis/BlockFrequencyInfo.h"
31#include "llvm/Analysis/BranchProbabilityInfo.h"
32#include "llvm/Analysis/ConstantFolding.h"
33#include "llvm/Analysis/EHPersonalities.h"
34#include "llvm/Analysis/Loads.h"
35#include "llvm/Analysis/MemoryLocation.h"
36#include "llvm/Analysis/ProfileSummaryInfo.h"
37#include "llvm/Analysis/TargetLibraryInfo.h"
38#include "llvm/Analysis/ValueTracking.h"
39#include "llvm/Analysis/VectorUtils.h"
40#include "llvm/CodeGen/Analysis.h"
41#include "llvm/CodeGen/FunctionLoweringInfo.h"
42#include "llvm/CodeGen/GCMetadata.h"
43#include "llvm/CodeGen/ISDOpcodes.h"
44#include "llvm/CodeGen/MachineBasicBlock.h"
45#include "llvm/CodeGen/MachineFrameInfo.h"
46#include "llvm/CodeGen/MachineFunction.h"
47#include "llvm/CodeGen/MachineInstr.h"
48#include "llvm/CodeGen/MachineInstrBuilder.h"
49#include "llvm/CodeGen/MachineJumpTableInfo.h"
50#include "llvm/CodeGen/MachineMemOperand.h"
51#include "llvm/CodeGen/MachineModuleInfo.h"
52#include "llvm/CodeGen/MachineOperand.h"
53#include "llvm/CodeGen/MachineRegisterInfo.h"
54#include "llvm/CodeGen/RuntimeLibcalls.h"
55#include "llvm/CodeGen/SelectionDAG.h"
56#include "llvm/CodeGen/SelectionDAGNodes.h"
57#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58#include "llvm/CodeGen/StackMaps.h"
59#include "llvm/CodeGen/SwiftErrorValueTracking.h"
60#include "llvm/CodeGen/TargetFrameLowering.h"
61#include "llvm/CodeGen/TargetInstrInfo.h"
62#include "llvm/CodeGen/TargetLowering.h"
63#include "llvm/CodeGen/TargetOpcodes.h"
64#include "llvm/CodeGen/TargetRegisterInfo.h"
65#include "llvm/CodeGen/TargetSubtargetInfo.h"
66#include "llvm/CodeGen/ValueTypes.h"
67#include "llvm/CodeGen/WinEHFuncInfo.h"
68#include "llvm/IR/Argument.h"
69#include "llvm/IR/Attributes.h"
70#include "llvm/IR/BasicBlock.h"
71#include "llvm/IR/CFG.h"
72#include "llvm/IR/CallSite.h"
73#include "llvm/IR/CallingConv.h"
74#include "llvm/IR/Constant.h"
75#include "llvm/IR/ConstantRange.h"
76#include "llvm/IR/Constants.h"
77#include "llvm/IR/DataLayout.h"
78#include "llvm/IR/DebugInfoMetadata.h"
79#include "llvm/IR/DebugLoc.h"
80#include "llvm/IR/DerivedTypes.h"
81#include "llvm/IR/Function.h"
82#include "llvm/IR/GetElementPtrTypeIterator.h"
83#include "llvm/IR/InlineAsm.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/IntrinsicInst.h"
88#include "llvm/IR/Intrinsics.h"
89#include "llvm/IR/IntrinsicsAArch64.h"
90#include "llvm/IR/IntrinsicsWebAssembly.h"
91#include "llvm/IR/LLVMContext.h"
92#include "llvm/IR/Metadata.h"
93#include "llvm/IR/Module.h"
94#include "llvm/IR/Operator.h"
95#include "llvm/IR/PatternMatch.h"
96#include "llvm/IR/Statepoint.h"
97#include "llvm/IR/Type.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/MC/MCContext.h"
101#include "llvm/MC/MCSymbol.h"
102#include "llvm/Support/AtomicOrdering.h"
103#include "llvm/Support/BranchProbability.h"
104#include "llvm/Support/Casting.h"
105#include "llvm/Support/CodeGen.h"
106#include "llvm/Support/CommandLine.h"
107#include "llvm/Support/Compiler.h"
108#include "llvm/Support/Debug.h"
109#include "llvm/Support/ErrorHandling.h"
110#include "llvm/Support/MachineValueType.h"
111#include "llvm/Support/MathExtras.h"
112#include "llvm/Support/raw_ostream.h"
113#include "llvm/Target/TargetIntrinsicInfo.h"
114#include "llvm/Target/TargetMachine.h"
115#include "llvm/Target/TargetOptions.h"
116#include "llvm/Transforms/Utils/Local.h"
117#include <algorithm>
118#include <cassert>
119#include <cstddef>
120#include <cstdint>
121#include <cstring>
122#include <iterator>
123#include <limits>
124#include <numeric>
125#include <tuple>
126#include <utility>
127#include <vector>
128
129using namespace llvm;
130using namespace PatternMatch;
131using namespace SwitchCG;
132
133#define DEBUG_TYPE "isel"
134
135/// LimitFloatPrecision - Generate low-precision inline sequences for
136/// some float libcalls (6, 8 or 12 bits).
137static unsigned LimitFloatPrecision;
138
139static cl::opt<unsigned, true>
140    LimitFPPrecision("limit-float-precision",
141                     cl::desc("Generate low-precision inline sequences "
142                              "for some float libcalls"),
143                     cl::location(LimitFloatPrecision), cl::Hidden,
144                     cl::init(0));
145
146static cl::opt<unsigned> SwitchPeelThreshold(
147    "switch-peel-threshold", cl::Hidden, cl::init(66),
148    cl::desc("Set the case probability threshold for peeling the case from a "
149             "switch statement. A value greater than 100 will void this "
150             "optimization"));
151
152// Limit the width of DAG chains. This is important in general to prevent
153// DAG-based analysis from blowing up. For example, alias analysis and
154// load clustering may not complete in reasonable time. It is difficult to
155// recognize and avoid this situation within each individual analysis, and
156// future analyses are likely to have the same behavior. Limiting DAG width is
157// the safe approach and will be especially important with global DAGs.
158//
159// MaxParallelChains default is arbitrarily high to avoid affecting
160// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
161// sequence over this should have been converted to llvm.memcpy by the
162// frontend. It is easy to induce this behavior with .ll code such as:
163// %buffer = alloca [4096 x i8]
164// %data = load [4096 x i8]* %argPtr
165// store [4096 x i8] %data, [4096 x i8]* %buffer
166static const unsigned MaxParallelChains = 64;
167
168// Return the calling convention if the Value passed requires ABI mangling as it
169// is a parameter to a function or a return value from a function which is not
170// an intrinsic.
171static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
172  if (auto *R = dyn_cast<ReturnInst>(V))
173    return R->getParent()->getParent()->getCallingConv();
174
175  if (auto *CI = dyn_cast<CallInst>(V)) {
176    const bool IsInlineAsm = CI->isInlineAsm();
177    const bool IsIndirectFunctionCall =
178        !IsInlineAsm && !CI->getCalledFunction();
179
180    // It is possible that the call instruction is an inline asm statement or an
181    // indirect function call in which case the return value of
182    // getCalledFunction() would be nullptr.
183    const bool IsInstrinsicCall =
184        !IsInlineAsm && !IsIndirectFunctionCall &&
185        CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
186
187    if (!IsInlineAsm && !IsInstrinsicCall)
188      return CI->getCallingConv();
189  }
190
191  return None;
192}
193
194static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
195                                      const SDValue *Parts, unsigned NumParts,
196                                      MVT PartVT, EVT ValueVT, const Value *V,
197                                      Optional<CallingConv::ID> CC);
198
199/// getCopyFromParts - Create a value that contains the specified legal parts
200/// combined into the value they represent.  If the parts combine to a type
201/// larger than ValueVT then AssertOp can be used to specify whether the extra
202/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
203/// (ISD::AssertSext).
204static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
205                                const SDValue *Parts, unsigned NumParts,
206                                MVT PartVT, EVT ValueVT, const Value *V,
207                                Optional<CallingConv::ID> CC = None,
208                                Optional<ISD::NodeType> AssertOp = None) {
209  if (ValueVT.isVector())
210    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
211                                  CC);
212
213  assert(NumParts > 0 && "No parts to assemble!");
214  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
215  SDValue Val = Parts[0];
216
217  if (NumParts > 1) {
218    // Assemble the value from multiple parts.
219    if (ValueVT.isInteger()) {
220      unsigned PartBits = PartVT.getSizeInBits();
221      unsigned ValueBits = ValueVT.getSizeInBits();
222
223      // Assemble the power of 2 part.
224      unsigned RoundParts =
225          (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
226      unsigned RoundBits = PartBits * RoundParts;
227      EVT RoundVT = RoundBits == ValueBits ?
228        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
229      SDValue Lo, Hi;
230
231      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
232
233      if (RoundParts > 2) {
234        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
235                              PartVT, HalfVT, V);
236        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
237                              RoundParts / 2, PartVT, HalfVT, V);
238      } else {
239        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
240        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
241      }
242
243      if (DAG.getDataLayout().isBigEndian())
244        std::swap(Lo, Hi);
245
246      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
247
248      if (RoundParts < NumParts) {
249        // Assemble the trailing non-power-of-2 part.
250        unsigned OddParts = NumParts - RoundParts;
251        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
252        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
253                              OddVT, V, CC);
254
255        // Combine the round and odd parts.
256        Lo = Val;
257        if (DAG.getDataLayout().isBigEndian())
258          std::swap(Lo, Hi);
259        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
260        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
261        Hi =
262            DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
263                        DAG.getConstant(Lo.getValueSizeInBits(), DL,
264                                        TLI.getPointerTy(DAG.getDataLayout())));
265        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
266        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
267      }
268    } else if (PartVT.isFloatingPoint()) {
269      // FP split into multiple FP parts (for ppcf128)
270      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
271             "Unexpected split");
272      SDValue Lo, Hi;
273      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
274      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
275      if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
276        std::swap(Lo, Hi);
277      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
278    } else {
279      // FP split into integer parts (soft fp)
280      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
281             !PartVT.isVector() && "Unexpected split");
282      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
283      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
284    }
285  }
286
287  // There is now one part, held in Val.  Correct it to match ValueVT.
288  // PartEVT is the type of the register class that holds the value.
289  // ValueVT is the type of the inline asm operation.
290  EVT PartEVT = Val.getValueType();
291
292  if (PartEVT == ValueVT)
293    return Val;
294
295  if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
296      ValueVT.bitsLT(PartEVT)) {
297    // For an FP value in an integer part, we need to truncate to the right
298    // width first.
299    PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
300    Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
301  }
302
303  // Handle types that have the same size.
304  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
305    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306
307  // Handle types with different sizes.
308  if (PartEVT.isInteger() && ValueVT.isInteger()) {
309    if (ValueVT.bitsLT(PartEVT)) {
310      // For a truncate, see if we have any information to
311      // indicate whether the truncated bits will always be
312      // zero or sign-extension.
313      if (AssertOp.hasValue())
314        Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
315                          DAG.getValueType(ValueVT));
316      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317    }
318    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
319  }
320
321  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
322    // FP_ROUND's are always exact here.
323    if (ValueVT.bitsLT(Val.getValueType()))
324      return DAG.getNode(
325          ISD::FP_ROUND, DL, ValueVT, Val,
326          DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
327
328    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
329  }
330
331  // Handle MMX to a narrower integer type by bitcasting MMX to integer and
332  // then truncating.
333  if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
334      ValueVT.bitsLT(PartEVT)) {
335    Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
336    return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
337  }
338
339  report_fatal_error("Unknown mismatch in getCopyFromParts!");
340}
341
342static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
343                                              const Twine &ErrMsg) {
344  const Instruction *I = dyn_cast_or_null<Instruction>(V);
345  if (!V)
346    return Ctx.emitError(ErrMsg);
347
348  const char *AsmError = ", possible invalid constraint for vector type";
349  if (const CallInst *CI = dyn_cast<CallInst>(I))
350    if (isa<InlineAsm>(CI->getCalledValue()))
351      return Ctx.emitError(I, ErrMsg + AsmError);
352
353  return Ctx.emitError(I, ErrMsg);
354}
355
356/// getCopyFromPartsVector - Create a value that contains the specified legal
357/// parts combined into the value they represent.  If the parts combine to a
358/// type larger than ValueVT then AssertOp can be used to specify whether the
359/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
360/// ValueVT (ISD::AssertSext).
361static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
362                                      const SDValue *Parts, unsigned NumParts,
363                                      MVT PartVT, EVT ValueVT, const Value *V,
364                                      Optional<CallingConv::ID> CallConv) {
365  assert(ValueVT.isVector() && "Not a vector value");
366  assert(NumParts > 0 && "No parts to assemble!");
367  const bool IsABIRegCopy = CallConv.hasValue();
368
369  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
370  SDValue Val = Parts[0];
371
372  // Handle a multi-element vector.
373  if (NumParts > 1) {
374    EVT IntermediateVT;
375    MVT RegisterVT;
376    unsigned NumIntermediates;
377    unsigned NumRegs;
378
379    if (IsABIRegCopy) {
380      NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
381          *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
382          NumIntermediates, RegisterVT);
383    } else {
384      NumRegs =
385          TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
386                                     NumIntermediates, RegisterVT);
387    }
388
389    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390    NumParts = NumRegs; // Silence a compiler warning.
391    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392    assert(RegisterVT.getSizeInBits() ==
393           Parts[0].getSimpleValueType().getSizeInBits() &&
394           "Part type sizes don't match!");
395
396    // Assemble the parts into intermediate operands.
397    SmallVector<SDValue, 8> Ops(NumIntermediates);
398    if (NumIntermediates == NumParts) {
399      // If the register was not expanded, truncate or copy the value,
400      // as appropriate.
401      for (unsigned i = 0; i != NumParts; ++i)
402        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
403                                  PartVT, IntermediateVT, V);
404    } else if (NumParts > 0) {
405      // If the intermediate type was expanded, build the intermediate
406      // operands from the parts.
407      assert(NumParts % NumIntermediates == 0 &&
408             "Must expand into a divisible number of parts!");
409      unsigned Factor = NumParts / NumIntermediates;
410      for (unsigned i = 0; i != NumIntermediates; ++i)
411        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
412                                  PartVT, IntermediateVT, V);
413    }
414
415    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
416    // intermediate operands.
417    EVT BuiltVectorTy =
418        EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
419                         (IntermediateVT.isVector()
420                              ? IntermediateVT.getVectorNumElements() * NumParts
421                              : NumIntermediates));
422    Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
423                                                : ISD::BUILD_VECTOR,
424                      DL, BuiltVectorTy, Ops);
425  }
426
427  // There is now one part, held in Val.  Correct it to match ValueVT.
428  EVT PartEVT = Val.getValueType();
429
430  if (PartEVT == ValueVT)
431    return Val;
432
433  if (PartEVT.isVector()) {
434    // If the element type of the source/dest vectors are the same, but the
435    // parts vector has more elements than the value vector, then we have a
436    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
437    // elements we want.
438    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
439      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
440             "Cannot narrow, it would be a lossy transformation");
441      return DAG.getNode(
442          ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
443          DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
444    }
445
446    // Vector/Vector bitcast.
447    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
448      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
449
450    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
451      "Cannot handle this kind of promotion");
452    // Promoted vector extract
453    return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
454
455  }
456
457  // Trivial bitcast if the types are the same size and the destination
458  // vector type is legal.
459  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
460      TLI.isTypeLegal(ValueVT))
461    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
462
463  if (ValueVT.getVectorNumElements() != 1) {
464     // Certain ABIs require that vectors are passed as integers. For vectors
465     // are the same size, this is an obvious bitcast.
466     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
467       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
468     } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
469       // Bitcast Val back the original type and extract the corresponding
470       // vector we want.
471       unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
472       EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
473                                           ValueVT.getVectorElementType(), Elts);
474       Val = DAG.getBitcast(WiderVecType, Val);
475       return DAG.getNode(
476           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
477           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
478     }
479
480     diagnosePossiblyInvalidConstraint(
481         *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
482     return DAG.getUNDEF(ValueVT);
483  }
484
485  // Handle cases such as i8 -> <1 x i1>
486  EVT ValueSVT = ValueVT.getVectorElementType();
487  if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
488    Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
489                                    : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
490
491  return DAG.getBuildVector(ValueVT, DL, Val);
492}
493
494static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
495                                 SDValue Val, SDValue *Parts, unsigned NumParts,
496                                 MVT PartVT, const Value *V,
497                                 Optional<CallingConv::ID> CallConv);
498
499/// getCopyToParts - Create a series of nodes that contain the specified value
500/// split into legal parts.  If the parts contain more bits than Val, then, for
501/// integers, ExtendKind can be used to specify how to generate the extra bits.
502static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
503                           SDValue *Parts, unsigned NumParts, MVT PartVT,
504                           const Value *V,
505                           Optional<CallingConv::ID> CallConv = None,
506                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
507  EVT ValueVT = Val.getValueType();
508
509  // Handle the vector case separately.
510  if (ValueVT.isVector())
511    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
512                                CallConv);
513
514  unsigned PartBits = PartVT.getSizeInBits();
515  unsigned OrigNumParts = NumParts;
516  assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
517         "Copying to an illegal type!");
518
519  if (NumParts == 0)
520    return;
521
522  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
523  EVT PartEVT = PartVT;
524  if (PartEVT == ValueVT) {
525    assert(NumParts == 1 && "No-op copy with multiple parts!");
526    Parts[0] = Val;
527    return;
528  }
529
530  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
531    // If the parts cover more bits than the value has, promote the value.
532    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
533      assert(NumParts == 1 && "Do not know what to promote to!");
534      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
535    } else {
536      if (ValueVT.isFloatingPoint()) {
537        // FP values need to be bitcast, then extended if they are being put
538        // into a larger container.
539        ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
540        Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
541      }
542      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543             ValueVT.isInteger() &&
544             "Unknown mismatch!");
545      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
547      if (PartVT == MVT::x86mmx)
548        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549    }
550  } else if (PartBits == ValueVT.getSizeInBits()) {
551    // Different types of the same size.
552    assert(NumParts == 1 && PartEVT != ValueVT);
553    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
555    // If the parts cover less bits than value has, truncate the value.
556    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
557           ValueVT.isInteger() &&
558           "Unknown mismatch!");
559    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
560    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
561    if (PartVT == MVT::x86mmx)
562      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
563  }
564
565  // The value may have changed - recompute ValueVT.
566  ValueVT = Val.getValueType();
567  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
568         "Failed to tile the value with PartVT!");
569
570  if (NumParts == 1) {
571    if (PartEVT != ValueVT) {
572      diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
573                                        "scalar-to-vector conversion failed");
574      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
575    }
576
577    Parts[0] = Val;
578    return;
579  }
580
581  // Expand the value into multiple parts.
582  if (NumParts & (NumParts - 1)) {
583    // The number of parts is not a power of 2.  Split off and copy the tail.
584    assert(PartVT.isInteger() && ValueVT.isInteger() &&
585           "Do not know what to expand to!");
586    unsigned RoundParts = 1 << Log2_32(NumParts);
587    unsigned RoundBits = RoundParts * PartBits;
588    unsigned OddParts = NumParts - RoundParts;
589    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
590      DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
591
592    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
593                   CallConv);
594
595    if (DAG.getDataLayout().isBigEndian())
596      // The odd parts were reversed by getCopyToParts - unreverse them.
597      std::reverse(Parts + RoundParts, Parts + NumParts);
598
599    NumParts = RoundParts;
600    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
601    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
602  }
603
604  // The number of parts is a power of 2.  Repeatedly bisect the value using
605  // EXTRACT_ELEMENT.
606  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
607                         EVT::getIntegerVT(*DAG.getContext(),
608                                           ValueVT.getSizeInBits()),
609                         Val);
610
611  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
612    for (unsigned i = 0; i < NumParts; i += StepSize) {
613      unsigned ThisBits = StepSize * PartBits / 2;
614      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
615      SDValue &Part0 = Parts[i];
616      SDValue &Part1 = Parts[i+StepSize/2];
617
618      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
619                          ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
620      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
621                          ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
622
623      if (ThisBits == PartBits && ThisVT != PartVT) {
624        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
625        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
626      }
627    }
628  }
629
630  if (DAG.getDataLayout().isBigEndian())
631    std::reverse(Parts, Parts + OrigNumParts);
632}
633
634static SDValue widenVectorToPartType(SelectionDAG &DAG,
635                                     SDValue Val, const SDLoc &DL, EVT PartVT) {
636  if (!PartVT.isVector())
637    return SDValue();
638
639  EVT ValueVT = Val.getValueType();
640  unsigned PartNumElts = PartVT.getVectorNumElements();
641  unsigned ValueNumElts = ValueVT.getVectorNumElements();
642  if (PartNumElts > ValueNumElts &&
643      PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
644    EVT ElementVT = PartVT.getVectorElementType();
645    // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
646    // undef elements.
647    SmallVector<SDValue, 16> Ops;
648    DAG.ExtractVectorElements(Val, Ops);
649    SDValue EltUndef = DAG.getUNDEF(ElementVT);
650    for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
651      Ops.push_back(EltUndef);
652
653    // FIXME: Use CONCAT for 2x -> 4x.
654    return DAG.getBuildVector(PartVT, DL, Ops);
655  }
656
657  return SDValue();
658}
659
660/// getCopyToPartsVector - Create a series of nodes that contain the specified
661/// value split into legal parts.
662static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
663                                 SDValue Val, SDValue *Parts, unsigned NumParts,
664                                 MVT PartVT, const Value *V,
665                                 Optional<CallingConv::ID> CallConv) {
666  EVT ValueVT = Val.getValueType();
667  assert(ValueVT.isVector() && "Not a vector");
668  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
669  const bool IsABIRegCopy = CallConv.hasValue();
670
671  if (NumParts == 1) {
672    EVT PartEVT = PartVT;
673    if (PartEVT == ValueVT) {
674      // Nothing to do.
675    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
676      // Bitconvert vector->vector case.
677      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
678    } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
679      Val = Widened;
680    } else if (PartVT.isVector() &&
681               PartEVT.getVectorElementType().bitsGE(
682                 ValueVT.getVectorElementType()) &&
683               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
684
685      // Promoted vector extract
686      Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
687    } else {
688      if (ValueVT.getVectorNumElements() == 1) {
689        Val = DAG.getNode(
690            ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
691            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
692      } else {
693        assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
694               "lossy conversion of vector to scalar type");
695        EVT IntermediateType =
696            EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
697        Val = DAG.getBitcast(IntermediateType, Val);
698        Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
699      }
700    }
701
702    assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
703    Parts[0] = Val;
704    return;
705  }
706
707  // Handle a multi-element vector.
708  EVT IntermediateVT;
709  MVT RegisterVT;
710  unsigned NumIntermediates;
711  unsigned NumRegs;
712  if (IsABIRegCopy) {
713    NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
714        *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
715        NumIntermediates, RegisterVT);
716  } else {
717    NumRegs =
718        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
719                                   NumIntermediates, RegisterVT);
720  }
721
722  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
723  NumParts = NumRegs; // Silence a compiler warning.
724  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
725
726  unsigned IntermediateNumElts = IntermediateVT.isVector() ?
727    IntermediateVT.getVectorNumElements() : 1;
728
729  // Convert the vector to the appropriate type if necessary.
730  unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
731
732  EVT BuiltVectorTy = EVT::getVectorVT(
733      *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
734  MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
735  if (ValueVT != BuiltVectorTy) {
736    if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
737      Val = Widened;
738
739    Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
740  }
741
742  // Split the vector into intermediate operands.
743  SmallVector<SDValue, 8> Ops(NumIntermediates);
744  for (unsigned i = 0; i != NumIntermediates; ++i) {
745    if (IntermediateVT.isVector()) {
746      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
747                           DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
748    } else {
749      Ops[i] = DAG.getNode(
750          ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
751          DAG.getConstant(i, DL, IdxVT));
752    }
753  }
754
755  // Split the intermediate operands into legal parts.
756  if (NumParts == NumIntermediates) {
757    // If the register was not expanded, promote or copy the value,
758    // as appropriate.
759    for (unsigned i = 0; i != NumParts; ++i)
760      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
761  } else if (NumParts > 0) {
762    // If the intermediate type was expanded, split each the value into
763    // legal parts.
764    assert(NumIntermediates != 0 && "division by zero");
765    assert(NumParts % NumIntermediates == 0 &&
766           "Must expand into a divisible number of parts!");
767    unsigned Factor = NumParts / NumIntermediates;
768    for (unsigned i = 0; i != NumIntermediates; ++i)
769      getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
770                     CallConv);
771  }
772}
773
774RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
775                           EVT valuevt, Optional<CallingConv::ID> CC)
776    : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
777      RegCount(1, regs.size()), CallConv(CC) {}
778
779RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
780                           const DataLayout &DL, unsigned Reg, Type *Ty,
781                           Optional<CallingConv::ID> CC) {
782  ComputeValueVTs(TLI, DL, Ty, ValueVTs);
783
784  CallConv = CC;
785
786  for (EVT ValueVT : ValueVTs) {
787    unsigned NumRegs =
788        isABIMangled()
789            ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
790            : TLI.getNumRegisters(Context, ValueVT);
791    MVT RegisterVT =
792        isABIMangled()
793            ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
794            : TLI.getRegisterType(Context, ValueVT);
795    for (unsigned i = 0; i != NumRegs; ++i)
796      Regs.push_back(Reg + i);
797    RegVTs.push_back(RegisterVT);
798    RegCount.push_back(NumRegs);
799    Reg += NumRegs;
800  }
801}
802
803SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
804                                      FunctionLoweringInfo &FuncInfo,
805                                      const SDLoc &dl, SDValue &Chain,
806                                      SDValue *Flag, const Value *V) const {
807  // A Value with type {} or [0 x %t] needs no registers.
808  if (ValueVTs.empty())
809    return SDValue();
810
811  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
812
813  // Assemble the legal parts into the final values.
814  SmallVector<SDValue, 4> Values(ValueVTs.size());
815  SmallVector<SDValue, 8> Parts;
816  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
817    // Copy the legal parts from the registers.
818    EVT ValueVT = ValueVTs[Value];
819    unsigned NumRegs = RegCount[Value];
820    MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
821                                          *DAG.getContext(),
822                                          CallConv.getValue(), RegVTs[Value])
823                                    : RegVTs[Value];
824
825    Parts.resize(NumRegs);
826    for (unsigned i = 0; i != NumRegs; ++i) {
827      SDValue P;
828      if (!Flag) {
829        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
830      } else {
831        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
832        *Flag = P.getValue(2);
833      }
834
835      Chain = P.getValue(1);
836      Parts[i] = P;
837
838      // If the source register was virtual and if we know something about it,
839      // add an assert node.
840      if (!Register::isVirtualRegister(Regs[Part + i]) ||
841          !RegisterVT.isInteger())
842        continue;
843
844      const FunctionLoweringInfo::LiveOutInfo *LOI =
845        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
846      if (!LOI)
847        continue;
848
849      unsigned RegSize = RegisterVT.getScalarSizeInBits();
850      unsigned NumSignBits = LOI->NumSignBits;
851      unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
852
853      if (NumZeroBits == RegSize) {
854        // The current value is a zero.
855        // Explicitly express that as it would be easier for
856        // optimizations to kick in.
857        Parts[i] = DAG.getConstant(0, dl, RegisterVT);
858        continue;
859      }
860
861      // FIXME: We capture more information than the dag can represent.  For
862      // now, just use the tightest assertzext/assertsext possible.
863      bool isSExt;
864      EVT FromVT(MVT::Other);
865      if (NumZeroBits) {
866        FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
867        isSExt = false;
868      } else if (NumSignBits > 1) {
869        FromVT =
870            EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
871        isSExt = true;
872      } else {
873        continue;
874      }
875      // Add an assertion node.
876      assert(FromVT != MVT::Other);
877      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
878                             RegisterVT, P, DAG.getValueType(FromVT));
879    }
880
881    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
882                                     RegisterVT, ValueVT, V, CallConv);
883    Part += NumRegs;
884    Parts.clear();
885  }
886
887  return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
888}
889
890void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
891                                 const SDLoc &dl, SDValue &Chain, SDValue *Flag,
892                                 const Value *V,
893                                 ISD::NodeType PreferredExtendType) const {
894  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
895  ISD::NodeType ExtendKind = PreferredExtendType;
896
897  // Get the list of the values's legal parts.
898  unsigned NumRegs = Regs.size();
899  SmallVector<SDValue, 8> Parts(NumRegs);
900  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
901    unsigned NumParts = RegCount[Value];
902
903    MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
904                                          *DAG.getContext(),
905                                          CallConv.getValue(), RegVTs[Value])
906                                    : RegVTs[Value];
907
908    if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
909      ExtendKind = ISD::ZERO_EXTEND;
910
911    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
912                   NumParts, RegisterVT, V, CallConv, ExtendKind);
913    Part += NumParts;
914  }
915
916  // Copy the parts into the registers.
917  SmallVector<SDValue, 8> Chains(NumRegs);
918  for (unsigned i = 0; i != NumRegs; ++i) {
919    SDValue Part;
920    if (!Flag) {
921      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
922    } else {
923      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
924      *Flag = Part.getValue(1);
925    }
926
927    Chains[i] = Part.getValue(0);
928  }
929
930  if (NumRegs == 1 || Flag)
931    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
932    // flagged to it. That is the CopyToReg nodes and the user are considered
933    // a single scheduling unit. If we create a TokenFactor and return it as
934    // chain, then the TokenFactor is both a predecessor (operand) of the
935    // user as well as a successor (the TF operands are flagged to the user).
936    // c1, f1 = CopyToReg
937    // c2, f2 = CopyToReg
938    // c3     = TokenFactor c1, c2
939    // ...
940    //        = op c3, ..., f2
941    Chain = Chains[NumRegs-1];
942  else
943    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
944}
945
946void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
947                                        unsigned MatchingIdx, const SDLoc &dl,
948                                        SelectionDAG &DAG,
949                                        std::vector<SDValue> &Ops) const {
950  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
951
952  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
953  if (HasMatching)
954    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
955  else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
956    // Put the register class of the virtual registers in the flag word.  That
957    // way, later passes can recompute register class constraints for inline
958    // assembly as well as normal instructions.
959    // Don't do this for tied operands that can use the regclass information
960    // from the def.
961    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
962    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
963    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
964  }
965
966  SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
967  Ops.push_back(Res);
968
969  if (Code == InlineAsm::Kind_Clobber) {
970    // Clobbers should always have a 1:1 mapping with registers, and may
971    // reference registers that have illegal (e.g. vector) types. Hence, we
972    // shouldn't try to apply any sort of splitting logic to them.
973    assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
974           "No 1:1 mapping from clobbers to regs?");
975    unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
976    (void)SP;
977    for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
978      Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
979      assert(
980          (Regs[I] != SP ||
981           DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
982          "If we clobbered the stack pointer, MFI should know about it.");
983    }
984    return;
985  }
986
987  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
988    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
989    MVT RegisterVT = RegVTs[Value];
990    for (unsigned i = 0; i != NumRegs; ++i) {
991      assert(Reg < Regs.size() && "Mismatch in # registers expected");
992      unsigned TheReg = Regs[Reg++];
993      Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
994    }
995  }
996}
997
998SmallVector<std::pair<unsigned, unsigned>, 4>
999RegsForValue::getRegsAndSizes() const {
1000  SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1001  unsigned I = 0;
1002  for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1003    unsigned RegCount = std::get<0>(CountAndVT);
1004    MVT RegisterVT = std::get<1>(CountAndVT);
1005    unsigned RegisterSize = RegisterVT.getSizeInBits();
1006    for (unsigned E = I + RegCount; I != E; ++I)
1007      OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1008  }
1009  return OutVec;
1010}
1011
1012void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1013                               const TargetLibraryInfo *li) {
1014  AA = aa;
1015  GFI = gfi;
1016  LibInfo = li;
1017  DL = &DAG.getDataLayout();
1018  Context = DAG.getContext();
1019  LPadToCallSiteMap.clear();
1020  SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1021}
1022
1023void SelectionDAGBuilder::clear() {
1024  NodeMap.clear();
1025  UnusedArgNodeMap.clear();
1026  PendingLoads.clear();
1027  PendingExports.clear();
1028  PendingConstrainedFP.clear();
1029  PendingConstrainedFPStrict.clear();
1030  CurInst = nullptr;
1031  HasTailCall = false;
1032  SDNodeOrder = LowestSDNodeOrder;
1033  StatepointLowering.clear();
1034}
1035
1036void SelectionDAGBuilder::clearDanglingDebugInfo() {
1037  DanglingDebugInfoMap.clear();
1038}
1039
1040// Update DAG root to include dependencies on Pending chains.
1041SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1042  SDValue Root = DAG.getRoot();
1043
1044  if (Pending.empty())
1045    return Root;
1046
1047  // Add current root to PendingChains, unless we already indirectly
1048  // depend on it.
1049  if (Root.getOpcode() != ISD::EntryToken) {
1050    unsigned i = 0, e = Pending.size();
1051    for (; i != e; ++i) {
1052      assert(Pending[i].getNode()->getNumOperands() > 1);
1053      if (Pending[i].getNode()->getOperand(0) == Root)
1054        break;  // Don't add the root if we already indirectly depend on it.
1055    }
1056
1057    if (i == e)
1058      Pending.push_back(Root);
1059  }
1060
1061  if (Pending.size() == 1)
1062    Root = Pending[0];
1063  else
1064    Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1065
1066  DAG.setRoot(Root);
1067  Pending.clear();
1068  return Root;
1069}
1070
1071SDValue SelectionDAGBuilder::getMemoryRoot() {
1072  return updateRoot(PendingLoads);
1073}
1074
1075SDValue SelectionDAGBuilder::getRoot() {
1076  // Chain up all pending constrained intrinsics together with all
1077  // pending loads, by simply appending them to PendingLoads and
1078  // then calling getMemoryRoot().
1079  PendingLoads.reserve(PendingLoads.size() +
1080                       PendingConstrainedFP.size() +
1081                       PendingConstrainedFPStrict.size());
1082  PendingLoads.append(PendingConstrainedFP.begin(),
1083                      PendingConstrainedFP.end());
1084  PendingLoads.append(PendingConstrainedFPStrict.begin(),
1085                      PendingConstrainedFPStrict.end());
1086  PendingConstrainedFP.clear();
1087  PendingConstrainedFPStrict.clear();
1088  return getMemoryRoot();
1089}
1090
1091SDValue SelectionDAGBuilder::getControlRoot() {
1092  // We need to emit pending fpexcept.strict constrained intrinsics,
1093  // so append them to the PendingExports list.
1094  PendingExports.append(PendingConstrainedFPStrict.begin(),
1095                        PendingConstrainedFPStrict.end());
1096  PendingConstrainedFPStrict.clear();
1097  return updateRoot(PendingExports);
1098}
1099
1100void SelectionDAGBuilder::visit(const Instruction &I) {
1101  // Set up outgoing PHI node register values before emitting the terminator.
1102  if (I.isTerminator()) {
1103    HandlePHINodesInSuccessorBlocks(I.getParent());
1104  }
1105
1106  // Increase the SDNodeOrder if dealing with a non-debug instruction.
1107  if (!isa<DbgInfoIntrinsic>(I))
1108    ++SDNodeOrder;
1109
1110  CurInst = &I;
1111
1112  visit(I.getOpcode(), I);
1113
1114  if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1115    // Propagate the fast-math-flags of this IR instruction to the DAG node that
1116    // maps to this instruction.
1117    // TODO: We could handle all flags (nsw, etc) here.
1118    // TODO: If an IR instruction maps to >1 node, only the final node will have
1119    //       flags set.
1120    if (SDNode *Node = getNodeForIRValue(&I)) {
1121      SDNodeFlags IncomingFlags;
1122      IncomingFlags.copyFMF(*FPMO);
1123      if (!Node->getFlags().isDefined())
1124        Node->setFlags(IncomingFlags);
1125      else
1126        Node->intersectFlagsWith(IncomingFlags);
1127    }
1128  }
1129  // Constrained FP intrinsics with fpexcept.ignore should also get
1130  // the NoFPExcept flag.
1131  if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(&I))
1132    if (FPI->getExceptionBehavior() == fp::ExceptionBehavior::ebIgnore)
1133      if (SDNode *Node = getNodeForIRValue(&I)) {
1134        SDNodeFlags Flags = Node->getFlags();
1135        Flags.setNoFPExcept(true);
1136        Node->setFlags(Flags);
1137      }
1138
1139  if (!I.isTerminator() && !HasTailCall &&
1140      !isStatepoint(&I)) // statepoints handle their exports internally
1141    CopyToExportRegsIfNeeded(&I);
1142
1143  CurInst = nullptr;
1144}
1145
1146void SelectionDAGBuilder::visitPHI(const PHINode &) {
1147  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1148}
1149
1150void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1151  // Note: this doesn't use InstVisitor, because it has to work with
1152  // ConstantExpr's in addition to instructions.
1153  switch (Opcode) {
1154  default: llvm_unreachable("Unknown instruction type encountered!");
1155    // Build the switch statement using the Instruction.def file.
1156#define HANDLE_INST(NUM, OPCODE, CLASS) \
1157    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1158#include "llvm/IR/Instruction.def"
1159  }
1160}
1161
1162void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1163                                                const DIExpression *Expr) {
1164  auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1165    const DbgValueInst *DI = DDI.getDI();
1166    DIVariable *DanglingVariable = DI->getVariable();
1167    DIExpression *DanglingExpr = DI->getExpression();
1168    if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1169      LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1170      return true;
1171    }
1172    return false;
1173  };
1174
1175  for (auto &DDIMI : DanglingDebugInfoMap) {
1176    DanglingDebugInfoVector &DDIV = DDIMI.second;
1177
1178    // If debug info is to be dropped, run it through final checks to see
1179    // whether it can be salvaged.
1180    for (auto &DDI : DDIV)
1181      if (isMatchingDbgValue(DDI))
1182        salvageUnresolvedDbgValue(DDI);
1183
1184    DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1185  }
1186}
1187
1188// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1189// generate the debug data structures now that we've seen its definition.
1190void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1191                                                   SDValue Val) {
1192  auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1193  if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1194    return;
1195
1196  DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1197  for (auto &DDI : DDIV) {
1198    const DbgValueInst *DI = DDI.getDI();
1199    assert(DI && "Ill-formed DanglingDebugInfo");
1200    DebugLoc dl = DDI.getdl();
1201    unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1202    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1203    DILocalVariable *Variable = DI->getVariable();
1204    DIExpression *Expr = DI->getExpression();
1205    assert(Variable->isValidLocationForIntrinsic(dl) &&
1206           "Expected inlined-at fields to agree");
1207    SDDbgValue *SDV;
1208    if (Val.getNode()) {
1209      // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1210      // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1211      // we couldn't resolve it directly when examining the DbgValue intrinsic
1212      // in the first place we should not be more successful here). Unless we
1213      // have some test case that prove this to be correct we should avoid
1214      // calling EmitFuncArgumentDbgValue here.
1215      if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1216        LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1217                          << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1218        LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1219        // Increase the SDNodeOrder for the DbgValue here to make sure it is
1220        // inserted after the definition of Val when emitting the instructions
1221        // after ISel. An alternative could be to teach
1222        // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1223        LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1224                   << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1225                   << ValSDNodeOrder << "\n");
1226        SDV = getDbgValue(Val, Variable, Expr, dl,
1227                          std::max(DbgSDNodeOrder, ValSDNodeOrder));
1228        DAG.AddDbgValue(SDV, Val.getNode(), false);
1229      } else
1230        LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1231                          << "in EmitFuncArgumentDbgValue\n");
1232    } else {
1233      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1234      auto Undef =
1235          UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1236      auto SDV =
1237          DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1238      DAG.AddDbgValue(SDV, nullptr, false);
1239    }
1240  }
1241  DDIV.clear();
1242}
1243
1244void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1245  Value *V = DDI.getDI()->getValue();
1246  DILocalVariable *Var = DDI.getDI()->getVariable();
1247  DIExpression *Expr = DDI.getDI()->getExpression();
1248  DebugLoc DL = DDI.getdl();
1249  DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1250  unsigned SDOrder = DDI.getSDNodeOrder();
1251
1252  // Currently we consider only dbg.value intrinsics -- we tell the salvager
1253  // that DW_OP_stack_value is desired.
1254  assert(isa<DbgValueInst>(DDI.getDI()));
1255  bool StackValue = true;
1256
1257  // Can this Value can be encoded without any further work?
1258  if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1259    return;
1260
1261  // Attempt to salvage back through as many instructions as possible. Bail if
1262  // a non-instruction is seen, such as a constant expression or global
1263  // variable. FIXME: Further work could recover those too.
1264  while (isa<Instruction>(V)) {
1265    Instruction &VAsInst = *cast<Instruction>(V);
1266    DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1267
1268    // If we cannot salvage any further, and haven't yet found a suitable debug
1269    // expression, bail out.
1270    if (!NewExpr)
1271      break;
1272
1273    // New value and expr now represent this debuginfo.
1274    V = VAsInst.getOperand(0);
1275    Expr = NewExpr;
1276
1277    // Some kind of simplification occurred: check whether the operand of the
1278    // salvaged debug expression can be encoded in this DAG.
1279    if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1280      LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1281                        << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1282      return;
1283    }
1284  }
1285
1286  // This was the final opportunity to salvage this debug information, and it
1287  // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1288  // any earlier variable location.
1289  auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1290  auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1291  DAG.AddDbgValue(SDV, nullptr, false);
1292
1293  LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1294                    << "\n");
1295  LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1296                    << "\n");
1297}
1298
1299bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1300                                           DIExpression *Expr, DebugLoc dl,
1301                                           DebugLoc InstDL, unsigned Order) {
1302  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1303  SDDbgValue *SDV;
1304  if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1305      isa<ConstantPointerNull>(V)) {
1306    SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1307    DAG.AddDbgValue(SDV, nullptr, false);
1308    return true;
1309  }
1310
1311  // If the Value is a frame index, we can create a FrameIndex debug value
1312  // without relying on the DAG at all.
1313  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1314    auto SI = FuncInfo.StaticAllocaMap.find(AI);
1315    if (SI != FuncInfo.StaticAllocaMap.end()) {
1316      auto SDV =
1317          DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1318                                    /*IsIndirect*/ false, dl, SDNodeOrder);
1319      // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1320      // is still available even if the SDNode gets optimized out.
1321      DAG.AddDbgValue(SDV, nullptr, false);
1322      return true;
1323    }
1324  }
1325
1326  // Do not use getValue() in here; we don't want to generate code at
1327  // this point if it hasn't been done yet.
1328  SDValue N = NodeMap[V];
1329  if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1330    N = UnusedArgNodeMap[V];
1331  if (N.getNode()) {
1332    if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1333      return true;
1334    SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1335    DAG.AddDbgValue(SDV, N.getNode(), false);
1336    return true;
1337  }
1338
1339  // Special rules apply for the first dbg.values of parameter variables in a
1340  // function. Identify them by the fact they reference Argument Values, that
1341  // they're parameters, and they are parameters of the current function. We
1342  // need to let them dangle until they get an SDNode.
1343  bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1344                       !InstDL.getInlinedAt();
1345  if (!IsParamOfFunc) {
1346    // The value is not used in this block yet (or it would have an SDNode).
1347    // We still want the value to appear for the user if possible -- if it has
1348    // an associated VReg, we can refer to that instead.
1349    auto VMI = FuncInfo.ValueMap.find(V);
1350    if (VMI != FuncInfo.ValueMap.end()) {
1351      unsigned Reg = VMI->second;
1352      // If this is a PHI node, it may be split up into several MI PHI nodes
1353      // (in FunctionLoweringInfo::set).
1354      RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1355                       V->getType(), None);
1356      if (RFV.occupiesMultipleRegs()) {
1357        unsigned Offset = 0;
1358        unsigned BitsToDescribe = 0;
1359        if (auto VarSize = Var->getSizeInBits())
1360          BitsToDescribe = *VarSize;
1361        if (auto Fragment = Expr->getFragmentInfo())
1362          BitsToDescribe = Fragment->SizeInBits;
1363        for (auto RegAndSize : RFV.getRegsAndSizes()) {
1364          unsigned RegisterSize = RegAndSize.second;
1365          // Bail out if all bits are described already.
1366          if (Offset >= BitsToDescribe)
1367            break;
1368          unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1369              ? BitsToDescribe - Offset
1370              : RegisterSize;
1371          auto FragmentExpr = DIExpression::createFragmentExpression(
1372              Expr, Offset, FragmentSize);
1373          if (!FragmentExpr)
1374              continue;
1375          SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1376                                    false, dl, SDNodeOrder);
1377          DAG.AddDbgValue(SDV, nullptr, false);
1378          Offset += RegisterSize;
1379        }
1380      } else {
1381        SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1382        DAG.AddDbgValue(SDV, nullptr, false);
1383      }
1384      return true;
1385    }
1386  }
1387
1388  return false;
1389}
1390
1391void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1392  // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1393  for (auto &Pair : DanglingDebugInfoMap)
1394    for (auto &DDI : Pair.second)
1395      salvageUnresolvedDbgValue(DDI);
1396  clearDanglingDebugInfo();
1397}
1398
1399/// getCopyFromRegs - If there was virtual register allocated for the value V
1400/// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1401SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1402  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1403  SDValue Result;
1404
1405  if (It != FuncInfo.ValueMap.end()) {
1406    unsigned InReg = It->second;
1407
1408    RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1409                     DAG.getDataLayout(), InReg, Ty,
1410                     None); // This is not an ABI copy.
1411    SDValue Chain = DAG.getEntryNode();
1412    Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1413                                 V);
1414    resolveDanglingDebugInfo(V, Result);
1415  }
1416
1417  return Result;
1418}
1419
1420/// getValue - Return an SDValue for the given Value.
1421SDValue SelectionDAGBuilder::getValue(const Value *V) {
1422  // If we already have an SDValue for this value, use it. It's important
1423  // to do this first, so that we don't create a CopyFromReg if we already
1424  // have a regular SDValue.
1425  SDValue &N = NodeMap[V];
1426  if (N.getNode()) return N;
1427
1428  // If there's a virtual register allocated and initialized for this
1429  // value, use it.
1430  if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1431    return copyFromReg;
1432
1433  // Otherwise create a new SDValue and remember it.
1434  SDValue Val = getValueImpl(V);
1435  NodeMap[V] = Val;
1436  resolveDanglingDebugInfo(V, Val);
1437  return Val;
1438}
1439
1440// Return true if SDValue exists for the given Value
1441bool SelectionDAGBuilder::findValue(const Value *V) const {
1442  return (NodeMap.find(V) != NodeMap.end()) ||
1443    (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1444}
1445
1446/// getNonRegisterValue - Return an SDValue for the given Value, but
1447/// don't look in FuncInfo.ValueMap for a virtual register.
1448SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1449  // If we already have an SDValue for this value, use it.
1450  SDValue &N = NodeMap[V];
1451  if (N.getNode()) {
1452    if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1453      // Remove the debug location from the node as the node is about to be used
1454      // in a location which may differ from the original debug location.  This
1455      // is relevant to Constant and ConstantFP nodes because they can appear
1456      // as constant expressions inside PHI nodes.
1457      N->setDebugLoc(DebugLoc());
1458    }
1459    return N;
1460  }
1461
1462  // Otherwise create a new SDValue and remember it.
1463  SDValue Val = getValueImpl(V);
1464  NodeMap[V] = Val;
1465  resolveDanglingDebugInfo(V, Val);
1466  return Val;
1467}
1468
1469/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1470/// Create an SDValue for the given value.
1471SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1472  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1473
1474  if (const Constant *C = dyn_cast<Constant>(V)) {
1475    EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1476
1477    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1478      return DAG.getConstant(*CI, getCurSDLoc(), VT);
1479
1480    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1481      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1482
1483    if (isa<ConstantPointerNull>(C)) {
1484      unsigned AS = V->getType()->getPointerAddressSpace();
1485      return DAG.getConstant(0, getCurSDLoc(),
1486                             TLI.getPointerTy(DAG.getDataLayout(), AS));
1487    }
1488
1489    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1490      return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1491
1492    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1493      return DAG.getUNDEF(VT);
1494
1495    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1496      visit(CE->getOpcode(), *CE);
1497      SDValue N1 = NodeMap[V];
1498      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1499      return N1;
1500    }
1501
1502    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1503      SmallVector<SDValue, 4> Constants;
1504      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1505           OI != OE; ++OI) {
1506        SDNode *Val = getValue(*OI).getNode();
1507        // If the operand is an empty aggregate, there are no values.
1508        if (!Val) continue;
1509        // Add each leaf value from the operand to the Constants list
1510        // to form a flattened list of all the values.
1511        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1512          Constants.push_back(SDValue(Val, i));
1513      }
1514
1515      return DAG.getMergeValues(Constants, getCurSDLoc());
1516    }
1517
1518    if (const ConstantDataSequential *CDS =
1519          dyn_cast<ConstantDataSequential>(C)) {
1520      SmallVector<SDValue, 4> Ops;
1521      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1522        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1523        // Add each leaf value from the operand to the Constants list
1524        // to form a flattened list of all the values.
1525        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1526          Ops.push_back(SDValue(Val, i));
1527      }
1528
1529      if (isa<ArrayType>(CDS->getType()))
1530        return DAG.getMergeValues(Ops, getCurSDLoc());
1531      return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1532    }
1533
1534    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1535      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1536             "Unknown struct or array constant!");
1537
1538      SmallVector<EVT, 4> ValueVTs;
1539      ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1540      unsigned NumElts = ValueVTs.size();
1541      if (NumElts == 0)
1542        return SDValue(); // empty struct
1543      SmallVector<SDValue, 4> Constants(NumElts);
1544      for (unsigned i = 0; i != NumElts; ++i) {
1545        EVT EltVT = ValueVTs[i];
1546        if (isa<UndefValue>(C))
1547          Constants[i] = DAG.getUNDEF(EltVT);
1548        else if (EltVT.isFloatingPoint())
1549          Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1550        else
1551          Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1552      }
1553
1554      return DAG.getMergeValues(Constants, getCurSDLoc());
1555    }
1556
1557    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1558      return DAG.getBlockAddress(BA, VT);
1559
1560    VectorType *VecTy = cast<VectorType>(V->getType());
1561    unsigned NumElements = VecTy->getNumElements();
1562
1563    // Now that we know the number and type of the elements, get that number of
1564    // elements into the Ops array based on what kind of constant it is.
1565    SmallVector<SDValue, 16> Ops;
1566    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1567      for (unsigned i = 0; i != NumElements; ++i)
1568        Ops.push_back(getValue(CV->getOperand(i)));
1569    } else {
1570      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1571      EVT EltVT =
1572          TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1573
1574      SDValue Op;
1575      if (EltVT.isFloatingPoint())
1576        Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1577      else
1578        Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1579      Ops.assign(NumElements, Op);
1580    }
1581
1582    // Create a BUILD_VECTOR node.
1583    return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1584  }
1585
1586  // If this is a static alloca, generate it as the frameindex instead of
1587  // computation.
1588  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1589    DenseMap<const AllocaInst*, int>::iterator SI =
1590      FuncInfo.StaticAllocaMap.find(AI);
1591    if (SI != FuncInfo.StaticAllocaMap.end())
1592      return DAG.getFrameIndex(SI->second,
1593                               TLI.getFrameIndexTy(DAG.getDataLayout()));
1594  }
1595
1596  // If this is an instruction which fast-isel has deferred, select it now.
1597  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1598    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1599
1600    RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1601                     Inst->getType(), getABIRegCopyCC(V));
1602    SDValue Chain = DAG.getEntryNode();
1603    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1604  }
1605
1606  llvm_unreachable("Can't get register for value!");
1607}
1608
1609void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1610  auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1611  bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1612  bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1613  bool IsSEH = isAsynchronousEHPersonality(Pers);
1614  bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1615  MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1616  if (!IsSEH)
1617    CatchPadMBB->setIsEHScopeEntry();
1618  // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1619  if (IsMSVCCXX || IsCoreCLR)
1620    CatchPadMBB->setIsEHFuncletEntry();
1621  // Wasm does not need catchpads anymore
1622  if (!IsWasmCXX)
1623    DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1624                            getControlRoot()));
1625}
1626
1627void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1628  // Update machine-CFG edge.
1629  MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1630  FuncInfo.MBB->addSuccessor(TargetMBB);
1631
1632  auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1633  bool IsSEH = isAsynchronousEHPersonality(Pers);
1634  if (IsSEH) {
1635    // If this is not a fall-through branch or optimizations are switched off,
1636    // emit the branch.
1637    if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1638        TM.getOptLevel() == CodeGenOpt::None)
1639      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1640                              getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1641    return;
1642  }
1643
1644  // Figure out the funclet membership for the catchret's successor.
1645  // This will be used by the FuncletLayout pass to determine how to order the
1646  // BB's.
1647  // A 'catchret' returns to the outer scope's color.
1648  Value *ParentPad = I.getCatchSwitchParentPad();
1649  const BasicBlock *SuccessorColor;
1650  if (isa<ConstantTokenNone>(ParentPad))
1651    SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1652  else
1653    SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1654  assert(SuccessorColor && "No parent funclet for catchret!");
1655  MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1656  assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1657
1658  // Create the terminator node.
1659  SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1660                            getControlRoot(), DAG.getBasicBlock(TargetMBB),
1661                            DAG.getBasicBlock(SuccessorColorMBB));
1662  DAG.setRoot(Ret);
1663}
1664
1665void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1666  // Don't emit any special code for the cleanuppad instruction. It just marks
1667  // the start of an EH scope/funclet.
1668  FuncInfo.MBB->setIsEHScopeEntry();
1669  auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1670  if (Pers != EHPersonality::Wasm_CXX) {
1671    FuncInfo.MBB->setIsEHFuncletEntry();
1672    FuncInfo.MBB->setIsCleanupFuncletEntry();
1673  }
1674}
1675
1676// For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1677// the control flow always stops at the single catch pad, as it does for a
1678// cleanup pad. In case the exception caught is not of the types the catch pad
1679// catches, it will be rethrown by a rethrow.
1680static void findWasmUnwindDestinations(
1681    FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1682    BranchProbability Prob,
1683    SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1684        &UnwindDests) {
1685  while (EHPadBB) {
1686    const Instruction *Pad = EHPadBB->getFirstNonPHI();
1687    if (isa<CleanupPadInst>(Pad)) {
1688      // Stop on cleanup pads.
1689      UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1690      UnwindDests.back().first->setIsEHScopeEntry();
1691      break;
1692    } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1693      // Add the catchpad handlers to the possible destinations. We don't
1694      // continue to the unwind destination of the catchswitch for wasm.
1695      for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1696        UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1697        UnwindDests.back().first->setIsEHScopeEntry();
1698      }
1699      break;
1700    } else {
1701      continue;
1702    }
1703  }
1704}
1705
1706/// When an invoke or a cleanupret unwinds to the next EH pad, there are
1707/// many places it could ultimately go. In the IR, we have a single unwind
1708/// destination, but in the machine CFG, we enumerate all the possible blocks.
1709/// This function skips over imaginary basic blocks that hold catchswitch
1710/// instructions, and finds all the "real" machine
1711/// basic block destinations. As those destinations may not be successors of
1712/// EHPadBB, here we also calculate the edge probability to those destinations.
1713/// The passed-in Prob is the edge probability to EHPadBB.
1714static void findUnwindDestinations(
1715    FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1716    BranchProbability Prob,
1717    SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1718        &UnwindDests) {
1719  EHPersonality Personality =
1720    classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1721  bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1722  bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1723  bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1724  bool IsSEH = isAsynchronousEHPersonality(Personality);
1725
1726  if (IsWasmCXX) {
1727    findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1728    assert(UnwindDests.size() <= 1 &&
1729           "There should be at most one unwind destination for wasm");
1730    return;
1731  }
1732
1733  while (EHPadBB) {
1734    const Instruction *Pad = EHPadBB->getFirstNonPHI();
1735    BasicBlock *NewEHPadBB = nullptr;
1736    if (isa<LandingPadInst>(Pad)) {
1737      // Stop on landingpads. They are not funclets.
1738      UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1739      break;
1740    } else if (isa<CleanupPadInst>(Pad)) {
1741      // Stop on cleanup pads. Cleanups are always funclet entries for all known
1742      // personalities.
1743      UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1744      UnwindDests.back().first->setIsEHScopeEntry();
1745      UnwindDests.back().first->setIsEHFuncletEntry();
1746      break;
1747    } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1748      // Add the catchpad handlers to the possible destinations.
1749      for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1750        UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1751        // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1752        if (IsMSVCCXX || IsCoreCLR)
1753          UnwindDests.back().first->setIsEHFuncletEntry();
1754        if (!IsSEH)
1755          UnwindDests.back().first->setIsEHScopeEntry();
1756      }
1757      NewEHPadBB = CatchSwitch->getUnwindDest();
1758    } else {
1759      continue;
1760    }
1761
1762    BranchProbabilityInfo *BPI = FuncInfo.BPI;
1763    if (BPI && NewEHPadBB)
1764      Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1765    EHPadBB = NewEHPadBB;
1766  }
1767}
1768
1769void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1770  // Update successor info.
1771  SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1772  auto UnwindDest = I.getUnwindDest();
1773  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1774  BranchProbability UnwindDestProb =
1775      (BPI && UnwindDest)
1776          ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1777          : BranchProbability::getZero();
1778  findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1779  for (auto &UnwindDest : UnwindDests) {
1780    UnwindDest.first->setIsEHPad();
1781    addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1782  }
1783  FuncInfo.MBB->normalizeSuccProbs();
1784
1785  // Create the terminator node.
1786  SDValue Ret =
1787      DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1788  DAG.setRoot(Ret);
1789}
1790
1791void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1792  report_fatal_error("visitCatchSwitch not yet implemented!");
1793}
1794
1795void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1796  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1797  auto &DL = DAG.getDataLayout();
1798  SDValue Chain = getControlRoot();
1799  SmallVector<ISD::OutputArg, 8> Outs;
1800  SmallVector<SDValue, 8> OutVals;
1801
1802  // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1803  // lower
1804  //
1805  //   %val = call <ty> @llvm.experimental.deoptimize()
1806  //   ret <ty> %val
1807  //
1808  // differently.
1809  if (I.getParent()->getTerminatingDeoptimizeCall()) {
1810    LowerDeoptimizingReturn();
1811    return;
1812  }
1813
1814  if (!FuncInfo.CanLowerReturn) {
1815    unsigned DemoteReg = FuncInfo.DemoteRegister;
1816    const Function *F = I.getParent()->getParent();
1817
1818    // Emit a store of the return value through the virtual register.
1819    // Leave Outs empty so that LowerReturn won't try to load return
1820    // registers the usual way.
1821    SmallVector<EVT, 1> PtrValueVTs;
1822    ComputeValueVTs(TLI, DL,
1823                    F->getReturnType()->getPointerTo(
1824                        DAG.getDataLayout().getAllocaAddrSpace()),
1825                    PtrValueVTs);
1826
1827    SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1828                                        DemoteReg, PtrValueVTs[0]);
1829    SDValue RetOp = getValue(I.getOperand(0));
1830
1831    SmallVector<EVT, 4> ValueVTs, MemVTs;
1832    SmallVector<uint64_t, 4> Offsets;
1833    ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1834                    &Offsets);
1835    unsigned NumValues = ValueVTs.size();
1836
1837    SmallVector<SDValue, 4> Chains(NumValues);
1838    for (unsigned i = 0; i != NumValues; ++i) {
1839      // An aggregate return value cannot wrap around the address space, so
1840      // offsets to its parts don't wrap either.
1841      SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1842
1843      SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1844      if (MemVTs[i] != ValueVTs[i])
1845        Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1846      Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1847          // FIXME: better loc info would be nice.
1848          Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1849    }
1850
1851    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1852                        MVT::Other, Chains);
1853  } else if (I.getNumOperands() != 0) {
1854    SmallVector<EVT, 4> ValueVTs;
1855    ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1856    unsigned NumValues = ValueVTs.size();
1857    if (NumValues) {
1858      SDValue RetOp = getValue(I.getOperand(0));
1859
1860      const Function *F = I.getParent()->getParent();
1861
1862      bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1863          I.getOperand(0)->getType(), F->getCallingConv(),
1864          /*IsVarArg*/ false);
1865
1866      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1867      if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1868                                          Attribute::SExt))
1869        ExtendKind = ISD::SIGN_EXTEND;
1870      else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1871                                               Attribute::ZExt))
1872        ExtendKind = ISD::ZERO_EXTEND;
1873
1874      LLVMContext &Context = F->getContext();
1875      bool RetInReg = F->getAttributes().hasAttribute(
1876          AttributeList::ReturnIndex, Attribute::InReg);
1877
1878      for (unsigned j = 0; j != NumValues; ++j) {
1879        EVT VT = ValueVTs[j];
1880
1881        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1882          VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1883
1884        CallingConv::ID CC = F->getCallingConv();
1885
1886        unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1887        MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1888        SmallVector<SDValue, 4> Parts(NumParts);
1889        getCopyToParts(DAG, getCurSDLoc(),
1890                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1891                       &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1892
1893        // 'inreg' on function refers to return value
1894        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1895        if (RetInReg)
1896          Flags.setInReg();
1897
1898        if (I.getOperand(0)->getType()->isPointerTy()) {
1899          Flags.setPointer();
1900          Flags.setPointerAddrSpace(
1901              cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1902        }
1903
1904        if (NeedsRegBlock) {
1905          Flags.setInConsecutiveRegs();
1906          if (j == NumValues - 1)
1907            Flags.setInConsecutiveRegsLast();
1908        }
1909
1910        // Propagate extension type if any
1911        if (ExtendKind == ISD::SIGN_EXTEND)
1912          Flags.setSExt();
1913        else if (ExtendKind == ISD::ZERO_EXTEND)
1914          Flags.setZExt();
1915
1916        for (unsigned i = 0; i < NumParts; ++i) {
1917          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1918                                        VT, /*isfixed=*/true, 0, 0));
1919          OutVals.push_back(Parts[i]);
1920        }
1921      }
1922    }
1923  }
1924
1925  // Push in swifterror virtual register as the last element of Outs. This makes
1926  // sure swifterror virtual register will be returned in the swifterror
1927  // physical register.
1928  const Function *F = I.getParent()->getParent();
1929  if (TLI.supportSwiftError() &&
1930      F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1931    assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1932    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1933    Flags.setSwiftError();
1934    Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1935                                  EVT(TLI.getPointerTy(DL)) /*argvt*/,
1936                                  true /*isfixed*/, 1 /*origidx*/,
1937                                  0 /*partOffs*/));
1938    // Create SDNode for the swifterror virtual register.
1939    OutVals.push_back(
1940        DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1941                            &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1942                        EVT(TLI.getPointerTy(DL))));
1943  }
1944
1945  bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1946  CallingConv::ID CallConv =
1947    DAG.getMachineFunction().getFunction().getCallingConv();
1948  Chain = DAG.getTargetLoweringInfo().LowerReturn(
1949      Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1950
1951  // Verify that the target's LowerReturn behaved as expected.
1952  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1953         "LowerReturn didn't return a valid chain!");
1954
1955  // Update the DAG with the new chain value resulting from return lowering.
1956  DAG.setRoot(Chain);
1957}
1958
1959/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1960/// created for it, emit nodes to copy the value into the virtual
1961/// registers.
1962void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1963  // Skip empty types
1964  if (V->getType()->isEmptyTy())
1965    return;
1966
1967  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1968  if (VMI != FuncInfo.ValueMap.end()) {
1969    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1970    CopyValueToVirtualRegister(V, VMI->second);
1971  }
1972}
1973
1974/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1975/// the current basic block, add it to ValueMap now so that we'll get a
1976/// CopyTo/FromReg.
1977void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1978  // No need to export constants.
1979  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1980
1981  // Already exported?
1982  if (FuncInfo.isExportedInst(V)) return;
1983
1984  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1985  CopyValueToVirtualRegister(V, Reg);
1986}
1987
1988bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1989                                                     const BasicBlock *FromBB) {
1990  // The operands of the setcc have to be in this block.  We don't know
1991  // how to export them from some other block.
1992  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1993    // Can export from current BB.
1994    if (VI->getParent() == FromBB)
1995      return true;
1996
1997    // Is already exported, noop.
1998    return FuncInfo.isExportedInst(V);
1999  }
2000
2001  // If this is an argument, we can export it if the BB is the entry block or
2002  // if it is already exported.
2003  if (isa<Argument>(V)) {
2004    if (FromBB == &FromBB->getParent()->getEntryBlock())
2005      return true;
2006
2007    // Otherwise, can only export this if it is already exported.
2008    return FuncInfo.isExportedInst(V);
2009  }
2010
2011  // Otherwise, constants can always be exported.
2012  return true;
2013}
2014
2015/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2016BranchProbability
2017SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2018                                        const MachineBasicBlock *Dst) const {
2019  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2020  const BasicBlock *SrcBB = Src->getBasicBlock();
2021  const BasicBlock *DstBB = Dst->getBasicBlock();
2022  if (!BPI) {
2023    // If BPI is not available, set the default probability as 1 / N, where N is
2024    // the number of successors.
2025    auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2026    return BranchProbability(1, SuccSize);
2027  }
2028  return BPI->getEdgeProbability(SrcBB, DstBB);
2029}
2030
2031void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2032                                               MachineBasicBlock *Dst,
2033                                               BranchProbability Prob) {
2034  if (!FuncInfo.BPI)
2035    Src->addSuccessorWithoutProb(Dst);
2036  else {
2037    if (Prob.isUnknown())
2038      Prob = getEdgeProbability(Src, Dst);
2039    Src->addSuccessor(Dst, Prob);
2040  }
2041}
2042
2043static bool InBlock(const Value *V, const BasicBlock *BB) {
2044  if (const Instruction *I = dyn_cast<Instruction>(V))
2045    return I->getParent() == BB;
2046  return true;
2047}
2048
2049/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2050/// This function emits a branch and is used at the leaves of an OR or an
2051/// AND operator tree.
2052void
2053SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2054                                                  MachineBasicBlock *TBB,
2055                                                  MachineBasicBlock *FBB,
2056                                                  MachineBasicBlock *CurBB,
2057                                                  MachineBasicBlock *SwitchBB,
2058                                                  BranchProbability TProb,
2059                                                  BranchProbability FProb,
2060                                                  bool InvertCond) {
2061  const BasicBlock *BB = CurBB->getBasicBlock();
2062
2063  // If the leaf of the tree is a comparison, merge the condition into
2064  // the caseblock.
2065  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2066    // The operands of the cmp have to be in this block.  We don't know
2067    // how to export them from some other block.  If this is the first block
2068    // of the sequence, no exporting is needed.
2069    if (CurBB == SwitchBB ||
2070        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2071         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2072      ISD::CondCode Condition;
2073      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2074        ICmpInst::Predicate Pred =
2075            InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2076        Condition = getICmpCondCode(Pred);
2077      } else {
2078        const FCmpInst *FC = cast<FCmpInst>(Cond);
2079        FCmpInst::Predicate Pred =
2080            InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2081        Condition = getFCmpCondCode(Pred);
2082        if (TM.Options.NoNaNsFPMath)
2083          Condition = getFCmpCodeWithoutNaN(Condition);
2084      }
2085
2086      CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2087                   TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2088      SL->SwitchCases.push_back(CB);
2089      return;
2090    }
2091  }
2092
2093  // Create a CaseBlock record representing this branch.
2094  ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2095  CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2096               nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2097  SL->SwitchCases.push_back(CB);
2098}
2099
2100void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2101                                               MachineBasicBlock *TBB,
2102                                               MachineBasicBlock *FBB,
2103                                               MachineBasicBlock *CurBB,
2104                                               MachineBasicBlock *SwitchBB,
2105                                               Instruction::BinaryOps Opc,
2106                                               BranchProbability TProb,
2107                                               BranchProbability FProb,
2108                                               bool InvertCond) {
2109  // Skip over not part of the tree and remember to invert op and operands at
2110  // next level.
2111  Value *NotCond;
2112  if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2113      InBlock(NotCond, CurBB->getBasicBlock())) {
2114    FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2115                         !InvertCond);
2116    return;
2117  }
2118
2119  const Instruction *BOp = dyn_cast<Instruction>(Cond);
2120  // Compute the effective opcode for Cond, taking into account whether it needs
2121  // to be inverted, e.g.
2122  //   and (not (or A, B)), C
2123  // gets lowered as
2124  //   and (and (not A, not B), C)
2125  unsigned BOpc = 0;
2126  if (BOp) {
2127    BOpc = BOp->getOpcode();
2128    if (InvertCond) {
2129      if (BOpc == Instruction::And)
2130        BOpc = Instruction::Or;
2131      else if (BOpc == Instruction::Or)
2132        BOpc = Instruction::And;
2133    }
2134  }
2135
2136  // If this node is not part of the or/and tree, emit it as a branch.
2137  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2138      BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2139      BOp->getParent() != CurBB->getBasicBlock() ||
2140      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2141      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2142    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2143                                 TProb, FProb, InvertCond);
2144    return;
2145  }
2146
2147  //  Create TmpBB after CurBB.
2148  MachineFunction::iterator BBI(CurBB);
2149  MachineFunction &MF = DAG.getMachineFunction();
2150  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2151  CurBB->getParent()->insert(++BBI, TmpBB);
2152
2153  if (Opc == Instruction::Or) {
2154    // Codegen X | Y as:
2155    // BB1:
2156    //   jmp_if_X TBB
2157    //   jmp TmpBB
2158    // TmpBB:
2159    //   jmp_if_Y TBB
2160    //   jmp FBB
2161    //
2162
2163    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2164    // The requirement is that
2165    //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2166    //     = TrueProb for original BB.
2167    // Assuming the original probabilities are A and B, one choice is to set
2168    // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2169    // A/(1+B) and 2B/(1+B). This choice assumes that
2170    //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2171    // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2172    // TmpBB, but the math is more complicated.
2173
2174    auto NewTrueProb = TProb / 2;
2175    auto NewFalseProb = TProb / 2 + FProb;
2176    // Emit the LHS condition.
2177    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2178                         NewTrueProb, NewFalseProb, InvertCond);
2179
2180    // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2181    SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2182    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2183    // Emit the RHS condition into TmpBB.
2184    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2185                         Probs[0], Probs[1], InvertCond);
2186  } else {
2187    assert(Opc == Instruction::And && "Unknown merge op!");
2188    // Codegen X & Y as:
2189    // BB1:
2190    //   jmp_if_X TmpBB
2191    //   jmp FBB
2192    // TmpBB:
2193    //   jmp_if_Y TBB
2194    //   jmp FBB
2195    //
2196    //  This requires creation of TmpBB after CurBB.
2197
2198    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2199    // The requirement is that
2200    //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2201    //     = FalseProb for original BB.
2202    // Assuming the original probabilities are A and B, one choice is to set
2203    // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2204    // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2205    // TrueProb for BB1 * FalseProb for TmpBB.
2206
2207    auto NewTrueProb = TProb + FProb / 2;
2208    auto NewFalseProb = FProb / 2;
2209    // Emit the LHS condition.
2210    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2211                         NewTrueProb, NewFalseProb, InvertCond);
2212
2213    // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2214    SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2215    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2216    // Emit the RHS condition into TmpBB.
2217    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2218                         Probs[0], Probs[1], InvertCond);
2219  }
2220}
2221
2222/// If the set of cases should be emitted as a series of branches, return true.
2223/// If we should emit this as a bunch of and/or'd together conditions, return
2224/// false.
2225bool
2226SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2227  if (Cases.size() != 2) return true;
2228
2229  // If this is two comparisons of the same values or'd or and'd together, they
2230  // will get folded into a single comparison, so don't emit two blocks.
2231  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2232       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2233      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2234       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2235    return false;
2236  }
2237
2238  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2239  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2240  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2241      Cases[0].CC == Cases[1].CC &&
2242      isa<Constant>(Cases[0].CmpRHS) &&
2243      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2244    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2245      return false;
2246    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2247      return false;
2248  }
2249
2250  return true;
2251}
2252
2253void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2254  MachineBasicBlock *BrMBB = FuncInfo.MBB;
2255
2256  // Update machine-CFG edges.
2257  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2258
2259  if (I.isUnconditional()) {
2260    // Update machine-CFG edges.
2261    BrMBB->addSuccessor(Succ0MBB);
2262
2263    // If this is not a fall-through branch or optimizations are switched off,
2264    // emit the branch.
2265    if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2266      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2267                              MVT::Other, getControlRoot(),
2268                              DAG.getBasicBlock(Succ0MBB)));
2269
2270    return;
2271  }
2272
2273  // If this condition is one of the special cases we handle, do special stuff
2274  // now.
2275  const Value *CondVal = I.getCondition();
2276  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2277
2278  // If this is a series of conditions that are or'd or and'd together, emit
2279  // this as a sequence of branches instead of setcc's with and/or operations.
2280  // As long as jumps are not expensive, this should improve performance.
2281  // For example, instead of something like:
2282  //     cmp A, B
2283  //     C = seteq
2284  //     cmp D, E
2285  //     F = setle
2286  //     or C, F
2287  //     jnz foo
2288  // Emit:
2289  //     cmp A, B
2290  //     je foo
2291  //     cmp D, E
2292  //     jle foo
2293  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2294    Instruction::BinaryOps Opcode = BOp->getOpcode();
2295    if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2296        !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2297        (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2298      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2299                           Opcode,
2300                           getEdgeProbability(BrMBB, Succ0MBB),
2301                           getEdgeProbability(BrMBB, Succ1MBB),
2302                           /*InvertCond=*/false);
2303      // If the compares in later blocks need to use values not currently
2304      // exported from this block, export them now.  This block should always
2305      // be the first entry.
2306      assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2307
2308      // Allow some cases to be rejected.
2309      if (ShouldEmitAsBranches(SL->SwitchCases)) {
2310        for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2311          ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2312          ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2313        }
2314
2315        // Emit the branch for this block.
2316        visitSwitchCase(SL->SwitchCases[0], BrMBB);
2317        SL->SwitchCases.erase(SL->SwitchCases.begin());
2318        return;
2319      }
2320
2321      // Okay, we decided not to do this, remove any inserted MBB's and clear
2322      // SwitchCases.
2323      for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2324        FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2325
2326      SL->SwitchCases.clear();
2327    }
2328  }
2329
2330  // Create a CaseBlock record representing this branch.
2331  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2332               nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2333
2334  // Use visitSwitchCase to actually insert the fast branch sequence for this
2335  // cond branch.
2336  visitSwitchCase(CB, BrMBB);
2337}
2338
2339/// visitSwitchCase - Emits the necessary code to represent a single node in
2340/// the binary search tree resulting from lowering a switch instruction.
2341void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2342                                          MachineBasicBlock *SwitchBB) {
2343  SDValue Cond;
2344  SDValue CondLHS = getValue(CB.CmpLHS);
2345  SDLoc dl = CB.DL;
2346
2347  if (CB.CC == ISD::SETTRUE) {
2348    // Branch or fall through to TrueBB.
2349    addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2350    SwitchBB->normalizeSuccProbs();
2351    if (CB.TrueBB != NextBlock(SwitchBB)) {
2352      DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2353                              DAG.getBasicBlock(CB.TrueBB)));
2354    }
2355    return;
2356  }
2357
2358  auto &TLI = DAG.getTargetLoweringInfo();
2359  EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2360
2361  // Build the setcc now.
2362  if (!CB.CmpMHS) {
2363    // Fold "(X == true)" to X and "(X == false)" to !X to
2364    // handle common cases produced by branch lowering.
2365    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2366        CB.CC == ISD::SETEQ)
2367      Cond = CondLHS;
2368    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2369             CB.CC == ISD::SETEQ) {
2370      SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2371      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2372    } else {
2373      SDValue CondRHS = getValue(CB.CmpRHS);
2374
2375      // If a pointer's DAG type is larger than its memory type then the DAG
2376      // values are zero-extended. This breaks signed comparisons so truncate
2377      // back to the underlying type before doing the compare.
2378      if (CondLHS.getValueType() != MemVT) {
2379        CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2380        CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2381      }
2382      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2383    }
2384  } else {
2385    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2386
2387    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2388    const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2389
2390    SDValue CmpOp = getValue(CB.CmpMHS);
2391    EVT VT = CmpOp.getValueType();
2392
2393    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2394      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2395                          ISD::SETLE);
2396    } else {
2397      SDValue SUB = DAG.getNode(ISD::SUB, dl,
2398                                VT, CmpOp, DAG.getConstant(Low, dl, VT));
2399      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2400                          DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2401    }
2402  }
2403
2404  // Update successor info
2405  addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2406  // TrueBB and FalseBB are always different unless the incoming IR is
2407  // degenerate. This only happens when running llc on weird IR.
2408  if (CB.TrueBB != CB.FalseBB)
2409    addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2410  SwitchBB->normalizeSuccProbs();
2411
2412  // If the lhs block is the next block, invert the condition so that we can
2413  // fall through to the lhs instead of the rhs block.
2414  if (CB.TrueBB == NextBlock(SwitchBB)) {
2415    std::swap(CB.TrueBB, CB.FalseBB);
2416    SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2417    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2418  }
2419
2420  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2421                               MVT::Other, getControlRoot(), Cond,
2422                               DAG.getBasicBlock(CB.TrueBB));
2423
2424  // Insert the false branch. Do this even if it's a fall through branch,
2425  // this makes it easier to do DAG optimizations which require inverting
2426  // the branch condition.
2427  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2428                       DAG.getBasicBlock(CB.FalseBB));
2429
2430  DAG.setRoot(BrCond);
2431}
2432
2433/// visitJumpTable - Emit JumpTable node in the current MBB
2434void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2435  // Emit the code for the jump table
2436  assert(JT.Reg != -1U && "Should lower JT Header first!");
2437  EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2438  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2439                                     JT.Reg, PTy);
2440  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2441  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2442                                    MVT::Other, Index.getValue(1),
2443                                    Table, Index);
2444  DAG.setRoot(BrJumpTable);
2445}
2446
2447/// visitJumpTableHeader - This function emits necessary code to produce index
2448/// in the JumpTable from switch case.
2449void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2450                                               JumpTableHeader &JTH,
2451                                               MachineBasicBlock *SwitchBB) {
2452  SDLoc dl = getCurSDLoc();
2453
2454  // Subtract the lowest switch case value from the value being switched on.
2455  SDValue SwitchOp = getValue(JTH.SValue);
2456  EVT VT = SwitchOp.getValueType();
2457  SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2458                            DAG.getConstant(JTH.First, dl, VT));
2459
2460  // The SDNode we just created, which holds the value being switched on minus
2461  // the smallest case value, needs to be copied to a virtual register so it
2462  // can be used as an index into the jump table in a subsequent basic block.
2463  // This value may be smaller or larger than the target's pointer type, and
2464  // therefore require extension or truncating.
2465  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2466  SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2467
2468  unsigned JumpTableReg =
2469      FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2470  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2471                                    JumpTableReg, SwitchOp);
2472  JT.Reg = JumpTableReg;
2473
2474  if (!JTH.OmitRangeCheck) {
2475    // Emit the range check for the jump table, and branch to the default block
2476    // for the switch statement if the value being switched on exceeds the
2477    // largest case in the switch.
2478    SDValue CMP = DAG.getSetCC(
2479        dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2480                                   Sub.getValueType()),
2481        Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2482
2483    SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2484                                 MVT::Other, CopyTo, CMP,
2485                                 DAG.getBasicBlock(JT.Default));
2486
2487    // Avoid emitting unnecessary branches to the next block.
2488    if (JT.MBB != NextBlock(SwitchBB))
2489      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2490                           DAG.getBasicBlock(JT.MBB));
2491
2492    DAG.setRoot(BrCond);
2493  } else {
2494    // Avoid emitting unnecessary branches to the next block.
2495    if (JT.MBB != NextBlock(SwitchBB))
2496      DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2497                              DAG.getBasicBlock(JT.MBB)));
2498    else
2499      DAG.setRoot(CopyTo);
2500  }
2501}
2502
2503/// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2504/// variable if there exists one.
2505static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2506                                 SDValue &Chain) {
2507  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2508  EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2509  EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2510  MachineFunction &MF = DAG.getMachineFunction();
2511  Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2512  MachineSDNode *Node =
2513      DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2514  if (Global) {
2515    MachinePointerInfo MPInfo(Global);
2516    auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2517                 MachineMemOperand::MODereferenceable;
2518    MachineMemOperand *MemRef = MF.getMachineMemOperand(
2519        MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2520    DAG.setNodeMemRefs(Node, {MemRef});
2521  }
2522  if (PtrTy != PtrMemTy)
2523    return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2524  return SDValue(Node, 0);
2525}
2526
2527/// Codegen a new tail for a stack protector check ParentMBB which has had its
2528/// tail spliced into a stack protector check success bb.
2529///
2530/// For a high level explanation of how this fits into the stack protector
2531/// generation see the comment on the declaration of class
2532/// StackProtectorDescriptor.
2533void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2534                                                  MachineBasicBlock *ParentBB) {
2535
2536  // First create the loads to the guard/stack slot for the comparison.
2537  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2538  EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2539  EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2540
2541  MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2542  int FI = MFI.getStackProtectorIndex();
2543
2544  SDValue Guard;
2545  SDLoc dl = getCurSDLoc();
2546  SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2547  const Module &M = *ParentBB->getParent()->getFunction().getParent();
2548  unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2549
2550  // Generate code to load the content of the guard slot.
2551  SDValue GuardVal = DAG.getLoad(
2552      PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2553      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2554      MachineMemOperand::MOVolatile);
2555
2556  if (TLI.useStackGuardXorFP())
2557    GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2558
2559  // Retrieve guard check function, nullptr if instrumentation is inlined.
2560  if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2561    // The target provides a guard check function to validate the guard value.
2562    // Generate a call to that function with the content of the guard slot as
2563    // argument.
2564    FunctionType *FnTy = GuardCheckFn->getFunctionType();
2565    assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2566
2567    TargetLowering::ArgListTy Args;
2568    TargetLowering::ArgListEntry Entry;
2569    Entry.Node = GuardVal;
2570    Entry.Ty = FnTy->getParamType(0);
2571    if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2572      Entry.IsInReg = true;
2573    Args.push_back(Entry);
2574
2575    TargetLowering::CallLoweringInfo CLI(DAG);
2576    CLI.setDebugLoc(getCurSDLoc())
2577        .setChain(DAG.getEntryNode())
2578        .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2579                   getValue(GuardCheckFn), std::move(Args));
2580
2581    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2582    DAG.setRoot(Result.second);
2583    return;
2584  }
2585
2586  // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2587  // Otherwise, emit a volatile load to retrieve the stack guard value.
2588  SDValue Chain = DAG.getEntryNode();
2589  if (TLI.useLoadStackGuardNode()) {
2590    Guard = getLoadStackGuard(DAG, dl, Chain);
2591  } else {
2592    const Value *IRGuard = TLI.getSDagStackGuard(M);
2593    SDValue GuardPtr = getValue(IRGuard);
2594
2595    Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2596                        MachinePointerInfo(IRGuard, 0), Align,
2597                        MachineMemOperand::MOVolatile);
2598  }
2599
2600  // Perform the comparison via a subtract/getsetcc.
2601  EVT VT = Guard.getValueType();
2602  SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2603
2604  SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2605                                                        *DAG.getContext(),
2606                                                        Sub.getValueType()),
2607                             Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2608
2609  // If the sub is not 0, then we know the guard/stackslot do not equal, so
2610  // branch to failure MBB.
2611  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2612                               MVT::Other, GuardVal.getOperand(0),
2613                               Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2614  // Otherwise branch to success MBB.
2615  SDValue Br = DAG.getNode(ISD::BR, dl,
2616                           MVT::Other, BrCond,
2617                           DAG.getBasicBlock(SPD.getSuccessMBB()));
2618
2619  DAG.setRoot(Br);
2620}
2621
2622/// Codegen the failure basic block for a stack protector check.
2623///
2624/// A failure stack protector machine basic block consists simply of a call to
2625/// __stack_chk_fail().
2626///
2627/// For a high level explanation of how this fits into the stack protector
2628/// generation see the comment on the declaration of class
2629/// StackProtectorDescriptor.
2630void
2631SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2632  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2633  TargetLowering::MakeLibCallOptions CallOptions;
2634  CallOptions.setDiscardResult(true);
2635  SDValue Chain =
2636      TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2637                      None, CallOptions, getCurSDLoc()).second;
2638  // On PS4, the "return address" must still be within the calling function,
2639  // even if it's at the very end, so emit an explicit TRAP here.
2640  // Passing 'true' for doesNotReturn above won't generate the trap for us.
2641  if (TM.getTargetTriple().isPS4CPU())
2642    Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2643
2644  DAG.setRoot(Chain);
2645}
2646
2647/// visitBitTestHeader - This function emits necessary code to produce value
2648/// suitable for "bit tests"
2649void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2650                                             MachineBasicBlock *SwitchBB) {
2651  SDLoc dl = getCurSDLoc();
2652
2653  // Subtract the minimum value.
2654  SDValue SwitchOp = getValue(B.SValue);
2655  EVT VT = SwitchOp.getValueType();
2656  SDValue RangeSub =
2657      DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2658
2659  // Determine the type of the test operands.
2660  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2661  bool UsePtrType = false;
2662  if (!TLI.isTypeLegal(VT)) {
2663    UsePtrType = true;
2664  } else {
2665    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2666      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2667        // Switch table case range are encoded into series of masks.
2668        // Just use pointer type, it's guaranteed to fit.
2669        UsePtrType = true;
2670        break;
2671      }
2672  }
2673  SDValue Sub = RangeSub;
2674  if (UsePtrType) {
2675    VT = TLI.getPointerTy(DAG.getDataLayout());
2676    Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2677  }
2678
2679  B.RegVT = VT.getSimpleVT();
2680  B.Reg = FuncInfo.CreateReg(B.RegVT);
2681  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2682
2683  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2684
2685  if (!B.OmitRangeCheck)
2686    addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2687  addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2688  SwitchBB->normalizeSuccProbs();
2689
2690  SDValue Root = CopyTo;
2691  if (!B.OmitRangeCheck) {
2692    // Conditional branch to the default block.
2693    SDValue RangeCmp = DAG.getSetCC(dl,
2694        TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2695                               RangeSub.getValueType()),
2696        RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2697        ISD::SETUGT);
2698
2699    Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2700                       DAG.getBasicBlock(B.Default));
2701  }
2702
2703  // Avoid emitting unnecessary branches to the next block.
2704  if (MBB != NextBlock(SwitchBB))
2705    Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2706
2707  DAG.setRoot(Root);
2708}
2709
2710/// visitBitTestCase - this function produces one "bit test"
2711void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2712                                           MachineBasicBlock* NextMBB,
2713                                           BranchProbability BranchProbToNext,
2714                                           unsigned Reg,
2715                                           BitTestCase &B,
2716                                           MachineBasicBlock *SwitchBB) {
2717  SDLoc dl = getCurSDLoc();
2718  MVT VT = BB.RegVT;
2719  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2720  SDValue Cmp;
2721  unsigned PopCount = countPopulation(B.Mask);
2722  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2723  if (PopCount == 1) {
2724    // Testing for a single bit; just compare the shift count with what it
2725    // would need to be to shift a 1 bit in that position.
2726    Cmp = DAG.getSetCC(
2727        dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2728        ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2729        ISD::SETEQ);
2730  } else if (PopCount == BB.Range) {
2731    // There is only one zero bit in the range, test for it directly.
2732    Cmp = DAG.getSetCC(
2733        dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2734        ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2735        ISD::SETNE);
2736  } else {
2737    // Make desired shift
2738    SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2739                                    DAG.getConstant(1, dl, VT), ShiftOp);
2740
2741    // Emit bit tests and jumps
2742    SDValue AndOp = DAG.getNode(ISD::AND, dl,
2743                                VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2744    Cmp = DAG.getSetCC(
2745        dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2746        AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2747  }
2748
2749  // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2750  addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2751  // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2752  addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2753  // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2754  // one as they are relative probabilities (and thus work more like weights),
2755  // and hence we need to normalize them to let the sum of them become one.
2756  SwitchBB->normalizeSuccProbs();
2757
2758  SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2759                              MVT::Other, getControlRoot(),
2760                              Cmp, DAG.getBasicBlock(B.TargetBB));
2761
2762  // Avoid emitting unnecessary branches to the next block.
2763  if (NextMBB != NextBlock(SwitchBB))
2764    BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2765                        DAG.getBasicBlock(NextMBB));
2766
2767  DAG.setRoot(BrAnd);
2768}
2769
2770void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2771  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2772
2773  // Retrieve successors. Look through artificial IR level blocks like
2774  // catchswitch for successors.
2775  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2776  const BasicBlock *EHPadBB = I.getSuccessor(1);
2777
2778  // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2779  // have to do anything here to lower funclet bundles.
2780  assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2781                                        LLVMContext::OB_funclet,
2782                                        LLVMContext::OB_cfguardtarget}) &&
2783         "Cannot lower invokes with arbitrary operand bundles yet!");
2784
2785  const Value *Callee(I.getCalledValue());
2786  const Function *Fn = dyn_cast<Function>(Callee);
2787  if (isa<InlineAsm>(Callee))
2788    visitInlineAsm(&I);
2789  else if (Fn && Fn->isIntrinsic()) {
2790    switch (Fn->getIntrinsicID()) {
2791    default:
2792      llvm_unreachable("Cannot invoke this intrinsic");
2793    case Intrinsic::donothing:
2794      // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2795      break;
2796    case Intrinsic::experimental_patchpoint_void:
2797    case Intrinsic::experimental_patchpoint_i64:
2798      visitPatchpoint(&I, EHPadBB);
2799      break;
2800    case Intrinsic::experimental_gc_statepoint:
2801      LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2802      break;
2803    case Intrinsic::wasm_rethrow_in_catch: {
2804      // This is usually done in visitTargetIntrinsic, but this intrinsic is
2805      // special because it can be invoked, so we manually lower it to a DAG
2806      // node here.
2807      SmallVector<SDValue, 8> Ops;
2808      Ops.push_back(getRoot()); // inchain
2809      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2810      Ops.push_back(
2811          DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2812                                TLI.getPointerTy(DAG.getDataLayout())));
2813      SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2814      DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2815      break;
2816    }
2817    }
2818  } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2819    // Currently we do not lower any intrinsic calls with deopt operand bundles.
2820    // Eventually we will support lowering the @llvm.experimental.deoptimize
2821    // intrinsic, and right now there are no plans to support other intrinsics
2822    // with deopt state.
2823    LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2824  } else {
2825    LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2826  }
2827
2828  // If the value of the invoke is used outside of its defining block, make it
2829  // available as a virtual register.
2830  // We already took care of the exported value for the statepoint instruction
2831  // during call to the LowerStatepoint.
2832  if (!isStatepoint(I)) {
2833    CopyToExportRegsIfNeeded(&I);
2834  }
2835
2836  SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2837  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2838  BranchProbability EHPadBBProb =
2839      BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2840          : BranchProbability::getZero();
2841  findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2842
2843  // Update successor info.
2844  addSuccessorWithProb(InvokeMBB, Return);
2845  for (auto &UnwindDest : UnwindDests) {
2846    UnwindDest.first->setIsEHPad();
2847    addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2848  }
2849  InvokeMBB->normalizeSuccProbs();
2850
2851  // Drop into normal successor.
2852  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2853                          DAG.getBasicBlock(Return)));
2854}
2855
2856void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2857  MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2858
2859  // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2860  // have to do anything here to lower funclet bundles.
2861  assert(!I.hasOperandBundlesOtherThan(
2862             {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2863         "Cannot lower callbrs with arbitrary operand bundles yet!");
2864
2865  assert(isa<InlineAsm>(I.getCalledValue()) &&
2866         "Only know how to handle inlineasm callbr");
2867  visitInlineAsm(&I);
2868
2869  // Retrieve successors.
2870  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2871
2872  // Update successor info.
2873  addSuccessorWithProb(CallBrMBB, Return);
2874  for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2875    MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2876    addSuccessorWithProb(CallBrMBB, Target);
2877  }
2878  CallBrMBB->normalizeSuccProbs();
2879
2880  // Drop into default successor.
2881  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2882                          MVT::Other, getControlRoot(),
2883                          DAG.getBasicBlock(Return)));
2884}
2885
2886void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2887  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2888}
2889
2890void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2891  assert(FuncInfo.MBB->isEHPad() &&
2892         "Call to landingpad not in landing pad!");
2893
2894  // If there aren't registers to copy the values into (e.g., during SjLj
2895  // exceptions), then don't bother to create these DAG nodes.
2896  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2897  const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2898  if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2899      TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2900    return;
2901
2902  // If landingpad's return type is token type, we don't create DAG nodes
2903  // for its exception pointer and selector value. The extraction of exception
2904  // pointer or selector value from token type landingpads is not currently
2905  // supported.
2906  if (LP.getType()->isTokenTy())
2907    return;
2908
2909  SmallVector<EVT, 2> ValueVTs;
2910  SDLoc dl = getCurSDLoc();
2911  ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2912  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2913
2914  // Get the two live-in registers as SDValues. The physregs have already been
2915  // copied into virtual registers.
2916  SDValue Ops[2];
2917  if (FuncInfo.ExceptionPointerVirtReg) {
2918    Ops[0] = DAG.getZExtOrTrunc(
2919        DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2920                           FuncInfo.ExceptionPointerVirtReg,
2921                           TLI.getPointerTy(DAG.getDataLayout())),
2922        dl, ValueVTs[0]);
2923  } else {
2924    Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2925  }
2926  Ops[1] = DAG.getZExtOrTrunc(
2927      DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2928                         FuncInfo.ExceptionSelectorVirtReg,
2929                         TLI.getPointerTy(DAG.getDataLayout())),
2930      dl, ValueVTs[1]);
2931
2932  // Merge into one.
2933  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2934                            DAG.getVTList(ValueVTs), Ops);
2935  setValue(&LP, Res);
2936}
2937
2938void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2939                                           MachineBasicBlock *Last) {
2940  // Update JTCases.
2941  for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2942    if (SL->JTCases[i].first.HeaderBB == First)
2943      SL->JTCases[i].first.HeaderBB = Last;
2944
2945  // Update BitTestCases.
2946  for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2947    if (SL->BitTestCases[i].Parent == First)
2948      SL->BitTestCases[i].Parent = Last;
2949}
2950
2951void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2952  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2953
2954  // Update machine-CFG edges with unique successors.
2955  SmallSet<BasicBlock*, 32> Done;
2956  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2957    BasicBlock *BB = I.getSuccessor(i);
2958    bool Inserted = Done.insert(BB).second;
2959    if (!Inserted)
2960        continue;
2961
2962    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2963    addSuccessorWithProb(IndirectBrMBB, Succ);
2964  }
2965  IndirectBrMBB->normalizeSuccProbs();
2966
2967  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2968                          MVT::Other, getControlRoot(),
2969                          getValue(I.getAddress())));
2970}
2971
2972void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2973  if (!DAG.getTarget().Options.TrapUnreachable)
2974    return;
2975
2976  // We may be able to ignore unreachable behind a noreturn call.
2977  if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2978    const BasicBlock &BB = *I.getParent();
2979    if (&I != &BB.front()) {
2980      BasicBlock::const_iterator PredI =
2981        std::prev(BasicBlock::const_iterator(&I));
2982      if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2983        if (Call->doesNotReturn())
2984          return;
2985      }
2986    }
2987  }
2988
2989  DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2990}
2991
2992void SelectionDAGBuilder::visitFSub(const User &I) {
2993  // -0.0 - X --> fneg
2994  Type *Ty = I.getType();
2995  if (isa<Constant>(I.getOperand(0)) &&
2996      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2997    SDValue Op2 = getValue(I.getOperand(1));
2998    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2999                             Op2.getValueType(), Op2));
3000    return;
3001  }
3002
3003  visitBinary(I, ISD::FSUB);
3004}
3005
3006/// Checks if the given instruction performs a vector reduction, in which case
3007/// we have the freedom to alter the elements in the result as long as the
3008/// reduction of them stays unchanged.
3009static bool isVectorReductionOp(const User *I) {
3010  const Instruction *Inst = dyn_cast<Instruction>(I);
3011  if (!Inst || !Inst->getType()->isVectorTy())
3012    return false;
3013
3014  auto OpCode = Inst->getOpcode();
3015  switch (OpCode) {
3016  case Instruction::Add:
3017  case Instruction::Mul:
3018  case Instruction::And:
3019  case Instruction::Or:
3020  case Instruction::Xor:
3021    break;
3022  case Instruction::FAdd:
3023  case Instruction::FMul:
3024    if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3025      if (FPOp->getFastMathFlags().isFast())
3026        break;
3027    LLVM_FALLTHROUGH;
3028  default:
3029    return false;
3030  }
3031
3032  unsigned ElemNum = Inst->getType()->getVectorNumElements();
3033  // Ensure the reduction size is a power of 2.
3034  if (!isPowerOf2_32(ElemNum))
3035    return false;
3036
3037  unsigned ElemNumToReduce = ElemNum;
3038
3039  // Do DFS search on the def-use chain from the given instruction. We only
3040  // allow four kinds of operations during the search until we reach the
3041  // instruction that extracts the first element from the vector:
3042  //
3043  //   1. The reduction operation of the same opcode as the given instruction.
3044  //
3045  //   2. PHI node.
3046  //
3047  //   3. ShuffleVector instruction together with a reduction operation that
3048  //      does a partial reduction.
3049  //
3050  //   4. ExtractElement that extracts the first element from the vector, and we
3051  //      stop searching the def-use chain here.
3052  //
3053  // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3054  // from 1-3 to the stack to continue the DFS. The given instruction is not
3055  // a reduction operation if we meet any other instructions other than those
3056  // listed above.
3057
3058  SmallVector<const User *, 16> UsersToVisit{Inst};
3059  SmallPtrSet<const User *, 16> Visited;
3060  bool ReduxExtracted = false;
3061
3062  while (!UsersToVisit.empty()) {
3063    auto User = UsersToVisit.back();
3064    UsersToVisit.pop_back();
3065    if (!Visited.insert(User).second)
3066      continue;
3067
3068    for (const auto *U : User->users()) {
3069      auto Inst = dyn_cast<Instruction>(U);
3070      if (!Inst)
3071        return false;
3072
3073      if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3074        if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3075          if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3076            return false;
3077        UsersToVisit.push_back(U);
3078      } else if (const ShuffleVectorInst *ShufInst =
3079                     dyn_cast<ShuffleVectorInst>(U)) {
3080        // Detect the following pattern: A ShuffleVector instruction together
3081        // with a reduction that do partial reduction on the first and second
3082        // ElemNumToReduce / 2 elements, and store the result in
3083        // ElemNumToReduce / 2 elements in another vector.
3084
3085        unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3086        if (ResultElements < ElemNum)
3087          return false;
3088
3089        if (ElemNumToReduce == 1)
3090          return false;
3091        if (!isa<UndefValue>(U->getOperand(1)))
3092          return false;
3093        for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3094          if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3095            return false;
3096        for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3097          if (ShufInst->getMaskValue(i) != -1)
3098            return false;
3099
3100        // There is only one user of this ShuffleVector instruction, which
3101        // must be a reduction operation.
3102        if (!U->hasOneUse())
3103          return false;
3104
3105        auto U2 = dyn_cast<Instruction>(*U->user_begin());
3106        if (!U2 || U2->getOpcode() != OpCode)
3107          return false;
3108
3109        // Check operands of the reduction operation.
3110        if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3111            (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3112          UsersToVisit.push_back(U2);
3113          ElemNumToReduce /= 2;
3114        } else
3115          return false;
3116      } else if (isa<ExtractElementInst>(U)) {
3117        // At this moment we should have reduced all elements in the vector.
3118        if (ElemNumToReduce != 1)
3119          return false;
3120
3121        const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3122        if (!Val || !Val->isZero())
3123          return false;
3124
3125        ReduxExtracted = true;
3126      } else
3127        return false;
3128    }
3129  }
3130  return ReduxExtracted;
3131}
3132
3133void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3134  SDNodeFlags Flags;
3135
3136  SDValue Op = getValue(I.getOperand(0));
3137  SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3138                                    Op, Flags);
3139  setValue(&I, UnNodeValue);
3140}
3141
3142void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3143  SDNodeFlags Flags;
3144  if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3145    Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3146    Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3147  }
3148  if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3149    Flags.setExact(ExactOp->isExact());
3150  }
3151  if (isVectorReductionOp(&I)) {
3152    Flags.setVectorReduction(true);
3153    LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3154
3155    // If no flags are set we will propagate the incoming flags, if any flags
3156    // are set, we will intersect them with the incoming flag and so we need to
3157    // copy the FMF flags here.
3158    if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) {
3159      Flags.copyFMF(*FPOp);
3160    }
3161  }
3162
3163  SDValue Op1 = getValue(I.getOperand(0));
3164  SDValue Op2 = getValue(I.getOperand(1));
3165  SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3166                                     Op1, Op2, Flags);
3167  setValue(&I, BinNodeValue);
3168}
3169
3170void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3171  SDValue Op1 = getValue(I.getOperand(0));
3172  SDValue Op2 = getValue(I.getOperand(1));
3173
3174  EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3175      Op1.getValueType(), DAG.getDataLayout());
3176
3177  // Coerce the shift amount to the right type if we can.
3178  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3179    unsigned ShiftSize = ShiftTy.getSizeInBits();
3180    unsigned Op2Size = Op2.getValueSizeInBits();
3181    SDLoc DL = getCurSDLoc();
3182
3183    // If the operand is smaller than the shift count type, promote it.
3184    if (ShiftSize > Op2Size)
3185      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3186
3187    // If the operand is larger than the shift count type but the shift
3188    // count type has enough bits to represent any shift value, truncate
3189    // it now. This is a common case and it exposes the truncate to
3190    // optimization early.
3191    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3192      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3193    // Otherwise we'll need to temporarily settle for some other convenient
3194    // type.  Type legalization will make adjustments once the shiftee is split.
3195    else
3196      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3197  }
3198
3199  bool nuw = false;
3200  bool nsw = false;
3201  bool exact = false;
3202
3203  if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3204
3205    if (const OverflowingBinaryOperator *OFBinOp =
3206            dyn_cast<const OverflowingBinaryOperator>(&I)) {
3207      nuw = OFBinOp->hasNoUnsignedWrap();
3208      nsw = OFBinOp->hasNoSignedWrap();
3209    }
3210    if (const PossiblyExactOperator *ExactOp =
3211            dyn_cast<const PossiblyExactOperator>(&I))
3212      exact = ExactOp->isExact();
3213  }
3214  SDNodeFlags Flags;
3215  Flags.setExact(exact);
3216  Flags.setNoSignedWrap(nsw);
3217  Flags.setNoUnsignedWrap(nuw);
3218  SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3219                            Flags);
3220  setValue(&I, Res);
3221}
3222
3223void SelectionDAGBuilder::visitSDiv(const User &I) {
3224  SDValue Op1 = getValue(I.getOperand(0));
3225  SDValue Op2 = getValue(I.getOperand(1));
3226
3227  SDNodeFlags Flags;
3228  Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3229                 cast<PossiblyExactOperator>(&I)->isExact());
3230  setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3231                           Op2, Flags));
3232}
3233
3234void SelectionDAGBuilder::visitICmp(const User &I) {
3235  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3236  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3237    predicate = IC->getPredicate();
3238  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3239    predicate = ICmpInst::Predicate(IC->getPredicate());
3240  SDValue Op1 = getValue(I.getOperand(0));
3241  SDValue Op2 = getValue(I.getOperand(1));
3242  ISD::CondCode Opcode = getICmpCondCode(predicate);
3243
3244  auto &TLI = DAG.getTargetLoweringInfo();
3245  EVT MemVT =
3246      TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3247
3248  // If a pointer's DAG type is larger than its memory type then the DAG values
3249  // are zero-extended. This breaks signed comparisons so truncate back to the
3250  // underlying type before doing the compare.
3251  if (Op1.getValueType() != MemVT) {
3252    Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3253    Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3254  }
3255
3256  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3257                                                        I.getType());
3258  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3259}
3260
3261void SelectionDAGBuilder::visitFCmp(const User &I) {
3262  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3263  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3264    predicate = FC->getPredicate();
3265  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3266    predicate = FCmpInst::Predicate(FC->getPredicate());
3267  SDValue Op1 = getValue(I.getOperand(0));
3268  SDValue Op2 = getValue(I.getOperand(1));
3269
3270  ISD::CondCode Condition = getFCmpCondCode(predicate);
3271  auto *FPMO = dyn_cast<FPMathOperator>(&I);
3272  if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3273    Condition = getFCmpCodeWithoutNaN(Condition);
3274
3275  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3276                                                        I.getType());
3277  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3278}
3279
3280// Check if the condition of the select has one use or two users that are both
3281// selects with the same condition.
3282static bool hasOnlySelectUsers(const Value *Cond) {
3283  return llvm::all_of(Cond->users(), [](const Value *V) {
3284    return isa<SelectInst>(V);
3285  });
3286}
3287
3288void SelectionDAGBuilder::visitSelect(const User &I) {
3289  SmallVector<EVT, 4> ValueVTs;
3290  ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3291                  ValueVTs);
3292  unsigned NumValues = ValueVTs.size();
3293  if (NumValues == 0) return;
3294
3295  SmallVector<SDValue, 4> Values(NumValues);
3296  SDValue Cond     = getValue(I.getOperand(0));
3297  SDValue LHSVal   = getValue(I.getOperand(1));
3298  SDValue RHSVal   = getValue(I.getOperand(2));
3299  auto BaseOps = {Cond};
3300  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3301    ISD::VSELECT : ISD::SELECT;
3302
3303  bool IsUnaryAbs = false;
3304
3305  // Min/max matching is only viable if all output VTs are the same.
3306  if (is_splat(ValueVTs)) {
3307    EVT VT = ValueVTs[0];
3308    LLVMContext &Ctx = *DAG.getContext();
3309    auto &TLI = DAG.getTargetLoweringInfo();
3310
3311    // We care about the legality of the operation after it has been type
3312    // legalized.
3313    while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3314      VT = TLI.getTypeToTransformTo(Ctx, VT);
3315
3316    // If the vselect is legal, assume we want to leave this as a vector setcc +
3317    // vselect. Otherwise, if this is going to be scalarized, we want to see if
3318    // min/max is legal on the scalar type.
3319    bool UseScalarMinMax = VT.isVector() &&
3320      !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3321
3322    Value *LHS, *RHS;
3323    auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3324    ISD::NodeType Opc = ISD::DELETED_NODE;
3325    switch (SPR.Flavor) {
3326    case SPF_UMAX:    Opc = ISD::UMAX; break;
3327    case SPF_UMIN:    Opc = ISD::UMIN; break;
3328    case SPF_SMAX:    Opc = ISD::SMAX; break;
3329    case SPF_SMIN:    Opc = ISD::SMIN; break;
3330    case SPF_FMINNUM:
3331      switch (SPR.NaNBehavior) {
3332      case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3333      case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3334      case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3335      case SPNB_RETURNS_ANY: {
3336        if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3337          Opc = ISD::FMINNUM;
3338        else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3339          Opc = ISD::FMINIMUM;
3340        else if (UseScalarMinMax)
3341          Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3342            ISD::FMINNUM : ISD::FMINIMUM;
3343        break;
3344      }
3345      }
3346      break;
3347    case SPF_FMAXNUM:
3348      switch (SPR.NaNBehavior) {
3349      case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3350      case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3351      case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3352      case SPNB_RETURNS_ANY:
3353
3354        if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3355          Opc = ISD::FMAXNUM;
3356        else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3357          Opc = ISD::FMAXIMUM;
3358        else if (UseScalarMinMax)
3359          Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3360            ISD::FMAXNUM : ISD::FMAXIMUM;
3361        break;
3362      }
3363      break;
3364    case SPF_ABS:
3365      IsUnaryAbs = true;
3366      Opc = ISD::ABS;
3367      break;
3368    case SPF_NABS:
3369      // TODO: we need to produce sub(0, abs(X)).
3370    default: break;
3371    }
3372
3373    if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3374        (TLI.isOperationLegalOrCustom(Opc, VT) ||
3375         (UseScalarMinMax &&
3376          TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3377        // If the underlying comparison instruction is used by any other
3378        // instruction, the consumed instructions won't be destroyed, so it is
3379        // not profitable to convert to a min/max.
3380        hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3381      OpCode = Opc;
3382      LHSVal = getValue(LHS);
3383      RHSVal = getValue(RHS);
3384      BaseOps = {};
3385    }
3386
3387    if (IsUnaryAbs) {
3388      OpCode = Opc;
3389      LHSVal = getValue(LHS);
3390      BaseOps = {};
3391    }
3392  }
3393
3394  if (IsUnaryAbs) {
3395    for (unsigned i = 0; i != NumValues; ++i) {
3396      Values[i] =
3397          DAG.getNode(OpCode, getCurSDLoc(),
3398                      LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3399                      SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3400    }
3401  } else {
3402    for (unsigned i = 0; i != NumValues; ++i) {
3403      SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3404      Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3405      Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3406      Values[i] = DAG.getNode(
3407          OpCode, getCurSDLoc(),
3408          LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3409    }
3410  }
3411
3412  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3413                           DAG.getVTList(ValueVTs), Values));
3414}
3415
3416void SelectionDAGBuilder::visitTrunc(const User &I) {
3417  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3418  SDValue N = getValue(I.getOperand(0));
3419  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3420                                                        I.getType());
3421  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3422}
3423
3424void SelectionDAGBuilder::visitZExt(const User &I) {
3425  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3426  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3427  SDValue N = getValue(I.getOperand(0));
3428  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3429                                                        I.getType());
3430  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3431}
3432
3433void SelectionDAGBuilder::visitSExt(const User &I) {
3434  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3435  // SExt also can't be a cast to bool for same reason. So, nothing much to do
3436  SDValue N = getValue(I.getOperand(0));
3437  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3438                                                        I.getType());
3439  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3440}
3441
3442void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3443  // FPTrunc is never a no-op cast, no need to check
3444  SDValue N = getValue(I.getOperand(0));
3445  SDLoc dl = getCurSDLoc();
3446  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3447  EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3448  setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3449                           DAG.getTargetConstant(
3450                               0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3451}
3452
3453void SelectionDAGBuilder::visitFPExt(const User &I) {
3454  // FPExt is never a no-op cast, no need to check
3455  SDValue N = getValue(I.getOperand(0));
3456  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3457                                                        I.getType());
3458  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3459}
3460
3461void SelectionDAGBuilder::visitFPToUI(const User &I) {
3462  // FPToUI is never a no-op cast, no need to check
3463  SDValue N = getValue(I.getOperand(0));
3464  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3465                                                        I.getType());
3466  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3467}
3468
3469void SelectionDAGBuilder::visitFPToSI(const User &I) {
3470  // FPToSI is never a no-op cast, no need to check
3471  SDValue N = getValue(I.getOperand(0));
3472  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3473                                                        I.getType());
3474  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3475}
3476
3477void SelectionDAGBuilder::visitUIToFP(const User &I) {
3478  // UIToFP is never a no-op cast, no need to check
3479  SDValue N = getValue(I.getOperand(0));
3480  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3481                                                        I.getType());
3482  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3483}
3484
3485void SelectionDAGBuilder::visitSIToFP(const User &I) {
3486  // SIToFP is never a no-op cast, no need to check
3487  SDValue N = getValue(I.getOperand(0));
3488  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3489                                                        I.getType());
3490  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3491}
3492
3493void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3494  // What to do depends on the size of the integer and the size of the pointer.
3495  // We can either truncate, zero extend, or no-op, accordingly.
3496  SDValue N = getValue(I.getOperand(0));
3497  auto &TLI = DAG.getTargetLoweringInfo();
3498  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3499                                                        I.getType());
3500  EVT PtrMemVT =
3501      TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3502  N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3503  N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3504  setValue(&I, N);
3505}
3506
3507void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3508  // What to do depends on the size of the integer and the size of the pointer.
3509  // We can either truncate, zero extend, or no-op, accordingly.
3510  SDValue N = getValue(I.getOperand(0));
3511  auto &TLI = DAG.getTargetLoweringInfo();
3512  EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3513  EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3514  N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3515  N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3516  setValue(&I, N);
3517}
3518
3519void SelectionDAGBuilder::visitBitCast(const User &I) {
3520  SDValue N = getValue(I.getOperand(0));
3521  SDLoc dl = getCurSDLoc();
3522  EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3523                                                        I.getType());
3524
3525  // BitCast assures us that source and destination are the same size so this is
3526  // either a BITCAST or a no-op.
3527  if (DestVT != N.getValueType())
3528    setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3529                             DestVT, N)); // convert types.
3530  // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3531  // might fold any kind of constant expression to an integer constant and that
3532  // is not what we are looking for. Only recognize a bitcast of a genuine
3533  // constant integer as an opaque constant.
3534  else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3535    setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3536                                 /*isOpaque*/true));
3537  else
3538    setValue(&I, N);            // noop cast.
3539}
3540
3541void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3542  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3543  const Value *SV = I.getOperand(0);
3544  SDValue N = getValue(SV);
3545  EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3546
3547  unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3548  unsigned DestAS = I.getType()->getPointerAddressSpace();
3549
3550  if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3551    N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3552
3553  setValue(&I, N);
3554}
3555
3556void SelectionDAGBuilder::visitInsertElement(const User &I) {
3557  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3558  SDValue InVec = getValue(I.getOperand(0));
3559  SDValue InVal = getValue(I.getOperand(1));
3560  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3561                                     TLI.getVectorIdxTy(DAG.getDataLayout()));
3562  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3563                           TLI.getValueType(DAG.getDataLayout(), I.getType()),
3564                           InVec, InVal, InIdx));
3565}
3566
3567void SelectionDAGBuilder::visitExtractElement(const User &I) {
3568  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3569  SDValue InVec = getValue(I.getOperand(0));
3570  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3571                                     TLI.getVectorIdxTy(DAG.getDataLayout()));
3572  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3573                           TLI.getValueType(DAG.getDataLayout(), I.getType()),
3574                           InVec, InIdx));
3575}
3576
3577void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3578  SDValue Src1 = getValue(I.getOperand(0));
3579  SDValue Src2 = getValue(I.getOperand(1));
3580  Constant *MaskV = cast<Constant>(I.getOperand(2));
3581  SDLoc DL = getCurSDLoc();
3582  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3583  EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3584  EVT SrcVT = Src1.getValueType();
3585  unsigned SrcNumElts = SrcVT.getVectorNumElements();
3586
3587  if (MaskV->isNullValue() && VT.isScalableVector()) {
3588    // Canonical splat form of first element of first input vector.
3589    SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3590                                   SrcVT.getScalarType(), Src1,
3591                                   DAG.getConstant(0, DL,
3592                                   TLI.getVectorIdxTy(DAG.getDataLayout())));
3593    setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3594    return;
3595  }
3596
3597  // For now, we only handle splats for scalable vectors.
3598  // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3599  // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3600  assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3601
3602  SmallVector<int, 8> Mask;
3603  ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3604  unsigned MaskNumElts = Mask.size();
3605
3606  if (SrcNumElts == MaskNumElts) {
3607    setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3608    return;
3609  }
3610
3611  // Normalize the shuffle vector since mask and vector length don't match.
3612  if (SrcNumElts < MaskNumElts) {
3613    // Mask is longer than the source vectors. We can use concatenate vector to
3614    // make the mask and vectors lengths match.
3615
3616    if (MaskNumElts % SrcNumElts == 0) {
3617      // Mask length is a multiple of the source vector length.
3618      // Check if the shuffle is some kind of concatenation of the input
3619      // vectors.
3620      unsigned NumConcat = MaskNumElts / SrcNumElts;
3621      bool IsConcat = true;
3622      SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3623      for (unsigned i = 0; i != MaskNumElts; ++i) {
3624        int Idx = Mask[i];
3625        if (Idx < 0)
3626          continue;
3627        // Ensure the indices in each SrcVT sized piece are sequential and that
3628        // the same source is used for the whole piece.
3629        if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3630            (ConcatSrcs[i / SrcNumElts] >= 0 &&
3631             ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3632          IsConcat = false;
3633          break;
3634        }
3635        // Remember which source this index came from.
3636        ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3637      }
3638
3639      // The shuffle is concatenating multiple vectors together. Just emit
3640      // a CONCAT_VECTORS operation.
3641      if (IsConcat) {
3642        SmallVector<SDValue, 8> ConcatOps;
3643        for (auto Src : ConcatSrcs) {
3644          if (Src < 0)
3645            ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3646          else if (Src == 0)
3647            ConcatOps.push_back(Src1);
3648          else
3649            ConcatOps.push_back(Src2);
3650        }
3651        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3652        return;
3653      }
3654    }
3655
3656    unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3657    unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3658    EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3659                                    PaddedMaskNumElts);
3660
3661    // Pad both vectors with undefs to make them the same length as the mask.
3662    SDValue UndefVal = DAG.getUNDEF(SrcVT);
3663
3664    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3665    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3666    MOps1[0] = Src1;
3667    MOps2[0] = Src2;
3668
3669    Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3670    Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3671
3672    // Readjust mask for new input vector length.
3673    SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3674    for (unsigned i = 0; i != MaskNumElts; ++i) {
3675      int Idx = Mask[i];
3676      if (Idx >= (int)SrcNumElts)
3677        Idx -= SrcNumElts - PaddedMaskNumElts;
3678      MappedOps[i] = Idx;
3679    }
3680
3681    SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3682
3683    // If the concatenated vector was padded, extract a subvector with the
3684    // correct number of elements.
3685    if (MaskNumElts != PaddedMaskNumElts)
3686      Result = DAG.getNode(
3687          ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3688          DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3689
3690    setValue(&I, Result);
3691    return;
3692  }
3693
3694  if (SrcNumElts > MaskNumElts) {
3695    // Analyze the access pattern of the vector to see if we can extract
3696    // two subvectors and do the shuffle.
3697    int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3698    bool CanExtract = true;
3699    for (int Idx : Mask) {
3700      unsigned Input = 0;
3701      if (Idx < 0)
3702        continue;
3703
3704      if (Idx >= (int)SrcNumElts) {
3705        Input = 1;
3706        Idx -= SrcNumElts;
3707      }
3708
3709      // If all the indices come from the same MaskNumElts sized portion of
3710      // the sources we can use extract. Also make sure the extract wouldn't
3711      // extract past the end of the source.
3712      int NewStartIdx = alignDown(Idx, MaskNumElts);
3713      if (NewStartIdx + MaskNumElts > SrcNumElts ||
3714          (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3715        CanExtract = false;
3716      // Make sure we always update StartIdx as we use it to track if all
3717      // elements are undef.
3718      StartIdx[Input] = NewStartIdx;
3719    }
3720
3721    if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3722      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3723      return;
3724    }
3725    if (CanExtract) {
3726      // Extract appropriate subvector and generate a vector shuffle
3727      for (unsigned Input = 0; Input < 2; ++Input) {
3728        SDValue &Src = Input == 0 ? Src1 : Src2;
3729        if (StartIdx[Input] < 0)
3730          Src = DAG.getUNDEF(VT);
3731        else {
3732          Src = DAG.getNode(
3733              ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3734              DAG.getConstant(StartIdx[Input], DL,
3735                              TLI.getVectorIdxTy(DAG.getDataLayout())));
3736        }
3737      }
3738
3739      // Calculate new mask.
3740      SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3741      for (int &Idx : MappedOps) {
3742        if (Idx >= (int)SrcNumElts)
3743          Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3744        else if (Idx >= 0)
3745          Idx -= StartIdx[0];
3746      }
3747
3748      setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3749      return;
3750    }
3751  }
3752
3753  // We can't use either concat vectors or extract subvectors so fall back to
3754  // replacing the shuffle with extract and build vector.
3755  // to insert and build vector.
3756  EVT EltVT = VT.getVectorElementType();
3757  EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3758  SmallVector<SDValue,8> Ops;
3759  for (int Idx : Mask) {
3760    SDValue Res;
3761
3762    if (Idx < 0) {
3763      Res = DAG.getUNDEF(EltVT);
3764    } else {
3765      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3766      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3767
3768      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3769                        EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3770    }
3771
3772    Ops.push_back(Res);
3773  }
3774
3775  setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3776}
3777
3778void SelectionDAGBuilder::visitInsertValue(const User &I) {
3779  ArrayRef<unsigned> Indices;
3780  if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3781    Indices = IV->getIndices();
3782  else
3783    Indices = cast<ConstantExpr>(&I)->getIndices();
3784
3785  const Value *Op0 = I.getOperand(0);
3786  const Value *Op1 = I.getOperand(1);
3787  Type *AggTy = I.getType();
3788  Type *ValTy = Op1->getType();
3789  bool IntoUndef = isa<UndefValue>(Op0);
3790  bool FromUndef = isa<UndefValue>(Op1);
3791
3792  unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3793
3794  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3795  SmallVector<EVT, 4> AggValueVTs;
3796  ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3797  SmallVector<EVT, 4> ValValueVTs;
3798  ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3799
3800  unsigned NumAggValues = AggValueVTs.size();
3801  unsigned NumValValues = ValValueVTs.size();
3802  SmallVector<SDValue, 4> Values(NumAggValues);
3803
3804  // Ignore an insertvalue that produces an empty object
3805  if (!NumAggValues) {
3806    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3807    return;
3808  }
3809
3810  SDValue Agg = getValue(Op0);
3811  unsigned i = 0;
3812  // Copy the beginning value(s) from the original aggregate.
3813  for (; i != LinearIndex; ++i)
3814    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3815                SDValue(Agg.getNode(), Agg.getResNo() + i);
3816  // Copy values from the inserted value(s).
3817  if (NumValValues) {
3818    SDValue Val = getValue(Op1);
3819    for (; i != LinearIndex + NumValValues; ++i)
3820      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3821                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3822  }
3823  // Copy remaining value(s) from the original aggregate.
3824  for (; i != NumAggValues; ++i)
3825    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3826                SDValue(Agg.getNode(), Agg.getResNo() + i);
3827
3828  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3829                           DAG.getVTList(AggValueVTs), Values));
3830}
3831
3832void SelectionDAGBuilder::visitExtractValue(const User &I) {
3833  ArrayRef<unsigned> Indices;
3834  if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3835    Indices = EV->getIndices();
3836  else
3837    Indices = cast<ConstantExpr>(&I)->getIndices();
3838
3839  const Value *Op0 = I.getOperand(0);
3840  Type *AggTy = Op0->getType();
3841  Type *ValTy = I.getType();
3842  bool OutOfUndef = isa<UndefValue>(Op0);
3843
3844  unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3845
3846  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3847  SmallVector<EVT, 4> ValValueVTs;
3848  ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3849
3850  unsigned NumValValues = ValValueVTs.size();
3851
3852  // Ignore a extractvalue that produces an empty object
3853  if (!NumValValues) {
3854    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3855    return;
3856  }
3857
3858  SmallVector<SDValue, 4> Values(NumValValues);
3859
3860  SDValue Agg = getValue(Op0);
3861  // Copy out the selected value(s).
3862  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3863    Values[i - LinearIndex] =
3864      OutOfUndef ?
3865        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3866        SDValue(Agg.getNode(), Agg.getResNo() + i);
3867
3868  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3869                           DAG.getVTList(ValValueVTs), Values));
3870}
3871
3872void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3873  Value *Op0 = I.getOperand(0);
3874  // Note that the pointer operand may be a vector of pointers. Take the scalar
3875  // element which holds a pointer.
3876  unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3877  SDValue N = getValue(Op0);
3878  SDLoc dl = getCurSDLoc();
3879  auto &TLI = DAG.getTargetLoweringInfo();
3880  MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3881  MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3882
3883  // Normalize Vector GEP - all scalar operands should be converted to the
3884  // splat vector.
3885  unsigned VectorWidth = I.getType()->isVectorTy() ?
3886    I.getType()->getVectorNumElements() : 0;
3887
3888  if (VectorWidth && !N.getValueType().isVector()) {
3889    LLVMContext &Context = *DAG.getContext();
3890    EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3891    N = DAG.getSplatBuildVector(VT, dl, N);
3892  }
3893
3894  for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3895       GTI != E; ++GTI) {
3896    const Value *Idx = GTI.getOperand();
3897    if (StructType *StTy = GTI.getStructTypeOrNull()) {
3898      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3899      if (Field) {
3900        // N = N + Offset
3901        uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3902
3903        // In an inbounds GEP with an offset that is nonnegative even when
3904        // interpreted as signed, assume there is no unsigned overflow.
3905        SDNodeFlags Flags;
3906        if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3907          Flags.setNoUnsignedWrap(true);
3908
3909        N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3910                        DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3911      }
3912    } else {
3913      unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3914      MVT IdxTy = MVT::getIntegerVT(IdxSize);
3915      APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3916
3917      // If this is a scalar constant or a splat vector of constants,
3918      // handle it quickly.
3919      const auto *C = dyn_cast<Constant>(Idx);
3920      if (C && isa<VectorType>(C->getType()))
3921        C = C->getSplatValue();
3922
3923      if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) {
3924        if (CI->isZero())
3925          continue;
3926        APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3927        LLVMContext &Context = *DAG.getContext();
3928        SDValue OffsVal = VectorWidth ?
3929          DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3930          DAG.getConstant(Offs, dl, IdxTy);
3931
3932        // In an inbounds GEP with an offset that is nonnegative even when
3933        // interpreted as signed, assume there is no unsigned overflow.
3934        SDNodeFlags Flags;
3935        if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3936          Flags.setNoUnsignedWrap(true);
3937
3938        OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3939
3940        N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3941        continue;
3942      }
3943
3944      // N = N + Idx * ElementSize;
3945      SDValue IdxN = getValue(Idx);
3946
3947      if (!IdxN.getValueType().isVector() && VectorWidth) {
3948        EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3949        IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3950      }
3951
3952      // If the index is smaller or larger than intptr_t, truncate or extend
3953      // it.
3954      IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3955
3956      // If this is a multiply by a power of two, turn it into a shl
3957      // immediately.  This is a very common case.
3958      if (ElementSize != 1) {
3959        if (ElementSize.isPowerOf2()) {
3960          unsigned Amt = ElementSize.logBase2();
3961          IdxN = DAG.getNode(ISD::SHL, dl,
3962                             N.getValueType(), IdxN,
3963                             DAG.getConstant(Amt, dl, IdxN.getValueType()));
3964        } else {
3965          SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3966                                          IdxN.getValueType());
3967          IdxN = DAG.getNode(ISD::MUL, dl,
3968                             N.getValueType(), IdxN, Scale);
3969        }
3970      }
3971
3972      N = DAG.getNode(ISD::ADD, dl,
3973                      N.getValueType(), N, IdxN);
3974    }
3975  }
3976
3977  if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3978    N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3979
3980  setValue(&I, N);
3981}
3982
3983void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3984  // If this is a fixed sized alloca in the entry block of the function,
3985  // allocate it statically on the stack.
3986  if (FuncInfo.StaticAllocaMap.count(&I))
3987    return;   // getValue will auto-populate this.
3988
3989  SDLoc dl = getCurSDLoc();
3990  Type *Ty = I.getAllocatedType();
3991  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3992  auto &DL = DAG.getDataLayout();
3993  uint64_t TySize = DL.getTypeAllocSize(Ty);
3994  unsigned Align =
3995      std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3996
3997  SDValue AllocSize = getValue(I.getArraySize());
3998
3999  EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4000  if (AllocSize.getValueType() != IntPtr)
4001    AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4002
4003  AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
4004                          AllocSize,
4005                          DAG.getConstant(TySize, dl, IntPtr));
4006
4007  // Handle alignment.  If the requested alignment is less than or equal to
4008  // the stack alignment, ignore it.  If the size is greater than or equal to
4009  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4010  unsigned StackAlign =
4011      DAG.getSubtarget().getFrameLowering()->getStackAlignment();
4012  if (Align <= StackAlign)
4013    Align = 0;
4014
4015  // Round the size of the allocation up to the stack alignment size
4016  // by add SA-1 to the size. This doesn't overflow because we're computing
4017  // an address inside an alloca.
4018  SDNodeFlags Flags;
4019  Flags.setNoUnsignedWrap(true);
4020  AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4021                          DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
4022
4023  // Mask out the low bits for alignment purposes.
4024  AllocSize =
4025      DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4026                  DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
4027
4028  SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
4029  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4030  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4031  setValue(&I, DSA);
4032  DAG.setRoot(DSA.getValue(1));
4033
4034  assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4035}
4036
4037void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4038  if (I.isAtomic())
4039    return visitAtomicLoad(I);
4040
4041  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4042  const Value *SV = I.getOperand(0);
4043  if (TLI.supportSwiftError()) {
4044    // Swifterror values can come from either a function parameter with
4045    // swifterror attribute or an alloca with swifterror attribute.
4046    if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4047      if (Arg->hasSwiftErrorAttr())
4048        return visitLoadFromSwiftError(I);
4049    }
4050
4051    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4052      if (Alloca->isSwiftError())
4053        return visitLoadFromSwiftError(I);
4054    }
4055  }
4056
4057  SDValue Ptr = getValue(SV);
4058
4059  Type *Ty = I.getType();
4060
4061  bool isVolatile = I.isVolatile();
4062  bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal);
4063  bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load);
4064  bool isDereferenceable =
4065      isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout());
4066  unsigned Alignment = I.getAlignment();
4067
4068  AAMDNodes AAInfo;
4069  I.getAAMetadata(AAInfo);
4070  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4071
4072  SmallVector<EVT, 4> ValueVTs, MemVTs;
4073  SmallVector<uint64_t, 4> Offsets;
4074  ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4075  unsigned NumValues = ValueVTs.size();
4076  if (NumValues == 0)
4077    return;
4078
4079  SDValue Root;
4080  bool ConstantMemory = false;
4081  if (isVolatile)
4082    // Serialize volatile loads with other side effects.
4083    Root = getRoot();
4084  else if (NumValues > MaxParallelChains)
4085    Root = getMemoryRoot();
4086  else if (AA &&
4087           AA->pointsToConstantMemory(MemoryLocation(
4088               SV,
4089               LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4090               AAInfo))) {
4091    // Do not serialize (non-volatile) loads of constant memory with anything.
4092    Root = DAG.getEntryNode();
4093    ConstantMemory = true;
4094  } else {
4095    // Do not serialize non-volatile loads against each other.
4096    Root = DAG.getRoot();
4097  }
4098
4099  SDLoc dl = getCurSDLoc();
4100
4101  if (isVolatile)
4102    Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4103
4104  // An aggregate load cannot wrap around the address space, so offsets to its
4105  // parts don't wrap either.
4106  SDNodeFlags Flags;
4107  Flags.setNoUnsignedWrap(true);
4108
4109  SmallVector<SDValue, 4> Values(NumValues);
4110  SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4111  EVT PtrVT = Ptr.getValueType();
4112  unsigned ChainI = 0;
4113  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4114    // Serializing loads here may result in excessive register pressure, and
4115    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4116    // could recover a bit by hoisting nodes upward in the chain by recognizing
4117    // they are side-effect free or do not alias. The optimizer should really
4118    // avoid this case by converting large object/array copies to llvm.memcpy
4119    // (MaxParallelChains should always remain as failsafe).
4120    if (ChainI == MaxParallelChains) {
4121      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4122      SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4123                                  makeArrayRef(Chains.data(), ChainI));
4124      Root = Chain;
4125      ChainI = 0;
4126    }
4127    SDValue A = DAG.getNode(ISD::ADD, dl,
4128                            PtrVT, Ptr,
4129                            DAG.getConstant(Offsets[i], dl, PtrVT),
4130                            Flags);
4131    auto MMOFlags = MachineMemOperand::MONone;
4132    if (isVolatile)
4133      MMOFlags |= MachineMemOperand::MOVolatile;
4134    if (isNonTemporal)
4135      MMOFlags |= MachineMemOperand::MONonTemporal;
4136    if (isInvariant)
4137      MMOFlags |= MachineMemOperand::MOInvariant;
4138    if (isDereferenceable)
4139      MMOFlags |= MachineMemOperand::MODereferenceable;
4140    MMOFlags |= TLI.getMMOFlags(I);
4141
4142    SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4143                            MachinePointerInfo(SV, Offsets[i]), Alignment,
4144                            MMOFlags, AAInfo, Ranges);
4145    Chains[ChainI] = L.getValue(1);
4146
4147    if (MemVTs[i] != ValueVTs[i])
4148      L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4149
4150    Values[i] = L;
4151  }
4152
4153  if (!ConstantMemory) {
4154    SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4155                                makeArrayRef(Chains.data(), ChainI));
4156    if (isVolatile)
4157      DAG.setRoot(Chain);
4158    else
4159      PendingLoads.push_back(Chain);
4160  }
4161
4162  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4163                           DAG.getVTList(ValueVTs), Values));
4164}
4165
4166void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4167  assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4168         "call visitStoreToSwiftError when backend supports swifterror");
4169
4170  SmallVector<EVT, 4> ValueVTs;
4171  SmallVector<uint64_t, 4> Offsets;
4172  const Value *SrcV = I.getOperand(0);
4173  ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4174                  SrcV->getType(), ValueVTs, &Offsets);
4175  assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4176         "expect a single EVT for swifterror");
4177
4178  SDValue Src = getValue(SrcV);
4179  // Create a virtual register, then update the virtual register.
4180  Register VReg =
4181      SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4182  // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4183  // Chain can be getRoot or getControlRoot.
4184  SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4185                                      SDValue(Src.getNode(), Src.getResNo()));
4186  DAG.setRoot(CopyNode);
4187}
4188
4189void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4190  assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4191         "call visitLoadFromSwiftError when backend supports swifterror");
4192
4193  assert(!I.isVolatile() &&
4194         !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4195         !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4196         "Support volatile, non temporal, invariant for load_from_swift_error");
4197
4198  const Value *SV = I.getOperand(0);
4199  Type *Ty = I.getType();
4200  AAMDNodes AAInfo;
4201  I.getAAMetadata(AAInfo);
4202  assert(
4203      (!AA ||
4204       !AA->pointsToConstantMemory(MemoryLocation(
4205           SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4206           AAInfo))) &&
4207      "load_from_swift_error should not be constant memory");
4208
4209  SmallVector<EVT, 4> ValueVTs;
4210  SmallVector<uint64_t, 4> Offsets;
4211  ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4212                  ValueVTs, &Offsets);
4213  assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4214         "expect a single EVT for swifterror");
4215
4216  // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4217  SDValue L = DAG.getCopyFromReg(
4218      getRoot(), getCurSDLoc(),
4219      SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4220
4221  setValue(&I, L);
4222}
4223
4224void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4225  if (I.isAtomic())
4226    return visitAtomicStore(I);
4227
4228  const Value *SrcV = I.getOperand(0);
4229  const Value *PtrV = I.getOperand(1);
4230
4231  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4232  if (TLI.supportSwiftError()) {
4233    // Swifterror values can come from either a function parameter with
4234    // swifterror attribute or an alloca with swifterror attribute.
4235    if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4236      if (Arg->hasSwiftErrorAttr())
4237        return visitStoreToSwiftError(I);
4238    }
4239
4240    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4241      if (Alloca->isSwiftError())
4242        return visitStoreToSwiftError(I);
4243    }
4244  }
4245
4246  SmallVector<EVT, 4> ValueVTs, MemVTs;
4247  SmallVector<uint64_t, 4> Offsets;
4248  ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4249                  SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4250  unsigned NumValues = ValueVTs.size();
4251  if (NumValues == 0)
4252    return;
4253
4254  // Get the lowered operands. Note that we do this after
4255  // checking if NumResults is zero, because with zero results
4256  // the operands won't have values in the map.
4257  SDValue Src = getValue(SrcV);
4258  SDValue Ptr = getValue(PtrV);
4259
4260  SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4261  SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4262  SDLoc dl = getCurSDLoc();
4263  unsigned Alignment = I.getAlignment();
4264  AAMDNodes AAInfo;
4265  I.getAAMetadata(AAInfo);
4266
4267  auto MMOFlags = MachineMemOperand::MONone;
4268  if (I.isVolatile())
4269    MMOFlags |= MachineMemOperand::MOVolatile;
4270  if (I.hasMetadata(LLVMContext::MD_nontemporal))
4271    MMOFlags |= MachineMemOperand::MONonTemporal;
4272  MMOFlags |= TLI.getMMOFlags(I);
4273
4274  // An aggregate load cannot wrap around the address space, so offsets to its
4275  // parts don't wrap either.
4276  SDNodeFlags Flags;
4277  Flags.setNoUnsignedWrap(true);
4278
4279  unsigned ChainI = 0;
4280  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4281    // See visitLoad comments.
4282    if (ChainI == MaxParallelChains) {
4283      SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4284                                  makeArrayRef(Chains.data(), ChainI));
4285      Root = Chain;
4286      ChainI = 0;
4287    }
4288    SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4289    SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4290    if (MemVTs[i] != ValueVTs[i])
4291      Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4292    SDValue St =
4293        DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4294                     Alignment, MMOFlags, AAInfo);
4295    Chains[ChainI] = St;
4296  }
4297
4298  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4299                                  makeArrayRef(Chains.data(), ChainI));
4300  DAG.setRoot(StoreNode);
4301}
4302
4303void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4304                                           bool IsCompressing) {
4305  SDLoc sdl = getCurSDLoc();
4306
4307  auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4308                           unsigned& Alignment) {
4309    // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4310    Src0 = I.getArgOperand(0);
4311    Ptr = I.getArgOperand(1);
4312    Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4313    Mask = I.getArgOperand(3);
4314  };
4315  auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4316                           unsigned& Alignment) {
4317    // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4318    Src0 = I.getArgOperand(0);
4319    Ptr = I.getArgOperand(1);
4320    Mask = I.getArgOperand(2);
4321    Alignment = 0;
4322  };
4323
4324  Value  *PtrOperand, *MaskOperand, *Src0Operand;
4325  unsigned Alignment;
4326  if (IsCompressing)
4327    getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4328  else
4329    getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4330
4331  SDValue Ptr = getValue(PtrOperand);
4332  SDValue Src0 = getValue(Src0Operand);
4333  SDValue Mask = getValue(MaskOperand);
4334  SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4335
4336  EVT VT = Src0.getValueType();
4337  if (!Alignment)
4338    Alignment = DAG.getEVTAlignment(VT);
4339
4340  AAMDNodes AAInfo;
4341  I.getAAMetadata(AAInfo);
4342
4343  MachineMemOperand *MMO =
4344    DAG.getMachineFunction().
4345    getMachineMemOperand(MachinePointerInfo(PtrOperand),
4346                          MachineMemOperand::MOStore,
4347                          // TODO: Make MachineMemOperands aware of scalable
4348                          // vectors.
4349                          VT.getStoreSize().getKnownMinSize(),
4350                          Alignment, AAInfo);
4351  SDValue StoreNode =
4352      DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4353                         ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4354  DAG.setRoot(StoreNode);
4355  setValue(&I, StoreNode);
4356}
4357
4358// Get a uniform base for the Gather/Scatter intrinsic.
4359// The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4360// We try to represent it as a base pointer + vector of indices.
4361// Usually, the vector of pointers comes from a 'getelementptr' instruction.
4362// The first operand of the GEP may be a single pointer or a vector of pointers
4363// Example:
4364//   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4365//  or
4366//   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4367// %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4368//
4369// When the first GEP operand is a single pointer - it is the uniform base we
4370// are looking for. If first operand of the GEP is a splat vector - we
4371// extract the splat value and use it as a uniform base.
4372// In all other cases the function returns 'false'.
4373static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index,
4374                           ISD::MemIndexType &IndexType, SDValue &Scale,
4375                           SelectionDAGBuilder *SDB) {
4376  SelectionDAG& DAG = SDB->DAG;
4377  LLVMContext &Context = *DAG.getContext();
4378
4379  assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4380  const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4381  if (!GEP)
4382    return false;
4383
4384  const Value *GEPPtr = GEP->getPointerOperand();
4385  if (!GEPPtr->getType()->isVectorTy())
4386    Ptr = GEPPtr;
4387  else if (!(Ptr = getSplatValue(GEPPtr)))
4388    return false;
4389
4390  unsigned FinalIndex = GEP->getNumOperands() - 1;
4391  Value *IndexVal = GEP->getOperand(FinalIndex);
4392  gep_type_iterator GTI = gep_type_begin(*GEP);
4393
4394  // Ensure all the other indices are 0.
4395  for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) {
4396    auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4397    if (!C)
4398      return false;
4399    if (isa<VectorType>(C->getType()))
4400      C = C->getSplatValue();
4401    auto *CI = dyn_cast_or_null<ConstantInt>(C);
4402    if (!CI || !CI->isZero())
4403      return false;
4404  }
4405
4406  // The operands of the GEP may be defined in another basic block.
4407  // In this case we'll not find nodes for the operands.
4408  if (!SDB->findValue(Ptr))
4409    return false;
4410  Constant *C = dyn_cast<Constant>(IndexVal);
4411  if (!C && !SDB->findValue(IndexVal))
4412    return false;
4413
4414  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4415  const DataLayout &DL = DAG.getDataLayout();
4416  StructType *STy = GTI.getStructTypeOrNull();
4417
4418  if (STy) {
4419    const StructLayout *SL = DL.getStructLayout(STy);
4420    if (isa<VectorType>(C->getType())) {
4421      C = C->getSplatValue();
4422      // FIXME: If getSplatValue may return nullptr for a structure?
4423      // If not, the following check can be removed.
4424      if (!C)
4425        return false;
4426    }
4427    auto *CI = cast<ConstantInt>(C);
4428    Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4429    Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()),
4430                            SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4431  } else {
4432    Scale = DAG.getTargetConstant(
4433                DL.getTypeAllocSize(GEP->getResultElementType()),
4434                SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4435    Index = SDB->getValue(IndexVal);
4436  }
4437  Base = SDB->getValue(Ptr);
4438  IndexType = ISD::SIGNED_SCALED;
4439
4440  if (STy || !Index.getValueType().isVector()) {
4441    unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4442    EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4443    Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4444  }
4445  return true;
4446}
4447
4448void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4449  SDLoc sdl = getCurSDLoc();
4450
4451  // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4452  const Value *Ptr = I.getArgOperand(1);
4453  SDValue Src0 = getValue(I.getArgOperand(0));
4454  SDValue Mask = getValue(I.getArgOperand(3));
4455  EVT VT = Src0.getValueType();
4456  unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4457  if (!Alignment)
4458    Alignment = DAG.getEVTAlignment(VT);
4459  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4460
4461  AAMDNodes AAInfo;
4462  I.getAAMetadata(AAInfo);
4463
4464  SDValue Base;
4465  SDValue Index;
4466  ISD::MemIndexType IndexType;
4467  SDValue Scale;
4468  const Value *BasePtr = Ptr;
4469  bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4470                                    this);
4471
4472  const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4473  MachineMemOperand *MMO = DAG.getMachineFunction().
4474    getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4475                         MachineMemOperand::MOStore,
4476                         // TODO: Make MachineMemOperands aware of scalable
4477                         // vectors.
4478                         VT.getStoreSize().getKnownMinSize(),
4479                         Alignment, AAInfo);
4480  if (!UniformBase) {
4481    Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4482    Index = getValue(Ptr);
4483    IndexType = ISD::SIGNED_SCALED;
4484    Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4485  }
4486  SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4487  SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4488                                         Ops, MMO, IndexType);
4489  DAG.setRoot(Scatter);
4490  setValue(&I, Scatter);
4491}
4492
4493void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4494  SDLoc sdl = getCurSDLoc();
4495
4496  auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4497                           unsigned& Alignment) {
4498    // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4499    Ptr = I.getArgOperand(0);
4500    Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4501    Mask = I.getArgOperand(2);
4502    Src0 = I.getArgOperand(3);
4503  };
4504  auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4505                           unsigned& Alignment) {
4506    // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4507    Ptr = I.getArgOperand(0);
4508    Alignment = 0;
4509    Mask = I.getArgOperand(1);
4510    Src0 = I.getArgOperand(2);
4511  };
4512
4513  Value  *PtrOperand, *MaskOperand, *Src0Operand;
4514  unsigned Alignment;
4515  if (IsExpanding)
4516    getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4517  else
4518    getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4519
4520  SDValue Ptr = getValue(PtrOperand);
4521  SDValue Src0 = getValue(Src0Operand);
4522  SDValue Mask = getValue(MaskOperand);
4523  SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4524
4525  EVT VT = Src0.getValueType();
4526  if (!Alignment)
4527    Alignment = DAG.getEVTAlignment(VT);
4528
4529  AAMDNodes AAInfo;
4530  I.getAAMetadata(AAInfo);
4531  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4532
4533  // Do not serialize masked loads of constant memory with anything.
4534  MemoryLocation ML;
4535  if (VT.isScalableVector())
4536    ML = MemoryLocation(PtrOperand);
4537  else
4538    ML = MemoryLocation(PtrOperand, LocationSize::precise(
4539                           DAG.getDataLayout().getTypeStoreSize(I.getType())),
4540                           AAInfo);
4541  bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4542
4543  SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4544
4545  MachineMemOperand *MMO =
4546    DAG.getMachineFunction().
4547    getMachineMemOperand(MachinePointerInfo(PtrOperand),
4548                          MachineMemOperand::MOLoad,
4549                          // TODO: Make MachineMemOperands aware of scalable
4550                          // vectors.
4551                          VT.getStoreSize().getKnownMinSize(),
4552                          Alignment, AAInfo, Ranges);
4553
4554  SDValue Load =
4555      DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4556                        ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4557  if (AddToChain)
4558    PendingLoads.push_back(Load.getValue(1));
4559  setValue(&I, Load);
4560}
4561
4562void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4563  SDLoc sdl = getCurSDLoc();
4564
4565  // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4566  const Value *Ptr = I.getArgOperand(0);
4567  SDValue Src0 = getValue(I.getArgOperand(3));
4568  SDValue Mask = getValue(I.getArgOperand(2));
4569
4570  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4571  EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4572  unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4573  if (!Alignment)
4574    Alignment = DAG.getEVTAlignment(VT);
4575
4576  AAMDNodes AAInfo;
4577  I.getAAMetadata(AAInfo);
4578  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4579
4580  SDValue Root = DAG.getRoot();
4581  SDValue Base;
4582  SDValue Index;
4583  ISD::MemIndexType IndexType;
4584  SDValue Scale;
4585  const Value *BasePtr = Ptr;
4586  bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4587                                    this);
4588  bool ConstantMemory = false;
4589  if (UniformBase && AA &&
4590      AA->pointsToConstantMemory(
4591          MemoryLocation(BasePtr,
4592                         LocationSize::precise(
4593                             DAG.getDataLayout().getTypeStoreSize(I.getType())),
4594                         AAInfo))) {
4595    // Do not serialize (non-volatile) loads of constant memory with anything.
4596    Root = DAG.getEntryNode();
4597    ConstantMemory = true;
4598  }
4599
4600  MachineMemOperand *MMO =
4601    DAG.getMachineFunction().
4602    getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4603                         MachineMemOperand::MOLoad,
4604                         // TODO: Make MachineMemOperands aware of scalable
4605                         // vectors.
4606                         VT.getStoreSize().getKnownMinSize(),
4607                         Alignment, AAInfo, Ranges);
4608
4609  if (!UniformBase) {
4610    Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4611    Index = getValue(Ptr);
4612    IndexType = ISD::SIGNED_SCALED;
4613    Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4614  }
4615  SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4616  SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4617                                       Ops, MMO, IndexType);
4618
4619  SDValue OutChain = Gather.getValue(1);
4620  if (!ConstantMemory)
4621    PendingLoads.push_back(OutChain);
4622  setValue(&I, Gather);
4623}
4624
4625void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4626  SDLoc dl = getCurSDLoc();
4627  AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4628  AtomicOrdering FailureOrdering = I.getFailureOrdering();
4629  SyncScope::ID SSID = I.getSyncScopeID();
4630
4631  SDValue InChain = getRoot();
4632
4633  MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4634  SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4635
4636  auto Alignment = DAG.getEVTAlignment(MemVT);
4637
4638  auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4639  if (I.isVolatile())
4640    Flags |= MachineMemOperand::MOVolatile;
4641  Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4642
4643  MachineFunction &MF = DAG.getMachineFunction();
4644  MachineMemOperand *MMO =
4645    MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4646                            Flags, MemVT.getStoreSize(), Alignment,
4647                            AAMDNodes(), nullptr, SSID, SuccessOrdering,
4648                            FailureOrdering);
4649
4650  SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4651                                   dl, MemVT, VTs, InChain,
4652                                   getValue(I.getPointerOperand()),
4653                                   getValue(I.getCompareOperand()),
4654                                   getValue(I.getNewValOperand()), MMO);
4655
4656  SDValue OutChain = L.getValue(2);
4657
4658  setValue(&I, L);
4659  DAG.setRoot(OutChain);
4660}
4661
4662void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4663  SDLoc dl = getCurSDLoc();
4664  ISD::NodeType NT;
4665  switch (I.getOperation()) {
4666  default: llvm_unreachable("Unknown atomicrmw operation");
4667  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4668  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4669  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4670  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4671  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4672  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4673  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4674  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4675  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4676  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4677  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4678  case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4679  case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4680  }
4681  AtomicOrdering Ordering = I.getOrdering();
4682  SyncScope::ID SSID = I.getSyncScopeID();
4683
4684  SDValue InChain = getRoot();
4685
4686  auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4687  auto Alignment = DAG.getEVTAlignment(MemVT);
4688
4689  auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4690  if (I.isVolatile())
4691    Flags |= MachineMemOperand::MOVolatile;
4692  Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4693
4694  MachineFunction &MF = DAG.getMachineFunction();
4695  MachineMemOperand *MMO =
4696    MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4697                            MemVT.getStoreSize(), Alignment, AAMDNodes(),
4698                            nullptr, SSID, Ordering);
4699
4700  SDValue L =
4701    DAG.getAtomic(NT, dl, MemVT, InChain,
4702                  getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4703                  MMO);
4704
4705  SDValue OutChain = L.getValue(1);
4706
4707  setValue(&I, L);
4708  DAG.setRoot(OutChain);
4709}
4710
4711void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4712  SDLoc dl = getCurSDLoc();
4713  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4714  SDValue Ops[3];
4715  Ops[0] = getRoot();
4716  Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4717                                 TLI.getFenceOperandTy(DAG.getDataLayout()));
4718  Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4719                                 TLI.getFenceOperandTy(DAG.getDataLayout()));
4720  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4721}
4722
4723void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4724  SDLoc dl = getCurSDLoc();
4725  AtomicOrdering Order = I.getOrdering();
4726  SyncScope::ID SSID = I.getSyncScopeID();
4727
4728  SDValue InChain = getRoot();
4729
4730  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4731  EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4732  EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4733
4734  if (!TLI.supportsUnalignedAtomics() &&
4735      I.getAlignment() < MemVT.getSizeInBits() / 8)
4736    report_fatal_error("Cannot generate unaligned atomic load");
4737
4738  auto Flags = MachineMemOperand::MOLoad;
4739  if (I.isVolatile())
4740    Flags |= MachineMemOperand::MOVolatile;
4741  if (I.hasMetadata(LLVMContext::MD_invariant_load))
4742    Flags |= MachineMemOperand::MOInvariant;
4743  if (isDereferenceablePointer(I.getPointerOperand(), I.getType(),
4744                               DAG.getDataLayout()))
4745    Flags |= MachineMemOperand::MODereferenceable;
4746
4747  Flags |= TLI.getMMOFlags(I);
4748
4749  MachineMemOperand *MMO =
4750      DAG.getMachineFunction().
4751      getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4752                           Flags, MemVT.getStoreSize(),
4753                           I.getAlignment() ? I.getAlignment() :
4754                                              DAG.getEVTAlignment(MemVT),
4755                           AAMDNodes(), nullptr, SSID, Order);
4756
4757  InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4758
4759  SDValue Ptr = getValue(I.getPointerOperand());
4760
4761  if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4762    // TODO: Once this is better exercised by tests, it should be merged with
4763    // the normal path for loads to prevent future divergence.
4764    SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4765    if (MemVT != VT)
4766      L = DAG.getPtrExtOrTrunc(L, dl, VT);
4767
4768    setValue(&I, L);
4769    SDValue OutChain = L.getValue(1);
4770    if (!I.isUnordered())
4771      DAG.setRoot(OutChain);
4772    else
4773      PendingLoads.push_back(OutChain);
4774    return;
4775  }
4776
4777  SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4778                            Ptr, MMO);
4779
4780  SDValue OutChain = L.getValue(1);
4781  if (MemVT != VT)
4782    L = DAG.getPtrExtOrTrunc(L, dl, VT);
4783
4784  setValue(&I, L);
4785  DAG.setRoot(OutChain);
4786}
4787
4788void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4789  SDLoc dl = getCurSDLoc();
4790
4791  AtomicOrdering Ordering = I.getOrdering();
4792  SyncScope::ID SSID = I.getSyncScopeID();
4793
4794  SDValue InChain = getRoot();
4795
4796  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4797  EVT MemVT =
4798      TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4799
4800  if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4801    report_fatal_error("Cannot generate unaligned atomic store");
4802
4803  auto Flags = MachineMemOperand::MOStore;
4804  if (I.isVolatile())
4805    Flags |= MachineMemOperand::MOVolatile;
4806  Flags |= TLI.getMMOFlags(I);
4807
4808  MachineFunction &MF = DAG.getMachineFunction();
4809  MachineMemOperand *MMO =
4810    MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4811                            MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4812                            nullptr, SSID, Ordering);
4813
4814  SDValue Val = getValue(I.getValueOperand());
4815  if (Val.getValueType() != MemVT)
4816    Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4817  SDValue Ptr = getValue(I.getPointerOperand());
4818
4819  if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4820    // TODO: Once this is better exercised by tests, it should be merged with
4821    // the normal path for stores to prevent future divergence.
4822    SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4823    DAG.setRoot(S);
4824    return;
4825  }
4826  SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4827                                   Ptr, Val, MMO);
4828
4829
4830  DAG.setRoot(OutChain);
4831}
4832
4833/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4834/// node.
4835void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4836                                               unsigned Intrinsic) {
4837  // Ignore the callsite's attributes. A specific call site may be marked with
4838  // readnone, but the lowering code will expect the chain based on the
4839  // definition.
4840  const Function *F = I.getCalledFunction();
4841  bool HasChain = !F->doesNotAccessMemory();
4842  bool OnlyLoad = HasChain && F->onlyReadsMemory();
4843
4844  // Build the operand list.
4845  SmallVector<SDValue, 8> Ops;
4846  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4847    if (OnlyLoad) {
4848      // We don't need to serialize loads against other loads.
4849      Ops.push_back(DAG.getRoot());
4850    } else {
4851      Ops.push_back(getRoot());
4852    }
4853  }
4854
4855  // Info is set by getTgtMemInstrinsic
4856  TargetLowering::IntrinsicInfo Info;
4857  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4858  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4859                                               DAG.getMachineFunction(),
4860                                               Intrinsic);
4861
4862  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4863  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4864      Info.opc == ISD::INTRINSIC_W_CHAIN)
4865    Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4866                                        TLI.getPointerTy(DAG.getDataLayout())));
4867
4868  // Add all operands of the call to the operand list.
4869  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4870    const Value *Arg = I.getArgOperand(i);
4871    if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4872      Ops.push_back(getValue(Arg));
4873      continue;
4874    }
4875
4876    // Use TargetConstant instead of a regular constant for immarg.
4877    EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4878    if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4879      assert(CI->getBitWidth() <= 64 &&
4880             "large intrinsic immediates not handled");
4881      Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4882    } else {
4883      Ops.push_back(
4884          DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4885    }
4886  }
4887
4888  SmallVector<EVT, 4> ValueVTs;
4889  ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4890
4891  if (HasChain)
4892    ValueVTs.push_back(MVT::Other);
4893
4894  SDVTList VTs = DAG.getVTList(ValueVTs);
4895
4896  // Create the node.
4897  SDValue Result;
4898  if (IsTgtIntrinsic) {
4899    // This is target intrinsic that touches memory
4900    AAMDNodes AAInfo;
4901    I.getAAMetadata(AAInfo);
4902    Result = DAG.getMemIntrinsicNode(
4903        Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4904        MachinePointerInfo(Info.ptrVal, Info.offset),
4905        Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4906  } else if (!HasChain) {
4907    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4908  } else if (!I.getType()->isVoidTy()) {
4909    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4910  } else {
4911    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4912  }
4913
4914  if (HasChain) {
4915    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4916    if (OnlyLoad)
4917      PendingLoads.push_back(Chain);
4918    else
4919      DAG.setRoot(Chain);
4920  }
4921
4922  if (!I.getType()->isVoidTy()) {
4923    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4924      EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4925      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4926    } else
4927      Result = lowerRangeToAssertZExt(DAG, I, Result);
4928
4929    setValue(&I, Result);
4930  }
4931}
4932
4933/// GetSignificand - Get the significand and build it into a floating-point
4934/// number with exponent of 1:
4935///
4936///   Op = (Op & 0x007fffff) | 0x3f800000;
4937///
4938/// where Op is the hexadecimal representation of floating point value.
4939static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4940  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4941                           DAG.getConstant(0x007fffff, dl, MVT::i32));
4942  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4943                           DAG.getConstant(0x3f800000, dl, MVT::i32));
4944  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4945}
4946
4947/// GetExponent - Get the exponent:
4948///
4949///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4950///
4951/// where Op is the hexadecimal representation of floating point value.
4952static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4953                           const TargetLowering &TLI, const SDLoc &dl) {
4954  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4955                           DAG.getConstant(0x7f800000, dl, MVT::i32));
4956  SDValue t1 = DAG.getNode(
4957      ISD::SRL, dl, MVT::i32, t0,
4958      DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4959  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4960                           DAG.getConstant(127, dl, MVT::i32));
4961  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4962}
4963
4964/// getF32Constant - Get 32-bit floating point constant.
4965static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4966                              const SDLoc &dl) {
4967  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4968                           MVT::f32);
4969}
4970
4971static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4972                                       SelectionDAG &DAG) {
4973  // TODO: What fast-math-flags should be set on the floating-point nodes?
4974
4975  //   IntegerPartOfX = ((int32_t)(t0);
4976  SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4977
4978  //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4979  SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4980  SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4981
4982  //   IntegerPartOfX <<= 23;
4983  IntegerPartOfX = DAG.getNode(
4984      ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4985      DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4986                                  DAG.getDataLayout())));
4987
4988  SDValue TwoToFractionalPartOfX;
4989  if (LimitFloatPrecision <= 6) {
4990    // For floating-point precision of 6:
4991    //
4992    //   TwoToFractionalPartOfX =
4993    //     0.997535578f +
4994    //       (0.735607626f + 0.252464424f * x) * x;
4995    //
4996    // error 0.0144103317, which is 6 bits
4997    SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4998                             getF32Constant(DAG, 0x3e814304, dl));
4999    SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5000                             getF32Constant(DAG, 0x3f3c50c8, dl));
5001    SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5002    TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5003                                         getF32Constant(DAG, 0x3f7f5e7e, dl));
5004  } else if (LimitFloatPrecision <= 12) {
5005    // For floating-point precision of 12:
5006    //
5007    //   TwoToFractionalPartOfX =
5008    //     0.999892986f +
5009    //       (0.696457318f +
5010    //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5011    //
5012    // error 0.000107046256, which is 13 to 14 bits
5013    SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5014                             getF32Constant(DAG, 0x3da235e3, dl));
5015    SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5016                             getF32Constant(DAG, 0x3e65b8f3, dl));
5017    SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5018    SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5019                             getF32Constant(DAG, 0x3f324b07, dl));
5020    SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5021    TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5022                                         getF32Constant(DAG, 0x3f7ff8fd, dl));
5023  } else { // LimitFloatPrecision <= 18
5024    // For floating-point precision of 18:
5025    //
5026    //   TwoToFractionalPartOfX =
5027    //     0.999999982f +
5028    //       (0.693148872f +
5029    //         (0.240227044f +
5030    //           (0.554906021e-1f +
5031    //             (0.961591928e-2f +
5032    //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5033    // error 2.47208000*10^(-7), which is better than 18 bits
5034    SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5035                             getF32Constant(DAG, 0x3924b03e, dl));
5036    SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5037                             getF32Constant(DAG, 0x3ab24b87, dl));
5038    SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5039    SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5040                             getF32Constant(DAG, 0x3c1d8c17, dl));
5041    SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5042    SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5043                             getF32Constant(DAG, 0x3d634a1d, dl));
5044    SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5045    SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5046                             getF32Constant(DAG, 0x3e75fe14, dl));
5047    SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5048    SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5049                              getF32Constant(DAG, 0x3f317234, dl));
5050    SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5051    TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5052                                         getF32Constant(DAG, 0x3f800000, dl));
5053  }
5054
5055  // Add the exponent into the result in integer domain.
5056  SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5057  return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5058                     DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5059}
5060
5061/// expandExp - Lower an exp intrinsic. Handles the special sequences for
5062/// limited-precision mode.
5063static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5064                         const TargetLowering &TLI) {
5065  if (Op.getValueType() == MVT::f32 &&
5066      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5067
5068    // Put the exponent in the right bit position for later addition to the
5069    // final result:
5070    //
5071    // t0 = Op * log2(e)
5072
5073    // TODO: What fast-math-flags should be set here?
5074    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5075                             DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5076    return getLimitedPrecisionExp2(t0, dl, DAG);
5077  }
5078
5079  // No special expansion.
5080  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
5081}
5082
5083/// expandLog - Lower a log intrinsic. Handles the special sequences for
5084/// limited-precision mode.
5085static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5086                         const TargetLowering &TLI) {
5087  // TODO: What fast-math-flags should be set on the floating-point nodes?
5088
5089  if (Op.getValueType() == MVT::f32 &&
5090      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5091    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5092
5093    // Scale the exponent by log(2).
5094    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5095    SDValue LogOfExponent =
5096        DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5097                    DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5098
5099    // Get the significand and build it into a floating-point number with
5100    // exponent of 1.
5101    SDValue X = GetSignificand(DAG, Op1, dl);
5102
5103    SDValue LogOfMantissa;
5104    if (LimitFloatPrecision <= 6) {
5105      // For floating-point precision of 6:
5106      //
5107      //   LogofMantissa =
5108      //     -1.1609546f +
5109      //       (1.4034025f - 0.23903021f * x) * x;
5110      //
5111      // error 0.0034276066, which is better than 8 bits
5112      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5113                               getF32Constant(DAG, 0xbe74c456, dl));
5114      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5115                               getF32Constant(DAG, 0x3fb3a2b1, dl));
5116      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5117      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5118                                  getF32Constant(DAG, 0x3f949a29, dl));
5119    } else if (LimitFloatPrecision <= 12) {
5120      // For floating-point precision of 12:
5121      //
5122      //   LogOfMantissa =
5123      //     -1.7417939f +
5124      //       (2.8212026f +
5125      //         (-1.4699568f +
5126      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5127      //
5128      // error 0.000061011436, which is 14 bits
5129      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5130                               getF32Constant(DAG, 0xbd67b6d6, dl));
5131      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5132                               getF32Constant(DAG, 0x3ee4f4b8, dl));
5133      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5134      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5135                               getF32Constant(DAG, 0x3fbc278b, dl));
5136      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5137      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5138                               getF32Constant(DAG, 0x40348e95, dl));
5139      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5140      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5141                                  getF32Constant(DAG, 0x3fdef31a, dl));
5142    } else { // LimitFloatPrecision <= 18
5143      // For floating-point precision of 18:
5144      //
5145      //   LogOfMantissa =
5146      //     -2.1072184f +
5147      //       (4.2372794f +
5148      //         (-3.7029485f +
5149      //           (2.2781945f +
5150      //             (-0.87823314f +
5151      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5152      //
5153      // error 0.0000023660568, which is better than 18 bits
5154      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5155                               getF32Constant(DAG, 0xbc91e5ac, dl));
5156      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5157                               getF32Constant(DAG, 0x3e4350aa, dl));
5158      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5159      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5160                               getF32Constant(DAG, 0x3f60d3e3, dl));
5161      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5162      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5163                               getF32Constant(DAG, 0x4011cdf0, dl));
5164      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5165      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5166                               getF32Constant(DAG, 0x406cfd1c, dl));
5167      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5168      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5169                               getF32Constant(DAG, 0x408797cb, dl));
5170      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5171      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5172                                  getF32Constant(DAG, 0x4006dcab, dl));
5173    }
5174
5175    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5176  }
5177
5178  // No special expansion.
5179  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5180}
5181
5182/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5183/// limited-precision mode.
5184static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5185                          const TargetLowering &TLI) {
5186  // TODO: What fast-math-flags should be set on the floating-point nodes?
5187
5188  if (Op.getValueType() == MVT::f32 &&
5189      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5190    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5191
5192    // Get the exponent.
5193    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5194
5195    // Get the significand and build it into a floating-point number with
5196    // exponent of 1.
5197    SDValue X = GetSignificand(DAG, Op1, dl);
5198
5199    // Different possible minimax approximations of significand in
5200    // floating-point for various degrees of accuracy over [1,2].
5201    SDValue Log2ofMantissa;
5202    if (LimitFloatPrecision <= 6) {
5203      // For floating-point precision of 6:
5204      //
5205      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5206      //
5207      // error 0.0049451742, which is more than 7 bits
5208      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5209                               getF32Constant(DAG, 0xbeb08fe0, dl));
5210      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5211                               getF32Constant(DAG, 0x40019463, dl));
5212      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5213      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5214                                   getF32Constant(DAG, 0x3fd6633d, dl));
5215    } else if (LimitFloatPrecision <= 12) {
5216      // For floating-point precision of 12:
5217      //
5218      //   Log2ofMantissa =
5219      //     -2.51285454f +
5220      //       (4.07009056f +
5221      //         (-2.12067489f +
5222      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5223      //
5224      // error 0.0000876136000, which is better than 13 bits
5225      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5226                               getF32Constant(DAG, 0xbda7262e, dl));
5227      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5228                               getF32Constant(DAG, 0x3f25280b, dl));
5229      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5230      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5231                               getF32Constant(DAG, 0x4007b923, dl));
5232      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5233      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5234                               getF32Constant(DAG, 0x40823e2f, dl));
5235      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5236      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5237                                   getF32Constant(DAG, 0x4020d29c, dl));
5238    } else { // LimitFloatPrecision <= 18
5239      // For floating-point precision of 18:
5240      //
5241      //   Log2ofMantissa =
5242      //     -3.0400495f +
5243      //       (6.1129976f +
5244      //         (-5.3420409f +
5245      //           (3.2865683f +
5246      //             (-1.2669343f +
5247      //               (0.27515199f -
5248      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5249      //
5250      // error 0.0000018516, which is better than 18 bits
5251      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5252                               getF32Constant(DAG, 0xbcd2769e, dl));
5253      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5254                               getF32Constant(DAG, 0x3e8ce0b9, dl));
5255      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5256      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5257                               getF32Constant(DAG, 0x3fa22ae7, dl));
5258      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5259      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5260                               getF32Constant(DAG, 0x40525723, dl));
5261      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5262      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5263                               getF32Constant(DAG, 0x40aaf200, dl));
5264      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5265      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5266                               getF32Constant(DAG, 0x40c39dad, dl));
5267      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5268      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5269                                   getF32Constant(DAG, 0x4042902c, dl));
5270    }
5271
5272    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5273  }
5274
5275  // No special expansion.
5276  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5277}
5278
5279/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5280/// limited-precision mode.
5281static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5282                           const TargetLowering &TLI) {
5283  // TODO: What fast-math-flags should be set on the floating-point nodes?
5284
5285  if (Op.getValueType() == MVT::f32 &&
5286      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5287    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5288
5289    // Scale the exponent by log10(2) [0.30102999f].
5290    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5291    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5292                                        getF32Constant(DAG, 0x3e9a209a, dl));
5293
5294    // Get the significand and build it into a floating-point number with
5295    // exponent of 1.
5296    SDValue X = GetSignificand(DAG, Op1, dl);
5297
5298    SDValue Log10ofMantissa;
5299    if (LimitFloatPrecision <= 6) {
5300      // For floating-point precision of 6:
5301      //
5302      //   Log10ofMantissa =
5303      //     -0.50419619f +
5304      //       (0.60948995f - 0.10380950f * x) * x;
5305      //
5306      // error 0.0014886165, which is 6 bits
5307      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5308                               getF32Constant(DAG, 0xbdd49a13, dl));
5309      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5310                               getF32Constant(DAG, 0x3f1c0789, dl));
5311      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5312      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5313                                    getF32Constant(DAG, 0x3f011300, dl));
5314    } else if (LimitFloatPrecision <= 12) {
5315      // For floating-point precision of 12:
5316      //
5317      //   Log10ofMantissa =
5318      //     -0.64831180f +
5319      //       (0.91751397f +
5320      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5321      //
5322      // error 0.00019228036, which is better than 12 bits
5323      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5324                               getF32Constant(DAG, 0x3d431f31, dl));
5325      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5326                               getF32Constant(DAG, 0x3ea21fb2, dl));
5327      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5328      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5329                               getF32Constant(DAG, 0x3f6ae232, dl));
5330      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5331      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5332                                    getF32Constant(DAG, 0x3f25f7c3, dl));
5333    } else { // LimitFloatPrecision <= 18
5334      // For floating-point precision of 18:
5335      //
5336      //   Log10ofMantissa =
5337      //     -0.84299375f +
5338      //       (1.5327582f +
5339      //         (-1.0688956f +
5340      //           (0.49102474f +
5341      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5342      //
5343      // error 0.0000037995730, which is better than 18 bits
5344      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5345                               getF32Constant(DAG, 0x3c5d51ce, dl));
5346      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5347                               getF32Constant(DAG, 0x3e00685a, dl));
5348      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5349      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5350                               getF32Constant(DAG, 0x3efb6798, dl));
5351      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5352      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5353                               getF32Constant(DAG, 0x3f88d192, dl));
5354      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5355      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5356                               getF32Constant(DAG, 0x3fc4316c, dl));
5357      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5358      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5359                                    getF32Constant(DAG, 0x3f57ce70, dl));
5360    }
5361
5362    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5363  }
5364
5365  // No special expansion.
5366  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5367}
5368
5369/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5370/// limited-precision mode.
5371static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5372                          const TargetLowering &TLI) {
5373  if (Op.getValueType() == MVT::f32 &&
5374      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5375    return getLimitedPrecisionExp2(Op, dl, DAG);
5376
5377  // No special expansion.
5378  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5379}
5380
5381/// visitPow - Lower a pow intrinsic. Handles the special sequences for
5382/// limited-precision mode with x == 10.0f.
5383static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5384                         SelectionDAG &DAG, const TargetLowering &TLI) {
5385  bool IsExp10 = false;
5386  if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5387      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5388    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5389      APFloat Ten(10.0f);
5390      IsExp10 = LHSC->isExactlyValue(Ten);
5391    }
5392  }
5393
5394  // TODO: What fast-math-flags should be set on the FMUL node?
5395  if (IsExp10) {
5396    // Put the exponent in the right bit position for later addition to the
5397    // final result:
5398    //
5399    //   #define LOG2OF10 3.3219281f
5400    //   t0 = Op * LOG2OF10;
5401    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5402                             getF32Constant(DAG, 0x40549a78, dl));
5403    return getLimitedPrecisionExp2(t0, dl, DAG);
5404  }
5405
5406  // No special expansion.
5407  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5408}
5409
5410/// ExpandPowI - Expand a llvm.powi intrinsic.
5411static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5412                          SelectionDAG &DAG) {
5413  // If RHS is a constant, we can expand this out to a multiplication tree,
5414  // otherwise we end up lowering to a call to __powidf2 (for example).  When
5415  // optimizing for size, we only want to do this if the expansion would produce
5416  // a small number of multiplies, otherwise we do the full expansion.
5417  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5418    // Get the exponent as a positive value.
5419    unsigned Val = RHSC->getSExtValue();
5420    if ((int)Val < 0) Val = -Val;
5421
5422    // powi(x, 0) -> 1.0
5423    if (Val == 0)
5424      return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5425
5426    bool OptForSize = DAG.shouldOptForSize();
5427    if (!OptForSize ||
5428        // If optimizing for size, don't insert too many multiplies.
5429        // This inserts up to 5 multiplies.
5430        countPopulation(Val) + Log2_32(Val) < 7) {
5431      // We use the simple binary decomposition method to generate the multiply
5432      // sequence.  There are more optimal ways to do this (for example,
5433      // powi(x,15) generates one more multiply than it should), but this has
5434      // the benefit of being both really simple and much better than a libcall.
5435      SDValue Res;  // Logically starts equal to 1.0
5436      SDValue CurSquare = LHS;
5437      // TODO: Intrinsics should have fast-math-flags that propagate to these
5438      // nodes.
5439      while (Val) {
5440        if (Val & 1) {
5441          if (Res.getNode())
5442            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5443          else
5444            Res = CurSquare;  // 1.0*CurSquare.
5445        }
5446
5447        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5448                                CurSquare, CurSquare);
5449        Val >>= 1;
5450      }
5451
5452      // If the original was negative, invert the result, producing 1/(x*x*x).
5453      if (RHSC->getSExtValue() < 0)
5454        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5455                          DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5456      return Res;
5457    }
5458  }
5459
5460  // Otherwise, expand to a libcall.
5461  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5462}
5463
5464static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5465                            SDValue LHS, SDValue RHS, SDValue Scale,
5466                            SelectionDAG &DAG, const TargetLowering &TLI) {
5467  EVT VT = LHS.getValueType();
5468  bool Signed = Opcode == ISD::SDIVFIX;
5469  LLVMContext &Ctx = *DAG.getContext();
5470
5471  // If the type is legal but the operation isn't, this node might survive all
5472  // the way to operation legalization. If we end up there and we do not have
5473  // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5474  // node.
5475
5476  // Coax the legalizer into expanding the node during type legalization instead
5477  // by bumping the size by one bit. This will force it to Promote, enabling the
5478  // early expansion and avoiding the need to expand later.
5479
5480  // We don't have to do this if Scale is 0; that can always be expanded.
5481
5482  // FIXME: We wouldn't have to do this (or any of the early
5483  // expansion/promotion) if it was possible to expand a libcall of an
5484  // illegal type during operation legalization. But it's not, so things
5485  // get a bit hacky.
5486  unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5487  if (ScaleInt > 0 &&
5488      (TLI.isTypeLegal(VT) ||
5489       (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5490    TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5491        Opcode, VT, ScaleInt);
5492    if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5493      EVT PromVT;
5494      if (VT.isScalarInteger())
5495        PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5496      else if (VT.isVector()) {
5497        PromVT = VT.getVectorElementType();
5498        PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5499        PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5500      } else
5501        llvm_unreachable("Wrong VT for DIVFIX?");
5502      if (Signed) {
5503        LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5504        RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5505      } else {
5506        LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5507        RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5508      }
5509      // TODO: Saturation.
5510      SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5511      return DAG.getZExtOrTrunc(Res, DL, VT);
5512    }
5513  }
5514
5515  return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5516}
5517
5518// getUnderlyingArgRegs - Find underlying registers used for a truncated,
5519// bitcasted, or split argument. Returns a list of <Register, size in bits>
5520static void
5521getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5522                     const SDValue &N) {
5523  switch (N.getOpcode()) {
5524  case ISD::CopyFromReg: {
5525    SDValue Op = N.getOperand(1);
5526    Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5527                      Op.getValueType().getSizeInBits());
5528    return;
5529  }
5530  case ISD::BITCAST:
5531  case ISD::AssertZext:
5532  case ISD::AssertSext:
5533  case ISD::TRUNCATE:
5534    getUnderlyingArgRegs(Regs, N.getOperand(0));
5535    return;
5536  case ISD::BUILD_PAIR:
5537  case ISD::BUILD_VECTOR:
5538  case ISD::CONCAT_VECTORS:
5539    for (SDValue Op : N->op_values())
5540      getUnderlyingArgRegs(Regs, Op);
5541    return;
5542  default:
5543    return;
5544  }
5545}
5546
5547/// If the DbgValueInst is a dbg_value of a function argument, create the
5548/// corresponding DBG_VALUE machine instruction for it now.  At the end of
5549/// instruction selection, they will be inserted to the entry BB.
5550bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5551    const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5552    DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5553  const Argument *Arg = dyn_cast<Argument>(V);
5554  if (!Arg)
5555    return false;
5556
5557  if (!IsDbgDeclare) {
5558    // ArgDbgValues are hoisted to the beginning of the entry block. So we
5559    // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5560    // the entry block.
5561    bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5562    if (!IsInEntryBlock)
5563      return false;
5564
5565    // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5566    // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5567    // variable that also is a param.
5568    //
5569    // Although, if we are at the top of the entry block already, we can still
5570    // emit using ArgDbgValue. This might catch some situations when the
5571    // dbg.value refers to an argument that isn't used in the entry block, so
5572    // any CopyToReg node would be optimized out and the only way to express
5573    // this DBG_VALUE is by using the physical reg (or FI) as done in this
5574    // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5575    // we should only emit as ArgDbgValue if the Variable is an argument to the
5576    // current function, and the dbg.value intrinsic is found in the entry
5577    // block.
5578    bool VariableIsFunctionInputArg = Variable->isParameter() &&
5579        !DL->getInlinedAt();
5580    bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5581    if (!IsInPrologue && !VariableIsFunctionInputArg)
5582      return false;
5583
5584    // Here we assume that a function argument on IR level only can be used to
5585    // describe one input parameter on source level. If we for example have
5586    // source code like this
5587    //
5588    //    struct A { long x, y; };
5589    //    void foo(struct A a, long b) {
5590    //      ...
5591    //      b = a.x;
5592    //      ...
5593    //    }
5594    //
5595    // and IR like this
5596    //
5597    //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5598    //  entry:
5599    //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5600    //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5601    //    call void @llvm.dbg.value(metadata i32 %b, "b",
5602    //    ...
5603    //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5604    //    ...
5605    //
5606    // then the last dbg.value is describing a parameter "b" using a value that
5607    // is an argument. But since we already has used %a1 to describe a parameter
5608    // we should not handle that last dbg.value here (that would result in an
5609    // incorrect hoisting of the DBG_VALUE to the function entry).
5610    // Notice that we allow one dbg.value per IR level argument, to accommodate
5611    // for the situation with fragments above.
5612    if (VariableIsFunctionInputArg) {
5613      unsigned ArgNo = Arg->getArgNo();
5614      if (ArgNo >= FuncInfo.DescribedArgs.size())
5615        FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5616      else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5617        return false;
5618      FuncInfo.DescribedArgs.set(ArgNo);
5619    }
5620  }
5621
5622  MachineFunction &MF = DAG.getMachineFunction();
5623  const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5624
5625  bool IsIndirect = false;
5626  Optional<MachineOperand> Op;
5627  // Some arguments' frame index is recorded during argument lowering.
5628  int FI = FuncInfo.getArgumentFrameIndex(Arg);
5629  if (FI != std::numeric_limits<int>::max())
5630    Op = MachineOperand::CreateFI(FI);
5631
5632  SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5633  if (!Op && N.getNode()) {
5634    getUnderlyingArgRegs(ArgRegsAndSizes, N);
5635    Register Reg;
5636    if (ArgRegsAndSizes.size() == 1)
5637      Reg = ArgRegsAndSizes.front().first;
5638
5639    if (Reg && Reg.isVirtual()) {
5640      MachineRegisterInfo &RegInfo = MF.getRegInfo();
5641      Register PR = RegInfo.getLiveInPhysReg(Reg);
5642      if (PR)
5643        Reg = PR;
5644    }
5645    if (Reg) {
5646      Op = MachineOperand::CreateReg(Reg, false);
5647      IsIndirect = IsDbgDeclare;
5648    }
5649  }
5650
5651  if (!Op && N.getNode()) {
5652    // Check if frame index is available.
5653    SDValue LCandidate = peekThroughBitcasts(N);
5654    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5655      if (FrameIndexSDNode *FINode =
5656          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5657        Op = MachineOperand::CreateFI(FINode->getIndex());
5658  }
5659
5660  if (!Op) {
5661    // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5662    auto splitMultiRegDbgValue
5663      = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5664      unsigned Offset = 0;
5665      for (auto RegAndSize : SplitRegs) {
5666        // If the expression is already a fragment, the current register
5667        // offset+size might extend beyond the fragment. In this case, only
5668        // the register bits that are inside the fragment are relevant.
5669        int RegFragmentSizeInBits = RegAndSize.second;
5670        if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5671          uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5672          // The register is entirely outside the expression fragment,
5673          // so is irrelevant for debug info.
5674          if (Offset >= ExprFragmentSizeInBits)
5675            break;
5676          // The register is partially outside the expression fragment, only
5677          // the low bits within the fragment are relevant for debug info.
5678          if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5679            RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5680          }
5681        }
5682
5683        auto FragmentExpr = DIExpression::createFragmentExpression(
5684            Expr, Offset, RegFragmentSizeInBits);
5685        Offset += RegAndSize.second;
5686        // If a valid fragment expression cannot be created, the variable's
5687        // correct value cannot be determined and so it is set as Undef.
5688        if (!FragmentExpr) {
5689          SDDbgValue *SDV = DAG.getConstantDbgValue(
5690              Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5691          DAG.AddDbgValue(SDV, nullptr, false);
5692          continue;
5693        }
5694        assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5695        FuncInfo.ArgDbgValues.push_back(
5696          BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5697                  RegAndSize.first, Variable, *FragmentExpr));
5698      }
5699    };
5700
5701    // Check if ValueMap has reg number.
5702    DenseMap<const Value *, unsigned>::const_iterator
5703      VMI = FuncInfo.ValueMap.find(V);
5704    if (VMI != FuncInfo.ValueMap.end()) {
5705      const auto &TLI = DAG.getTargetLoweringInfo();
5706      RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5707                       V->getType(), getABIRegCopyCC(V));
5708      if (RFV.occupiesMultipleRegs()) {
5709        splitMultiRegDbgValue(RFV.getRegsAndSizes());
5710        return true;
5711      }
5712
5713      Op = MachineOperand::CreateReg(VMI->second, false);
5714      IsIndirect = IsDbgDeclare;
5715    } else if (ArgRegsAndSizes.size() > 1) {
5716      // This was split due to the calling convention, and no virtual register
5717      // mapping exists for the value.
5718      splitMultiRegDbgValue(ArgRegsAndSizes);
5719      return true;
5720    }
5721  }
5722
5723  if (!Op)
5724    return false;
5725
5726  assert(Variable->isValidLocationForIntrinsic(DL) &&
5727         "Expected inlined-at fields to agree");
5728  IsIndirect = (Op->isReg()) ? IsIndirect : true;
5729  FuncInfo.ArgDbgValues.push_back(
5730      BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5731              *Op, Variable, Expr));
5732
5733  return true;
5734}
5735
5736/// Return the appropriate SDDbgValue based on N.
5737SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5738                                             DILocalVariable *Variable,
5739                                             DIExpression *Expr,
5740                                             const DebugLoc &dl,
5741                                             unsigned DbgSDNodeOrder) {
5742  if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5743    // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5744    // stack slot locations.
5745    //
5746    // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5747    // debug values here after optimization:
5748    //
5749    //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5750    //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5751    //
5752    // Both describe the direct values of their associated variables.
5753    return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5754                                     /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5755  }
5756  return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5757                         /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5758}
5759
5760static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5761  switch (Intrinsic) {
5762  case Intrinsic::smul_fix:
5763    return ISD::SMULFIX;
5764  case Intrinsic::umul_fix:
5765    return ISD::UMULFIX;
5766  case Intrinsic::smul_fix_sat:
5767    return ISD::SMULFIXSAT;
5768  case Intrinsic::umul_fix_sat:
5769    return ISD::UMULFIXSAT;
5770  case Intrinsic::sdiv_fix:
5771    return ISD::SDIVFIX;
5772  case Intrinsic::udiv_fix:
5773    return ISD::UDIVFIX;
5774  default:
5775    llvm_unreachable("Unhandled fixed point intrinsic");
5776  }
5777}
5778
5779void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5780                                           const char *FunctionName) {
5781  assert(FunctionName && "FunctionName must not be nullptr");
5782  SDValue Callee = DAG.getExternalSymbol(
5783      FunctionName,
5784      DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5785  LowerCallTo(&I, Callee, I.isTailCall());
5786}
5787
5788/// Lower the call to the specified intrinsic function.
5789void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5790                                             unsigned Intrinsic) {
5791  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5792  SDLoc sdl = getCurSDLoc();
5793  DebugLoc dl = getCurDebugLoc();
5794  SDValue Res;
5795
5796  switch (Intrinsic) {
5797  default:
5798    // By default, turn this into a target intrinsic node.
5799    visitTargetIntrinsic(I, Intrinsic);
5800    return;
5801  case Intrinsic::vastart:  visitVAStart(I); return;
5802  case Intrinsic::vaend:    visitVAEnd(I); return;
5803  case Intrinsic::vacopy:   visitVACopy(I); return;
5804  case Intrinsic::returnaddress:
5805    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5806                             TLI.getPointerTy(DAG.getDataLayout()),
5807                             getValue(I.getArgOperand(0))));
5808    return;
5809  case Intrinsic::addressofreturnaddress:
5810    setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5811                             TLI.getPointerTy(DAG.getDataLayout())));
5812    return;
5813  case Intrinsic::sponentry:
5814    setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5815                             TLI.getFrameIndexTy(DAG.getDataLayout())));
5816    return;
5817  case Intrinsic::frameaddress:
5818    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5819                             TLI.getFrameIndexTy(DAG.getDataLayout()),
5820                             getValue(I.getArgOperand(0))));
5821    return;
5822  case Intrinsic::read_register: {
5823    Value *Reg = I.getArgOperand(0);
5824    SDValue Chain = getRoot();
5825    SDValue RegName =
5826        DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5827    EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5828    Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5829      DAG.getVTList(VT, MVT::Other), Chain, RegName);
5830    setValue(&I, Res);
5831    DAG.setRoot(Res.getValue(1));
5832    return;
5833  }
5834  case Intrinsic::write_register: {
5835    Value *Reg = I.getArgOperand(0);
5836    Value *RegValue = I.getArgOperand(1);
5837    SDValue Chain = getRoot();
5838    SDValue RegName =
5839        DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5840    DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5841                            RegName, getValue(RegValue)));
5842    return;
5843  }
5844  case Intrinsic::memcpy: {
5845    const auto &MCI = cast<MemCpyInst>(I);
5846    SDValue Op1 = getValue(I.getArgOperand(0));
5847    SDValue Op2 = getValue(I.getArgOperand(1));
5848    SDValue Op3 = getValue(I.getArgOperand(2));
5849    // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5850    unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5851    unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5852    unsigned Align = MinAlign(DstAlign, SrcAlign);
5853    bool isVol = MCI.isVolatile();
5854    bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5855    // FIXME: Support passing different dest/src alignments to the memcpy DAG
5856    // node.
5857    SDValue Root = isVol ? getRoot() : getMemoryRoot();
5858    SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Align, isVol,
5859                               false, isTC,
5860                               MachinePointerInfo(I.getArgOperand(0)),
5861                               MachinePointerInfo(I.getArgOperand(1)));
5862    updateDAGForMaybeTailCall(MC);
5863    return;
5864  }
5865  case Intrinsic::memset: {
5866    const auto &MSI = cast<MemSetInst>(I);
5867    SDValue Op1 = getValue(I.getArgOperand(0));
5868    SDValue Op2 = getValue(I.getArgOperand(1));
5869    SDValue Op3 = getValue(I.getArgOperand(2));
5870    // @llvm.memset defines 0 and 1 to both mean no alignment.
5871    unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5872    bool isVol = MSI.isVolatile();
5873    bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5874    SDValue Root = isVol ? getRoot() : getMemoryRoot();
5875    SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Align, isVol,
5876                               isTC, MachinePointerInfo(I.getArgOperand(0)));
5877    updateDAGForMaybeTailCall(MS);
5878    return;
5879  }
5880  case Intrinsic::memmove: {
5881    const auto &MMI = cast<MemMoveInst>(I);
5882    SDValue Op1 = getValue(I.getArgOperand(0));
5883    SDValue Op2 = getValue(I.getArgOperand(1));
5884    SDValue Op3 = getValue(I.getArgOperand(2));
5885    // @llvm.memmove defines 0 and 1 to both mean no alignment.
5886    unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5887    unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5888    unsigned Align = MinAlign(DstAlign, SrcAlign);
5889    bool isVol = MMI.isVolatile();
5890    bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5891    // FIXME: Support passing different dest/src alignments to the memmove DAG
5892    // node.
5893    SDValue Root = isVol ? getRoot() : getMemoryRoot();
5894    SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Align, isVol,
5895                                isTC, MachinePointerInfo(I.getArgOperand(0)),
5896                                MachinePointerInfo(I.getArgOperand(1)));
5897    updateDAGForMaybeTailCall(MM);
5898    return;
5899  }
5900  case Intrinsic::memcpy_element_unordered_atomic: {
5901    const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5902    SDValue Dst = getValue(MI.getRawDest());
5903    SDValue Src = getValue(MI.getRawSource());
5904    SDValue Length = getValue(MI.getLength());
5905
5906    unsigned DstAlign = MI.getDestAlignment();
5907    unsigned SrcAlign = MI.getSourceAlignment();
5908    Type *LengthTy = MI.getLength()->getType();
5909    unsigned ElemSz = MI.getElementSizeInBytes();
5910    bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5911    SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5912                                     SrcAlign, Length, LengthTy, ElemSz, isTC,
5913                                     MachinePointerInfo(MI.getRawDest()),
5914                                     MachinePointerInfo(MI.getRawSource()));
5915    updateDAGForMaybeTailCall(MC);
5916    return;
5917  }
5918  case Intrinsic::memmove_element_unordered_atomic: {
5919    auto &MI = cast<AtomicMemMoveInst>(I);
5920    SDValue Dst = getValue(MI.getRawDest());
5921    SDValue Src = getValue(MI.getRawSource());
5922    SDValue Length = getValue(MI.getLength());
5923
5924    unsigned DstAlign = MI.getDestAlignment();
5925    unsigned SrcAlign = MI.getSourceAlignment();
5926    Type *LengthTy = MI.getLength()->getType();
5927    unsigned ElemSz = MI.getElementSizeInBytes();
5928    bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5929    SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5930                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5931                                      MachinePointerInfo(MI.getRawDest()),
5932                                      MachinePointerInfo(MI.getRawSource()));
5933    updateDAGForMaybeTailCall(MC);
5934    return;
5935  }
5936  case Intrinsic::memset_element_unordered_atomic: {
5937    auto &MI = cast<AtomicMemSetInst>(I);
5938    SDValue Dst = getValue(MI.getRawDest());
5939    SDValue Val = getValue(MI.getValue());
5940    SDValue Length = getValue(MI.getLength());
5941
5942    unsigned DstAlign = MI.getDestAlignment();
5943    Type *LengthTy = MI.getLength()->getType();
5944    unsigned ElemSz = MI.getElementSizeInBytes();
5945    bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5946    SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5947                                     LengthTy, ElemSz, isTC,
5948                                     MachinePointerInfo(MI.getRawDest()));
5949    updateDAGForMaybeTailCall(MC);
5950    return;
5951  }
5952  case Intrinsic::dbg_addr:
5953  case Intrinsic::dbg_declare: {
5954    const auto &DI = cast<DbgVariableIntrinsic>(I);
5955    DILocalVariable *Variable = DI.getVariable();
5956    DIExpression *Expression = DI.getExpression();
5957    dropDanglingDebugInfo(Variable, Expression);
5958    assert(Variable && "Missing variable");
5959
5960    // Check if address has undef value.
5961    const Value *Address = DI.getVariableLocation();
5962    if (!Address || isa<UndefValue>(Address) ||
5963        (Address->use_empty() && !isa<Argument>(Address))) {
5964      LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5965      return;
5966    }
5967
5968    bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5969
5970    // Check if this variable can be described by a frame index, typically
5971    // either as a static alloca or a byval parameter.
5972    int FI = std::numeric_limits<int>::max();
5973    if (const auto *AI =
5974            dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5975      if (AI->isStaticAlloca()) {
5976        auto I = FuncInfo.StaticAllocaMap.find(AI);
5977        if (I != FuncInfo.StaticAllocaMap.end())
5978          FI = I->second;
5979      }
5980    } else if (const auto *Arg = dyn_cast<Argument>(
5981                   Address->stripInBoundsConstantOffsets())) {
5982      FI = FuncInfo.getArgumentFrameIndex(Arg);
5983    }
5984
5985    // llvm.dbg.addr is control dependent and always generates indirect
5986    // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5987    // the MachineFunction variable table.
5988    if (FI != std::numeric_limits<int>::max()) {
5989      if (Intrinsic == Intrinsic::dbg_addr) {
5990        SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5991            Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5992        DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5993      }
5994      return;
5995    }
5996
5997    SDValue &N = NodeMap[Address];
5998    if (!N.getNode() && isa<Argument>(Address))
5999      // Check unused arguments map.
6000      N = UnusedArgNodeMap[Address];
6001    SDDbgValue *SDV;
6002    if (N.getNode()) {
6003      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6004        Address = BCI->getOperand(0);
6005      // Parameters are handled specially.
6006      auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6007      if (isParameter && FINode) {
6008        // Byval parameter. We have a frame index at this point.
6009        SDV =
6010            DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6011                                      /*IsIndirect*/ true, dl, SDNodeOrder);
6012      } else if (isa<Argument>(Address)) {
6013        // Address is an argument, so try to emit its dbg value using
6014        // virtual register info from the FuncInfo.ValueMap.
6015        EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6016        return;
6017      } else {
6018        SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6019                              true, dl, SDNodeOrder);
6020      }
6021      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
6022    } else {
6023      // If Address is an argument then try to emit its dbg value using
6024      // virtual register info from the FuncInfo.ValueMap.
6025      if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6026                                    N)) {
6027        LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
6028      }
6029    }
6030    return;
6031  }
6032  case Intrinsic::dbg_label: {
6033    const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6034    DILabel *Label = DI.getLabel();
6035    assert(Label && "Missing label");
6036
6037    SDDbgLabel *SDV;
6038    SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6039    DAG.AddDbgLabel(SDV);
6040    return;
6041  }
6042  case Intrinsic::dbg_value: {
6043    const DbgValueInst &DI = cast<DbgValueInst>(I);
6044    assert(DI.getVariable() && "Missing variable");
6045
6046    DILocalVariable *Variable = DI.getVariable();
6047    DIExpression *Expression = DI.getExpression();
6048    dropDanglingDebugInfo(Variable, Expression);
6049    const Value *V = DI.getValue();
6050    if (!V)
6051      return;
6052
6053    if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
6054        SDNodeOrder))
6055      return;
6056
6057    // TODO: Dangling debug info will eventually either be resolved or produce
6058    // an Undef DBG_VALUE. However in the resolution case, a gap may appear
6059    // between the original dbg.value location and its resolved DBG_VALUE, which
6060    // we should ideally fill with an extra Undef DBG_VALUE.
6061
6062    DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
6063    return;
6064  }
6065
6066  case Intrinsic::eh_typeid_for: {
6067    // Find the type id for the given typeinfo.
6068    GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6069    unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6070    Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6071    setValue(&I, Res);
6072    return;
6073  }
6074
6075  case Intrinsic::eh_return_i32:
6076  case Intrinsic::eh_return_i64:
6077    DAG.getMachineFunction().setCallsEHReturn(true);
6078    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6079                            MVT::Other,
6080                            getControlRoot(),
6081                            getValue(I.getArgOperand(0)),
6082                            getValue(I.getArgOperand(1))));
6083    return;
6084  case Intrinsic::eh_unwind_init:
6085    DAG.getMachineFunction().setCallsUnwindInit(true);
6086    return;
6087  case Intrinsic::eh_dwarf_cfa:
6088    setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6089                             TLI.getPointerTy(DAG.getDataLayout()),
6090                             getValue(I.getArgOperand(0))));
6091    return;
6092  case Intrinsic::eh_sjlj_callsite: {
6093    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6094    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6095    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6096    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6097
6098    MMI.setCurrentCallSite(CI->getZExtValue());
6099    return;
6100  }
6101  case Intrinsic::eh_sjlj_functioncontext: {
6102    // Get and store the index of the function context.
6103    MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6104    AllocaInst *FnCtx =
6105      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6106    int FI = FuncInfo.StaticAllocaMap[FnCtx];
6107    MFI.setFunctionContextIndex(FI);
6108    return;
6109  }
6110  case Intrinsic::eh_sjlj_setjmp: {
6111    SDValue Ops[2];
6112    Ops[0] = getRoot();
6113    Ops[1] = getValue(I.getArgOperand(0));
6114    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6115                             DAG.getVTList(MVT::i32, MVT::Other), Ops);
6116    setValue(&I, Op.getValue(0));
6117    DAG.setRoot(Op.getValue(1));
6118    return;
6119  }
6120  case Intrinsic::eh_sjlj_longjmp:
6121    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6122                            getRoot(), getValue(I.getArgOperand(0))));
6123    return;
6124  case Intrinsic::eh_sjlj_setup_dispatch:
6125    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6126                            getRoot()));
6127    return;
6128  case Intrinsic::masked_gather:
6129    visitMaskedGather(I);
6130    return;
6131  case Intrinsic::masked_load:
6132    visitMaskedLoad(I);
6133    return;
6134  case Intrinsic::masked_scatter:
6135    visitMaskedScatter(I);
6136    return;
6137  case Intrinsic::masked_store:
6138    visitMaskedStore(I);
6139    return;
6140  case Intrinsic::masked_expandload:
6141    visitMaskedLoad(I, true /* IsExpanding */);
6142    return;
6143  case Intrinsic::masked_compressstore:
6144    visitMaskedStore(I, true /* IsCompressing */);
6145    return;
6146  case Intrinsic::powi:
6147    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6148                            getValue(I.getArgOperand(1)), DAG));
6149    return;
6150  case Intrinsic::log:
6151    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6152    return;
6153  case Intrinsic::log2:
6154    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6155    return;
6156  case Intrinsic::log10:
6157    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6158    return;
6159  case Intrinsic::exp:
6160    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6161    return;
6162  case Intrinsic::exp2:
6163    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6164    return;
6165  case Intrinsic::pow:
6166    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6167                           getValue(I.getArgOperand(1)), DAG, TLI));
6168    return;
6169  case Intrinsic::sqrt:
6170  case Intrinsic::fabs:
6171  case Intrinsic::sin:
6172  case Intrinsic::cos:
6173  case Intrinsic::floor:
6174  case Intrinsic::ceil:
6175  case Intrinsic::trunc:
6176  case Intrinsic::rint:
6177  case Intrinsic::nearbyint:
6178  case Intrinsic::round:
6179  case Intrinsic::canonicalize: {
6180    unsigned Opcode;
6181    switch (Intrinsic) {
6182    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6183    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6184    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6185    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6186    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6187    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6188    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6189    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6190    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6191    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6192    case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6193    case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6194    }
6195
6196    setValue(&I, DAG.getNode(Opcode, sdl,
6197                             getValue(I.getArgOperand(0)).getValueType(),
6198                             getValue(I.getArgOperand(0))));
6199    return;
6200  }
6201  case Intrinsic::lround:
6202  case Intrinsic::llround:
6203  case Intrinsic::lrint:
6204  case Intrinsic::llrint: {
6205    unsigned Opcode;
6206    switch (Intrinsic) {
6207    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6208    case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6209    case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6210    case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6211    case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6212    }
6213
6214    EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6215    setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6216                             getValue(I.getArgOperand(0))));
6217    return;
6218  }
6219  case Intrinsic::minnum:
6220    setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6221                             getValue(I.getArgOperand(0)).getValueType(),
6222                             getValue(I.getArgOperand(0)),
6223                             getValue(I.getArgOperand(1))));
6224    return;
6225  case Intrinsic::maxnum:
6226    setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6227                             getValue(I.getArgOperand(0)).getValueType(),
6228                             getValue(I.getArgOperand(0)),
6229                             getValue(I.getArgOperand(1))));
6230    return;
6231  case Intrinsic::minimum:
6232    setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6233                             getValue(I.getArgOperand(0)).getValueType(),
6234                             getValue(I.getArgOperand(0)),
6235                             getValue(I.getArgOperand(1))));
6236    return;
6237  case Intrinsic::maximum:
6238    setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6239                             getValue(I.getArgOperand(0)).getValueType(),
6240                             getValue(I.getArgOperand(0)),
6241                             getValue(I.getArgOperand(1))));
6242    return;
6243  case Intrinsic::copysign:
6244    setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6245                             getValue(I.getArgOperand(0)).getValueType(),
6246                             getValue(I.getArgOperand(0)),
6247                             getValue(I.getArgOperand(1))));
6248    return;
6249  case Intrinsic::fma:
6250    setValue(&I, DAG.getNode(ISD::FMA, sdl,
6251                             getValue(I.getArgOperand(0)).getValueType(),
6252                             getValue(I.getArgOperand(0)),
6253                             getValue(I.getArgOperand(1)),
6254                             getValue(I.getArgOperand(2))));
6255    return;
6256#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
6257  case Intrinsic::INTRINSIC:
6258#include "llvm/IR/ConstrainedOps.def"
6259    visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6260    return;
6261  case Intrinsic::fmuladd: {
6262    EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6263    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6264        TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6265      setValue(&I, DAG.getNode(ISD::FMA, sdl,
6266                               getValue(I.getArgOperand(0)).getValueType(),
6267                               getValue(I.getArgOperand(0)),
6268                               getValue(I.getArgOperand(1)),
6269                               getValue(I.getArgOperand(2))));
6270    } else {
6271      // TODO: Intrinsic calls should have fast-math-flags.
6272      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6273                                getValue(I.getArgOperand(0)).getValueType(),
6274                                getValue(I.getArgOperand(0)),
6275                                getValue(I.getArgOperand(1)));
6276      SDValue Add = DAG.getNode(ISD::FADD, sdl,
6277                                getValue(I.getArgOperand(0)).getValueType(),
6278                                Mul,
6279                                getValue(I.getArgOperand(2)));
6280      setValue(&I, Add);
6281    }
6282    return;
6283  }
6284  case Intrinsic::convert_to_fp16:
6285    setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6286                             DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6287                                         getValue(I.getArgOperand(0)),
6288                                         DAG.getTargetConstant(0, sdl,
6289                                                               MVT::i32))));
6290    return;
6291  case Intrinsic::convert_from_fp16:
6292    setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6293                             TLI.getValueType(DAG.getDataLayout(), I.getType()),
6294                             DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6295                                         getValue(I.getArgOperand(0)))));
6296    return;
6297  case Intrinsic::pcmarker: {
6298    SDValue Tmp = getValue(I.getArgOperand(0));
6299    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6300    return;
6301  }
6302  case Intrinsic::readcyclecounter: {
6303    SDValue Op = getRoot();
6304    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6305                      DAG.getVTList(MVT::i64, MVT::Other), Op);
6306    setValue(&I, Res);
6307    DAG.setRoot(Res.getValue(1));
6308    return;
6309  }
6310  case Intrinsic::bitreverse:
6311    setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6312                             getValue(I.getArgOperand(0)).getValueType(),
6313                             getValue(I.getArgOperand(0))));
6314    return;
6315  case Intrinsic::bswap:
6316    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6317                             getValue(I.getArgOperand(0)).getValueType(),
6318                             getValue(I.getArgOperand(0))));
6319    return;
6320  case Intrinsic::cttz: {
6321    SDValue Arg = getValue(I.getArgOperand(0));
6322    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6323    EVT Ty = Arg.getValueType();
6324    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6325                             sdl, Ty, Arg));
6326    return;
6327  }
6328  case Intrinsic::ctlz: {
6329    SDValue Arg = getValue(I.getArgOperand(0));
6330    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6331    EVT Ty = Arg.getValueType();
6332    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6333                             sdl, Ty, Arg));
6334    return;
6335  }
6336  case Intrinsic::ctpop: {
6337    SDValue Arg = getValue(I.getArgOperand(0));
6338    EVT Ty = Arg.getValueType();
6339    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6340    return;
6341  }
6342  case Intrinsic::fshl:
6343  case Intrinsic::fshr: {
6344    bool IsFSHL = Intrinsic == Intrinsic::fshl;
6345    SDValue X = getValue(I.getArgOperand(0));
6346    SDValue Y = getValue(I.getArgOperand(1));
6347    SDValue Z = getValue(I.getArgOperand(2));
6348    EVT VT = X.getValueType();
6349    SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6350    SDValue Zero = DAG.getConstant(0, sdl, VT);
6351    SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6352
6353    auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6354    if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6355      setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6356      return;
6357    }
6358
6359    // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6360    // avoid the select that is necessary in the general case to filter out
6361    // the 0-shift possibility that leads to UB.
6362    if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6363      auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6364      if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6365        setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6366        return;
6367      }
6368
6369      // Some targets only rotate one way. Try the opposite direction.
6370      RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6371      if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6372        // Negate the shift amount because it is safe to ignore the high bits.
6373        SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6374        setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6375        return;
6376      }
6377
6378      // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6379      // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6380      SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6381      SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6382      SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6383      SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6384      setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6385      return;
6386    }
6387
6388    // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6389    // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6390    SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6391    SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6392    SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6393    SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6394
6395    // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6396    // and that is undefined. We must compare and select to avoid UB.
6397    EVT CCVT = MVT::i1;
6398    if (VT.isVector())
6399      CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6400
6401    // For fshl, 0-shift returns the 1st arg (X).
6402    // For fshr, 0-shift returns the 2nd arg (Y).
6403    SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6404    setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6405    return;
6406  }
6407  case Intrinsic::sadd_sat: {
6408    SDValue Op1 = getValue(I.getArgOperand(0));
6409    SDValue Op2 = getValue(I.getArgOperand(1));
6410    setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6411    return;
6412  }
6413  case Intrinsic::uadd_sat: {
6414    SDValue Op1 = getValue(I.getArgOperand(0));
6415    SDValue Op2 = getValue(I.getArgOperand(1));
6416    setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6417    return;
6418  }
6419  case Intrinsic::ssub_sat: {
6420    SDValue Op1 = getValue(I.getArgOperand(0));
6421    SDValue Op2 = getValue(I.getArgOperand(1));
6422    setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6423    return;
6424  }
6425  case Intrinsic::usub_sat: {
6426    SDValue Op1 = getValue(I.getArgOperand(0));
6427    SDValue Op2 = getValue(I.getArgOperand(1));
6428    setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6429    return;
6430  }
6431  case Intrinsic::smul_fix:
6432  case Intrinsic::umul_fix:
6433  case Intrinsic::smul_fix_sat:
6434  case Intrinsic::umul_fix_sat: {
6435    SDValue Op1 = getValue(I.getArgOperand(0));
6436    SDValue Op2 = getValue(I.getArgOperand(1));
6437    SDValue Op3 = getValue(I.getArgOperand(2));
6438    setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6439                             Op1.getValueType(), Op1, Op2, Op3));
6440    return;
6441  }
6442  case Intrinsic::sdiv_fix:
6443  case Intrinsic::udiv_fix: {
6444    SDValue Op1 = getValue(I.getArgOperand(0));
6445    SDValue Op2 = getValue(I.getArgOperand(1));
6446    SDValue Op3 = getValue(I.getArgOperand(2));
6447    setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6448                              Op1, Op2, Op3, DAG, TLI));
6449    return;
6450  }
6451  case Intrinsic::stacksave: {
6452    SDValue Op = getRoot();
6453    Res = DAG.getNode(
6454        ISD::STACKSAVE, sdl,
6455        DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6456    setValue(&I, Res);
6457    DAG.setRoot(Res.getValue(1));
6458    return;
6459  }
6460  case Intrinsic::stackrestore:
6461    Res = getValue(I.getArgOperand(0));
6462    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6463    return;
6464  case Intrinsic::get_dynamic_area_offset: {
6465    SDValue Op = getRoot();
6466    EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6467    EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6468    // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6469    // target.
6470    if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6471      report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6472                         " intrinsic!");
6473    Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6474                      Op);
6475    DAG.setRoot(Op);
6476    setValue(&I, Res);
6477    return;
6478  }
6479  case Intrinsic::stackguard: {
6480    EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6481    MachineFunction &MF = DAG.getMachineFunction();
6482    const Module &M = *MF.getFunction().getParent();
6483    SDValue Chain = getRoot();
6484    if (TLI.useLoadStackGuardNode()) {
6485      Res = getLoadStackGuard(DAG, sdl, Chain);
6486    } else {
6487      const Value *Global = TLI.getSDagStackGuard(M);
6488      unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6489      Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6490                        MachinePointerInfo(Global, 0), Align,
6491                        MachineMemOperand::MOVolatile);
6492    }
6493    if (TLI.useStackGuardXorFP())
6494      Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6495    DAG.setRoot(Chain);
6496    setValue(&I, Res);
6497    return;
6498  }
6499  case Intrinsic::stackprotector: {
6500    // Emit code into the DAG to store the stack guard onto the stack.
6501    MachineFunction &MF = DAG.getMachineFunction();
6502    MachineFrameInfo &MFI = MF.getFrameInfo();
6503    EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6504    SDValue Src, Chain = getRoot();
6505
6506    if (TLI.useLoadStackGuardNode())
6507      Src = getLoadStackGuard(DAG, sdl, Chain);
6508    else
6509      Src = getValue(I.getArgOperand(0));   // The guard's value.
6510
6511    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6512
6513    int FI = FuncInfo.StaticAllocaMap[Slot];
6514    MFI.setStackProtectorIndex(FI);
6515
6516    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6517
6518    // Store the stack protector onto the stack.
6519    Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6520                                                 DAG.getMachineFunction(), FI),
6521                       /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6522    setValue(&I, Res);
6523    DAG.setRoot(Res);
6524    return;
6525  }
6526  case Intrinsic::objectsize:
6527    llvm_unreachable("llvm.objectsize.* should have been lowered already");
6528
6529  case Intrinsic::is_constant:
6530    llvm_unreachable("llvm.is.constant.* should have been lowered already");
6531
6532  case Intrinsic::annotation:
6533  case Intrinsic::ptr_annotation:
6534  case Intrinsic::launder_invariant_group:
6535  case Intrinsic::strip_invariant_group:
6536    // Drop the intrinsic, but forward the value
6537    setValue(&I, getValue(I.getOperand(0)));
6538    return;
6539  case Intrinsic::assume:
6540  case Intrinsic::var_annotation:
6541  case Intrinsic::sideeffect:
6542    // Discard annotate attributes, assumptions, and artificial side-effects.
6543    return;
6544
6545  case Intrinsic::codeview_annotation: {
6546    // Emit a label associated with this metadata.
6547    MachineFunction &MF = DAG.getMachineFunction();
6548    MCSymbol *Label =
6549        MF.getMMI().getContext().createTempSymbol("annotation", true);
6550    Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6551    MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6552    Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6553    DAG.setRoot(Res);
6554    return;
6555  }
6556
6557  case Intrinsic::init_trampoline: {
6558    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6559
6560    SDValue Ops[6];
6561    Ops[0] = getRoot();
6562    Ops[1] = getValue(I.getArgOperand(0));
6563    Ops[2] = getValue(I.getArgOperand(1));
6564    Ops[3] = getValue(I.getArgOperand(2));
6565    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6566    Ops[5] = DAG.getSrcValue(F);
6567
6568    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6569
6570    DAG.setRoot(Res);
6571    return;
6572  }
6573  case Intrinsic::adjust_trampoline:
6574    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6575                             TLI.getPointerTy(DAG.getDataLayout()),
6576                             getValue(I.getArgOperand(0))));
6577    return;
6578  case Intrinsic::gcroot: {
6579    assert(DAG.getMachineFunction().getFunction().hasGC() &&
6580           "only valid in functions with gc specified, enforced by Verifier");
6581    assert(GFI && "implied by previous");
6582    const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6583    const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6584
6585    FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6586    GFI->addStackRoot(FI->getIndex(), TypeMap);
6587    return;
6588  }
6589  case Intrinsic::gcread:
6590  case Intrinsic::gcwrite:
6591    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6592  case Intrinsic::flt_rounds:
6593    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6594    return;
6595
6596  case Intrinsic::expect:
6597    // Just replace __builtin_expect(exp, c) with EXP.
6598    setValue(&I, getValue(I.getArgOperand(0)));
6599    return;
6600
6601  case Intrinsic::debugtrap:
6602  case Intrinsic::trap: {
6603    StringRef TrapFuncName =
6604        I.getAttributes()
6605            .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6606            .getValueAsString();
6607    if (TrapFuncName.empty()) {
6608      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6609        ISD::TRAP : ISD::DEBUGTRAP;
6610      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6611      return;
6612    }
6613    TargetLowering::ArgListTy Args;
6614
6615    TargetLowering::CallLoweringInfo CLI(DAG);
6616    CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6617        CallingConv::C, I.getType(),
6618        DAG.getExternalSymbol(TrapFuncName.data(),
6619                              TLI.getPointerTy(DAG.getDataLayout())),
6620        std::move(Args));
6621
6622    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6623    DAG.setRoot(Result.second);
6624    return;
6625  }
6626
6627  case Intrinsic::uadd_with_overflow:
6628  case Intrinsic::sadd_with_overflow:
6629  case Intrinsic::usub_with_overflow:
6630  case Intrinsic::ssub_with_overflow:
6631  case Intrinsic::umul_with_overflow:
6632  case Intrinsic::smul_with_overflow: {
6633    ISD::NodeType Op;
6634    switch (Intrinsic) {
6635    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6636    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6637    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6638    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6639    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6640    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6641    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6642    }
6643    SDValue Op1 = getValue(I.getArgOperand(0));
6644    SDValue Op2 = getValue(I.getArgOperand(1));
6645
6646    EVT ResultVT = Op1.getValueType();
6647    EVT OverflowVT = MVT::i1;
6648    if (ResultVT.isVector())
6649      OverflowVT = EVT::getVectorVT(
6650          *Context, OverflowVT, ResultVT.getVectorNumElements());
6651
6652    SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6653    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6654    return;
6655  }
6656  case Intrinsic::prefetch: {
6657    SDValue Ops[5];
6658    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6659    auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6660    Ops[0] = DAG.getRoot();
6661    Ops[1] = getValue(I.getArgOperand(0));
6662    Ops[2] = getValue(I.getArgOperand(1));
6663    Ops[3] = getValue(I.getArgOperand(2));
6664    Ops[4] = getValue(I.getArgOperand(3));
6665    SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6666                                             DAG.getVTList(MVT::Other), Ops,
6667                                             EVT::getIntegerVT(*Context, 8),
6668                                             MachinePointerInfo(I.getArgOperand(0)),
6669                                             0, /* align */
6670                                             Flags);
6671
6672    // Chain the prefetch in parallell with any pending loads, to stay out of
6673    // the way of later optimizations.
6674    PendingLoads.push_back(Result);
6675    Result = getRoot();
6676    DAG.setRoot(Result);
6677    return;
6678  }
6679  case Intrinsic::lifetime_start:
6680  case Intrinsic::lifetime_end: {
6681    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6682    // Stack coloring is not enabled in O0, discard region information.
6683    if (TM.getOptLevel() == CodeGenOpt::None)
6684      return;
6685
6686    const int64_t ObjectSize =
6687        cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6688    Value *const ObjectPtr = I.getArgOperand(1);
6689    SmallVector<const Value *, 4> Allocas;
6690    GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6691
6692    for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6693           E = Allocas.end(); Object != E; ++Object) {
6694      const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6695
6696      // Could not find an Alloca.
6697      if (!LifetimeObject)
6698        continue;
6699
6700      // First check that the Alloca is static, otherwise it won't have a
6701      // valid frame index.
6702      auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6703      if (SI == FuncInfo.StaticAllocaMap.end())
6704        return;
6705
6706      const int FrameIndex = SI->second;
6707      int64_t Offset;
6708      if (GetPointerBaseWithConstantOffset(
6709              ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6710        Offset = -1; // Cannot determine offset from alloca to lifetime object.
6711      Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6712                                Offset);
6713      DAG.setRoot(Res);
6714    }
6715    return;
6716  }
6717  case Intrinsic::invariant_start:
6718    // Discard region information.
6719    setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6720    return;
6721  case Intrinsic::invariant_end:
6722    // Discard region information.
6723    return;
6724  case Intrinsic::clear_cache:
6725    /// FunctionName may be null.
6726    if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6727      lowerCallToExternalSymbol(I, FunctionName);
6728    return;
6729  case Intrinsic::donothing:
6730    // ignore
6731    return;
6732  case Intrinsic::experimental_stackmap:
6733    visitStackmap(I);
6734    return;
6735  case Intrinsic::experimental_patchpoint_void:
6736  case Intrinsic::experimental_patchpoint_i64:
6737    visitPatchpoint(&I);
6738    return;
6739  case Intrinsic::experimental_gc_statepoint:
6740    LowerStatepoint(ImmutableStatepoint(&I));
6741    return;
6742  case Intrinsic::experimental_gc_result:
6743    visitGCResult(cast<GCResultInst>(I));
6744    return;
6745  case Intrinsic::experimental_gc_relocate:
6746    visitGCRelocate(cast<GCRelocateInst>(I));
6747    return;
6748  case Intrinsic::instrprof_increment:
6749    llvm_unreachable("instrprof failed to lower an increment");
6750  case Intrinsic::instrprof_value_profile:
6751    llvm_unreachable("instrprof failed to lower a value profiling call");
6752  case Intrinsic::localescape: {
6753    MachineFunction &MF = DAG.getMachineFunction();
6754    const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6755
6756    // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6757    // is the same on all targets.
6758    for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6759      Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6760      if (isa<ConstantPointerNull>(Arg))
6761        continue; // Skip null pointers. They represent a hole in index space.
6762      AllocaInst *Slot = cast<AllocaInst>(Arg);
6763      assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6764             "can only escape static allocas");
6765      int FI = FuncInfo.StaticAllocaMap[Slot];
6766      MCSymbol *FrameAllocSym =
6767          MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6768              GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6769      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6770              TII->get(TargetOpcode::LOCAL_ESCAPE))
6771          .addSym(FrameAllocSym)
6772          .addFrameIndex(FI);
6773    }
6774
6775    return;
6776  }
6777
6778  case Intrinsic::localrecover: {
6779    // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6780    MachineFunction &MF = DAG.getMachineFunction();
6781    MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6782
6783    // Get the symbol that defines the frame offset.
6784    auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6785    auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6786    unsigned IdxVal =
6787        unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6788    MCSymbol *FrameAllocSym =
6789        MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6790            GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6791
6792    // Create a MCSymbol for the label to avoid any target lowering
6793    // that would make this PC relative.
6794    SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6795    SDValue OffsetVal =
6796        DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6797
6798    // Add the offset to the FP.
6799    Value *FP = I.getArgOperand(1);
6800    SDValue FPVal = getValue(FP);
6801    SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6802    setValue(&I, Add);
6803
6804    return;
6805  }
6806
6807  case Intrinsic::eh_exceptionpointer:
6808  case Intrinsic::eh_exceptioncode: {
6809    // Get the exception pointer vreg, copy from it, and resize it to fit.
6810    const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6811    MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6812    const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6813    unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6814    SDValue N =
6815        DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6816    if (Intrinsic == Intrinsic::eh_exceptioncode)
6817      N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6818    setValue(&I, N);
6819    return;
6820  }
6821  case Intrinsic::xray_customevent: {
6822    // Here we want to make sure that the intrinsic behaves as if it has a
6823    // specific calling convention, and only for x86_64.
6824    // FIXME: Support other platforms later.
6825    const auto &Triple = DAG.getTarget().getTargetTriple();
6826    if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6827      return;
6828
6829    SDLoc DL = getCurSDLoc();
6830    SmallVector<SDValue, 8> Ops;
6831
6832    // We want to say that we always want the arguments in registers.
6833    SDValue LogEntryVal = getValue(I.getArgOperand(0));
6834    SDValue StrSizeVal = getValue(I.getArgOperand(1));
6835    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6836    SDValue Chain = getRoot();
6837    Ops.push_back(LogEntryVal);
6838    Ops.push_back(StrSizeVal);
6839    Ops.push_back(Chain);
6840
6841    // We need to enforce the calling convention for the callsite, so that
6842    // argument ordering is enforced correctly, and that register allocation can
6843    // see that some registers may be assumed clobbered and have to preserve
6844    // them across calls to the intrinsic.
6845    MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6846                                           DL, NodeTys, Ops);
6847    SDValue patchableNode = SDValue(MN, 0);
6848    DAG.setRoot(patchableNode);
6849    setValue(&I, patchableNode);
6850    return;
6851  }
6852  case Intrinsic::xray_typedevent: {
6853    // Here we want to make sure that the intrinsic behaves as if it has a
6854    // specific calling convention, and only for x86_64.
6855    // FIXME: Support other platforms later.
6856    const auto &Triple = DAG.getTarget().getTargetTriple();
6857    if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6858      return;
6859
6860    SDLoc DL = getCurSDLoc();
6861    SmallVector<SDValue, 8> Ops;
6862
6863    // We want to say that we always want the arguments in registers.
6864    // It's unclear to me how manipulating the selection DAG here forces callers
6865    // to provide arguments in registers instead of on the stack.
6866    SDValue LogTypeId = getValue(I.getArgOperand(0));
6867    SDValue LogEntryVal = getValue(I.getArgOperand(1));
6868    SDValue StrSizeVal = getValue(I.getArgOperand(2));
6869    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6870    SDValue Chain = getRoot();
6871    Ops.push_back(LogTypeId);
6872    Ops.push_back(LogEntryVal);
6873    Ops.push_back(StrSizeVal);
6874    Ops.push_back(Chain);
6875
6876    // We need to enforce the calling convention for the callsite, so that
6877    // argument ordering is enforced correctly, and that register allocation can
6878    // see that some registers may be assumed clobbered and have to preserve
6879    // them across calls to the intrinsic.
6880    MachineSDNode *MN = DAG.getMachineNode(
6881        TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6882    SDValue patchableNode = SDValue(MN, 0);
6883    DAG.setRoot(patchableNode);
6884    setValue(&I, patchableNode);
6885    return;
6886  }
6887  case Intrinsic::experimental_deoptimize:
6888    LowerDeoptimizeCall(&I);
6889    return;
6890
6891  case Intrinsic::experimental_vector_reduce_v2_fadd:
6892  case Intrinsic::experimental_vector_reduce_v2_fmul:
6893  case Intrinsic::experimental_vector_reduce_add:
6894  case Intrinsic::experimental_vector_reduce_mul:
6895  case Intrinsic::experimental_vector_reduce_and:
6896  case Intrinsic::experimental_vector_reduce_or:
6897  case Intrinsic::experimental_vector_reduce_xor:
6898  case Intrinsic::experimental_vector_reduce_smax:
6899  case Intrinsic::experimental_vector_reduce_smin:
6900  case Intrinsic::experimental_vector_reduce_umax:
6901  case Intrinsic::experimental_vector_reduce_umin:
6902  case Intrinsic::experimental_vector_reduce_fmax:
6903  case Intrinsic::experimental_vector_reduce_fmin:
6904    visitVectorReduce(I, Intrinsic);
6905    return;
6906
6907  case Intrinsic::icall_branch_funnel: {
6908    SmallVector<SDValue, 16> Ops;
6909    Ops.push_back(getValue(I.getArgOperand(0)));
6910
6911    int64_t Offset;
6912    auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6913        I.getArgOperand(1), Offset, DAG.getDataLayout()));
6914    if (!Base)
6915      report_fatal_error(
6916          "llvm.icall.branch.funnel operand must be a GlobalValue");
6917    Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6918
6919    struct BranchFunnelTarget {
6920      int64_t Offset;
6921      SDValue Target;
6922    };
6923    SmallVector<BranchFunnelTarget, 8> Targets;
6924
6925    for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6926      auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6927          I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6928      if (ElemBase != Base)
6929        report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6930                           "to the same GlobalValue");
6931
6932      SDValue Val = getValue(I.getArgOperand(Op + 1));
6933      auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6934      if (!GA)
6935        report_fatal_error(
6936            "llvm.icall.branch.funnel operand must be a GlobalValue");
6937      Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6938                                     GA->getGlobal(), getCurSDLoc(),
6939                                     Val.getValueType(), GA->getOffset())});
6940    }
6941    llvm::sort(Targets,
6942               [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6943                 return T1.Offset < T2.Offset;
6944               });
6945
6946    for (auto &T : Targets) {
6947      Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6948      Ops.push_back(T.Target);
6949    }
6950
6951    Ops.push_back(DAG.getRoot()); // Chain
6952    SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6953                                 getCurSDLoc(), MVT::Other, Ops),
6954              0);
6955    DAG.setRoot(N);
6956    setValue(&I, N);
6957    HasTailCall = true;
6958    return;
6959  }
6960
6961  case Intrinsic::wasm_landingpad_index:
6962    // Information this intrinsic contained has been transferred to
6963    // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6964    // delete it now.
6965    return;
6966
6967  case Intrinsic::aarch64_settag:
6968  case Intrinsic::aarch64_settag_zero: {
6969    const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6970    bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6971    SDValue Val = TSI.EmitTargetCodeForSetTag(
6972        DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6973        getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6974        ZeroMemory);
6975    DAG.setRoot(Val);
6976    setValue(&I, Val);
6977    return;
6978  }
6979  case Intrinsic::ptrmask: {
6980    SDValue Ptr = getValue(I.getOperand(0));
6981    SDValue Const = getValue(I.getOperand(1));
6982
6983    EVT DestVT =
6984        EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6985
6986    setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6987                             DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6988    return;
6989  }
6990  }
6991}
6992
6993void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6994    const ConstrainedFPIntrinsic &FPI) {
6995  SDLoc sdl = getCurSDLoc();
6996
6997  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6998  SmallVector<EVT, 4> ValueVTs;
6999  ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7000  ValueVTs.push_back(MVT::Other); // Out chain
7001
7002  // We do not need to serialize constrained FP intrinsics against
7003  // each other or against (nonvolatile) loads, so they can be
7004  // chained like loads.
7005  SDValue Chain = DAG.getRoot();
7006  SmallVector<SDValue, 4> Opers;
7007  Opers.push_back(Chain);
7008  if (FPI.isUnaryOp()) {
7009    Opers.push_back(getValue(FPI.getArgOperand(0)));
7010  } else if (FPI.isTernaryOp()) {
7011    Opers.push_back(getValue(FPI.getArgOperand(0)));
7012    Opers.push_back(getValue(FPI.getArgOperand(1)));
7013    Opers.push_back(getValue(FPI.getArgOperand(2)));
7014  } else {
7015    Opers.push_back(getValue(FPI.getArgOperand(0)));
7016    Opers.push_back(getValue(FPI.getArgOperand(1)));
7017  }
7018
7019  unsigned Opcode;
7020  switch (FPI.getIntrinsicID()) {
7021  default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7022#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
7023  case Intrinsic::INTRINSIC:                                                   \
7024    Opcode = ISD::STRICT_##DAGN;                                               \
7025    break;
7026#include "llvm/IR/ConstrainedOps.def"
7027  }
7028
7029  // A few strict DAG nodes carry additional operands that are not
7030  // set up by the default code above.
7031  switch (Opcode) {
7032  default: break;
7033  case ISD::STRICT_FP_ROUND:
7034    Opers.push_back(
7035        DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7036    break;
7037  case ISD::STRICT_FSETCC:
7038  case ISD::STRICT_FSETCCS: {
7039    auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7040    Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7041    break;
7042  }
7043  }
7044
7045  SDVTList VTs = DAG.getVTList(ValueVTs);
7046  SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers);
7047
7048  assert(Result.getNode()->getNumValues() == 2);
7049
7050  // Push node to the appropriate list so that future instructions can be
7051  // chained up correctly.
7052  SDValue OutChain = Result.getValue(1);
7053  switch (FPI.getExceptionBehavior().getValue()) {
7054  case fp::ExceptionBehavior::ebIgnore:
7055    // The only reason why ebIgnore nodes still need to be chained is that
7056    // they might depend on the current rounding mode, and therefore must
7057    // not be moved across instruction that may change that mode.
7058    LLVM_FALLTHROUGH;
7059  case fp::ExceptionBehavior::ebMayTrap:
7060    // These must not be moved across calls or instructions that may change
7061    // floating-point exception masks.
7062    PendingConstrainedFP.push_back(OutChain);
7063    break;
7064  case fp::ExceptionBehavior::ebStrict:
7065    // These must not be moved across calls or instructions that may change
7066    // floating-point exception masks or read floating-point exception flags.
7067    // In addition, they cannot be optimized out even if unused.
7068    PendingConstrainedFPStrict.push_back(OutChain);
7069    break;
7070  }
7071
7072  SDValue FPResult = Result.getValue(0);
7073  setValue(&FPI, FPResult);
7074}
7075
7076std::pair<SDValue, SDValue>
7077SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7078                                    const BasicBlock *EHPadBB) {
7079  MachineFunction &MF = DAG.getMachineFunction();
7080  MachineModuleInfo &MMI = MF.getMMI();
7081  MCSymbol *BeginLabel = nullptr;
7082
7083  if (EHPadBB) {
7084    // Insert a label before the invoke call to mark the try range.  This can be
7085    // used to detect deletion of the invoke via the MachineModuleInfo.
7086    BeginLabel = MMI.getContext().createTempSymbol();
7087
7088    // For SjLj, keep track of which landing pads go with which invokes
7089    // so as to maintain the ordering of pads in the LSDA.
7090    unsigned CallSiteIndex = MMI.getCurrentCallSite();
7091    if (CallSiteIndex) {
7092      MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7093      LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7094
7095      // Now that the call site is handled, stop tracking it.
7096      MMI.setCurrentCallSite(0);
7097    }
7098
7099    // Both PendingLoads and PendingExports must be flushed here;
7100    // this call might not return.
7101    (void)getRoot();
7102    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7103
7104    CLI.setChain(getRoot());
7105  }
7106  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7107  std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7108
7109  assert((CLI.IsTailCall || Result.second.getNode()) &&
7110         "Non-null chain expected with non-tail call!");
7111  assert((Result.second.getNode() || !Result.first.getNode()) &&
7112         "Null value expected with tail call!");
7113
7114  if (!Result.second.getNode()) {
7115    // As a special case, a null chain means that a tail call has been emitted
7116    // and the DAG root is already updated.
7117    HasTailCall = true;
7118
7119    // Since there's no actual continuation from this block, nothing can be
7120    // relying on us setting vregs for them.
7121    PendingExports.clear();
7122  } else {
7123    DAG.setRoot(Result.second);
7124  }
7125
7126  if (EHPadBB) {
7127    // Insert a label at the end of the invoke call to mark the try range.  This
7128    // can be used to detect deletion of the invoke via the MachineModuleInfo.
7129    MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7130    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7131
7132    // Inform MachineModuleInfo of range.
7133    auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7134    // There is a platform (e.g. wasm) that uses funclet style IR but does not
7135    // actually use outlined funclets and their LSDA info style.
7136    if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7137      assert(CLI.CS);
7138      WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7139      EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7140                                BeginLabel, EndLabel);
7141    } else if (!isScopedEHPersonality(Pers)) {
7142      MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7143    }
7144  }
7145
7146  return Result;
7147}
7148
7149void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7150                                      bool isTailCall,
7151                                      const BasicBlock *EHPadBB) {
7152  auto &DL = DAG.getDataLayout();
7153  FunctionType *FTy = CS.getFunctionType();
7154  Type *RetTy = CS.getType();
7155
7156  TargetLowering::ArgListTy Args;
7157  Args.reserve(CS.arg_size());
7158
7159  const Value *SwiftErrorVal = nullptr;
7160  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7161
7162  if (isTailCall) {
7163    // Avoid emitting tail calls in functions with the disable-tail-calls
7164    // attribute.
7165    auto *Caller = CS.getInstruction()->getParent()->getParent();
7166    if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7167        "true")
7168      isTailCall = false;
7169
7170    // We can't tail call inside a function with a swifterror argument. Lowering
7171    // does not support this yet. It would have to move into the swifterror
7172    // register before the call.
7173    if (TLI.supportSwiftError() &&
7174        Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7175      isTailCall = false;
7176  }
7177
7178  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7179       i != e; ++i) {
7180    TargetLowering::ArgListEntry Entry;
7181    const Value *V = *i;
7182
7183    // Skip empty types
7184    if (V->getType()->isEmptyTy())
7185      continue;
7186
7187    SDValue ArgNode = getValue(V);
7188    Entry.Node = ArgNode; Entry.Ty = V->getType();
7189
7190    Entry.setAttributes(&CS, i - CS.arg_begin());
7191
7192    // Use swifterror virtual register as input to the call.
7193    if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7194      SwiftErrorVal = V;
7195      // We find the virtual register for the actual swifterror argument.
7196      // Instead of using the Value, we use the virtual register instead.
7197      Entry.Node = DAG.getRegister(
7198          SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7199          EVT(TLI.getPointerTy(DL)));
7200    }
7201
7202    Args.push_back(Entry);
7203
7204    // If we have an explicit sret argument that is an Instruction, (i.e., it
7205    // might point to function-local memory), we can't meaningfully tail-call.
7206    if (Entry.IsSRet && isa<Instruction>(V))
7207      isTailCall = false;
7208  }
7209
7210  // If call site has a cfguardtarget operand bundle, create and add an
7211  // additional ArgListEntry.
7212  if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7213    TargetLowering::ArgListEntry Entry;
7214    Value *V = Bundle->Inputs[0];
7215    SDValue ArgNode = getValue(V);
7216    Entry.Node = ArgNode;
7217    Entry.Ty = V->getType();
7218    Entry.IsCFGuardTarget = true;
7219    Args.push_back(Entry);
7220  }
7221
7222  // Check if target-independent constraints permit a tail call here.
7223  // Target-dependent constraints are checked within TLI->LowerCallTo.
7224  if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7225    isTailCall = false;
7226
7227  // Disable tail calls if there is an swifterror argument. Targets have not
7228  // been updated to support tail calls.
7229  if (TLI.supportSwiftError() && SwiftErrorVal)
7230    isTailCall = false;
7231
7232  TargetLowering::CallLoweringInfo CLI(DAG);
7233  CLI.setDebugLoc(getCurSDLoc())
7234      .setChain(getRoot())
7235      .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7236      .setTailCall(isTailCall)
7237      .setConvergent(CS.isConvergent());
7238  std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7239
7240  if (Result.first.getNode()) {
7241    const Instruction *Inst = CS.getInstruction();
7242    Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7243    setValue(Inst, Result.first);
7244  }
7245
7246  // The last element of CLI.InVals has the SDValue for swifterror return.
7247  // Here we copy it to a virtual register and update SwiftErrorMap for
7248  // book-keeping.
7249  if (SwiftErrorVal && TLI.supportSwiftError()) {
7250    // Get the last element of InVals.
7251    SDValue Src = CLI.InVals.back();
7252    Register VReg = SwiftError.getOrCreateVRegDefAt(
7253        CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7254    SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7255    DAG.setRoot(CopyNode);
7256  }
7257}
7258
7259static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7260                             SelectionDAGBuilder &Builder) {
7261  // Check to see if this load can be trivially constant folded, e.g. if the
7262  // input is from a string literal.
7263  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7264    // Cast pointer to the type we really want to load.
7265    Type *LoadTy =
7266        Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7267    if (LoadVT.isVector())
7268      LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7269
7270    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7271                                         PointerType::getUnqual(LoadTy));
7272
7273    if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7274            const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7275      return Builder.getValue(LoadCst);
7276  }
7277
7278  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7279  // still constant memory, the input chain can be the entry node.
7280  SDValue Root;
7281  bool ConstantMemory = false;
7282
7283  // Do not serialize (non-volatile) loads of constant memory with anything.
7284  if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7285    Root = Builder.DAG.getEntryNode();
7286    ConstantMemory = true;
7287  } else {
7288    // Do not serialize non-volatile loads against each other.
7289    Root = Builder.DAG.getRoot();
7290  }
7291
7292  SDValue Ptr = Builder.getValue(PtrVal);
7293  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7294                                        Ptr, MachinePointerInfo(PtrVal),
7295                                        /* Alignment = */ 1);
7296
7297  if (!ConstantMemory)
7298    Builder.PendingLoads.push_back(LoadVal.getValue(1));
7299  return LoadVal;
7300}
7301
7302/// Record the value for an instruction that produces an integer result,
7303/// converting the type where necessary.
7304void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7305                                                  SDValue Value,
7306                                                  bool IsSigned) {
7307  EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7308                                                    I.getType(), true);
7309  if (IsSigned)
7310    Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7311  else
7312    Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7313  setValue(&I, Value);
7314}
7315
7316/// See if we can lower a memcmp call into an optimized form. If so, return
7317/// true and lower it. Otherwise return false, and it will be lowered like a
7318/// normal call.
7319/// The caller already checked that \p I calls the appropriate LibFunc with a
7320/// correct prototype.
7321bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7322  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7323  const Value *Size = I.getArgOperand(2);
7324  const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7325  if (CSize && CSize->getZExtValue() == 0) {
7326    EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7327                                                          I.getType(), true);
7328    setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7329    return true;
7330  }
7331
7332  const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7333  std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7334      DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7335      getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7336  if (Res.first.getNode()) {
7337    processIntegerCallValue(I, Res.first, true);
7338    PendingLoads.push_back(Res.second);
7339    return true;
7340  }
7341
7342  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7343  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7344  if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7345    return false;
7346
7347  // If the target has a fast compare for the given size, it will return a
7348  // preferred load type for that size. Require that the load VT is legal and
7349  // that the target supports unaligned loads of that type. Otherwise, return
7350  // INVALID.
7351  auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7352    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7353    MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7354    if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7355      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7356      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7357      // TODO: Check alignment of src and dest ptrs.
7358      unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7359      unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7360      if (!TLI.isTypeLegal(LVT) ||
7361          !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7362          !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7363        LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7364    }
7365
7366    return LVT;
7367  };
7368
7369  // This turns into unaligned loads. We only do this if the target natively
7370  // supports the MVT we'll be loading or if it is small enough (<= 4) that
7371  // we'll only produce a small number of byte loads.
7372  MVT LoadVT;
7373  unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7374  switch (NumBitsToCompare) {
7375  default:
7376    return false;
7377  case 16:
7378    LoadVT = MVT::i16;
7379    break;
7380  case 32:
7381    LoadVT = MVT::i32;
7382    break;
7383  case 64:
7384  case 128:
7385  case 256:
7386    LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7387    break;
7388  }
7389
7390  if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7391    return false;
7392
7393  SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7394  SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7395
7396  // Bitcast to a wide integer type if the loads are vectors.
7397  if (LoadVT.isVector()) {
7398    EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7399    LoadL = DAG.getBitcast(CmpVT, LoadL);
7400    LoadR = DAG.getBitcast(CmpVT, LoadR);
7401  }
7402
7403  SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7404  processIntegerCallValue(I, Cmp, false);
7405  return true;
7406}
7407
7408/// See if we can lower a memchr call into an optimized form. If so, return
7409/// true and lower it. Otherwise return false, and it will be lowered like a
7410/// normal call.
7411/// The caller already checked that \p I calls the appropriate LibFunc with a
7412/// correct prototype.
7413bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7414  const Value *Src = I.getArgOperand(0);
7415  const Value *Char = I.getArgOperand(1);
7416  const Value *Length = I.getArgOperand(2);
7417
7418  const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7419  std::pair<SDValue, SDValue> Res =
7420    TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7421                                getValue(Src), getValue(Char), getValue(Length),
7422                                MachinePointerInfo(Src));
7423  if (Res.first.getNode()) {
7424    setValue(&I, Res.first);
7425    PendingLoads.push_back(Res.second);
7426    return true;
7427  }
7428
7429  return false;
7430}
7431
7432/// See if we can lower a mempcpy call into an optimized form. If so, return
7433/// true and lower it. Otherwise return false, and it will be lowered like a
7434/// normal call.
7435/// The caller already checked that \p I calls the appropriate LibFunc with a
7436/// correct prototype.
7437bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7438  SDValue Dst = getValue(I.getArgOperand(0));
7439  SDValue Src = getValue(I.getArgOperand(1));
7440  SDValue Size = getValue(I.getArgOperand(2));
7441
7442  unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7443  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7444  unsigned Align = std::min(DstAlign, SrcAlign);
7445  if (Align == 0) // Alignment of one or both could not be inferred.
7446    Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7447
7448  bool isVol = false;
7449  SDLoc sdl = getCurSDLoc();
7450
7451  // In the mempcpy context we need to pass in a false value for isTailCall
7452  // because the return pointer needs to be adjusted by the size of
7453  // the copied memory.
7454  SDValue Root = isVol ? getRoot() : getMemoryRoot();
7455  SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Align, isVol,
7456                             false, /*isTailCall=*/false,
7457                             MachinePointerInfo(I.getArgOperand(0)),
7458                             MachinePointerInfo(I.getArgOperand(1)));
7459  assert(MC.getNode() != nullptr &&
7460         "** memcpy should not be lowered as TailCall in mempcpy context **");
7461  DAG.setRoot(MC);
7462
7463  // Check if Size needs to be truncated or extended.
7464  Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7465
7466  // Adjust return pointer to point just past the last dst byte.
7467  SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7468                                    Dst, Size);
7469  setValue(&I, DstPlusSize);
7470  return true;
7471}
7472
7473/// See if we can lower a strcpy call into an optimized form.  If so, return
7474/// true and lower it, otherwise return false and it will be lowered like a
7475/// normal call.
7476/// The caller already checked that \p I calls the appropriate LibFunc with a
7477/// correct prototype.
7478bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7479  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7480
7481  const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7482  std::pair<SDValue, SDValue> Res =
7483    TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7484                                getValue(Arg0), getValue(Arg1),
7485                                MachinePointerInfo(Arg0),
7486                                MachinePointerInfo(Arg1), isStpcpy);
7487  if (Res.first.getNode()) {
7488    setValue(&I, Res.first);
7489    DAG.setRoot(Res.second);
7490    return true;
7491  }
7492
7493  return false;
7494}
7495
7496/// See if we can lower a strcmp call into an optimized form.  If so, return
7497/// true and lower it, otherwise return false and it will be lowered like a
7498/// normal call.
7499/// The caller already checked that \p I calls the appropriate LibFunc with a
7500/// correct prototype.
7501bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7502  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7503
7504  const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7505  std::pair<SDValue, SDValue> Res =
7506    TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7507                                getValue(Arg0), getValue(Arg1),
7508                                MachinePointerInfo(Arg0),
7509                                MachinePointerInfo(Arg1));
7510  if (Res.first.getNode()) {
7511    processIntegerCallValue(I, Res.first, true);
7512    PendingLoads.push_back(Res.second);
7513    return true;
7514  }
7515
7516  return false;
7517}
7518
7519/// See if we can lower a strlen call into an optimized form.  If so, return
7520/// true and lower it, otherwise return false and it will be lowered like a
7521/// normal call.
7522/// The caller already checked that \p I calls the appropriate LibFunc with a
7523/// correct prototype.
7524bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7525  const Value *Arg0 = I.getArgOperand(0);
7526
7527  const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7528  std::pair<SDValue, SDValue> Res =
7529    TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7530                                getValue(Arg0), MachinePointerInfo(Arg0));
7531  if (Res.first.getNode()) {
7532    processIntegerCallValue(I, Res.first, false);
7533    PendingLoads.push_back(Res.second);
7534    return true;
7535  }
7536
7537  return false;
7538}
7539
7540/// See if we can lower a strnlen call into an optimized form.  If so, return
7541/// true and lower it, otherwise return false and it will be lowered like a
7542/// normal call.
7543/// The caller already checked that \p I calls the appropriate LibFunc with a
7544/// correct prototype.
7545bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7546  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7547
7548  const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7549  std::pair<SDValue, SDValue> Res =
7550    TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7551                                 getValue(Arg0), getValue(Arg1),
7552                                 MachinePointerInfo(Arg0));
7553  if (Res.first.getNode()) {
7554    processIntegerCallValue(I, Res.first, false);
7555    PendingLoads.push_back(Res.second);
7556    return true;
7557  }
7558
7559  return false;
7560}
7561
7562/// See if we can lower a unary floating-point operation into an SDNode with
7563/// the specified Opcode.  If so, return true and lower it, otherwise return
7564/// false and it will be lowered like a normal call.
7565/// The caller already checked that \p I calls the appropriate LibFunc with a
7566/// correct prototype.
7567bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7568                                              unsigned Opcode) {
7569  // We already checked this call's prototype; verify it doesn't modify errno.
7570  if (!I.onlyReadsMemory())
7571    return false;
7572
7573  SDValue Tmp = getValue(I.getArgOperand(0));
7574  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7575  return true;
7576}
7577
7578/// See if we can lower a binary floating-point operation into an SDNode with
7579/// the specified Opcode. If so, return true and lower it. Otherwise return
7580/// false, and it will be lowered like a normal call.
7581/// The caller already checked that \p I calls the appropriate LibFunc with a
7582/// correct prototype.
7583bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7584                                               unsigned Opcode) {
7585  // We already checked this call's prototype; verify it doesn't modify errno.
7586  if (!I.onlyReadsMemory())
7587    return false;
7588
7589  SDValue Tmp0 = getValue(I.getArgOperand(0));
7590  SDValue Tmp1 = getValue(I.getArgOperand(1));
7591  EVT VT = Tmp0.getValueType();
7592  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7593  return true;
7594}
7595
7596void SelectionDAGBuilder::visitCall(const CallInst &I) {
7597  // Handle inline assembly differently.
7598  if (isa<InlineAsm>(I.getCalledValue())) {
7599    visitInlineAsm(&I);
7600    return;
7601  }
7602
7603  if (Function *F = I.getCalledFunction()) {
7604    if (F->isDeclaration()) {
7605      // Is this an LLVM intrinsic or a target-specific intrinsic?
7606      unsigned IID = F->getIntrinsicID();
7607      if (!IID)
7608        if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7609          IID = II->getIntrinsicID(F);
7610
7611      if (IID) {
7612        visitIntrinsicCall(I, IID);
7613        return;
7614      }
7615    }
7616
7617    // Check for well-known libc/libm calls.  If the function is internal, it
7618    // can't be a library call.  Don't do the check if marked as nobuiltin for
7619    // some reason or the call site requires strict floating point semantics.
7620    LibFunc Func;
7621    if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7622        F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7623        LibInfo->hasOptimizedCodeGen(Func)) {
7624      switch (Func) {
7625      default: break;
7626      case LibFunc_copysign:
7627      case LibFunc_copysignf:
7628      case LibFunc_copysignl:
7629        // We already checked this call's prototype; verify it doesn't modify
7630        // errno.
7631        if (I.onlyReadsMemory()) {
7632          SDValue LHS = getValue(I.getArgOperand(0));
7633          SDValue RHS = getValue(I.getArgOperand(1));
7634          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7635                                   LHS.getValueType(), LHS, RHS));
7636          return;
7637        }
7638        break;
7639      case LibFunc_fabs:
7640      case LibFunc_fabsf:
7641      case LibFunc_fabsl:
7642        if (visitUnaryFloatCall(I, ISD::FABS))
7643          return;
7644        break;
7645      case LibFunc_fmin:
7646      case LibFunc_fminf:
7647      case LibFunc_fminl:
7648        if (visitBinaryFloatCall(I, ISD::FMINNUM))
7649          return;
7650        break;
7651      case LibFunc_fmax:
7652      case LibFunc_fmaxf:
7653      case LibFunc_fmaxl:
7654        if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7655          return;
7656        break;
7657      case LibFunc_sin:
7658      case LibFunc_sinf:
7659      case LibFunc_sinl:
7660        if (visitUnaryFloatCall(I, ISD::FSIN))
7661          return;
7662        break;
7663      case LibFunc_cos:
7664      case LibFunc_cosf:
7665      case LibFunc_cosl:
7666        if (visitUnaryFloatCall(I, ISD::FCOS))
7667          return;
7668        break;
7669      case LibFunc_sqrt:
7670      case LibFunc_sqrtf:
7671      case LibFunc_sqrtl:
7672      case LibFunc_sqrt_finite:
7673      case LibFunc_sqrtf_finite:
7674      case LibFunc_sqrtl_finite:
7675        if (visitUnaryFloatCall(I, ISD::FSQRT))
7676          return;
7677        break;
7678      case LibFunc_floor:
7679      case LibFunc_floorf:
7680      case LibFunc_floorl:
7681        if (visitUnaryFloatCall(I, ISD::FFLOOR))
7682          return;
7683        break;
7684      case LibFunc_nearbyint:
7685      case LibFunc_nearbyintf:
7686      case LibFunc_nearbyintl:
7687        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7688          return;
7689        break;
7690      case LibFunc_ceil:
7691      case LibFunc_ceilf:
7692      case LibFunc_ceill:
7693        if (visitUnaryFloatCall(I, ISD::FCEIL))
7694          return;
7695        break;
7696      case LibFunc_rint:
7697      case LibFunc_rintf:
7698      case LibFunc_rintl:
7699        if (visitUnaryFloatCall(I, ISD::FRINT))
7700          return;
7701        break;
7702      case LibFunc_round:
7703      case LibFunc_roundf:
7704      case LibFunc_roundl:
7705        if (visitUnaryFloatCall(I, ISD::FROUND))
7706          return;
7707        break;
7708      case LibFunc_trunc:
7709      case LibFunc_truncf:
7710      case LibFunc_truncl:
7711        if (visitUnaryFloatCall(I, ISD::FTRUNC))
7712          return;
7713        break;
7714      case LibFunc_log2:
7715      case LibFunc_log2f:
7716      case LibFunc_log2l:
7717        if (visitUnaryFloatCall(I, ISD::FLOG2))
7718          return;
7719        break;
7720      case LibFunc_exp2:
7721      case LibFunc_exp2f:
7722      case LibFunc_exp2l:
7723        if (visitUnaryFloatCall(I, ISD::FEXP2))
7724          return;
7725        break;
7726      case LibFunc_memcmp:
7727        if (visitMemCmpCall(I))
7728          return;
7729        break;
7730      case LibFunc_mempcpy:
7731        if (visitMemPCpyCall(I))
7732          return;
7733        break;
7734      case LibFunc_memchr:
7735        if (visitMemChrCall(I))
7736          return;
7737        break;
7738      case LibFunc_strcpy:
7739        if (visitStrCpyCall(I, false))
7740          return;
7741        break;
7742      case LibFunc_stpcpy:
7743        if (visitStrCpyCall(I, true))
7744          return;
7745        break;
7746      case LibFunc_strcmp:
7747        if (visitStrCmpCall(I))
7748          return;
7749        break;
7750      case LibFunc_strlen:
7751        if (visitStrLenCall(I))
7752          return;
7753        break;
7754      case LibFunc_strnlen:
7755        if (visitStrNLenCall(I))
7756          return;
7757        break;
7758      }
7759    }
7760  }
7761
7762  // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7763  // have to do anything here to lower funclet bundles.
7764  // CFGuardTarget bundles are lowered in LowerCallTo.
7765  assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
7766                                        LLVMContext::OB_funclet,
7767                                        LLVMContext::OB_cfguardtarget}) &&
7768         "Cannot lower calls with arbitrary operand bundles!");
7769
7770  SDValue Callee = getValue(I.getCalledValue());
7771
7772  if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7773    LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7774  else
7775    // Check if we can potentially perform a tail call. More detailed checking
7776    // is be done within LowerCallTo, after more information about the call is
7777    // known.
7778    LowerCallTo(&I, Callee, I.isTailCall());
7779}
7780
7781namespace {
7782
7783/// AsmOperandInfo - This contains information for each constraint that we are
7784/// lowering.
7785class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7786public:
7787  /// CallOperand - If this is the result output operand or a clobber
7788  /// this is null, otherwise it is the incoming operand to the CallInst.
7789  /// This gets modified as the asm is processed.
7790  SDValue CallOperand;
7791
7792  /// AssignedRegs - If this is a register or register class operand, this
7793  /// contains the set of register corresponding to the operand.
7794  RegsForValue AssignedRegs;
7795
7796  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7797    : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7798  }
7799
7800  /// Whether or not this operand accesses memory
7801  bool hasMemory(const TargetLowering &TLI) const {
7802    // Indirect operand accesses access memory.
7803    if (isIndirect)
7804      return true;
7805
7806    for (const auto &Code : Codes)
7807      if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7808        return true;
7809
7810    return false;
7811  }
7812
7813  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7814  /// corresponds to.  If there is no Value* for this operand, it returns
7815  /// MVT::Other.
7816  EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7817                           const DataLayout &DL) const {
7818    if (!CallOperandVal) return MVT::Other;
7819
7820    if (isa<BasicBlock>(CallOperandVal))
7821      return TLI.getPointerTy(DL);
7822
7823    llvm::Type *OpTy = CallOperandVal->getType();
7824
7825    // FIXME: code duplicated from TargetLowering::ParseConstraints().
7826    // If this is an indirect operand, the operand is a pointer to the
7827    // accessed type.
7828    if (isIndirect) {
7829      PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7830      if (!PtrTy)
7831        report_fatal_error("Indirect operand for inline asm not a pointer!");
7832      OpTy = PtrTy->getElementType();
7833    }
7834
7835    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7836    if (StructType *STy = dyn_cast<StructType>(OpTy))
7837      if (STy->getNumElements() == 1)
7838        OpTy = STy->getElementType(0);
7839
7840    // If OpTy is not a single value, it may be a struct/union that we
7841    // can tile with integers.
7842    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7843      unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7844      switch (BitSize) {
7845      default: break;
7846      case 1:
7847      case 8:
7848      case 16:
7849      case 32:
7850      case 64:
7851      case 128:
7852        OpTy = IntegerType::get(Context, BitSize);
7853        break;
7854      }
7855    }
7856
7857    return TLI.getValueType(DL, OpTy, true);
7858  }
7859};
7860
7861using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7862
7863} // end anonymous namespace
7864
7865/// Make sure that the output operand \p OpInfo and its corresponding input
7866/// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7867/// out).
7868static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7869                               SDISelAsmOperandInfo &MatchingOpInfo,
7870                               SelectionDAG &DAG) {
7871  if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7872    return;
7873
7874  const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7875  const auto &TLI = DAG.getTargetLoweringInfo();
7876
7877  std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7878      TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7879                                       OpInfo.ConstraintVT);
7880  std::pair<unsigned, const TargetRegisterClass *> InputRC =
7881      TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7882                                       MatchingOpInfo.ConstraintVT);
7883  if ((OpInfo.ConstraintVT.isInteger() !=
7884       MatchingOpInfo.ConstraintVT.isInteger()) ||
7885      (MatchRC.second != InputRC.second)) {
7886    // FIXME: error out in a more elegant fashion
7887    report_fatal_error("Unsupported asm: input constraint"
7888                       " with a matching output constraint of"
7889                       " incompatible type!");
7890  }
7891  MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7892}
7893
7894/// Get a direct memory input to behave well as an indirect operand.
7895/// This may introduce stores, hence the need for a \p Chain.
7896/// \return The (possibly updated) chain.
7897static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7898                                        SDISelAsmOperandInfo &OpInfo,
7899                                        SelectionDAG &DAG) {
7900  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7901
7902  // If we don't have an indirect input, put it in the constpool if we can,
7903  // otherwise spill it to a stack slot.
7904  // TODO: This isn't quite right. We need to handle these according to
7905  // the addressing mode that the constraint wants. Also, this may take
7906  // an additional register for the computation and we don't want that
7907  // either.
7908
7909  // If the operand is a float, integer, or vector constant, spill to a
7910  // constant pool entry to get its address.
7911  const Value *OpVal = OpInfo.CallOperandVal;
7912  if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7913      isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7914    OpInfo.CallOperand = DAG.getConstantPool(
7915        cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7916    return Chain;
7917  }
7918
7919  // Otherwise, create a stack slot and emit a store to it before the asm.
7920  Type *Ty = OpVal->getType();
7921  auto &DL = DAG.getDataLayout();
7922  uint64_t TySize = DL.getTypeAllocSize(Ty);
7923  unsigned Align = DL.getPrefTypeAlignment(Ty);
7924  MachineFunction &MF = DAG.getMachineFunction();
7925  int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7926  SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7927  Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7928                            MachinePointerInfo::getFixedStack(MF, SSFI),
7929                            TLI.getMemValueType(DL, Ty));
7930  OpInfo.CallOperand = StackSlot;
7931
7932  return Chain;
7933}
7934
7935/// GetRegistersForValue - Assign registers (virtual or physical) for the
7936/// specified operand.  We prefer to assign virtual registers, to allow the
7937/// register allocator to handle the assignment process.  However, if the asm
7938/// uses features that we can't model on machineinstrs, we have SDISel do the
7939/// allocation.  This produces generally horrible, but correct, code.
7940///
7941///   OpInfo describes the operand
7942///   RefOpInfo describes the matching operand if any, the operand otherwise
7943static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7944                                 SDISelAsmOperandInfo &OpInfo,
7945                                 SDISelAsmOperandInfo &RefOpInfo) {
7946  LLVMContext &Context = *DAG.getContext();
7947  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7948
7949  MachineFunction &MF = DAG.getMachineFunction();
7950  SmallVector<unsigned, 4> Regs;
7951  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7952
7953  // No work to do for memory operations.
7954  if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7955    return;
7956
7957  // If this is a constraint for a single physreg, or a constraint for a
7958  // register class, find it.
7959  unsigned AssignedReg;
7960  const TargetRegisterClass *RC;
7961  std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7962      &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7963  // RC is unset only on failure. Return immediately.
7964  if (!RC)
7965    return;
7966
7967  // Get the actual register value type.  This is important, because the user
7968  // may have asked for (e.g.) the AX register in i32 type.  We need to
7969  // remember that AX is actually i16 to get the right extension.
7970  const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7971
7972  if (OpInfo.ConstraintVT != MVT::Other) {
7973    // If this is an FP operand in an integer register (or visa versa), or more
7974    // generally if the operand value disagrees with the register class we plan
7975    // to stick it in, fix the operand type.
7976    //
7977    // If this is an input value, the bitcast to the new type is done now.
7978    // Bitcast for output value is done at the end of visitInlineAsm().
7979    if ((OpInfo.Type == InlineAsm::isOutput ||
7980         OpInfo.Type == InlineAsm::isInput) &&
7981        !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7982      // Try to convert to the first EVT that the reg class contains.  If the
7983      // types are identical size, use a bitcast to convert (e.g. two differing
7984      // vector types).  Note: output bitcast is done at the end of
7985      // visitInlineAsm().
7986      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7987        // Exclude indirect inputs while they are unsupported because the code
7988        // to perform the load is missing and thus OpInfo.CallOperand still
7989        // refers to the input address rather than the pointed-to value.
7990        if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7991          OpInfo.CallOperand =
7992              DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7993        OpInfo.ConstraintVT = RegVT;
7994        // If the operand is an FP value and we want it in integer registers,
7995        // use the corresponding integer type. This turns an f64 value into
7996        // i64, which can be passed with two i32 values on a 32-bit machine.
7997      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7998        MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7999        if (OpInfo.Type == InlineAsm::isInput)
8000          OpInfo.CallOperand =
8001              DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8002        OpInfo.ConstraintVT = VT;
8003      }
8004    }
8005  }
8006
8007  // No need to allocate a matching input constraint since the constraint it's
8008  // matching to has already been allocated.
8009  if (OpInfo.isMatchingInputConstraint())
8010    return;
8011
8012  EVT ValueVT = OpInfo.ConstraintVT;
8013  if (OpInfo.ConstraintVT == MVT::Other)
8014    ValueVT = RegVT;
8015
8016  // Initialize NumRegs.
8017  unsigned NumRegs = 1;
8018  if (OpInfo.ConstraintVT != MVT::Other)
8019    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8020
8021  // If this is a constraint for a specific physical register, like {r17},
8022  // assign it now.
8023
8024  // If this associated to a specific register, initialize iterator to correct
8025  // place. If virtual, make sure we have enough registers
8026
8027  // Initialize iterator if necessary
8028  TargetRegisterClass::iterator I = RC->begin();
8029  MachineRegisterInfo &RegInfo = MF.getRegInfo();
8030
8031  // Do not check for single registers.
8032  if (AssignedReg) {
8033      for (; *I != AssignedReg; ++I)
8034        assert(I != RC->end() && "AssignedReg should be member of RC");
8035  }
8036
8037  for (; NumRegs; --NumRegs, ++I) {
8038    assert(I != RC->end() && "Ran out of registers to allocate!");
8039    Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8040    Regs.push_back(R);
8041  }
8042
8043  OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8044}
8045
8046static unsigned
8047findMatchingInlineAsmOperand(unsigned OperandNo,
8048                             const std::vector<SDValue> &AsmNodeOperands) {
8049  // Scan until we find the definition we already emitted of this operand.
8050  unsigned CurOp = InlineAsm::Op_FirstOperand;
8051  for (; OperandNo; --OperandNo) {
8052    // Advance to the next operand.
8053    unsigned OpFlag =
8054        cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8055    assert((InlineAsm::isRegDefKind(OpFlag) ||
8056            InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8057            InlineAsm::isMemKind(OpFlag)) &&
8058           "Skipped past definitions?");
8059    CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8060  }
8061  return CurOp;
8062}
8063
8064namespace {
8065
8066class ExtraFlags {
8067  unsigned Flags = 0;
8068
8069public:
8070  explicit ExtraFlags(ImmutableCallSite CS) {
8071    const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8072    if (IA->hasSideEffects())
8073      Flags |= InlineAsm::Extra_HasSideEffects;
8074    if (IA->isAlignStack())
8075      Flags |= InlineAsm::Extra_IsAlignStack;
8076    if (CS.isConvergent())
8077      Flags |= InlineAsm::Extra_IsConvergent;
8078    Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8079  }
8080
8081  void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8082    // Ideally, we would only check against memory constraints.  However, the
8083    // meaning of an Other constraint can be target-specific and we can't easily
8084    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8085    // for Other constraints as well.
8086    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8087        OpInfo.ConstraintType == TargetLowering::C_Other) {
8088      if (OpInfo.Type == InlineAsm::isInput)
8089        Flags |= InlineAsm::Extra_MayLoad;
8090      else if (OpInfo.Type == InlineAsm::isOutput)
8091        Flags |= InlineAsm::Extra_MayStore;
8092      else if (OpInfo.Type == InlineAsm::isClobber)
8093        Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8094    }
8095  }
8096
8097  unsigned get() const { return Flags; }
8098};
8099
8100} // end anonymous namespace
8101
8102/// visitInlineAsm - Handle a call to an InlineAsm object.
8103void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8104  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8105
8106  /// ConstraintOperands - Information about all of the constraints.
8107  SDISelAsmOperandInfoVector ConstraintOperands;
8108
8109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8110  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8111      DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8112
8113  // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8114  // AsmDialect, MayLoad, MayStore).
8115  bool HasSideEffect = IA->hasSideEffects();
8116  ExtraFlags ExtraInfo(CS);
8117
8118  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8119  unsigned ResNo = 0;   // ResNo - The result number of the next output.
8120  for (auto &T : TargetConstraints) {
8121    ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8122    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8123
8124    // Compute the value type for each operand.
8125    if (OpInfo.Type == InlineAsm::isInput ||
8126        (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8127      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8128
8129      // Process the call argument. BasicBlocks are labels, currently appearing
8130      // only in asm's.
8131      const Instruction *I = CS.getInstruction();
8132      if (isa<CallBrInst>(I) &&
8133          (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8134                          cast<CallBrInst>(I)->getNumIndirectDests())) {
8135        const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8136        EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8137        OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8138      } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8139        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8140      } else {
8141        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8142      }
8143
8144      OpInfo.ConstraintVT =
8145          OpInfo
8146              .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8147              .getSimpleVT();
8148    } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8149      // The return value of the call is this value.  As such, there is no
8150      // corresponding argument.
8151      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8152      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8153        OpInfo.ConstraintVT = TLI.getSimpleValueType(
8154            DAG.getDataLayout(), STy->getElementType(ResNo));
8155      } else {
8156        assert(ResNo == 0 && "Asm only has one result!");
8157        OpInfo.ConstraintVT =
8158            TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8159      }
8160      ++ResNo;
8161    } else {
8162      OpInfo.ConstraintVT = MVT::Other;
8163    }
8164
8165    if (!HasSideEffect)
8166      HasSideEffect = OpInfo.hasMemory(TLI);
8167
8168    // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8169    // FIXME: Could we compute this on OpInfo rather than T?
8170
8171    // Compute the constraint code and ConstraintType to use.
8172    TLI.ComputeConstraintToUse(T, SDValue());
8173
8174    if (T.ConstraintType == TargetLowering::C_Immediate &&
8175        OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8176      // We've delayed emitting a diagnostic like the "n" constraint because
8177      // inlining could cause an integer showing up.
8178      return emitInlineAsmError(
8179          CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8180                  "integer constant expression");
8181
8182    ExtraInfo.update(T);
8183  }
8184
8185
8186  // We won't need to flush pending loads if this asm doesn't touch
8187  // memory and is nonvolatile.
8188  SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8189
8190  bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8191  if (IsCallBr) {
8192    // If this is a callbr we need to flush pending exports since inlineasm_br
8193    // is a terminator. We need to do this before nodes are glued to
8194    // the inlineasm_br node.
8195    Chain = getControlRoot();
8196  }
8197
8198  // Second pass over the constraints: compute which constraint option to use.
8199  for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8200    // If this is an output operand with a matching input operand, look up the
8201    // matching input. If their types mismatch, e.g. one is an integer, the
8202    // other is floating point, or their sizes are different, flag it as an
8203    // error.
8204    if (OpInfo.hasMatchingInput()) {
8205      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8206      patchMatchingInput(OpInfo, Input, DAG);
8207    }
8208
8209    // Compute the constraint code and ConstraintType to use.
8210    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8211
8212    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8213        OpInfo.Type == InlineAsm::isClobber)
8214      continue;
8215
8216    // If this is a memory input, and if the operand is not indirect, do what we
8217    // need to provide an address for the memory input.
8218    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8219        !OpInfo.isIndirect) {
8220      assert((OpInfo.isMultipleAlternative ||
8221              (OpInfo.Type == InlineAsm::isInput)) &&
8222             "Can only indirectify direct input operands!");
8223
8224      // Memory operands really want the address of the value.
8225      Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8226
8227      // There is no longer a Value* corresponding to this operand.
8228      OpInfo.CallOperandVal = nullptr;
8229
8230      // It is now an indirect operand.
8231      OpInfo.isIndirect = true;
8232    }
8233
8234  }
8235
8236  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8237  std::vector<SDValue> AsmNodeOperands;
8238  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8239  AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8240      IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8241
8242  // If we have a !srcloc metadata node associated with it, we want to attach
8243  // this to the ultimately generated inline asm machineinstr.  To do this, we
8244  // pass in the third operand as this (potentially null) inline asm MDNode.
8245  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8246  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8247
8248  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8249  // bits as operand 3.
8250  AsmNodeOperands.push_back(DAG.getTargetConstant(
8251      ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8252
8253  // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8254  // this, assign virtual and physical registers for inputs and otput.
8255  for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8256    // Assign Registers.
8257    SDISelAsmOperandInfo &RefOpInfo =
8258        OpInfo.isMatchingInputConstraint()
8259            ? ConstraintOperands[OpInfo.getMatchedOperand()]
8260            : OpInfo;
8261    GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8262
8263    switch (OpInfo.Type) {
8264    case InlineAsm::isOutput:
8265      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8266        unsigned ConstraintID =
8267            TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8268        assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8269               "Failed to convert memory constraint code to constraint id.");
8270
8271        // Add information to the INLINEASM node to know about this output.
8272        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8273        OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8274        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8275                                                        MVT::i32));
8276        AsmNodeOperands.push_back(OpInfo.CallOperand);
8277      } else {
8278        // Otherwise, this outputs to a register (directly for C_Register /
8279        // C_RegisterClass, and a target-defined fashion for
8280        // C_Immediate/C_Other). Find a register that we can use.
8281        if (OpInfo.AssignedRegs.Regs.empty()) {
8282          emitInlineAsmError(
8283              CS, "couldn't allocate output register for constraint '" +
8284                      Twine(OpInfo.ConstraintCode) + "'");
8285          return;
8286        }
8287
8288        // Add information to the INLINEASM node to know that this register is
8289        // set.
8290        OpInfo.AssignedRegs.AddInlineAsmOperands(
8291            OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8292                                  : InlineAsm::Kind_RegDef,
8293            false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8294      }
8295      break;
8296
8297    case InlineAsm::isInput: {
8298      SDValue InOperandVal = OpInfo.CallOperand;
8299
8300      if (OpInfo.isMatchingInputConstraint()) {
8301        // If this is required to match an output register we have already set,
8302        // just use its register.
8303        auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8304                                                  AsmNodeOperands);
8305        unsigned OpFlag =
8306          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8307        if (InlineAsm::isRegDefKind(OpFlag) ||
8308            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8309          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8310          if (OpInfo.isIndirect) {
8311            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8312            emitInlineAsmError(CS, "inline asm not supported yet:"
8313                                   " don't know how to handle tied "
8314                                   "indirect register inputs");
8315            return;
8316          }
8317
8318          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8319          SmallVector<unsigned, 4> Regs;
8320
8321          if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8322            unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8323            MachineRegisterInfo &RegInfo =
8324                DAG.getMachineFunction().getRegInfo();
8325            for (unsigned i = 0; i != NumRegs; ++i)
8326              Regs.push_back(RegInfo.createVirtualRegister(RC));
8327          } else {
8328            emitInlineAsmError(CS, "inline asm error: This value type register "
8329                                   "class is not natively supported!");
8330            return;
8331          }
8332
8333          RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8334
8335          SDLoc dl = getCurSDLoc();
8336          // Use the produced MatchedRegs object to
8337          MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8338                                    CS.getInstruction());
8339          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8340                                           true, OpInfo.getMatchedOperand(), dl,
8341                                           DAG, AsmNodeOperands);
8342          break;
8343        }
8344
8345        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8346        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8347               "Unexpected number of operands");
8348        // Add information to the INLINEASM node to know about this input.
8349        // See InlineAsm.h isUseOperandTiedToDef.
8350        OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8351        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8352                                                    OpInfo.getMatchedOperand());
8353        AsmNodeOperands.push_back(DAG.getTargetConstant(
8354            OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8355        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8356        break;
8357      }
8358
8359      // Treat indirect 'X' constraint as memory.
8360      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8361          OpInfo.isIndirect)
8362        OpInfo.ConstraintType = TargetLowering::C_Memory;
8363
8364      if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8365          OpInfo.ConstraintType == TargetLowering::C_Other) {
8366        std::vector<SDValue> Ops;
8367        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8368                                          Ops, DAG);
8369        if (Ops.empty()) {
8370          if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8371            if (isa<ConstantSDNode>(InOperandVal)) {
8372              emitInlineAsmError(CS, "value out of range for constraint '" +
8373                                 Twine(OpInfo.ConstraintCode) + "'");
8374              return;
8375            }
8376
8377          emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8378                                     Twine(OpInfo.ConstraintCode) + "'");
8379          return;
8380        }
8381
8382        // Add information to the INLINEASM node to know about this input.
8383        unsigned ResOpType =
8384          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8385        AsmNodeOperands.push_back(DAG.getTargetConstant(
8386            ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8387        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8388        break;
8389      }
8390
8391      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8392        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8393        assert(InOperandVal.getValueType() ==
8394                   TLI.getPointerTy(DAG.getDataLayout()) &&
8395               "Memory operands expect pointer values");
8396
8397        unsigned ConstraintID =
8398            TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8399        assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8400               "Failed to convert memory constraint code to constraint id.");
8401
8402        // Add information to the INLINEASM node to know about this input.
8403        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8404        ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8405        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8406                                                        getCurSDLoc(),
8407                                                        MVT::i32));
8408        AsmNodeOperands.push_back(InOperandVal);
8409        break;
8410      }
8411
8412      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8413              OpInfo.ConstraintType == TargetLowering::C_Register) &&
8414             "Unknown constraint type!");
8415
8416      // TODO: Support this.
8417      if (OpInfo.isIndirect) {
8418        emitInlineAsmError(
8419            CS, "Don't know how to handle indirect register inputs yet "
8420                "for constraint '" +
8421                    Twine(OpInfo.ConstraintCode) + "'");
8422        return;
8423      }
8424
8425      // Copy the input into the appropriate registers.
8426      if (OpInfo.AssignedRegs.Regs.empty()) {
8427        emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8428                                   Twine(OpInfo.ConstraintCode) + "'");
8429        return;
8430      }
8431
8432      SDLoc dl = getCurSDLoc();
8433
8434      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8435                                        Chain, &Flag, CS.getInstruction());
8436
8437      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8438                                               dl, DAG, AsmNodeOperands);
8439      break;
8440    }
8441    case InlineAsm::isClobber:
8442      // Add the clobbered value to the operand list, so that the register
8443      // allocator is aware that the physreg got clobbered.
8444      if (!OpInfo.AssignedRegs.Regs.empty())
8445        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8446                                                 false, 0, getCurSDLoc(), DAG,
8447                                                 AsmNodeOperands);
8448      break;
8449    }
8450  }
8451
8452  // Finish up input operands.  Set the input chain and add the flag last.
8453  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8454  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8455
8456  unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8457  Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8458                      DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8459  Flag = Chain.getValue(1);
8460
8461  // Do additional work to generate outputs.
8462
8463  SmallVector<EVT, 1> ResultVTs;
8464  SmallVector<SDValue, 1> ResultValues;
8465  SmallVector<SDValue, 8> OutChains;
8466
8467  llvm::Type *CSResultType = CS.getType();
8468  ArrayRef<Type *> ResultTypes;
8469  if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8470    ResultTypes = StructResult->elements();
8471  else if (!CSResultType->isVoidTy())
8472    ResultTypes = makeArrayRef(CSResultType);
8473
8474  auto CurResultType = ResultTypes.begin();
8475  auto handleRegAssign = [&](SDValue V) {
8476    assert(CurResultType != ResultTypes.end() && "Unexpected value");
8477    assert((*CurResultType)->isSized() && "Unexpected unsized type");
8478    EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8479    ++CurResultType;
8480    // If the type of the inline asm call site return value is different but has
8481    // same size as the type of the asm output bitcast it.  One example of this
8482    // is for vectors with different width / number of elements.  This can
8483    // happen for register classes that can contain multiple different value
8484    // types.  The preg or vreg allocated may not have the same VT as was
8485    // expected.
8486    //
8487    // This can also happen for a return value that disagrees with the register
8488    // class it is put in, eg. a double in a general-purpose register on a
8489    // 32-bit machine.
8490    if (ResultVT != V.getValueType() &&
8491        ResultVT.getSizeInBits() == V.getValueSizeInBits())
8492      V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8493    else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8494             V.getValueType().isInteger()) {
8495      // If a result value was tied to an input value, the computed result
8496      // may have a wider width than the expected result.  Extract the
8497      // relevant portion.
8498      V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8499    }
8500    assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8501    ResultVTs.push_back(ResultVT);
8502    ResultValues.push_back(V);
8503  };
8504
8505  // Deal with output operands.
8506  for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8507    if (OpInfo.Type == InlineAsm::isOutput) {
8508      SDValue Val;
8509      // Skip trivial output operands.
8510      if (OpInfo.AssignedRegs.Regs.empty())
8511        continue;
8512
8513      switch (OpInfo.ConstraintType) {
8514      case TargetLowering::C_Register:
8515      case TargetLowering::C_RegisterClass:
8516        Val = OpInfo.AssignedRegs.getCopyFromRegs(
8517            DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8518        break;
8519      case TargetLowering::C_Immediate:
8520      case TargetLowering::C_Other:
8521        Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8522                                              OpInfo, DAG);
8523        break;
8524      case TargetLowering::C_Memory:
8525        break; // Already handled.
8526      case TargetLowering::C_Unknown:
8527        assert(false && "Unexpected unknown constraint");
8528      }
8529
8530      // Indirect output manifest as stores. Record output chains.
8531      if (OpInfo.isIndirect) {
8532        const Value *Ptr = OpInfo.CallOperandVal;
8533        assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8534        SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8535                                     MachinePointerInfo(Ptr));
8536        OutChains.push_back(Store);
8537      } else {
8538        // generate CopyFromRegs to associated registers.
8539        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8540        if (Val.getOpcode() == ISD::MERGE_VALUES) {
8541          for (const SDValue &V : Val->op_values())
8542            handleRegAssign(V);
8543        } else
8544          handleRegAssign(Val);
8545      }
8546    }
8547  }
8548
8549  // Set results.
8550  if (!ResultValues.empty()) {
8551    assert(CurResultType == ResultTypes.end() &&
8552           "Mismatch in number of ResultTypes");
8553    assert(ResultValues.size() == ResultTypes.size() &&
8554           "Mismatch in number of output operands in asm result");
8555
8556    SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8557                            DAG.getVTList(ResultVTs), ResultValues);
8558    setValue(CS.getInstruction(), V);
8559  }
8560
8561  // Collect store chains.
8562  if (!OutChains.empty())
8563    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8564
8565  // Only Update Root if inline assembly has a memory effect.
8566  if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8567    DAG.setRoot(Chain);
8568}
8569
8570void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8571                                             const Twine &Message) {
8572  LLVMContext &Ctx = *DAG.getContext();
8573  Ctx.emitError(CS.getInstruction(), Message);
8574
8575  // Make sure we leave the DAG in a valid state
8576  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8577  SmallVector<EVT, 1> ValueVTs;
8578  ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8579
8580  if (ValueVTs.empty())
8581    return;
8582
8583  SmallVector<SDValue, 1> Ops;
8584  for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8585    Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8586
8587  setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8588}
8589
8590void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8591  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8592                          MVT::Other, getRoot(),
8593                          getValue(I.getArgOperand(0)),
8594                          DAG.getSrcValue(I.getArgOperand(0))));
8595}
8596
8597void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8598  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8599  const DataLayout &DL = DAG.getDataLayout();
8600  SDValue V = DAG.getVAArg(
8601      TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8602      getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8603      DL.getABITypeAlignment(I.getType()));
8604  DAG.setRoot(V.getValue(1));
8605
8606  if (I.getType()->isPointerTy())
8607    V = DAG.getPtrExtOrTrunc(
8608        V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8609  setValue(&I, V);
8610}
8611
8612void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8613  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8614                          MVT::Other, getRoot(),
8615                          getValue(I.getArgOperand(0)),
8616                          DAG.getSrcValue(I.getArgOperand(0))));
8617}
8618
8619void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8620  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8621                          MVT::Other, getRoot(),
8622                          getValue(I.getArgOperand(0)),
8623                          getValue(I.getArgOperand(1)),
8624                          DAG.getSrcValue(I.getArgOperand(0)),
8625                          DAG.getSrcValue(I.getArgOperand(1))));
8626}
8627
8628SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8629                                                    const Instruction &I,
8630                                                    SDValue Op) {
8631  const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8632  if (!Range)
8633    return Op;
8634
8635  ConstantRange CR = getConstantRangeFromMetadata(*Range);
8636  if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8637    return Op;
8638
8639  APInt Lo = CR.getUnsignedMin();
8640  if (!Lo.isMinValue())
8641    return Op;
8642
8643  APInt Hi = CR.getUnsignedMax();
8644  unsigned Bits = std::max(Hi.getActiveBits(),
8645                           static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8646
8647  EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8648
8649  SDLoc SL = getCurSDLoc();
8650
8651  SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8652                             DAG.getValueType(SmallVT));
8653  unsigned NumVals = Op.getNode()->getNumValues();
8654  if (NumVals == 1)
8655    return ZExt;
8656
8657  SmallVector<SDValue, 4> Ops;
8658
8659  Ops.push_back(ZExt);
8660  for (unsigned I = 1; I != NumVals; ++I)
8661    Ops.push_back(Op.getValue(I));
8662
8663  return DAG.getMergeValues(Ops, SL);
8664}
8665
8666/// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8667/// the call being lowered.
8668///
8669/// This is a helper for lowering intrinsics that follow a target calling
8670/// convention or require stack pointer adjustment. Only a subset of the
8671/// intrinsic's operands need to participate in the calling convention.
8672void SelectionDAGBuilder::populateCallLoweringInfo(
8673    TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8674    unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8675    bool IsPatchPoint) {
8676  TargetLowering::ArgListTy Args;
8677  Args.reserve(NumArgs);
8678
8679  // Populate the argument list.
8680  // Attributes for args start at offset 1, after the return attribute.
8681  for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8682       ArgI != ArgE; ++ArgI) {
8683    const Value *V = Call->getOperand(ArgI);
8684
8685    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8686
8687    TargetLowering::ArgListEntry Entry;
8688    Entry.Node = getValue(V);
8689    Entry.Ty = V->getType();
8690    Entry.setAttributes(Call, ArgI);
8691    Args.push_back(Entry);
8692  }
8693
8694  CLI.setDebugLoc(getCurSDLoc())
8695      .setChain(getRoot())
8696      .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8697      .setDiscardResult(Call->use_empty())
8698      .setIsPatchPoint(IsPatchPoint);
8699}
8700
8701/// Add a stack map intrinsic call's live variable operands to a stackmap
8702/// or patchpoint target node's operand list.
8703///
8704/// Constants are converted to TargetConstants purely as an optimization to
8705/// avoid constant materialization and register allocation.
8706///
8707/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8708/// generate addess computation nodes, and so FinalizeISel can convert the
8709/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8710/// address materialization and register allocation, but may also be required
8711/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8712/// alloca in the entry block, then the runtime may assume that the alloca's
8713/// StackMap location can be read immediately after compilation and that the
8714/// location is valid at any point during execution (this is similar to the
8715/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8716/// only available in a register, then the runtime would need to trap when
8717/// execution reaches the StackMap in order to read the alloca's location.
8718static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8719                                const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8720                                SelectionDAGBuilder &Builder) {
8721  for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8722    SDValue OpVal = Builder.getValue(CS.getArgument(i));
8723    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8724      Ops.push_back(
8725        Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8726      Ops.push_back(
8727        Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8728    } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8729      const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8730      Ops.push_back(Builder.DAG.getTargetFrameIndex(
8731          FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8732    } else
8733      Ops.push_back(OpVal);
8734  }
8735}
8736
8737/// Lower llvm.experimental.stackmap directly to its target opcode.
8738void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8739  // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8740  //                                  [live variables...])
8741
8742  assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8743
8744  SDValue Chain, InFlag, Callee, NullPtr;
8745  SmallVector<SDValue, 32> Ops;
8746
8747  SDLoc DL = getCurSDLoc();
8748  Callee = getValue(CI.getCalledValue());
8749  NullPtr = DAG.getIntPtrConstant(0, DL, true);
8750
8751  // The stackmap intrinsic only records the live variables (the arguments
8752  // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8753  // intrinsic, this won't be lowered to a function call. This means we don't
8754  // have to worry about calling conventions and target specific lowering code.
8755  // Instead we perform the call lowering right here.
8756  //
8757  // chain, flag = CALLSEQ_START(chain, 0, 0)
8758  // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8759  // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8760  //
8761  Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8762  InFlag = Chain.getValue(1);
8763
8764  // Add the <id> and <numBytes> constants.
8765  SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8766  Ops.push_back(DAG.getTargetConstant(
8767                  cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8768  SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8769  Ops.push_back(DAG.getTargetConstant(
8770                  cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8771                  MVT::i32));
8772
8773  // Push live variables for the stack map.
8774  addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8775
8776  // We are not pushing any register mask info here on the operands list,
8777  // because the stackmap doesn't clobber anything.
8778
8779  // Push the chain and the glue flag.
8780  Ops.push_back(Chain);
8781  Ops.push_back(InFlag);
8782
8783  // Create the STACKMAP node.
8784  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8785  SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8786  Chain = SDValue(SM, 0);
8787  InFlag = Chain.getValue(1);
8788
8789  Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8790
8791  // Stackmaps don't generate values, so nothing goes into the NodeMap.
8792
8793  // Set the root to the target-lowered call chain.
8794  DAG.setRoot(Chain);
8795
8796  // Inform the Frame Information that we have a stackmap in this function.
8797  FuncInfo.MF->getFrameInfo().setHasStackMap();
8798}
8799
8800/// Lower llvm.experimental.patchpoint directly to its target opcode.
8801void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8802                                          const BasicBlock *EHPadBB) {
8803  // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8804  //                                                 i32 <numBytes>,
8805  //                                                 i8* <target>,
8806  //                                                 i32 <numArgs>,
8807  //                                                 [Args...],
8808  //                                                 [live variables...])
8809
8810  CallingConv::ID CC = CS.getCallingConv();
8811  bool IsAnyRegCC = CC == CallingConv::AnyReg;
8812  bool HasDef = !CS->getType()->isVoidTy();
8813  SDLoc dl = getCurSDLoc();
8814  SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8815
8816  // Handle immediate and symbolic callees.
8817  if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8818    Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8819                                   /*isTarget=*/true);
8820  else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8821    Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8822                                         SDLoc(SymbolicCallee),
8823                                         SymbolicCallee->getValueType(0));
8824
8825  // Get the real number of arguments participating in the call <numArgs>
8826  SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8827  unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8828
8829  // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8830  // Intrinsics include all meta-operands up to but not including CC.
8831  unsigned NumMetaOpers = PatchPointOpers::CCPos;
8832  assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8833         "Not enough arguments provided to the patchpoint intrinsic");
8834
8835  // For AnyRegCC the arguments are lowered later on manually.
8836  unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8837  Type *ReturnTy =
8838    IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8839
8840  TargetLowering::CallLoweringInfo CLI(DAG);
8841  populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8842                           NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8843  std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8844
8845  SDNode *CallEnd = Result.second.getNode();
8846  if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8847    CallEnd = CallEnd->getOperand(0).getNode();
8848
8849  /// Get a call instruction from the call sequence chain.
8850  /// Tail calls are not allowed.
8851  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8852         "Expected a callseq node.");
8853  SDNode *Call = CallEnd->getOperand(0).getNode();
8854  bool HasGlue = Call->getGluedNode();
8855
8856  // Replace the target specific call node with the patchable intrinsic.
8857  SmallVector<SDValue, 8> Ops;
8858
8859  // Add the <id> and <numBytes> constants.
8860  SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8861  Ops.push_back(DAG.getTargetConstant(
8862                  cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8863  SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8864  Ops.push_back(DAG.getTargetConstant(
8865                  cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8866                  MVT::i32));
8867
8868  // Add the callee.
8869  Ops.push_back(Callee);
8870
8871  // Adjust <numArgs> to account for any arguments that have been passed on the
8872  // stack instead.
8873  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8874  unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8875  NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8876  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8877
8878  // Add the calling convention
8879  Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8880
8881  // Add the arguments we omitted previously. The register allocator should
8882  // place these in any free register.
8883  if (IsAnyRegCC)
8884    for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8885      Ops.push_back(getValue(CS.getArgument(i)));
8886
8887  // Push the arguments from the call instruction up to the register mask.
8888  SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8889  Ops.append(Call->op_begin() + 2, e);
8890
8891  // Push live variables for the stack map.
8892  addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8893
8894  // Push the register mask info.
8895  if (HasGlue)
8896    Ops.push_back(*(Call->op_end()-2));
8897  else
8898    Ops.push_back(*(Call->op_end()-1));
8899
8900  // Push the chain (this is originally the first operand of the call, but
8901  // becomes now the last or second to last operand).
8902  Ops.push_back(*(Call->op_begin()));
8903
8904  // Push the glue flag (last operand).
8905  if (HasGlue)
8906    Ops.push_back(*(Call->op_end()-1));
8907
8908  SDVTList NodeTys;
8909  if (IsAnyRegCC && HasDef) {
8910    // Create the return types based on the intrinsic definition
8911    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8912    SmallVector<EVT, 3> ValueVTs;
8913    ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8914    assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8915
8916    // There is always a chain and a glue type at the end
8917    ValueVTs.push_back(MVT::Other);
8918    ValueVTs.push_back(MVT::Glue);
8919    NodeTys = DAG.getVTList(ValueVTs);
8920  } else
8921    NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8922
8923  // Replace the target specific call node with a PATCHPOINT node.
8924  MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8925                                         dl, NodeTys, Ops);
8926
8927  // Update the NodeMap.
8928  if (HasDef) {
8929    if (IsAnyRegCC)
8930      setValue(CS.getInstruction(), SDValue(MN, 0));
8931    else
8932      setValue(CS.getInstruction(), Result.first);
8933  }
8934
8935  // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8936  // call sequence. Furthermore the location of the chain and glue can change
8937  // when the AnyReg calling convention is used and the intrinsic returns a
8938  // value.
8939  if (IsAnyRegCC && HasDef) {
8940    SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8941    SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8942    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8943  } else
8944    DAG.ReplaceAllUsesWith(Call, MN);
8945  DAG.DeleteNode(Call);
8946
8947  // Inform the Frame Information that we have a patchpoint in this function.
8948  FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8949}
8950
8951void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8952                                            unsigned Intrinsic) {
8953  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8954  SDValue Op1 = getValue(I.getArgOperand(0));
8955  SDValue Op2;
8956  if (I.getNumArgOperands() > 1)
8957    Op2 = getValue(I.getArgOperand(1));
8958  SDLoc dl = getCurSDLoc();
8959  EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8960  SDValue Res;
8961  FastMathFlags FMF;
8962  if (isa<FPMathOperator>(I))
8963    FMF = I.getFastMathFlags();
8964
8965  switch (Intrinsic) {
8966  case Intrinsic::experimental_vector_reduce_v2_fadd:
8967    if (FMF.allowReassoc())
8968      Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8969                        DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8970    else
8971      Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8972    break;
8973  case Intrinsic::experimental_vector_reduce_v2_fmul:
8974    if (FMF.allowReassoc())
8975      Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8976                        DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8977    else
8978      Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8979    break;
8980  case Intrinsic::experimental_vector_reduce_add:
8981    Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8982    break;
8983  case Intrinsic::experimental_vector_reduce_mul:
8984    Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8985    break;
8986  case Intrinsic::experimental_vector_reduce_and:
8987    Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8988    break;
8989  case Intrinsic::experimental_vector_reduce_or:
8990    Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8991    break;
8992  case Intrinsic::experimental_vector_reduce_xor:
8993    Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8994    break;
8995  case Intrinsic::experimental_vector_reduce_smax:
8996    Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8997    break;
8998  case Intrinsic::experimental_vector_reduce_smin:
8999    Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9000    break;
9001  case Intrinsic::experimental_vector_reduce_umax:
9002    Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9003    break;
9004  case Intrinsic::experimental_vector_reduce_umin:
9005    Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9006    break;
9007  case Intrinsic::experimental_vector_reduce_fmax:
9008    Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
9009    break;
9010  case Intrinsic::experimental_vector_reduce_fmin:
9011    Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
9012    break;
9013  default:
9014    llvm_unreachable("Unhandled vector reduce intrinsic");
9015  }
9016  setValue(&I, Res);
9017}
9018
9019/// Returns an AttributeList representing the attributes applied to the return
9020/// value of the given call.
9021static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9022  SmallVector<Attribute::AttrKind, 2> Attrs;
9023  if (CLI.RetSExt)
9024    Attrs.push_back(Attribute::SExt);
9025  if (CLI.RetZExt)
9026    Attrs.push_back(Attribute::ZExt);
9027  if (CLI.IsInReg)
9028    Attrs.push_back(Attribute::InReg);
9029
9030  return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9031                            Attrs);
9032}
9033
9034/// TargetLowering::LowerCallTo - This is the default LowerCallTo
9035/// implementation, which just calls LowerCall.
9036/// FIXME: When all targets are
9037/// migrated to using LowerCall, this hook should be integrated into SDISel.
9038std::pair<SDValue, SDValue>
9039TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9040  // Handle the incoming return values from the call.
9041  CLI.Ins.clear();
9042  Type *OrigRetTy = CLI.RetTy;
9043  SmallVector<EVT, 4> RetTys;
9044  SmallVector<uint64_t, 4> Offsets;
9045  auto &DL = CLI.DAG.getDataLayout();
9046  ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9047
9048  if (CLI.IsPostTypeLegalization) {
9049    // If we are lowering a libcall after legalization, split the return type.
9050    SmallVector<EVT, 4> OldRetTys;
9051    SmallVector<uint64_t, 4> OldOffsets;
9052    RetTys.swap(OldRetTys);
9053    Offsets.swap(OldOffsets);
9054
9055    for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9056      EVT RetVT = OldRetTys[i];
9057      uint64_t Offset = OldOffsets[i];
9058      MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9059      unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9060      unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9061      RetTys.append(NumRegs, RegisterVT);
9062      for (unsigned j = 0; j != NumRegs; ++j)
9063        Offsets.push_back(Offset + j * RegisterVTByteSZ);
9064    }
9065  }
9066
9067  SmallVector<ISD::OutputArg, 4> Outs;
9068  GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9069
9070  bool CanLowerReturn =
9071      this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9072                           CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9073
9074  SDValue DemoteStackSlot;
9075  int DemoteStackIdx = -100;
9076  if (!CanLowerReturn) {
9077    // FIXME: equivalent assert?
9078    // assert(!CS.hasInAllocaArgument() &&
9079    //        "sret demotion is incompatible with inalloca");
9080    uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9081    unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
9082    MachineFunction &MF = CLI.DAG.getMachineFunction();
9083    DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
9084    Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9085                                              DL.getAllocaAddrSpace());
9086
9087    DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9088    ArgListEntry Entry;
9089    Entry.Node = DemoteStackSlot;
9090    Entry.Ty = StackSlotPtrType;
9091    Entry.IsSExt = false;
9092    Entry.IsZExt = false;
9093    Entry.IsInReg = false;
9094    Entry.IsSRet = true;
9095    Entry.IsNest = false;
9096    Entry.IsByVal = false;
9097    Entry.IsReturned = false;
9098    Entry.IsSwiftSelf = false;
9099    Entry.IsSwiftError = false;
9100    Entry.IsCFGuardTarget = false;
9101    Entry.Alignment = Align;
9102    CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9103    CLI.NumFixedArgs += 1;
9104    CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9105
9106    // sret demotion isn't compatible with tail-calls, since the sret argument
9107    // points into the callers stack frame.
9108    CLI.IsTailCall = false;
9109  } else {
9110    bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9111        CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9112    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9113      ISD::ArgFlagsTy Flags;
9114      if (NeedsRegBlock) {
9115        Flags.setInConsecutiveRegs();
9116        if (I == RetTys.size() - 1)
9117          Flags.setInConsecutiveRegsLast();
9118      }
9119      EVT VT = RetTys[I];
9120      MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9121                                                     CLI.CallConv, VT);
9122      unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9123                                                       CLI.CallConv, VT);
9124      for (unsigned i = 0; i != NumRegs; ++i) {
9125        ISD::InputArg MyFlags;
9126        MyFlags.Flags = Flags;
9127        MyFlags.VT = RegisterVT;
9128        MyFlags.ArgVT = VT;
9129        MyFlags.Used = CLI.IsReturnValueUsed;
9130        if (CLI.RetTy->isPointerTy()) {
9131          MyFlags.Flags.setPointer();
9132          MyFlags.Flags.setPointerAddrSpace(
9133              cast<PointerType>(CLI.RetTy)->getAddressSpace());
9134        }
9135        if (CLI.RetSExt)
9136          MyFlags.Flags.setSExt();
9137        if (CLI.RetZExt)
9138          MyFlags.Flags.setZExt();
9139        if (CLI.IsInReg)
9140          MyFlags.Flags.setInReg();
9141        CLI.Ins.push_back(MyFlags);
9142      }
9143    }
9144  }
9145
9146  // We push in swifterror return as the last element of CLI.Ins.
9147  ArgListTy &Args = CLI.getArgs();
9148  if (supportSwiftError()) {
9149    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9150      if (Args[i].IsSwiftError) {
9151        ISD::InputArg MyFlags;
9152        MyFlags.VT = getPointerTy(DL);
9153        MyFlags.ArgVT = EVT(getPointerTy(DL));
9154        MyFlags.Flags.setSwiftError();
9155        CLI.Ins.push_back(MyFlags);
9156      }
9157    }
9158  }
9159
9160  // Handle all of the outgoing arguments.
9161  CLI.Outs.clear();
9162  CLI.OutVals.clear();
9163  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9164    SmallVector<EVT, 4> ValueVTs;
9165    ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9166    // FIXME: Split arguments if CLI.IsPostTypeLegalization
9167    Type *FinalType = Args[i].Ty;
9168    if (Args[i].IsByVal)
9169      FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9170    bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9171        FinalType, CLI.CallConv, CLI.IsVarArg);
9172    for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9173         ++Value) {
9174      EVT VT = ValueVTs[Value];
9175      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9176      SDValue Op = SDValue(Args[i].Node.getNode(),
9177                           Args[i].Node.getResNo() + Value);
9178      ISD::ArgFlagsTy Flags;
9179
9180      // Certain targets (such as MIPS), may have a different ABI alignment
9181      // for a type depending on the context. Give the target a chance to
9182      // specify the alignment it wants.
9183      const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9184
9185      if (Args[i].Ty->isPointerTy()) {
9186        Flags.setPointer();
9187        Flags.setPointerAddrSpace(
9188            cast<PointerType>(Args[i].Ty)->getAddressSpace());
9189      }
9190      if (Args[i].IsZExt)
9191        Flags.setZExt();
9192      if (Args[i].IsSExt)
9193        Flags.setSExt();
9194      if (Args[i].IsInReg) {
9195        // If we are using vectorcall calling convention, a structure that is
9196        // passed InReg - is surely an HVA
9197        if (CLI.CallConv == CallingConv::X86_VectorCall &&
9198            isa<StructType>(FinalType)) {
9199          // The first value of a structure is marked
9200          if (0 == Value)
9201            Flags.setHvaStart();
9202          Flags.setHva();
9203        }
9204        // Set InReg Flag
9205        Flags.setInReg();
9206      }
9207      if (Args[i].IsSRet)
9208        Flags.setSRet();
9209      if (Args[i].IsSwiftSelf)
9210        Flags.setSwiftSelf();
9211      if (Args[i].IsSwiftError)
9212        Flags.setSwiftError();
9213      if (Args[i].IsCFGuardTarget)
9214        Flags.setCFGuardTarget();
9215      if (Args[i].IsByVal)
9216        Flags.setByVal();
9217      if (Args[i].IsInAlloca) {
9218        Flags.setInAlloca();
9219        // Set the byval flag for CCAssignFn callbacks that don't know about
9220        // inalloca.  This way we can know how many bytes we should've allocated
9221        // and how many bytes a callee cleanup function will pop.  If we port
9222        // inalloca to more targets, we'll have to add custom inalloca handling
9223        // in the various CC lowering callbacks.
9224        Flags.setByVal();
9225      }
9226      if (Args[i].IsByVal || Args[i].IsInAlloca) {
9227        PointerType *Ty = cast<PointerType>(Args[i].Ty);
9228        Type *ElementTy = Ty->getElementType();
9229
9230        unsigned FrameSize = DL.getTypeAllocSize(
9231            Args[i].ByValType ? Args[i].ByValType : ElementTy);
9232        Flags.setByValSize(FrameSize);
9233
9234        // info is not there but there are cases it cannot get right.
9235        unsigned FrameAlign;
9236        if (Args[i].Alignment)
9237          FrameAlign = Args[i].Alignment;
9238        else
9239          FrameAlign = getByValTypeAlignment(ElementTy, DL);
9240        Flags.setByValAlign(Align(FrameAlign));
9241      }
9242      if (Args[i].IsNest)
9243        Flags.setNest();
9244      if (NeedsRegBlock)
9245        Flags.setInConsecutiveRegs();
9246      Flags.setOrigAlign(OriginalAlignment);
9247
9248      MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9249                                                 CLI.CallConv, VT);
9250      unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9251                                                        CLI.CallConv, VT);
9252      SmallVector<SDValue, 4> Parts(NumParts);
9253      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9254
9255      if (Args[i].IsSExt)
9256        ExtendKind = ISD::SIGN_EXTEND;
9257      else if (Args[i].IsZExt)
9258        ExtendKind = ISD::ZERO_EXTEND;
9259
9260      // Conservatively only handle 'returned' on non-vectors that can be lowered,
9261      // for now.
9262      if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9263          CanLowerReturn) {
9264        assert((CLI.RetTy == Args[i].Ty ||
9265                (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9266                 CLI.RetTy->getPointerAddressSpace() ==
9267                     Args[i].Ty->getPointerAddressSpace())) &&
9268               RetTys.size() == NumValues && "unexpected use of 'returned'");
9269        // Before passing 'returned' to the target lowering code, ensure that
9270        // either the register MVT and the actual EVT are the same size or that
9271        // the return value and argument are extended in the same way; in these
9272        // cases it's safe to pass the argument register value unchanged as the
9273        // return register value (although it's at the target's option whether
9274        // to do so)
9275        // TODO: allow code generation to take advantage of partially preserved
9276        // registers rather than clobbering the entire register when the
9277        // parameter extension method is not compatible with the return
9278        // extension method
9279        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9280            (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9281             CLI.RetZExt == Args[i].IsZExt))
9282          Flags.setReturned();
9283      }
9284
9285      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9286                     CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9287
9288      for (unsigned j = 0; j != NumParts; ++j) {
9289        // if it isn't first piece, alignment must be 1
9290        // For scalable vectors the scalable part is currently handled
9291        // by individual targets, so we just use the known minimum size here.
9292        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9293                    i < CLI.NumFixedArgs, i,
9294                    j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9295        if (NumParts > 1 && j == 0)
9296          MyFlags.Flags.setSplit();
9297        else if (j != 0) {
9298          MyFlags.Flags.setOrigAlign(Align::None());
9299          if (j == NumParts - 1)
9300            MyFlags.Flags.setSplitEnd();
9301        }
9302
9303        CLI.Outs.push_back(MyFlags);
9304        CLI.OutVals.push_back(Parts[j]);
9305      }
9306
9307      if (NeedsRegBlock && Value == NumValues - 1)
9308        CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9309    }
9310  }
9311
9312  SmallVector<SDValue, 4> InVals;
9313  CLI.Chain = LowerCall(CLI, InVals);
9314
9315  // Update CLI.InVals to use outside of this function.
9316  CLI.InVals = InVals;
9317
9318  // Verify that the target's LowerCall behaved as expected.
9319  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9320         "LowerCall didn't return a valid chain!");
9321  assert((!CLI.IsTailCall || InVals.empty()) &&
9322         "LowerCall emitted a return value for a tail call!");
9323  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9324         "LowerCall didn't emit the correct number of values!");
9325
9326  // For a tail call, the return value is merely live-out and there aren't
9327  // any nodes in the DAG representing it. Return a special value to
9328  // indicate that a tail call has been emitted and no more Instructions
9329  // should be processed in the current block.
9330  if (CLI.IsTailCall) {
9331    CLI.DAG.setRoot(CLI.Chain);
9332    return std::make_pair(SDValue(), SDValue());
9333  }
9334
9335#ifndef NDEBUG
9336  for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9337    assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9338    assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9339           "LowerCall emitted a value with the wrong type!");
9340  }
9341#endif
9342
9343  SmallVector<SDValue, 4> ReturnValues;
9344  if (!CanLowerReturn) {
9345    // The instruction result is the result of loading from the
9346    // hidden sret parameter.
9347    SmallVector<EVT, 1> PVTs;
9348    Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9349
9350    ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9351    assert(PVTs.size() == 1 && "Pointers should fit in one register");
9352    EVT PtrVT = PVTs[0];
9353
9354    unsigned NumValues = RetTys.size();
9355    ReturnValues.resize(NumValues);
9356    SmallVector<SDValue, 4> Chains(NumValues);
9357
9358    // An aggregate return value cannot wrap around the address space, so
9359    // offsets to its parts don't wrap either.
9360    SDNodeFlags Flags;
9361    Flags.setNoUnsignedWrap(true);
9362
9363    for (unsigned i = 0; i < NumValues; ++i) {
9364      SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9365                                    CLI.DAG.getConstant(Offsets[i], CLI.DL,
9366                                                        PtrVT), Flags);
9367      SDValue L = CLI.DAG.getLoad(
9368          RetTys[i], CLI.DL, CLI.Chain, Add,
9369          MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9370                                            DemoteStackIdx, Offsets[i]),
9371          /* Alignment = */ 1);
9372      ReturnValues[i] = L;
9373      Chains[i] = L.getValue(1);
9374    }
9375
9376    CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9377  } else {
9378    // Collect the legal value parts into potentially illegal values
9379    // that correspond to the original function's return values.
9380    Optional<ISD::NodeType> AssertOp;
9381    if (CLI.RetSExt)
9382      AssertOp = ISD::AssertSext;
9383    else if (CLI.RetZExt)
9384      AssertOp = ISD::AssertZext;
9385    unsigned CurReg = 0;
9386    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9387      EVT VT = RetTys[I];
9388      MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9389                                                     CLI.CallConv, VT);
9390      unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9391                                                       CLI.CallConv, VT);
9392
9393      ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9394                                              NumRegs, RegisterVT, VT, nullptr,
9395                                              CLI.CallConv, AssertOp));
9396      CurReg += NumRegs;
9397    }
9398
9399    // For a function returning void, there is no return value. We can't create
9400    // such a node, so we just return a null return value in that case. In
9401    // that case, nothing will actually look at the value.
9402    if (ReturnValues.empty())
9403      return std::make_pair(SDValue(), CLI.Chain);
9404  }
9405
9406  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9407                                CLI.DAG.getVTList(RetTys), ReturnValues);
9408  return std::make_pair(Res, CLI.Chain);
9409}
9410
9411void TargetLowering::LowerOperationWrapper(SDNode *N,
9412                                           SmallVectorImpl<SDValue> &Results,
9413                                           SelectionDAG &DAG) const {
9414  if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9415    Results.push_back(Res);
9416}
9417
9418SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9419  llvm_unreachable("LowerOperation not implemented for this target!");
9420}
9421
9422void
9423SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9424  SDValue Op = getNonRegisterValue(V);
9425  assert((Op.getOpcode() != ISD::CopyFromReg ||
9426          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9427         "Copy from a reg to the same reg!");
9428  assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9429
9430  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9431  // If this is an InlineAsm we have to match the registers required, not the
9432  // notional registers required by the type.
9433
9434  RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9435                   None); // This is not an ABI copy.
9436  SDValue Chain = DAG.getEntryNode();
9437
9438  ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9439                              FuncInfo.PreferredExtendType.end())
9440                                 ? ISD::ANY_EXTEND
9441                                 : FuncInfo.PreferredExtendType[V];
9442  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9443  PendingExports.push_back(Chain);
9444}
9445
9446#include "llvm/CodeGen/SelectionDAGISel.h"
9447
9448/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9449/// entry block, return true.  This includes arguments used by switches, since
9450/// the switch may expand into multiple basic blocks.
9451static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9452  // With FastISel active, we may be splitting blocks, so force creation
9453  // of virtual registers for all non-dead arguments.
9454  if (FastISel)
9455    return A->use_empty();
9456
9457  const BasicBlock &Entry = A->getParent()->front();
9458  for (const User *U : A->users())
9459    if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9460      return false;  // Use not in entry block.
9461
9462  return true;
9463}
9464
9465using ArgCopyElisionMapTy =
9466    DenseMap<const Argument *,
9467             std::pair<const AllocaInst *, const StoreInst *>>;
9468
9469/// Scan the entry block of the function in FuncInfo for arguments that look
9470/// like copies into a local alloca. Record any copied arguments in
9471/// ArgCopyElisionCandidates.
9472static void
9473findArgumentCopyElisionCandidates(const DataLayout &DL,
9474                                  FunctionLoweringInfo *FuncInfo,
9475                                  ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9476  // Record the state of every static alloca used in the entry block. Argument
9477  // allocas are all used in the entry block, so we need approximately as many
9478  // entries as we have arguments.
9479  enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9480  SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9481  unsigned NumArgs = FuncInfo->Fn->arg_size();
9482  StaticAllocas.reserve(NumArgs * 2);
9483
9484  auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9485    if (!V)
9486      return nullptr;
9487    V = V->stripPointerCasts();
9488    const auto *AI = dyn_cast<AllocaInst>(V);
9489    if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9490      return nullptr;
9491    auto Iter = StaticAllocas.insert({AI, Unknown});
9492    return &Iter.first->second;
9493  };
9494
9495  // Look for stores of arguments to static allocas. Look through bitcasts and
9496  // GEPs to handle type coercions, as long as the alloca is fully initialized
9497  // by the store. Any non-store use of an alloca escapes it and any subsequent
9498  // unanalyzed store might write it.
9499  // FIXME: Handle structs initialized with multiple stores.
9500  for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9501    // Look for stores, and handle non-store uses conservatively.
9502    const auto *SI = dyn_cast<StoreInst>(&I);
9503    if (!SI) {
9504      // We will look through cast uses, so ignore them completely.
9505      if (I.isCast())
9506        continue;
9507      // Ignore debug info intrinsics, they don't escape or store to allocas.
9508      if (isa<DbgInfoIntrinsic>(I))
9509        continue;
9510      // This is an unknown instruction. Assume it escapes or writes to all
9511      // static alloca operands.
9512      for (const Use &U : I.operands()) {
9513        if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9514          *Info = StaticAllocaInfo::Clobbered;
9515      }
9516      continue;
9517    }
9518
9519    // If the stored value is a static alloca, mark it as escaped.
9520    if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9521      *Info = StaticAllocaInfo::Clobbered;
9522
9523    // Check if the destination is a static alloca.
9524    const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9525    StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9526    if (!Info)
9527      continue;
9528    const AllocaInst *AI = cast<AllocaInst>(Dst);
9529
9530    // Skip allocas that have been initialized or clobbered.
9531    if (*Info != StaticAllocaInfo::Unknown)
9532      continue;
9533
9534    // Check if the stored value is an argument, and that this store fully
9535    // initializes the alloca. Don't elide copies from the same argument twice.
9536    const Value *Val = SI->getValueOperand()->stripPointerCasts();
9537    const auto *Arg = dyn_cast<Argument>(Val);
9538    if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9539        Arg->getType()->isEmptyTy() ||
9540        DL.getTypeStoreSize(Arg->getType()) !=
9541            DL.getTypeAllocSize(AI->getAllocatedType()) ||
9542        ArgCopyElisionCandidates.count(Arg)) {
9543      *Info = StaticAllocaInfo::Clobbered;
9544      continue;
9545    }
9546
9547    LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9548                      << '\n');
9549
9550    // Mark this alloca and store for argument copy elision.
9551    *Info = StaticAllocaInfo::Elidable;
9552    ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9553
9554    // Stop scanning if we've seen all arguments. This will happen early in -O0
9555    // builds, which is useful, because -O0 builds have large entry blocks and
9556    // many allocas.
9557    if (ArgCopyElisionCandidates.size() == NumArgs)
9558      break;
9559  }
9560}
9561
9562/// Try to elide argument copies from memory into a local alloca. Succeeds if
9563/// ArgVal is a load from a suitable fixed stack object.
9564static void tryToElideArgumentCopy(
9565    FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9566    DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9567    SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9568    ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9569    SDValue ArgVal, bool &ArgHasUses) {
9570  // Check if this is a load from a fixed stack object.
9571  auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9572  if (!LNode)
9573    return;
9574  auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9575  if (!FINode)
9576    return;
9577
9578  // Check that the fixed stack object is the right size and alignment.
9579  // Look at the alignment that the user wrote on the alloca instead of looking
9580  // at the stack object.
9581  auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9582  assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9583  const AllocaInst *AI = ArgCopyIter->second.first;
9584  int FixedIndex = FINode->getIndex();
9585  int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9586  int OldIndex = AllocaIndex;
9587  MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9588  if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9589    LLVM_DEBUG(
9590        dbgs() << "  argument copy elision failed due to bad fixed stack "
9591                  "object size\n");
9592    return;
9593  }
9594  unsigned RequiredAlignment = AI->getAlignment();
9595  if (!RequiredAlignment) {
9596    RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment(
9597        AI->getAllocatedType());
9598  }
9599  if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9600    LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9601                         "greater than stack argument alignment ("
9602                      << RequiredAlignment << " vs "
9603                      << MFI.getObjectAlignment(FixedIndex) << ")\n");
9604    return;
9605  }
9606
9607  // Perform the elision. Delete the old stack object and replace its only use
9608  // in the variable info map. Mark the stack object as mutable.
9609  LLVM_DEBUG({
9610    dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9611           << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9612           << '\n';
9613  });
9614  MFI.RemoveStackObject(OldIndex);
9615  MFI.setIsImmutableObjectIndex(FixedIndex, false);
9616  AllocaIndex = FixedIndex;
9617  ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9618  Chains.push_back(ArgVal.getValue(1));
9619
9620  // Avoid emitting code for the store implementing the copy.
9621  const StoreInst *SI = ArgCopyIter->second.second;
9622  ElidedArgCopyInstrs.insert(SI);
9623
9624  // Check for uses of the argument again so that we can avoid exporting ArgVal
9625  // if it is't used by anything other than the store.
9626  for (const Value *U : Arg.users()) {
9627    if (U != SI) {
9628      ArgHasUses = true;
9629      break;
9630    }
9631  }
9632}
9633
9634void SelectionDAGISel::LowerArguments(const Function &F) {
9635  SelectionDAG &DAG = SDB->DAG;
9636  SDLoc dl = SDB->getCurSDLoc();
9637  const DataLayout &DL = DAG.getDataLayout();
9638  SmallVector<ISD::InputArg, 16> Ins;
9639
9640  if (!FuncInfo->CanLowerReturn) {
9641    // Put in an sret pointer parameter before all the other parameters.
9642    SmallVector<EVT, 1> ValueVTs;
9643    ComputeValueVTs(*TLI, DAG.getDataLayout(),
9644                    F.getReturnType()->getPointerTo(
9645                        DAG.getDataLayout().getAllocaAddrSpace()),
9646                    ValueVTs);
9647
9648    // NOTE: Assuming that a pointer will never break down to more than one VT
9649    // or one register.
9650    ISD::ArgFlagsTy Flags;
9651    Flags.setSRet();
9652    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9653    ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9654                         ISD::InputArg::NoArgIndex, 0);
9655    Ins.push_back(RetArg);
9656  }
9657
9658  // Look for stores of arguments to static allocas. Mark such arguments with a
9659  // flag to ask the target to give us the memory location of that argument if
9660  // available.
9661  ArgCopyElisionMapTy ArgCopyElisionCandidates;
9662  findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9663                                    ArgCopyElisionCandidates);
9664
9665  // Set up the incoming argument description vector.
9666  for (const Argument &Arg : F.args()) {
9667    unsigned ArgNo = Arg.getArgNo();
9668    SmallVector<EVT, 4> ValueVTs;
9669    ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9670    bool isArgValueUsed = !Arg.use_empty();
9671    unsigned PartBase = 0;
9672    Type *FinalType = Arg.getType();
9673    if (Arg.hasAttribute(Attribute::ByVal))
9674      FinalType = Arg.getParamByValType();
9675    bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9676        FinalType, F.getCallingConv(), F.isVarArg());
9677    for (unsigned Value = 0, NumValues = ValueVTs.size();
9678         Value != NumValues; ++Value) {
9679      EVT VT = ValueVTs[Value];
9680      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9681      ISD::ArgFlagsTy Flags;
9682
9683      // Certain targets (such as MIPS), may have a different ABI alignment
9684      // for a type depending on the context. Give the target a chance to
9685      // specify the alignment it wants.
9686      const Align OriginalAlignment(
9687          TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9688
9689      if (Arg.getType()->isPointerTy()) {
9690        Flags.setPointer();
9691        Flags.setPointerAddrSpace(
9692            cast<PointerType>(Arg.getType())->getAddressSpace());
9693      }
9694      if (Arg.hasAttribute(Attribute::ZExt))
9695        Flags.setZExt();
9696      if (Arg.hasAttribute(Attribute::SExt))
9697        Flags.setSExt();
9698      if (Arg.hasAttribute(Attribute::InReg)) {
9699        // If we are using vectorcall calling convention, a structure that is
9700        // passed InReg - is surely an HVA
9701        if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9702            isa<StructType>(Arg.getType())) {
9703          // The first value of a structure is marked
9704          if (0 == Value)
9705            Flags.setHvaStart();
9706          Flags.setHva();
9707        }
9708        // Set InReg Flag
9709        Flags.setInReg();
9710      }
9711      if (Arg.hasAttribute(Attribute::StructRet))
9712        Flags.setSRet();
9713      if (Arg.hasAttribute(Attribute::SwiftSelf))
9714        Flags.setSwiftSelf();
9715      if (Arg.hasAttribute(Attribute::SwiftError))
9716        Flags.setSwiftError();
9717      if (Arg.hasAttribute(Attribute::ByVal))
9718        Flags.setByVal();
9719      if (Arg.hasAttribute(Attribute::InAlloca)) {
9720        Flags.setInAlloca();
9721        // Set the byval flag for CCAssignFn callbacks that don't know about
9722        // inalloca.  This way we can know how many bytes we should've allocated
9723        // and how many bytes a callee cleanup function will pop.  If we port
9724        // inalloca to more targets, we'll have to add custom inalloca handling
9725        // in the various CC lowering callbacks.
9726        Flags.setByVal();
9727      }
9728      if (F.getCallingConv() == CallingConv::X86_INTR) {
9729        // IA Interrupt passes frame (1st parameter) by value in the stack.
9730        if (ArgNo == 0)
9731          Flags.setByVal();
9732      }
9733      if (Flags.isByVal() || Flags.isInAlloca()) {
9734        Type *ElementTy = Arg.getParamByValType();
9735
9736        // For ByVal, size and alignment should be passed from FE.  BE will
9737        // guess if this info is not there but there are cases it cannot get
9738        // right.
9739        unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9740        Flags.setByValSize(FrameSize);
9741
9742        unsigned FrameAlign;
9743        if (Arg.getParamAlignment())
9744          FrameAlign = Arg.getParamAlignment();
9745        else
9746          FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9747        Flags.setByValAlign(Align(FrameAlign));
9748      }
9749      if (Arg.hasAttribute(Attribute::Nest))
9750        Flags.setNest();
9751      if (NeedsRegBlock)
9752        Flags.setInConsecutiveRegs();
9753      Flags.setOrigAlign(OriginalAlignment);
9754      if (ArgCopyElisionCandidates.count(&Arg))
9755        Flags.setCopyElisionCandidate();
9756      if (Arg.hasAttribute(Attribute::Returned))
9757        Flags.setReturned();
9758
9759      MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9760          *CurDAG->getContext(), F.getCallingConv(), VT);
9761      unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9762          *CurDAG->getContext(), F.getCallingConv(), VT);
9763      for (unsigned i = 0; i != NumRegs; ++i) {
9764        // For scalable vectors, use the minimum size; individual targets
9765        // are responsible for handling scalable vector arguments and
9766        // return values.
9767        ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9768                 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9769        if (NumRegs > 1 && i == 0)
9770          MyFlags.Flags.setSplit();
9771        // if it isn't first piece, alignment must be 1
9772        else if (i > 0) {
9773          MyFlags.Flags.setOrigAlign(Align::None());
9774          if (i == NumRegs - 1)
9775            MyFlags.Flags.setSplitEnd();
9776        }
9777        Ins.push_back(MyFlags);
9778      }
9779      if (NeedsRegBlock && Value == NumValues - 1)
9780        Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9781      PartBase += VT.getStoreSize().getKnownMinSize();
9782    }
9783  }
9784
9785  // Call the target to set up the argument values.
9786  SmallVector<SDValue, 8> InVals;
9787  SDValue NewRoot = TLI->LowerFormalArguments(
9788      DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9789
9790  // Verify that the target's LowerFormalArguments behaved as expected.
9791  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9792         "LowerFormalArguments didn't return a valid chain!");
9793  assert(InVals.size() == Ins.size() &&
9794         "LowerFormalArguments didn't emit the correct number of values!");
9795  LLVM_DEBUG({
9796    for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9797      assert(InVals[i].getNode() &&
9798             "LowerFormalArguments emitted a null value!");
9799      assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9800             "LowerFormalArguments emitted a value with the wrong type!");
9801    }
9802  });
9803
9804  // Update the DAG with the new chain value resulting from argument lowering.
9805  DAG.setRoot(NewRoot);
9806
9807  // Set up the argument values.
9808  unsigned i = 0;
9809  if (!FuncInfo->CanLowerReturn) {
9810    // Create a virtual register for the sret pointer, and put in a copy
9811    // from the sret argument into it.
9812    SmallVector<EVT, 1> ValueVTs;
9813    ComputeValueVTs(*TLI, DAG.getDataLayout(),
9814                    F.getReturnType()->getPointerTo(
9815                        DAG.getDataLayout().getAllocaAddrSpace()),
9816                    ValueVTs);
9817    MVT VT = ValueVTs[0].getSimpleVT();
9818    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9819    Optional<ISD::NodeType> AssertOp = None;
9820    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9821                                        nullptr, F.getCallingConv(), AssertOp);
9822
9823    MachineFunction& MF = SDB->DAG.getMachineFunction();
9824    MachineRegisterInfo& RegInfo = MF.getRegInfo();
9825    Register SRetReg =
9826        RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9827    FuncInfo->DemoteRegister = SRetReg;
9828    NewRoot =
9829        SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9830    DAG.setRoot(NewRoot);
9831
9832    // i indexes lowered arguments.  Bump it past the hidden sret argument.
9833    ++i;
9834  }
9835
9836  SmallVector<SDValue, 4> Chains;
9837  DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9838  for (const Argument &Arg : F.args()) {
9839    SmallVector<SDValue, 4> ArgValues;
9840    SmallVector<EVT, 4> ValueVTs;
9841    ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9842    unsigned NumValues = ValueVTs.size();
9843    if (NumValues == 0)
9844      continue;
9845
9846    bool ArgHasUses = !Arg.use_empty();
9847
9848    // Elide the copying store if the target loaded this argument from a
9849    // suitable fixed stack object.
9850    if (Ins[i].Flags.isCopyElisionCandidate()) {
9851      tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9852                             ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9853                             InVals[i], ArgHasUses);
9854    }
9855
9856    // If this argument is unused then remember its value. It is used to generate
9857    // debugging information.
9858    bool isSwiftErrorArg =
9859        TLI->supportSwiftError() &&
9860        Arg.hasAttribute(Attribute::SwiftError);
9861    if (!ArgHasUses && !isSwiftErrorArg) {
9862      SDB->setUnusedArgValue(&Arg, InVals[i]);
9863
9864      // Also remember any frame index for use in FastISel.
9865      if (FrameIndexSDNode *FI =
9866          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9867        FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9868    }
9869
9870    for (unsigned Val = 0; Val != NumValues; ++Val) {
9871      EVT VT = ValueVTs[Val];
9872      MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9873                                                      F.getCallingConv(), VT);
9874      unsigned NumParts = TLI->getNumRegistersForCallingConv(
9875          *CurDAG->getContext(), F.getCallingConv(), VT);
9876
9877      // Even an apparent 'unused' swifterror argument needs to be returned. So
9878      // we do generate a copy for it that can be used on return from the
9879      // function.
9880      if (ArgHasUses || isSwiftErrorArg) {
9881        Optional<ISD::NodeType> AssertOp;
9882        if (Arg.hasAttribute(Attribute::SExt))
9883          AssertOp = ISD::AssertSext;
9884        else if (Arg.hasAttribute(Attribute::ZExt))
9885          AssertOp = ISD::AssertZext;
9886
9887        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9888                                             PartVT, VT, nullptr,
9889                                             F.getCallingConv(), AssertOp));
9890      }
9891
9892      i += NumParts;
9893    }
9894
9895    // We don't need to do anything else for unused arguments.
9896    if (ArgValues.empty())
9897      continue;
9898
9899    // Note down frame index.
9900    if (FrameIndexSDNode *FI =
9901        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9902      FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9903
9904    SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9905                                     SDB->getCurSDLoc());
9906
9907    SDB->setValue(&Arg, Res);
9908    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9909      // We want to associate the argument with the frame index, among
9910      // involved operands, that correspond to the lowest address. The
9911      // getCopyFromParts function, called earlier, is swapping the order of
9912      // the operands to BUILD_PAIR depending on endianness. The result of
9913      // that swapping is that the least significant bits of the argument will
9914      // be in the first operand of the BUILD_PAIR node, and the most
9915      // significant bits will be in the second operand.
9916      unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9917      if (LoadSDNode *LNode =
9918          dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9919        if (FrameIndexSDNode *FI =
9920            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9921          FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9922    }
9923
9924    // Analyses past this point are naive and don't expect an assertion.
9925    if (Res.getOpcode() == ISD::AssertZext)
9926      Res = Res.getOperand(0);
9927
9928    // Update the SwiftErrorVRegDefMap.
9929    if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9930      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9931      if (Register::isVirtualRegister(Reg))
9932        SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9933                                   Reg);
9934    }
9935
9936    // If this argument is live outside of the entry block, insert a copy from
9937    // wherever we got it to the vreg that other BB's will reference it as.
9938    if (Res.getOpcode() == ISD::CopyFromReg) {
9939      // If we can, though, try to skip creating an unnecessary vreg.
9940      // FIXME: This isn't very clean... it would be nice to make this more
9941      // general.
9942      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9943      if (Register::isVirtualRegister(Reg)) {
9944        FuncInfo->ValueMap[&Arg] = Reg;
9945        continue;
9946      }
9947    }
9948    if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9949      FuncInfo->InitializeRegForValue(&Arg);
9950      SDB->CopyToExportRegsIfNeeded(&Arg);
9951    }
9952  }
9953
9954  if (!Chains.empty()) {
9955    Chains.push_back(NewRoot);
9956    NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9957  }
9958
9959  DAG.setRoot(NewRoot);
9960
9961  assert(i == InVals.size() && "Argument register count mismatch!");
9962
9963  // If any argument copy elisions occurred and we have debug info, update the
9964  // stale frame indices used in the dbg.declare variable info table.
9965  MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9966  if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9967    for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9968      auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9969      if (I != ArgCopyElisionFrameIndexMap.end())
9970        VI.Slot = I->second;
9971    }
9972  }
9973
9974  // Finally, if the target has anything special to do, allow it to do so.
9975  EmitFunctionEntryCode();
9976}
9977
9978/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9979/// ensure constants are generated when needed.  Remember the virtual registers
9980/// that need to be added to the Machine PHI nodes as input.  We cannot just
9981/// directly add them, because expansion might result in multiple MBB's for one
9982/// BB.  As such, the start of the BB might correspond to a different MBB than
9983/// the end.
9984void
9985SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9986  const Instruction *TI = LLVMBB->getTerminator();
9987
9988  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9989
9990  // Check PHI nodes in successors that expect a value to be available from this
9991  // block.
9992  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9993    const BasicBlock *SuccBB = TI->getSuccessor(succ);
9994    if (!isa<PHINode>(SuccBB->begin())) continue;
9995    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9996
9997    // If this terminator has multiple identical successors (common for
9998    // switches), only handle each succ once.
9999    if (!SuccsHandled.insert(SuccMBB).second)
10000      continue;
10001
10002    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10003
10004    // At this point we know that there is a 1-1 correspondence between LLVM PHI
10005    // nodes and Machine PHI nodes, but the incoming operands have not been
10006    // emitted yet.
10007    for (const PHINode &PN : SuccBB->phis()) {
10008      // Ignore dead phi's.
10009      if (PN.use_empty())
10010        continue;
10011
10012      // Skip empty types
10013      if (PN.getType()->isEmptyTy())
10014        continue;
10015
10016      unsigned Reg;
10017      const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10018
10019      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10020        unsigned &RegOut = ConstantsOut[C];
10021        if (RegOut == 0) {
10022          RegOut = FuncInfo.CreateRegs(C);
10023          CopyValueToVirtualRegister(C, RegOut);
10024        }
10025        Reg = RegOut;
10026      } else {
10027        DenseMap<const Value *, unsigned>::iterator I =
10028          FuncInfo.ValueMap.find(PHIOp);
10029        if (I != FuncInfo.ValueMap.end())
10030          Reg = I->second;
10031        else {
10032          assert(isa<AllocaInst>(PHIOp) &&
10033                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10034                 "Didn't codegen value into a register!??");
10035          Reg = FuncInfo.CreateRegs(PHIOp);
10036          CopyValueToVirtualRegister(PHIOp, Reg);
10037        }
10038      }
10039
10040      // Remember that this register needs to added to the machine PHI node as
10041      // the input for this MBB.
10042      SmallVector<EVT, 4> ValueVTs;
10043      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10044      ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10045      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10046        EVT VT = ValueVTs[vti];
10047        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10048        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10049          FuncInfo.PHINodesToUpdate.push_back(
10050              std::make_pair(&*MBBI++, Reg + i));
10051        Reg += NumRegisters;
10052      }
10053    }
10054  }
10055
10056  ConstantsOut.clear();
10057}
10058
10059/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10060/// is 0.
10061MachineBasicBlock *
10062SelectionDAGBuilder::StackProtectorDescriptor::
10063AddSuccessorMBB(const BasicBlock *BB,
10064                MachineBasicBlock *ParentMBB,
10065                bool IsLikely,
10066                MachineBasicBlock *SuccMBB) {
10067  // If SuccBB has not been created yet, create it.
10068  if (!SuccMBB) {
10069    MachineFunction *MF = ParentMBB->getParent();
10070    MachineFunction::iterator BBI(ParentMBB);
10071    SuccMBB = MF->CreateMachineBasicBlock(BB);
10072    MF->insert(++BBI, SuccMBB);
10073  }
10074  // Add it as a successor of ParentMBB.
10075  ParentMBB->addSuccessor(
10076      SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10077  return SuccMBB;
10078}
10079
10080MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10081  MachineFunction::iterator I(MBB);
10082  if (++I == FuncInfo.MF->end())
10083    return nullptr;
10084  return &*I;
10085}
10086
10087/// During lowering new call nodes can be created (such as memset, etc.).
10088/// Those will become new roots of the current DAG, but complications arise
10089/// when they are tail calls. In such cases, the call lowering will update
10090/// the root, but the builder still needs to know that a tail call has been
10091/// lowered in order to avoid generating an additional return.
10092void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10093  // If the node is null, we do have a tail call.
10094  if (MaybeTC.getNode() != nullptr)
10095    DAG.setRoot(MaybeTC);
10096  else
10097    HasTailCall = true;
10098}
10099
10100void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10101                                        MachineBasicBlock *SwitchMBB,
10102                                        MachineBasicBlock *DefaultMBB) {
10103  MachineFunction *CurMF = FuncInfo.MF;
10104  MachineBasicBlock *NextMBB = nullptr;
10105  MachineFunction::iterator BBI(W.MBB);
10106  if (++BBI != FuncInfo.MF->end())
10107    NextMBB = &*BBI;
10108
10109  unsigned Size = W.LastCluster - W.FirstCluster + 1;
10110
10111  BranchProbabilityInfo *BPI = FuncInfo.BPI;
10112
10113  if (Size == 2 && W.MBB == SwitchMBB) {
10114    // If any two of the cases has the same destination, and if one value
10115    // is the same as the other, but has one bit unset that the other has set,
10116    // use bit manipulation to do two compares at once.  For example:
10117    // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10118    // TODO: This could be extended to merge any 2 cases in switches with 3
10119    // cases.
10120    // TODO: Handle cases where W.CaseBB != SwitchBB.
10121    CaseCluster &Small = *W.FirstCluster;
10122    CaseCluster &Big = *W.LastCluster;
10123
10124    if (Small.Low == Small.High && Big.Low == Big.High &&
10125        Small.MBB == Big.MBB) {
10126      const APInt &SmallValue = Small.Low->getValue();
10127      const APInt &BigValue = Big.Low->getValue();
10128
10129      // Check that there is only one bit different.
10130      APInt CommonBit = BigValue ^ SmallValue;
10131      if (CommonBit.isPowerOf2()) {
10132        SDValue CondLHS = getValue(Cond);
10133        EVT VT = CondLHS.getValueType();
10134        SDLoc DL = getCurSDLoc();
10135
10136        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10137                                 DAG.getConstant(CommonBit, DL, VT));
10138        SDValue Cond = DAG.getSetCC(
10139            DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10140            ISD::SETEQ);
10141
10142        // Update successor info.
10143        // Both Small and Big will jump to Small.BB, so we sum up the
10144        // probabilities.
10145        addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10146        if (BPI)
10147          addSuccessorWithProb(
10148              SwitchMBB, DefaultMBB,
10149              // The default destination is the first successor in IR.
10150              BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10151        else
10152          addSuccessorWithProb(SwitchMBB, DefaultMBB);
10153
10154        // Insert the true branch.
10155        SDValue BrCond =
10156            DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10157                        DAG.getBasicBlock(Small.MBB));
10158        // Insert the false branch.
10159        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10160                             DAG.getBasicBlock(DefaultMBB));
10161
10162        DAG.setRoot(BrCond);
10163        return;
10164      }
10165    }
10166  }
10167
10168  if (TM.getOptLevel() != CodeGenOpt::None) {
10169    // Here, we order cases by probability so the most likely case will be
10170    // checked first. However, two clusters can have the same probability in
10171    // which case their relative ordering is non-deterministic. So we use Low
10172    // as a tie-breaker as clusters are guaranteed to never overlap.
10173    llvm::sort(W.FirstCluster, W.LastCluster + 1,
10174               [](const CaseCluster &a, const CaseCluster &b) {
10175      return a.Prob != b.Prob ?
10176             a.Prob > b.Prob :
10177             a.Low->getValue().slt(b.Low->getValue());
10178    });
10179
10180    // Rearrange the case blocks so that the last one falls through if possible
10181    // without changing the order of probabilities.
10182    for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10183      --I;
10184      if (I->Prob > W.LastCluster->Prob)
10185        break;
10186      if (I->Kind == CC_Range && I->MBB == NextMBB) {
10187        std::swap(*I, *W.LastCluster);
10188        break;
10189      }
10190    }
10191  }
10192
10193  // Compute total probability.
10194  BranchProbability DefaultProb = W.DefaultProb;
10195  BranchProbability UnhandledProbs = DefaultProb;
10196  for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10197    UnhandledProbs += I->Prob;
10198
10199  MachineBasicBlock *CurMBB = W.MBB;
10200  for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10201    bool FallthroughUnreachable = false;
10202    MachineBasicBlock *Fallthrough;
10203    if (I == W.LastCluster) {
10204      // For the last cluster, fall through to the default destination.
10205      Fallthrough = DefaultMBB;
10206      FallthroughUnreachable = isa<UnreachableInst>(
10207          DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10208    } else {
10209      Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10210      CurMF->insert(BBI, Fallthrough);
10211      // Put Cond in a virtual register to make it available from the new blocks.
10212      ExportFromCurrentBlock(Cond);
10213    }
10214    UnhandledProbs -= I->Prob;
10215
10216    switch (I->Kind) {
10217      case CC_JumpTable: {
10218        // FIXME: Optimize away range check based on pivot comparisons.
10219        JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10220        SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10221
10222        // The jump block hasn't been inserted yet; insert it here.
10223        MachineBasicBlock *JumpMBB = JT->MBB;
10224        CurMF->insert(BBI, JumpMBB);
10225
10226        auto JumpProb = I->Prob;
10227        auto FallthroughProb = UnhandledProbs;
10228
10229        // If the default statement is a target of the jump table, we evenly
10230        // distribute the default probability to successors of CurMBB. Also
10231        // update the probability on the edge from JumpMBB to Fallthrough.
10232        for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10233                                              SE = JumpMBB->succ_end();
10234             SI != SE; ++SI) {
10235          if (*SI == DefaultMBB) {
10236            JumpProb += DefaultProb / 2;
10237            FallthroughProb -= DefaultProb / 2;
10238            JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10239            JumpMBB->normalizeSuccProbs();
10240            break;
10241          }
10242        }
10243
10244        if (FallthroughUnreachable) {
10245          // Skip the range check if the fallthrough block is unreachable.
10246          JTH->OmitRangeCheck = true;
10247        }
10248
10249        if (!JTH->OmitRangeCheck)
10250          addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10251        addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10252        CurMBB->normalizeSuccProbs();
10253
10254        // The jump table header will be inserted in our current block, do the
10255        // range check, and fall through to our fallthrough block.
10256        JTH->HeaderBB = CurMBB;
10257        JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10258
10259        // If we're in the right place, emit the jump table header right now.
10260        if (CurMBB == SwitchMBB) {
10261          visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10262          JTH->Emitted = true;
10263        }
10264        break;
10265      }
10266      case CC_BitTests: {
10267        // FIXME: Optimize away range check based on pivot comparisons.
10268        BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10269
10270        // The bit test blocks haven't been inserted yet; insert them here.
10271        for (BitTestCase &BTC : BTB->Cases)
10272          CurMF->insert(BBI, BTC.ThisBB);
10273
10274        // Fill in fields of the BitTestBlock.
10275        BTB->Parent = CurMBB;
10276        BTB->Default = Fallthrough;
10277
10278        BTB->DefaultProb = UnhandledProbs;
10279        // If the cases in bit test don't form a contiguous range, we evenly
10280        // distribute the probability on the edge to Fallthrough to two
10281        // successors of CurMBB.
10282        if (!BTB->ContiguousRange) {
10283          BTB->Prob += DefaultProb / 2;
10284          BTB->DefaultProb -= DefaultProb / 2;
10285        }
10286
10287        if (FallthroughUnreachable) {
10288          // Skip the range check if the fallthrough block is unreachable.
10289          BTB->OmitRangeCheck = true;
10290        }
10291
10292        // If we're in the right place, emit the bit test header right now.
10293        if (CurMBB == SwitchMBB) {
10294          visitBitTestHeader(*BTB, SwitchMBB);
10295          BTB->Emitted = true;
10296        }
10297        break;
10298      }
10299      case CC_Range: {
10300        const Value *RHS, *LHS, *MHS;
10301        ISD::CondCode CC;
10302        if (I->Low == I->High) {
10303          // Check Cond == I->Low.
10304          CC = ISD::SETEQ;
10305          LHS = Cond;
10306          RHS=I->Low;
10307          MHS = nullptr;
10308        } else {
10309          // Check I->Low <= Cond <= I->High.
10310          CC = ISD::SETLE;
10311          LHS = I->Low;
10312          MHS = Cond;
10313          RHS = I->High;
10314        }
10315
10316        // If Fallthrough is unreachable, fold away the comparison.
10317        if (FallthroughUnreachable)
10318          CC = ISD::SETTRUE;
10319
10320        // The false probability is the sum of all unhandled cases.
10321        CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10322                     getCurSDLoc(), I->Prob, UnhandledProbs);
10323
10324        if (CurMBB == SwitchMBB)
10325          visitSwitchCase(CB, SwitchMBB);
10326        else
10327          SL->SwitchCases.push_back(CB);
10328
10329        break;
10330      }
10331    }
10332    CurMBB = Fallthrough;
10333  }
10334}
10335
10336unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10337                                              CaseClusterIt First,
10338                                              CaseClusterIt Last) {
10339  return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10340    if (X.Prob != CC.Prob)
10341      return X.Prob > CC.Prob;
10342
10343    // Ties are broken by comparing the case value.
10344    return X.Low->getValue().slt(CC.Low->getValue());
10345  });
10346}
10347
10348void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10349                                        const SwitchWorkListItem &W,
10350                                        Value *Cond,
10351                                        MachineBasicBlock *SwitchMBB) {
10352  assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10353         "Clusters not sorted?");
10354
10355  assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10356
10357  // Balance the tree based on branch probabilities to create a near-optimal (in
10358  // terms of search time given key frequency) binary search tree. See e.g. Kurt
10359  // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10360  CaseClusterIt LastLeft = W.FirstCluster;
10361  CaseClusterIt FirstRight = W.LastCluster;
10362  auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10363  auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10364
10365  // Move LastLeft and FirstRight towards each other from opposite directions to
10366  // find a partitioning of the clusters which balances the probability on both
10367  // sides. If LeftProb and RightProb are equal, alternate which side is
10368  // taken to ensure 0-probability nodes are distributed evenly.
10369  unsigned I = 0;
10370  while (LastLeft + 1 < FirstRight) {
10371    if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10372      LeftProb += (++LastLeft)->Prob;
10373    else
10374      RightProb += (--FirstRight)->Prob;
10375    I++;
10376  }
10377
10378  while (true) {
10379    // Our binary search tree differs from a typical BST in that ours can have up
10380    // to three values in each leaf. The pivot selection above doesn't take that
10381    // into account, which means the tree might require more nodes and be less
10382    // efficient. We compensate for this here.
10383
10384    unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10385    unsigned NumRight = W.LastCluster - FirstRight + 1;
10386
10387    if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10388      // If one side has less than 3 clusters, and the other has more than 3,
10389      // consider taking a cluster from the other side.
10390
10391      if (NumLeft < NumRight) {
10392        // Consider moving the first cluster on the right to the left side.
10393        CaseCluster &CC = *FirstRight;
10394        unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10395        unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10396        if (LeftSideRank <= RightSideRank) {
10397          // Moving the cluster to the left does not demote it.
10398          ++LastLeft;
10399          ++FirstRight;
10400          continue;
10401        }
10402      } else {
10403        assert(NumRight < NumLeft);
10404        // Consider moving the last element on the left to the right side.
10405        CaseCluster &CC = *LastLeft;
10406        unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10407        unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10408        if (RightSideRank <= LeftSideRank) {
10409          // Moving the cluster to the right does not demot it.
10410          --LastLeft;
10411          --FirstRight;
10412          continue;
10413        }
10414      }
10415    }
10416    break;
10417  }
10418
10419  assert(LastLeft + 1 == FirstRight);
10420  assert(LastLeft >= W.FirstCluster);
10421  assert(FirstRight <= W.LastCluster);
10422
10423  // Use the first element on the right as pivot since we will make less-than
10424  // comparisons against it.
10425  CaseClusterIt PivotCluster = FirstRight;
10426  assert(PivotCluster > W.FirstCluster);
10427  assert(PivotCluster <= W.LastCluster);
10428
10429  CaseClusterIt FirstLeft = W.FirstCluster;
10430  CaseClusterIt LastRight = W.LastCluster;
10431
10432  const ConstantInt *Pivot = PivotCluster->Low;
10433
10434  // New blocks will be inserted immediately after the current one.
10435  MachineFunction::iterator BBI(W.MBB);
10436  ++BBI;
10437
10438  // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10439  // we can branch to its destination directly if it's squeezed exactly in
10440  // between the known lower bound and Pivot - 1.
10441  MachineBasicBlock *LeftMBB;
10442  if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10443      FirstLeft->Low == W.GE &&
10444      (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10445    LeftMBB = FirstLeft->MBB;
10446  } else {
10447    LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10448    FuncInfo.MF->insert(BBI, LeftMBB);
10449    WorkList.push_back(
10450        {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10451    // Put Cond in a virtual register to make it available from the new blocks.
10452    ExportFromCurrentBlock(Cond);
10453  }
10454
10455  // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10456  // single cluster, RHS.Low == Pivot, and we can branch to its destination
10457  // directly if RHS.High equals the current upper bound.
10458  MachineBasicBlock *RightMBB;
10459  if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10460      W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10461    RightMBB = FirstRight->MBB;
10462  } else {
10463    RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10464    FuncInfo.MF->insert(BBI, RightMBB);
10465    WorkList.push_back(
10466        {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10467    // Put Cond in a virtual register to make it available from the new blocks.
10468    ExportFromCurrentBlock(Cond);
10469  }
10470
10471  // Create the CaseBlock record that will be used to lower the branch.
10472  CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10473               getCurSDLoc(), LeftProb, RightProb);
10474
10475  if (W.MBB == SwitchMBB)
10476    visitSwitchCase(CB, SwitchMBB);
10477  else
10478    SL->SwitchCases.push_back(CB);
10479}
10480
10481// Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10482// from the swith statement.
10483static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10484                                            BranchProbability PeeledCaseProb) {
10485  if (PeeledCaseProb == BranchProbability::getOne())
10486    return BranchProbability::getZero();
10487  BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10488
10489  uint32_t Numerator = CaseProb.getNumerator();
10490  uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10491  return BranchProbability(Numerator, std::max(Numerator, Denominator));
10492}
10493
10494// Try to peel the top probability case if it exceeds the threshold.
10495// Return current MachineBasicBlock for the switch statement if the peeling
10496// does not occur.
10497// If the peeling is performed, return the newly created MachineBasicBlock
10498// for the peeled switch statement. Also update Clusters to remove the peeled
10499// case. PeeledCaseProb is the BranchProbability for the peeled case.
10500MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10501    const SwitchInst &SI, CaseClusterVector &Clusters,
10502    BranchProbability &PeeledCaseProb) {
10503  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10504  // Don't perform if there is only one cluster or optimizing for size.
10505  if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10506      TM.getOptLevel() == CodeGenOpt::None ||
10507      SwitchMBB->getParent()->getFunction().hasMinSize())
10508    return SwitchMBB;
10509
10510  BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10511  unsigned PeeledCaseIndex = 0;
10512  bool SwitchPeeled = false;
10513  for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10514    CaseCluster &CC = Clusters[Index];
10515    if (CC.Prob < TopCaseProb)
10516      continue;
10517    TopCaseProb = CC.Prob;
10518    PeeledCaseIndex = Index;
10519    SwitchPeeled = true;
10520  }
10521  if (!SwitchPeeled)
10522    return SwitchMBB;
10523
10524  LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10525                    << TopCaseProb << "\n");
10526
10527  // Record the MBB for the peeled switch statement.
10528  MachineFunction::iterator BBI(SwitchMBB);
10529  ++BBI;
10530  MachineBasicBlock *PeeledSwitchMBB =
10531      FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10532  FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10533
10534  ExportFromCurrentBlock(SI.getCondition());
10535  auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10536  SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10537                          nullptr,   nullptr,      TopCaseProb.getCompl()};
10538  lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10539
10540  Clusters.erase(PeeledCaseIt);
10541  for (CaseCluster &CC : Clusters) {
10542    LLVM_DEBUG(
10543        dbgs() << "Scale the probablity for one cluster, before scaling: "
10544               << CC.Prob << "\n");
10545    CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10546    LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10547  }
10548  PeeledCaseProb = TopCaseProb;
10549  return PeeledSwitchMBB;
10550}
10551
10552void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10553  // Extract cases from the switch.
10554  BranchProbabilityInfo *BPI = FuncInfo.BPI;
10555  CaseClusterVector Clusters;
10556  Clusters.reserve(SI.getNumCases());
10557  for (auto I : SI.cases()) {
10558    MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10559    const ConstantInt *CaseVal = I.getCaseValue();
10560    BranchProbability Prob =
10561        BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10562            : BranchProbability(1, SI.getNumCases() + 1);
10563    Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10564  }
10565
10566  MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10567
10568  // Cluster adjacent cases with the same destination. We do this at all
10569  // optimization levels because it's cheap to do and will make codegen faster
10570  // if there are many clusters.
10571  sortAndRangeify(Clusters);
10572
10573  // The branch probablity of the peeled case.
10574  BranchProbability PeeledCaseProb = BranchProbability::getZero();
10575  MachineBasicBlock *PeeledSwitchMBB =
10576      peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10577
10578  // If there is only the default destination, jump there directly.
10579  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10580  if (Clusters.empty()) {
10581    assert(PeeledSwitchMBB == SwitchMBB);
10582    SwitchMBB->addSuccessor(DefaultMBB);
10583    if (DefaultMBB != NextBlock(SwitchMBB)) {
10584      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10585                              getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10586    }
10587    return;
10588  }
10589
10590  SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10591  SL->findBitTestClusters(Clusters, &SI);
10592
10593  LLVM_DEBUG({
10594    dbgs() << "Case clusters: ";
10595    for (const CaseCluster &C : Clusters) {
10596      if (C.Kind == CC_JumpTable)
10597        dbgs() << "JT:";
10598      if (C.Kind == CC_BitTests)
10599        dbgs() << "BT:";
10600
10601      C.Low->getValue().print(dbgs(), true);
10602      if (C.Low != C.High) {
10603        dbgs() << '-';
10604        C.High->getValue().print(dbgs(), true);
10605      }
10606      dbgs() << ' ';
10607    }
10608    dbgs() << '\n';
10609  });
10610
10611  assert(!Clusters.empty());
10612  SwitchWorkList WorkList;
10613  CaseClusterIt First = Clusters.begin();
10614  CaseClusterIt Last = Clusters.end() - 1;
10615  auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10616  // Scale the branchprobability for DefaultMBB if the peel occurs and
10617  // DefaultMBB is not replaced.
10618  if (PeeledCaseProb != BranchProbability::getZero() &&
10619      DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10620    DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10621  WorkList.push_back(
10622      {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10623
10624  while (!WorkList.empty()) {
10625    SwitchWorkListItem W = WorkList.back();
10626    WorkList.pop_back();
10627    unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10628
10629    if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10630        !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10631      // For optimized builds, lower large range as a balanced binary tree.
10632      splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10633      continue;
10634    }
10635
10636    lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10637  }
10638}
10639
10640void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10641  SDValue N = getValue(I.getOperand(0));
10642  setValue(&I, N);
10643}
10644