1//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAG class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/APSInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/FoldingSet.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/Triple.h"
26#include "llvm/ADT/Twine.h"
27#include "llvm/Analysis/BlockFrequencyInfo.h"
28#include "llvm/Analysis/MemoryLocation.h"
29#include "llvm/Analysis/ProfileSummaryInfo.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/CodeGen/ISDOpcodes.h"
32#include "llvm/CodeGen/MachineBasicBlock.h"
33#include "llvm/CodeGen/MachineConstantPool.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/RuntimeLibcalls.h"
38#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39#include "llvm/CodeGen/SelectionDAGNodes.h"
40#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41#include "llvm/CodeGen/TargetLowering.h"
42#include "llvm/CodeGen/TargetRegisterInfo.h"
43#include "llvm/CodeGen/TargetSubtargetInfo.h"
44#include "llvm/CodeGen/ValueTypes.h"
45#include "llvm/IR/Constant.h"
46#include "llvm/IR/Constants.h"
47#include "llvm/IR/DataLayout.h"
48#include "llvm/IR/DebugInfoMetadata.h"
49#include "llvm/IR/DebugLoc.h"
50#include "llvm/IR/DerivedTypes.h"
51#include "llvm/IR/Function.h"
52#include "llvm/IR/GlobalValue.h"
53#include "llvm/IR/Metadata.h"
54#include "llvm/IR/Type.h"
55#include "llvm/IR/Value.h"
56#include "llvm/Support/Casting.h"
57#include "llvm/Support/CodeGen.h"
58#include "llvm/Support/Compiler.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/KnownBits.h"
62#include "llvm/Support/MachineValueType.h"
63#include "llvm/Support/ManagedStatic.h"
64#include "llvm/Support/MathExtras.h"
65#include "llvm/Support/Mutex.h"
66#include "llvm/Support/raw_ostream.h"
67#include "llvm/Target/TargetMachine.h"
68#include "llvm/Target/TargetOptions.h"
69#include "llvm/Transforms/Utils/SizeOpts.h"
70#include <algorithm>
71#include <cassert>
72#include <cstdint>
73#include <cstdlib>
74#include <limits>
75#include <set>
76#include <string>
77#include <utility>
78#include <vector>
79
80using namespace llvm;
81
82/// makeVTList - Return an instance of the SDVTList struct initialized with the
83/// specified members.
84static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85  SDVTList Res = {VTs, NumVTs};
86  return Res;
87}
88
89// Default null implementations of the callbacks.
90void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93
94void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95
96#define DEBUG_TYPE "selectiondag"
97
98static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99       cl::Hidden, cl::init(true),
100       cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101
102static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103       cl::desc("Number limit for gluing ld/st of memcpy."),
104       cl::Hidden, cl::init(0));
105
106static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107  LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108}
109
110//===----------------------------------------------------------------------===//
111//                              ConstantFPSDNode Class
112//===----------------------------------------------------------------------===//
113
114/// isExactlyValue - We don't rely on operator== working on double values, as
115/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116/// As such, this method can be used to do an exact bit-for-bit comparison of
117/// two floating point values.
118bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119  return getValueAPF().bitwiseIsEqual(V);
120}
121
122bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                           const APFloat& Val) {
124  assert(VT.isFloatingPoint() && "Can only convert between FP types");
125
126  // convert modifies in place, so make a copy.
127  APFloat Val2 = APFloat(Val);
128  bool losesInfo;
129  (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                      APFloat::rmNearestTiesToEven,
131                      &losesInfo);
132  return !losesInfo;
133}
134
135//===----------------------------------------------------------------------===//
136//                              ISD Namespace
137//===----------------------------------------------------------------------===//
138
139bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140  auto *BV = dyn_cast<BuildVectorSDNode>(N);
141  if (!BV)
142    return false;
143
144  APInt SplatUndef;
145  unsigned SplatBitSize;
146  bool HasUndefs;
147  unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
148  return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
149                             EltSize) &&
150         EltSize == SplatBitSize;
151}
152
153// FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
154// specializations of the more general isConstantSplatVector()?
155
156bool ISD::isBuildVectorAllOnes(const SDNode *N) {
157  // Look through a bit convert.
158  while (N->getOpcode() == ISD::BITCAST)
159    N = N->getOperand(0).getNode();
160
161  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162
163  unsigned i = 0, e = N->getNumOperands();
164
165  // Skip over all of the undef values.
166  while (i != e && N->getOperand(i).isUndef())
167    ++i;
168
169  // Do not accept an all-undef vector.
170  if (i == e) return false;
171
172  // Do not accept build_vectors that aren't all constants or which have non-~0
173  // elements. We have to be a bit careful here, as the type of the constant
174  // may not be the same as the type of the vector elements due to type
175  // legalization (the elements are promoted to a legal type for the target and
176  // a vector of a type may be legal when the base element type is not).
177  // We only want to check enough bits to cover the vector elements, because
178  // we care if the resultant vector is all ones, not whether the individual
179  // constants are.
180  SDValue NotZero = N->getOperand(i);
181  unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
182  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
183    if (CN->getAPIntValue().countTrailingOnes() < EltSize)
184      return false;
185  } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
186    if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
187      return false;
188  } else
189    return false;
190
191  // Okay, we have at least one ~0 value, check to see if the rest match or are
192  // undefs. Even with the above element type twiddling, this should be OK, as
193  // the same type legalization should have applied to all the elements.
194  for (++i; i != e; ++i)
195    if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
196      return false;
197  return true;
198}
199
200bool ISD::isBuildVectorAllZeros(const SDNode *N) {
201  // Look through a bit convert.
202  while (N->getOpcode() == ISD::BITCAST)
203    N = N->getOperand(0).getNode();
204
205  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
206
207  bool IsAllUndef = true;
208  for (const SDValue &Op : N->op_values()) {
209    if (Op.isUndef())
210      continue;
211    IsAllUndef = false;
212    // Do not accept build_vectors that aren't all constants or which have non-0
213    // elements. We have to be a bit careful here, as the type of the constant
214    // may not be the same as the type of the vector elements due to type
215    // legalization (the elements are promoted to a legal type for the target
216    // and a vector of a type may be legal when the base element type is not).
217    // We only want to check enough bits to cover the vector elements, because
218    // we care if the resultant vector is all zeros, not whether the individual
219    // constants are.
220    unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
221    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
222      if (CN->getAPIntValue().countTrailingZeros() < EltSize)
223        return false;
224    } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
225      if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
226        return false;
227    } else
228      return false;
229  }
230
231  // Do not accept an all-undef vector.
232  if (IsAllUndef)
233    return false;
234  return true;
235}
236
237bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
238  if (N->getOpcode() != ISD::BUILD_VECTOR)
239    return false;
240
241  for (const SDValue &Op : N->op_values()) {
242    if (Op.isUndef())
243      continue;
244    if (!isa<ConstantSDNode>(Op))
245      return false;
246  }
247  return true;
248}
249
250bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
251  if (N->getOpcode() != ISD::BUILD_VECTOR)
252    return false;
253
254  for (const SDValue &Op : N->op_values()) {
255    if (Op.isUndef())
256      continue;
257    if (!isa<ConstantFPSDNode>(Op))
258      return false;
259  }
260  return true;
261}
262
263bool ISD::allOperandsUndef(const SDNode *N) {
264  // Return false if the node has no operands.
265  // This is "logically inconsistent" with the definition of "all" but
266  // is probably the desired behavior.
267  if (N->getNumOperands() == 0)
268    return false;
269  return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
270}
271
272bool ISD::matchUnaryPredicate(SDValue Op,
273                              std::function<bool(ConstantSDNode *)> Match,
274                              bool AllowUndefs) {
275  // FIXME: Add support for scalar UNDEF cases?
276  if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277    return Match(Cst);
278
279  // FIXME: Add support for vector UNDEF cases?
280  if (ISD::BUILD_VECTOR != Op.getOpcode())
281    return false;
282
283  EVT SVT = Op.getValueType().getScalarType();
284  for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285    if (AllowUndefs && Op.getOperand(i).isUndef()) {
286      if (!Match(nullptr))
287        return false;
288      continue;
289    }
290
291    auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292    if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293      return false;
294  }
295  return true;
296}
297
298bool ISD::matchBinaryPredicate(
299    SDValue LHS, SDValue RHS,
300    std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301    bool AllowUndefs, bool AllowTypeMismatch) {
302  if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
303    return false;
304
305  // TODO: Add support for scalar UNDEF cases?
306  if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307    if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308      return Match(LHSCst, RHSCst);
309
310  // TODO: Add support for vector UNDEF cases?
311  if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312      ISD::BUILD_VECTOR != RHS.getOpcode())
313    return false;
314
315  EVT SVT = LHS.getValueType().getScalarType();
316  for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317    SDValue LHSOp = LHS.getOperand(i);
318    SDValue RHSOp = RHS.getOperand(i);
319    bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320    bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321    auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322    auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323    if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324      return false;
325    if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
326                               LHSOp.getValueType() != RHSOp.getValueType()))
327      return false;
328    if (!Match(LHSCst, RHSCst))
329      return false;
330  }
331  return true;
332}
333
334ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335  switch (ExtType) {
336  case ISD::EXTLOAD:
337    return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338  case ISD::SEXTLOAD:
339    return ISD::SIGN_EXTEND;
340  case ISD::ZEXTLOAD:
341    return ISD::ZERO_EXTEND;
342  default:
343    break;
344  }
345
346  llvm_unreachable("Invalid LoadExtType");
347}
348
349ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350  // To perform this operation, we just need to swap the L and G bits of the
351  // operation.
352  unsigned OldL = (Operation >> 2) & 1;
353  unsigned OldG = (Operation >> 1) & 1;
354  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                       (OldL << 1) |       // New G bit
356                       (OldG << 2));       // New L bit.
357}
358
359static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
360  unsigned Operation = Op;
361  if (isIntegerLike)
362    Operation ^= 7;   // Flip L, G, E bits, but not U.
363  else
364    Operation ^= 15;  // Flip all of the condition bits.
365
366  if (Operation > ISD::SETTRUE2)
367    Operation &= ~8;  // Don't let N and U bits get set.
368
369  return ISD::CondCode(Operation);
370}
371
372ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
373  return getSetCCInverseImpl(Op, Type.isInteger());
374}
375
376ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
377                                               bool isIntegerLike) {
378  return getSetCCInverseImpl(Op, isIntegerLike);
379}
380
381/// For an integer comparison, return 1 if the comparison is a signed operation
382/// and 2 if the result is an unsigned comparison. Return zero if the operation
383/// does not depend on the sign of the input (setne and seteq).
384static int isSignedOp(ISD::CondCode Opcode) {
385  switch (Opcode) {
386  default: llvm_unreachable("Illegal integer setcc operation!");
387  case ISD::SETEQ:
388  case ISD::SETNE: return 0;
389  case ISD::SETLT:
390  case ISD::SETLE:
391  case ISD::SETGT:
392  case ISD::SETGE: return 1;
393  case ISD::SETULT:
394  case ISD::SETULE:
395  case ISD::SETUGT:
396  case ISD::SETUGE: return 2;
397  }
398}
399
400ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
401                                       EVT Type) {
402  bool IsInteger = Type.isInteger();
403  if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
404    // Cannot fold a signed integer setcc with an unsigned integer setcc.
405    return ISD::SETCC_INVALID;
406
407  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
408
409  // If the N and U bits get set, then the resultant comparison DOES suddenly
410  // care about orderedness, and it is true when ordered.
411  if (Op > ISD::SETTRUE2)
412    Op &= ~16;     // Clear the U bit if the N bit is set.
413
414  // Canonicalize illegal integer setcc's.
415  if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
416    Op = ISD::SETNE;
417
418  return ISD::CondCode(Op);
419}
420
421ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
422                                        EVT Type) {
423  bool IsInteger = Type.isInteger();
424  if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
425    // Cannot fold a signed setcc with an unsigned setcc.
426    return ISD::SETCC_INVALID;
427
428  // Combine all of the condition bits.
429  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
430
431  // Canonicalize illegal integer setcc's.
432  if (IsInteger) {
433    switch (Result) {
434    default: break;
435    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
436    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
437    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
438    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
439    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
440    }
441  }
442
443  return Result;
444}
445
446//===----------------------------------------------------------------------===//
447//                           SDNode Profile Support
448//===----------------------------------------------------------------------===//
449
450/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
451static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
452  ID.AddInteger(OpC);
453}
454
455/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
456/// solely with their pointer.
457static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
458  ID.AddPointer(VTList.VTs);
459}
460
461/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
462static void AddNodeIDOperands(FoldingSetNodeID &ID,
463                              ArrayRef<SDValue> Ops) {
464  for (auto& Op : Ops) {
465    ID.AddPointer(Op.getNode());
466    ID.AddInteger(Op.getResNo());
467  }
468}
469
470/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
471static void AddNodeIDOperands(FoldingSetNodeID &ID,
472                              ArrayRef<SDUse> Ops) {
473  for (auto& Op : Ops) {
474    ID.AddPointer(Op.getNode());
475    ID.AddInteger(Op.getResNo());
476  }
477}
478
479static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
480                          SDVTList VTList, ArrayRef<SDValue> OpList) {
481  AddNodeIDOpcode(ID, OpC);
482  AddNodeIDValueTypes(ID, VTList);
483  AddNodeIDOperands(ID, OpList);
484}
485
486/// If this is an SDNode with special info, add this info to the NodeID data.
487static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
488  switch (N->getOpcode()) {
489  case ISD::TargetExternalSymbol:
490  case ISD::ExternalSymbol:
491  case ISD::MCSymbol:
492    llvm_unreachable("Should only be used on nodes with operands");
493  default: break;  // Normal nodes don't need extra info.
494  case ISD::TargetConstant:
495  case ISD::Constant: {
496    const ConstantSDNode *C = cast<ConstantSDNode>(N);
497    ID.AddPointer(C->getConstantIntValue());
498    ID.AddBoolean(C->isOpaque());
499    break;
500  }
501  case ISD::TargetConstantFP:
502  case ISD::ConstantFP:
503    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
504    break;
505  case ISD::TargetGlobalAddress:
506  case ISD::GlobalAddress:
507  case ISD::TargetGlobalTLSAddress:
508  case ISD::GlobalTLSAddress: {
509    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
510    ID.AddPointer(GA->getGlobal());
511    ID.AddInteger(GA->getOffset());
512    ID.AddInteger(GA->getTargetFlags());
513    break;
514  }
515  case ISD::BasicBlock:
516    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
517    break;
518  case ISD::Register:
519    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
520    break;
521  case ISD::RegisterMask:
522    ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
523    break;
524  case ISD::SRCVALUE:
525    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
526    break;
527  case ISD::FrameIndex:
528  case ISD::TargetFrameIndex:
529    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
530    break;
531  case ISD::LIFETIME_START:
532  case ISD::LIFETIME_END:
533    if (cast<LifetimeSDNode>(N)->hasOffset()) {
534      ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
535      ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
536    }
537    break;
538  case ISD::JumpTable:
539  case ISD::TargetJumpTable:
540    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
541    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
542    break;
543  case ISD::ConstantPool:
544  case ISD::TargetConstantPool: {
545    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
546    ID.AddInteger(CP->getAlignment());
547    ID.AddInteger(CP->getOffset());
548    if (CP->isMachineConstantPoolEntry())
549      CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
550    else
551      ID.AddPointer(CP->getConstVal());
552    ID.AddInteger(CP->getTargetFlags());
553    break;
554  }
555  case ISD::TargetIndex: {
556    const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
557    ID.AddInteger(TI->getIndex());
558    ID.AddInteger(TI->getOffset());
559    ID.AddInteger(TI->getTargetFlags());
560    break;
561  }
562  case ISD::LOAD: {
563    const LoadSDNode *LD = cast<LoadSDNode>(N);
564    ID.AddInteger(LD->getMemoryVT().getRawBits());
565    ID.AddInteger(LD->getRawSubclassData());
566    ID.AddInteger(LD->getPointerInfo().getAddrSpace());
567    break;
568  }
569  case ISD::STORE: {
570    const StoreSDNode *ST = cast<StoreSDNode>(N);
571    ID.AddInteger(ST->getMemoryVT().getRawBits());
572    ID.AddInteger(ST->getRawSubclassData());
573    ID.AddInteger(ST->getPointerInfo().getAddrSpace());
574    break;
575  }
576  case ISD::MLOAD: {
577    const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
578    ID.AddInteger(MLD->getMemoryVT().getRawBits());
579    ID.AddInteger(MLD->getRawSubclassData());
580    ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
581    break;
582  }
583  case ISD::MSTORE: {
584    const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
585    ID.AddInteger(MST->getMemoryVT().getRawBits());
586    ID.AddInteger(MST->getRawSubclassData());
587    ID.AddInteger(MST->getPointerInfo().getAddrSpace());
588    break;
589  }
590  case ISD::MGATHER: {
591    const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
592    ID.AddInteger(MG->getMemoryVT().getRawBits());
593    ID.AddInteger(MG->getRawSubclassData());
594    ID.AddInteger(MG->getPointerInfo().getAddrSpace());
595    break;
596  }
597  case ISD::MSCATTER: {
598    const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
599    ID.AddInteger(MS->getMemoryVT().getRawBits());
600    ID.AddInteger(MS->getRawSubclassData());
601    ID.AddInteger(MS->getPointerInfo().getAddrSpace());
602    break;
603  }
604  case ISD::ATOMIC_CMP_SWAP:
605  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
606  case ISD::ATOMIC_SWAP:
607  case ISD::ATOMIC_LOAD_ADD:
608  case ISD::ATOMIC_LOAD_SUB:
609  case ISD::ATOMIC_LOAD_AND:
610  case ISD::ATOMIC_LOAD_CLR:
611  case ISD::ATOMIC_LOAD_OR:
612  case ISD::ATOMIC_LOAD_XOR:
613  case ISD::ATOMIC_LOAD_NAND:
614  case ISD::ATOMIC_LOAD_MIN:
615  case ISD::ATOMIC_LOAD_MAX:
616  case ISD::ATOMIC_LOAD_UMIN:
617  case ISD::ATOMIC_LOAD_UMAX:
618  case ISD::ATOMIC_LOAD:
619  case ISD::ATOMIC_STORE: {
620    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
621    ID.AddInteger(AT->getMemoryVT().getRawBits());
622    ID.AddInteger(AT->getRawSubclassData());
623    ID.AddInteger(AT->getPointerInfo().getAddrSpace());
624    break;
625  }
626  case ISD::PREFETCH: {
627    const MemSDNode *PF = cast<MemSDNode>(N);
628    ID.AddInteger(PF->getPointerInfo().getAddrSpace());
629    break;
630  }
631  case ISD::VECTOR_SHUFFLE: {
632    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
633    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
634         i != e; ++i)
635      ID.AddInteger(SVN->getMaskElt(i));
636    break;
637  }
638  case ISD::TargetBlockAddress:
639  case ISD::BlockAddress: {
640    const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
641    ID.AddPointer(BA->getBlockAddress());
642    ID.AddInteger(BA->getOffset());
643    ID.AddInteger(BA->getTargetFlags());
644    break;
645  }
646  } // end switch (N->getOpcode())
647
648  // Target specific memory nodes could also have address spaces to check.
649  if (N->isTargetMemoryOpcode())
650    ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
651}
652
653/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
654/// data.
655static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
656  AddNodeIDOpcode(ID, N->getOpcode());
657  // Add the return value info.
658  AddNodeIDValueTypes(ID, N->getVTList());
659  // Add the operand info.
660  AddNodeIDOperands(ID, N->ops());
661
662  // Handle SDNode leafs with special info.
663  AddNodeIDCustom(ID, N);
664}
665
666//===----------------------------------------------------------------------===//
667//                              SelectionDAG Class
668//===----------------------------------------------------------------------===//
669
670/// doNotCSE - Return true if CSE should not be performed for this node.
671static bool doNotCSE(SDNode *N) {
672  if (N->getValueType(0) == MVT::Glue)
673    return true; // Never CSE anything that produces a flag.
674
675  switch (N->getOpcode()) {
676  default: break;
677  case ISD::HANDLENODE:
678  case ISD::EH_LABEL:
679    return true;   // Never CSE these nodes.
680  }
681
682  // Check that remaining values produced are not flags.
683  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
684    if (N->getValueType(i) == MVT::Glue)
685      return true; // Never CSE anything that produces a flag.
686
687  return false;
688}
689
690/// RemoveDeadNodes - This method deletes all unreachable nodes in the
691/// SelectionDAG.
692void SelectionDAG::RemoveDeadNodes() {
693  // Create a dummy node (which is not added to allnodes), that adds a reference
694  // to the root node, preventing it from being deleted.
695  HandleSDNode Dummy(getRoot());
696
697  SmallVector<SDNode*, 128> DeadNodes;
698
699  // Add all obviously-dead nodes to the DeadNodes worklist.
700  for (SDNode &Node : allnodes())
701    if (Node.use_empty())
702      DeadNodes.push_back(&Node);
703
704  RemoveDeadNodes(DeadNodes);
705
706  // If the root changed (e.g. it was a dead load, update the root).
707  setRoot(Dummy.getValue());
708}
709
710/// RemoveDeadNodes - This method deletes the unreachable nodes in the
711/// given list, and any nodes that become unreachable as a result.
712void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
713
714  // Process the worklist, deleting the nodes and adding their uses to the
715  // worklist.
716  while (!DeadNodes.empty()) {
717    SDNode *N = DeadNodes.pop_back_val();
718    // Skip to next node if we've already managed to delete the node. This could
719    // happen if replacing a node causes a node previously added to the node to
720    // be deleted.
721    if (N->getOpcode() == ISD::DELETED_NODE)
722      continue;
723
724    for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
725      DUL->NodeDeleted(N, nullptr);
726
727    // Take the node out of the appropriate CSE map.
728    RemoveNodeFromCSEMaps(N);
729
730    // Next, brutally remove the operand list.  This is safe to do, as there are
731    // no cycles in the graph.
732    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
733      SDUse &Use = *I++;
734      SDNode *Operand = Use.getNode();
735      Use.set(SDValue());
736
737      // Now that we removed this operand, see if there are no uses of it left.
738      if (Operand->use_empty())
739        DeadNodes.push_back(Operand);
740    }
741
742    DeallocateNode(N);
743  }
744}
745
746void SelectionDAG::RemoveDeadNode(SDNode *N){
747  SmallVector<SDNode*, 16> DeadNodes(1, N);
748
749  // Create a dummy node that adds a reference to the root node, preventing
750  // it from being deleted.  (This matters if the root is an operand of the
751  // dead node.)
752  HandleSDNode Dummy(getRoot());
753
754  RemoveDeadNodes(DeadNodes);
755}
756
757void SelectionDAG::DeleteNode(SDNode *N) {
758  // First take this out of the appropriate CSE map.
759  RemoveNodeFromCSEMaps(N);
760
761  // Finally, remove uses due to operands of this node, remove from the
762  // AllNodes list, and delete the node.
763  DeleteNodeNotInCSEMaps(N);
764}
765
766void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
767  assert(N->getIterator() != AllNodes.begin() &&
768         "Cannot delete the entry node!");
769  assert(N->use_empty() && "Cannot delete a node that is not dead!");
770
771  // Drop all of the operands and decrement used node's use counts.
772  N->DropOperands();
773
774  DeallocateNode(N);
775}
776
777void SDDbgInfo::erase(const SDNode *Node) {
778  DbgValMapType::iterator I = DbgValMap.find(Node);
779  if (I == DbgValMap.end())
780    return;
781  for (auto &Val: I->second)
782    Val->setIsInvalidated();
783  DbgValMap.erase(I);
784}
785
786void SelectionDAG::DeallocateNode(SDNode *N) {
787  // If we have operands, deallocate them.
788  removeOperands(N);
789
790  NodeAllocator.Deallocate(AllNodes.remove(N));
791
792  // Set the opcode to DELETED_NODE to help catch bugs when node
793  // memory is reallocated.
794  // FIXME: There are places in SDag that have grown a dependency on the opcode
795  // value in the released node.
796  __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
797  N->NodeType = ISD::DELETED_NODE;
798
799  // If any of the SDDbgValue nodes refer to this SDNode, invalidate
800  // them and forget about that node.
801  DbgInfo->erase(N);
802}
803
804#ifndef NDEBUG
805/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
806static void VerifySDNode(SDNode *N) {
807  switch (N->getOpcode()) {
808  default:
809    break;
810  case ISD::BUILD_PAIR: {
811    EVT VT = N->getValueType(0);
812    assert(N->getNumValues() == 1 && "Too many results!");
813    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
814           "Wrong return type!");
815    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
816    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
817           "Mismatched operand types!");
818    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
819           "Wrong operand type!");
820    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
821           "Wrong return type size");
822    break;
823  }
824  case ISD::BUILD_VECTOR: {
825    assert(N->getNumValues() == 1 && "Too many results!");
826    assert(N->getValueType(0).isVector() && "Wrong return type!");
827    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
828           "Wrong number of operands!");
829    EVT EltVT = N->getValueType(0).getVectorElementType();
830    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
831      assert((I->getValueType() == EltVT ||
832             (EltVT.isInteger() && I->getValueType().isInteger() &&
833              EltVT.bitsLE(I->getValueType()))) &&
834            "Wrong operand type!");
835      assert(I->getValueType() == N->getOperand(0).getValueType() &&
836             "Operands must all have the same type");
837    }
838    break;
839  }
840  }
841}
842#endif // NDEBUG
843
844/// Insert a newly allocated node into the DAG.
845///
846/// Handles insertion into the all nodes list and CSE map, as well as
847/// verification and other common operations when a new node is allocated.
848void SelectionDAG::InsertNode(SDNode *N) {
849  AllNodes.push_back(N);
850#ifndef NDEBUG
851  N->PersistentId = NextPersistentId++;
852  VerifySDNode(N);
853#endif
854  for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
855    DUL->NodeInserted(N);
856}
857
858/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
859/// correspond to it.  This is useful when we're about to delete or repurpose
860/// the node.  We don't want future request for structurally identical nodes
861/// to return N anymore.
862bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
863  bool Erased = false;
864  switch (N->getOpcode()) {
865  case ISD::HANDLENODE: return false;  // noop.
866  case ISD::CONDCODE:
867    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
868           "Cond code doesn't exist!");
869    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
870    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
871    break;
872  case ISD::ExternalSymbol:
873    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
874    break;
875  case ISD::TargetExternalSymbol: {
876    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
877    Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
878        ESN->getSymbol(), ESN->getTargetFlags()));
879    break;
880  }
881  case ISD::MCSymbol: {
882    auto *MCSN = cast<MCSymbolSDNode>(N);
883    Erased = MCSymbols.erase(MCSN->getMCSymbol());
884    break;
885  }
886  case ISD::VALUETYPE: {
887    EVT VT = cast<VTSDNode>(N)->getVT();
888    if (VT.isExtended()) {
889      Erased = ExtendedValueTypeNodes.erase(VT);
890    } else {
891      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
892      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
893    }
894    break;
895  }
896  default:
897    // Remove it from the CSE Map.
898    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
899    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
900    Erased = CSEMap.RemoveNode(N);
901    break;
902  }
903#ifndef NDEBUG
904  // Verify that the node was actually in one of the CSE maps, unless it has a
905  // flag result (which cannot be CSE'd) or is one of the special cases that are
906  // not subject to CSE.
907  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
908      !N->isMachineOpcode() && !doNotCSE(N)) {
909    N->dump(this);
910    dbgs() << "\n";
911    llvm_unreachable("Node is not in map!");
912  }
913#endif
914  return Erased;
915}
916
917/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
918/// maps and modified in place. Add it back to the CSE maps, unless an identical
919/// node already exists, in which case transfer all its users to the existing
920/// node. This transfer can potentially trigger recursive merging.
921void
922SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
923  // For node types that aren't CSE'd, just act as if no identical node
924  // already exists.
925  if (!doNotCSE(N)) {
926    SDNode *Existing = CSEMap.GetOrInsertNode(N);
927    if (Existing != N) {
928      // If there was already an existing matching node, use ReplaceAllUsesWith
929      // to replace the dead one with the existing one.  This can cause
930      // recursive merging of other unrelated nodes down the line.
931      ReplaceAllUsesWith(N, Existing);
932
933      // N is now dead. Inform the listeners and delete it.
934      for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
935        DUL->NodeDeleted(N, Existing);
936      DeleteNodeNotInCSEMaps(N);
937      return;
938    }
939  }
940
941  // If the node doesn't already exist, we updated it.  Inform listeners.
942  for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
943    DUL->NodeUpdated(N);
944}
945
946/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947/// were replaced with those specified.  If this node is never memoized,
948/// return null, otherwise return a pointer to the slot it would take.  If a
949/// node already exists with these operands, the slot will be non-null.
950SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
951                                           void *&InsertPos) {
952  if (doNotCSE(N))
953    return nullptr;
954
955  SDValue Ops[] = { Op };
956  FoldingSetNodeID ID;
957  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
958  AddNodeIDCustom(ID, N);
959  SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
960  if (Node)
961    Node->intersectFlagsWith(N->getFlags());
962  return Node;
963}
964
965/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
966/// were replaced with those specified.  If this node is never memoized,
967/// return null, otherwise return a pointer to the slot it would take.  If a
968/// node already exists with these operands, the slot will be non-null.
969SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
970                                           SDValue Op1, SDValue Op2,
971                                           void *&InsertPos) {
972  if (doNotCSE(N))
973    return nullptr;
974
975  SDValue Ops[] = { Op1, Op2 };
976  FoldingSetNodeID ID;
977  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
978  AddNodeIDCustom(ID, N);
979  SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
980  if (Node)
981    Node->intersectFlagsWith(N->getFlags());
982  return Node;
983}
984
985/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
986/// were replaced with those specified.  If this node is never memoized,
987/// return null, otherwise return a pointer to the slot it would take.  If a
988/// node already exists with these operands, the slot will be non-null.
989SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
990                                           void *&InsertPos) {
991  if (doNotCSE(N))
992    return nullptr;
993
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
996  AddNodeIDCustom(ID, N);
997  SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
998  if (Node)
999    Node->intersectFlagsWith(N->getFlags());
1000  return Node;
1001}
1002
1003unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
1004  Type *Ty = VT == MVT::iPTR ?
1005                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1006                   VT.getTypeForEVT(*getContext());
1007
1008  return getDataLayout().getABITypeAlignment(Ty);
1009}
1010
1011// EntryNode could meaningfully have debug info if we can find it...
1012SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1013    : TM(tm), OptLevel(OL),
1014      EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1015      Root(getEntryNode()) {
1016  InsertNode(&EntryNode);
1017  DbgInfo = new SDDbgInfo();
1018}
1019
1020void SelectionDAG::init(MachineFunction &NewMF,
1021                        OptimizationRemarkEmitter &NewORE,
1022                        Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1023                        LegacyDivergenceAnalysis * Divergence,
1024                        ProfileSummaryInfo *PSIin,
1025                        BlockFrequencyInfo *BFIin) {
1026  MF = &NewMF;
1027  SDAGISelPass = PassPtr;
1028  ORE = &NewORE;
1029  TLI = getSubtarget().getTargetLowering();
1030  TSI = getSubtarget().getSelectionDAGInfo();
1031  LibInfo = LibraryInfo;
1032  Context = &MF->getFunction().getContext();
1033  DA = Divergence;
1034  PSI = PSIin;
1035  BFI = BFIin;
1036}
1037
1038SelectionDAG::~SelectionDAG() {
1039  assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1040  allnodes_clear();
1041  OperandRecycler.clear(OperandAllocator);
1042  delete DbgInfo;
1043}
1044
1045bool SelectionDAG::shouldOptForSize() const {
1046  return MF->getFunction().hasOptSize() ||
1047      llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1048}
1049
1050void SelectionDAG::allnodes_clear() {
1051  assert(&*AllNodes.begin() == &EntryNode);
1052  AllNodes.remove(AllNodes.begin());
1053  while (!AllNodes.empty())
1054    DeallocateNode(&AllNodes.front());
1055#ifndef NDEBUG
1056  NextPersistentId = 0;
1057#endif
1058}
1059
1060SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1061                                          void *&InsertPos) {
1062  SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1063  if (N) {
1064    switch (N->getOpcode()) {
1065    default: break;
1066    case ISD::Constant:
1067    case ISD::ConstantFP:
1068      llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1069                       "debug location.  Use another overload.");
1070    }
1071  }
1072  return N;
1073}
1074
1075SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1076                                          const SDLoc &DL, void *&InsertPos) {
1077  SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1078  if (N) {
1079    switch (N->getOpcode()) {
1080    case ISD::Constant:
1081    case ISD::ConstantFP:
1082      // Erase debug location from the node if the node is used at several
1083      // different places. Do not propagate one location to all uses as it
1084      // will cause a worse single stepping debugging experience.
1085      if (N->getDebugLoc() != DL.getDebugLoc())
1086        N->setDebugLoc(DebugLoc());
1087      break;
1088    default:
1089      // When the node's point of use is located earlier in the instruction
1090      // sequence than its prior point of use, update its debug info to the
1091      // earlier location.
1092      if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1093        N->setDebugLoc(DL.getDebugLoc());
1094      break;
1095    }
1096  }
1097  return N;
1098}
1099
1100void SelectionDAG::clear() {
1101  allnodes_clear();
1102  OperandRecycler.clear(OperandAllocator);
1103  OperandAllocator.Reset();
1104  CSEMap.clear();
1105
1106  ExtendedValueTypeNodes.clear();
1107  ExternalSymbols.clear();
1108  TargetExternalSymbols.clear();
1109  MCSymbols.clear();
1110  SDCallSiteDbgInfo.clear();
1111  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1112            static_cast<CondCodeSDNode*>(nullptr));
1113  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1114            static_cast<SDNode*>(nullptr));
1115
1116  EntryNode.UseList = nullptr;
1117  InsertNode(&EntryNode);
1118  Root = getEntryNode();
1119  DbgInfo->clear();
1120}
1121
1122SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1123  return VT.bitsGT(Op.getValueType())
1124             ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1125             : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1126}
1127
1128std::pair<SDValue, SDValue>
1129SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1130                                       const SDLoc &DL, EVT VT) {
1131  assert(!VT.bitsEq(Op.getValueType()) &&
1132         "Strict no-op FP extend/round not allowed.");
1133  SDValue Res =
1134      VT.bitsGT(Op.getValueType())
1135          ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1136          : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1137                    {Chain, Op, getIntPtrConstant(0, DL)});
1138
1139  return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1140}
1141
1142SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1143  return VT.bitsGT(Op.getValueType()) ?
1144    getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1145    getNode(ISD::TRUNCATE, DL, VT, Op);
1146}
1147
1148SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1149  return VT.bitsGT(Op.getValueType()) ?
1150    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1151    getNode(ISD::TRUNCATE, DL, VT, Op);
1152}
1153
1154SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1155  return VT.bitsGT(Op.getValueType()) ?
1156    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1157    getNode(ISD::TRUNCATE, DL, VT, Op);
1158}
1159
1160SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1161                                        EVT OpVT) {
1162  if (VT.bitsLE(Op.getValueType()))
1163    return getNode(ISD::TRUNCATE, SL, VT, Op);
1164
1165  TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1166  return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1167}
1168
1169SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1170  assert(!VT.isVector() &&
1171         "getZeroExtendInReg should use the vector element type instead of "
1172         "the vector type!");
1173  if (Op.getValueType().getScalarType() == VT) return Op;
1174  unsigned BitWidth = Op.getScalarValueSizeInBits();
1175  APInt Imm = APInt::getLowBitsSet(BitWidth,
1176                                   VT.getSizeInBits());
1177  return getNode(ISD::AND, DL, Op.getValueType(), Op,
1178                 getConstant(Imm, DL, Op.getValueType()));
1179}
1180
1181SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1182  // Only unsigned pointer semantics are supported right now. In the future this
1183  // might delegate to TLI to check pointer signedness.
1184  return getZExtOrTrunc(Op, DL, VT);
1185}
1186
1187SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1188  // Only unsigned pointer semantics are supported right now. In the future this
1189  // might delegate to TLI to check pointer signedness.
1190  return getZeroExtendInReg(Op, DL, VT);
1191}
1192
1193/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1194SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1195  EVT EltVT = VT.getScalarType();
1196  SDValue NegOne =
1197    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1198  return getNode(ISD::XOR, DL, VT, Val, NegOne);
1199}
1200
1201SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202  SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1203  return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1204}
1205
1206SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1207                                      EVT OpVT) {
1208  if (!V)
1209    return getConstant(0, DL, VT);
1210
1211  switch (TLI->getBooleanContents(OpVT)) {
1212  case TargetLowering::ZeroOrOneBooleanContent:
1213  case TargetLowering::UndefinedBooleanContent:
1214    return getConstant(1, DL, VT);
1215  case TargetLowering::ZeroOrNegativeOneBooleanContent:
1216    return getAllOnesConstant(DL, VT);
1217  }
1218  llvm_unreachable("Unexpected boolean content enum!");
1219}
1220
1221SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1222                                  bool isT, bool isO) {
1223  EVT EltVT = VT.getScalarType();
1224  assert((EltVT.getSizeInBits() >= 64 ||
1225         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1226         "getConstant with a uint64_t value that doesn't fit in the type!");
1227  return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1228}
1229
1230SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1231                                  bool isT, bool isO) {
1232  return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1233}
1234
1235SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1236                                  EVT VT, bool isT, bool isO) {
1237  assert(VT.isInteger() && "Cannot create FP integer constant!");
1238
1239  EVT EltVT = VT.getScalarType();
1240  const ConstantInt *Elt = &Val;
1241
1242  // In some cases the vector type is legal but the element type is illegal and
1243  // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1244  // inserted value (the type does not need to match the vector element type).
1245  // Any extra bits introduced will be truncated away.
1246  if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1247      TargetLowering::TypePromoteInteger) {
1248   EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1249   APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1250   Elt = ConstantInt::get(*getContext(), NewVal);
1251  }
1252  // In other cases the element type is illegal and needs to be expanded, for
1253  // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1254  // the value into n parts and use a vector type with n-times the elements.
1255  // Then bitcast to the type requested.
1256  // Legalizing constants too early makes the DAGCombiner's job harder so we
1257  // only legalize if the DAG tells us we must produce legal types.
1258  else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1259           TLI->getTypeAction(*getContext(), EltVT) ==
1260           TargetLowering::TypeExpandInteger) {
1261    const APInt &NewVal = Elt->getValue();
1262    EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1263    unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1264    unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1265    EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1266
1267    // Check the temporary vector is the correct size. If this fails then
1268    // getTypeToTransformTo() probably returned a type whose size (in bits)
1269    // isn't a power-of-2 factor of the requested type size.
1270    assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1271
1272    SmallVector<SDValue, 2> EltParts;
1273    for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1274      EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1275                                           .zextOrTrunc(ViaEltSizeInBits), DL,
1276                                     ViaEltVT, isT, isO));
1277    }
1278
1279    // EltParts is currently in little endian order. If we actually want
1280    // big-endian order then reverse it now.
1281    if (getDataLayout().isBigEndian())
1282      std::reverse(EltParts.begin(), EltParts.end());
1283
1284    // The elements must be reversed when the element order is different
1285    // to the endianness of the elements (because the BITCAST is itself a
1286    // vector shuffle in this situation). However, we do not need any code to
1287    // perform this reversal because getConstant() is producing a vector
1288    // splat.
1289    // This situation occurs in MIPS MSA.
1290
1291    SmallVector<SDValue, 8> Ops;
1292    for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1293      Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1294
1295    SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1296    return V;
1297  }
1298
1299  assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1300         "APInt size does not match type size!");
1301  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1302  FoldingSetNodeID ID;
1303  AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1304  ID.AddPointer(Elt);
1305  ID.AddBoolean(isO);
1306  void *IP = nullptr;
1307  SDNode *N = nullptr;
1308  if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1309    if (!VT.isVector())
1310      return SDValue(N, 0);
1311
1312  if (!N) {
1313    N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1314    CSEMap.InsertNode(N, IP);
1315    InsertNode(N);
1316    NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1317  }
1318
1319  SDValue Result(N, 0);
1320  if (VT.isScalableVector())
1321    Result = getSplatVector(VT, DL, Result);
1322  else if (VT.isVector())
1323    Result = getSplatBuildVector(VT, DL, Result);
1324
1325  return Result;
1326}
1327
1328SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1329                                        bool isTarget) {
1330  return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1331}
1332
1333SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1334                                             const SDLoc &DL, bool LegalTypes) {
1335  EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1336  return getConstant(Val, DL, ShiftVT);
1337}
1338
1339SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1340                                    bool isTarget) {
1341  return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1342}
1343
1344SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1345                                    EVT VT, bool isTarget) {
1346  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1347
1348  EVT EltVT = VT.getScalarType();
1349
1350  // Do the map lookup using the actual bit pattern for the floating point
1351  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1352  // we don't have issues with SNANs.
1353  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1354  FoldingSetNodeID ID;
1355  AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1356  ID.AddPointer(&V);
1357  void *IP = nullptr;
1358  SDNode *N = nullptr;
1359  if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1360    if (!VT.isVector())
1361      return SDValue(N, 0);
1362
1363  if (!N) {
1364    N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1365    CSEMap.InsertNode(N, IP);
1366    InsertNode(N);
1367  }
1368
1369  SDValue Result(N, 0);
1370  if (VT.isVector())
1371    Result = getSplatBuildVector(VT, DL, Result);
1372  NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1373  return Result;
1374}
1375
1376SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1377                                    bool isTarget) {
1378  EVT EltVT = VT.getScalarType();
1379  if (EltVT == MVT::f32)
1380    return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1381  else if (EltVT == MVT::f64)
1382    return getConstantFP(APFloat(Val), DL, VT, isTarget);
1383  else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1384           EltVT == MVT::f16) {
1385    bool Ignored;
1386    APFloat APF = APFloat(Val);
1387    APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1388                &Ignored);
1389    return getConstantFP(APF, DL, VT, isTarget);
1390  } else
1391    llvm_unreachable("Unsupported type in getConstantFP");
1392}
1393
1394SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1395                                       EVT VT, int64_t Offset, bool isTargetGA,
1396                                       unsigned TargetFlags) {
1397  assert((TargetFlags == 0 || isTargetGA) &&
1398         "Cannot set target flags on target-independent globals");
1399
1400  // Truncate (with sign-extension) the offset value to the pointer size.
1401  unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1402  if (BitWidth < 64)
1403    Offset = SignExtend64(Offset, BitWidth);
1404
1405  unsigned Opc;
1406  if (GV->isThreadLocal())
1407    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1408  else
1409    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1410
1411  FoldingSetNodeID ID;
1412  AddNodeIDNode(ID, Opc, getVTList(VT), None);
1413  ID.AddPointer(GV);
1414  ID.AddInteger(Offset);
1415  ID.AddInteger(TargetFlags);
1416  void *IP = nullptr;
1417  if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1418    return SDValue(E, 0);
1419
1420  auto *N = newSDNode<GlobalAddressSDNode>(
1421      Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1422  CSEMap.InsertNode(N, IP);
1423    InsertNode(N);
1424  return SDValue(N, 0);
1425}
1426
1427SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1428  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1429  FoldingSetNodeID ID;
1430  AddNodeIDNode(ID, Opc, getVTList(VT), None);
1431  ID.AddInteger(FI);
1432  void *IP = nullptr;
1433  if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1434    return SDValue(E, 0);
1435
1436  auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1437  CSEMap.InsertNode(N, IP);
1438  InsertNode(N);
1439  return SDValue(N, 0);
1440}
1441
1442SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1443                                   unsigned TargetFlags) {
1444  assert((TargetFlags == 0 || isTarget) &&
1445         "Cannot set target flags on target-independent jump tables");
1446  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1447  FoldingSetNodeID ID;
1448  AddNodeIDNode(ID, Opc, getVTList(VT), None);
1449  ID.AddInteger(JTI);
1450  ID.AddInteger(TargetFlags);
1451  void *IP = nullptr;
1452  if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1453    return SDValue(E, 0);
1454
1455  auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1456  CSEMap.InsertNode(N, IP);
1457  InsertNode(N);
1458  return SDValue(N, 0);
1459}
1460
1461SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1462                                      unsigned Alignment, int Offset,
1463                                      bool isTarget,
1464                                      unsigned TargetFlags) {
1465  assert((TargetFlags == 0 || isTarget) &&
1466         "Cannot set target flags on target-independent globals");
1467  if (Alignment == 0)
1468    Alignment = shouldOptForSize()
1469                    ? getDataLayout().getABITypeAlignment(C->getType())
1470                    : getDataLayout().getPrefTypeAlignment(C->getType());
1471  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1472  FoldingSetNodeID ID;
1473  AddNodeIDNode(ID, Opc, getVTList(VT), None);
1474  ID.AddInteger(Alignment);
1475  ID.AddInteger(Offset);
1476  ID.AddPointer(C);
1477  ID.AddInteger(TargetFlags);
1478  void *IP = nullptr;
1479  if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1480    return SDValue(E, 0);
1481
1482  auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1483                                          TargetFlags);
1484  CSEMap.InsertNode(N, IP);
1485  InsertNode(N);
1486  return SDValue(N, 0);
1487}
1488
1489SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1490                                      unsigned Alignment, int Offset,
1491                                      bool isTarget,
1492                                      unsigned TargetFlags) {
1493  assert((TargetFlags == 0 || isTarget) &&
1494         "Cannot set target flags on target-independent globals");
1495  if (Alignment == 0)
1496    Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1497  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1498  FoldingSetNodeID ID;
1499  AddNodeIDNode(ID, Opc, getVTList(VT), None);
1500  ID.AddInteger(Alignment);
1501  ID.AddInteger(Offset);
1502  C->addSelectionDAGCSEId(ID);
1503  ID.AddInteger(TargetFlags);
1504  void *IP = nullptr;
1505  if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1506    return SDValue(E, 0);
1507
1508  auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1509                                          TargetFlags);
1510  CSEMap.InsertNode(N, IP);
1511  InsertNode(N);
1512  return SDValue(N, 0);
1513}
1514
1515SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1516                                     unsigned TargetFlags) {
1517  FoldingSetNodeID ID;
1518  AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1519  ID.AddInteger(Index);
1520  ID.AddInteger(Offset);
1521  ID.AddInteger(TargetFlags);
1522  void *IP = nullptr;
1523  if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1524    return SDValue(E, 0);
1525
1526  auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1527  CSEMap.InsertNode(N, IP);
1528  InsertNode(N);
1529  return SDValue(N, 0);
1530}
1531
1532SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1533  FoldingSetNodeID ID;
1534  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1535  ID.AddPointer(MBB);
1536  void *IP = nullptr;
1537  if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1538    return SDValue(E, 0);
1539
1540  auto *N = newSDNode<BasicBlockSDNode>(MBB);
1541  CSEMap.InsertNode(N, IP);
1542  InsertNode(N);
1543  return SDValue(N, 0);
1544}
1545
1546SDValue SelectionDAG::getValueType(EVT VT) {
1547  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1548      ValueTypeNodes.size())
1549    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1550
1551  SDNode *&N = VT.isExtended() ?
1552    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1553
1554  if (N) return SDValue(N, 0);
1555  N = newSDNode<VTSDNode>(VT);
1556  InsertNode(N);
1557  return SDValue(N, 0);
1558}
1559
1560SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1561  SDNode *&N = ExternalSymbols[Sym];
1562  if (N) return SDValue(N, 0);
1563  N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1564  InsertNode(N);
1565  return SDValue(N, 0);
1566}
1567
1568SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1569  SDNode *&N = MCSymbols[Sym];
1570  if (N)
1571    return SDValue(N, 0);
1572  N = newSDNode<MCSymbolSDNode>(Sym, VT);
1573  InsertNode(N);
1574  return SDValue(N, 0);
1575}
1576
1577SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1578                                              unsigned TargetFlags) {
1579  SDNode *&N =
1580      TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1581  if (N) return SDValue(N, 0);
1582  N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1583  InsertNode(N);
1584  return SDValue(N, 0);
1585}
1586
1587SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1588  if ((unsigned)Cond >= CondCodeNodes.size())
1589    CondCodeNodes.resize(Cond+1);
1590
1591  if (!CondCodeNodes[Cond]) {
1592    auto *N = newSDNode<CondCodeSDNode>(Cond);
1593    CondCodeNodes[Cond] = N;
1594    InsertNode(N);
1595  }
1596
1597  return SDValue(CondCodeNodes[Cond], 0);
1598}
1599
1600/// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1601/// point at N1 to point at N2 and indices that point at N2 to point at N1.
1602static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1603  std::swap(N1, N2);
1604  ShuffleVectorSDNode::commuteMask(M);
1605}
1606
1607SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1608                                       SDValue N2, ArrayRef<int> Mask) {
1609  assert(VT.getVectorNumElements() == Mask.size() &&
1610           "Must have the same number of vector elements as mask elements!");
1611  assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1612         "Invalid VECTOR_SHUFFLE");
1613
1614  // Canonicalize shuffle undef, undef -> undef
1615  if (N1.isUndef() && N2.isUndef())
1616    return getUNDEF(VT);
1617
1618  // Validate that all indices in Mask are within the range of the elements
1619  // input to the shuffle.
1620  int NElts = Mask.size();
1621  assert(llvm::all_of(Mask,
1622                      [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1623         "Index out of range");
1624
1625  // Copy the mask so we can do any needed cleanup.
1626  SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1627
1628  // Canonicalize shuffle v, v -> v, undef
1629  if (N1 == N2) {
1630    N2 = getUNDEF(VT);
1631    for (int i = 0; i != NElts; ++i)
1632      if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1633  }
1634
1635  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1636  if (N1.isUndef())
1637    commuteShuffle(N1, N2, MaskVec);
1638
1639  if (TLI->hasVectorBlend()) {
1640    // If shuffling a splat, try to blend the splat instead. We do this here so
1641    // that even when this arises during lowering we don't have to re-handle it.
1642    auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1643      BitVector UndefElements;
1644      SDValue Splat = BV->getSplatValue(&UndefElements);
1645      if (!Splat)
1646        return;
1647
1648      for (int i = 0; i < NElts; ++i) {
1649        if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1650          continue;
1651
1652        // If this input comes from undef, mark it as such.
1653        if (UndefElements[MaskVec[i] - Offset]) {
1654          MaskVec[i] = -1;
1655          continue;
1656        }
1657
1658        // If we can blend a non-undef lane, use that instead.
1659        if (!UndefElements[i])
1660          MaskVec[i] = i + Offset;
1661      }
1662    };
1663    if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1664      BlendSplat(N1BV, 0);
1665    if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1666      BlendSplat(N2BV, NElts);
1667  }
1668
1669  // Canonicalize all index into lhs, -> shuffle lhs, undef
1670  // Canonicalize all index into rhs, -> shuffle rhs, undef
1671  bool AllLHS = true, AllRHS = true;
1672  bool N2Undef = N2.isUndef();
1673  for (int i = 0; i != NElts; ++i) {
1674    if (MaskVec[i] >= NElts) {
1675      if (N2Undef)
1676        MaskVec[i] = -1;
1677      else
1678        AllLHS = false;
1679    } else if (MaskVec[i] >= 0) {
1680      AllRHS = false;
1681    }
1682  }
1683  if (AllLHS && AllRHS)
1684    return getUNDEF(VT);
1685  if (AllLHS && !N2Undef)
1686    N2 = getUNDEF(VT);
1687  if (AllRHS) {
1688    N1 = getUNDEF(VT);
1689    commuteShuffle(N1, N2, MaskVec);
1690  }
1691  // Reset our undef status after accounting for the mask.
1692  N2Undef = N2.isUndef();
1693  // Re-check whether both sides ended up undef.
1694  if (N1.isUndef() && N2Undef)
1695    return getUNDEF(VT);
1696
1697  // If Identity shuffle return that node.
1698  bool Identity = true, AllSame = true;
1699  for (int i = 0; i != NElts; ++i) {
1700    if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1701    if (MaskVec[i] != MaskVec[0]) AllSame = false;
1702  }
1703  if (Identity && NElts)
1704    return N1;
1705
1706  // Shuffling a constant splat doesn't change the result.
1707  if (N2Undef) {
1708    SDValue V = N1;
1709
1710    // Look through any bitcasts. We check that these don't change the number
1711    // (and size) of elements and just changes their types.
1712    while (V.getOpcode() == ISD::BITCAST)
1713      V = V->getOperand(0);
1714
1715    // A splat should always show up as a build vector node.
1716    if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1717      BitVector UndefElements;
1718      SDValue Splat = BV->getSplatValue(&UndefElements);
1719      // If this is a splat of an undef, shuffling it is also undef.
1720      if (Splat && Splat.isUndef())
1721        return getUNDEF(VT);
1722
1723      bool SameNumElts =
1724          V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1725
1726      // We only have a splat which can skip shuffles if there is a splatted
1727      // value and no undef lanes rearranged by the shuffle.
1728      if (Splat && UndefElements.none()) {
1729        // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1730        // number of elements match or the value splatted is a zero constant.
1731        if (SameNumElts)
1732          return N1;
1733        if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1734          if (C->isNullValue())
1735            return N1;
1736      }
1737
1738      // If the shuffle itself creates a splat, build the vector directly.
1739      if (AllSame && SameNumElts) {
1740        EVT BuildVT = BV->getValueType(0);
1741        const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1742        SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1743
1744        // We may have jumped through bitcasts, so the type of the
1745        // BUILD_VECTOR may not match the type of the shuffle.
1746        if (BuildVT != VT)
1747          NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1748        return NewBV;
1749      }
1750    }
1751  }
1752
1753  FoldingSetNodeID ID;
1754  SDValue Ops[2] = { N1, N2 };
1755  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1756  for (int i = 0; i != NElts; ++i)
1757    ID.AddInteger(MaskVec[i]);
1758
1759  void* IP = nullptr;
1760  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1761    return SDValue(E, 0);
1762
1763  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1764  // SDNode doesn't have access to it.  This memory will be "leaked" when
1765  // the node is deallocated, but recovered when the NodeAllocator is released.
1766  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1767  llvm::copy(MaskVec, MaskAlloc);
1768
1769  auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1770                                           dl.getDebugLoc(), MaskAlloc);
1771  createOperands(N, Ops);
1772
1773  CSEMap.InsertNode(N, IP);
1774  InsertNode(N);
1775  SDValue V = SDValue(N, 0);
1776  NewSDValueDbgMsg(V, "Creating new node: ", this);
1777  return V;
1778}
1779
1780SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1781  EVT VT = SV.getValueType(0);
1782  SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1783  ShuffleVectorSDNode::commuteMask(MaskVec);
1784
1785  SDValue Op0 = SV.getOperand(0);
1786  SDValue Op1 = SV.getOperand(1);
1787  return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1788}
1789
1790SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1791  FoldingSetNodeID ID;
1792  AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1793  ID.AddInteger(RegNo);
1794  void *IP = nullptr;
1795  if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1796    return SDValue(E, 0);
1797
1798  auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1799  N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1800  CSEMap.InsertNode(N, IP);
1801  InsertNode(N);
1802  return SDValue(N, 0);
1803}
1804
1805SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1806  FoldingSetNodeID ID;
1807  AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1808  ID.AddPointer(RegMask);
1809  void *IP = nullptr;
1810  if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1811    return SDValue(E, 0);
1812
1813  auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1814  CSEMap.InsertNode(N, IP);
1815  InsertNode(N);
1816  return SDValue(N, 0);
1817}
1818
1819SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1820                                 MCSymbol *Label) {
1821  return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1822}
1823
1824SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1825                                   SDValue Root, MCSymbol *Label) {
1826  FoldingSetNodeID ID;
1827  SDValue Ops[] = { Root };
1828  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1829  ID.AddPointer(Label);
1830  void *IP = nullptr;
1831  if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1832    return SDValue(E, 0);
1833
1834  auto *N =
1835      newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1836  createOperands(N, Ops);
1837
1838  CSEMap.InsertNode(N, IP);
1839  InsertNode(N);
1840  return SDValue(N, 0);
1841}
1842
1843SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1844                                      int64_t Offset, bool isTarget,
1845                                      unsigned TargetFlags) {
1846  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1847
1848  FoldingSetNodeID ID;
1849  AddNodeIDNode(ID, Opc, getVTList(VT), None);
1850  ID.AddPointer(BA);
1851  ID.AddInteger(Offset);
1852  ID.AddInteger(TargetFlags);
1853  void *IP = nullptr;
1854  if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1855    return SDValue(E, 0);
1856
1857  auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1858  CSEMap.InsertNode(N, IP);
1859  InsertNode(N);
1860  return SDValue(N, 0);
1861}
1862
1863SDValue SelectionDAG::getSrcValue(const Value *V) {
1864  assert((!V || V->getType()->isPointerTy()) &&
1865         "SrcValue is not a pointer?");
1866
1867  FoldingSetNodeID ID;
1868  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1869  ID.AddPointer(V);
1870
1871  void *IP = nullptr;
1872  if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1873    return SDValue(E, 0);
1874
1875  auto *N = newSDNode<SrcValueSDNode>(V);
1876  CSEMap.InsertNode(N, IP);
1877  InsertNode(N);
1878  return SDValue(N, 0);
1879}
1880
1881SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1882  FoldingSetNodeID ID;
1883  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1884  ID.AddPointer(MD);
1885
1886  void *IP = nullptr;
1887  if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1888    return SDValue(E, 0);
1889
1890  auto *N = newSDNode<MDNodeSDNode>(MD);
1891  CSEMap.InsertNode(N, IP);
1892  InsertNode(N);
1893  return SDValue(N, 0);
1894}
1895
1896SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1897  if (VT == V.getValueType())
1898    return V;
1899
1900  return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1901}
1902
1903SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1904                                       unsigned SrcAS, unsigned DestAS) {
1905  SDValue Ops[] = {Ptr};
1906  FoldingSetNodeID ID;
1907  AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1908  ID.AddInteger(SrcAS);
1909  ID.AddInteger(DestAS);
1910
1911  void *IP = nullptr;
1912  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1913    return SDValue(E, 0);
1914
1915  auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1916                                           VT, SrcAS, DestAS);
1917  createOperands(N, Ops);
1918
1919  CSEMap.InsertNode(N, IP);
1920  InsertNode(N);
1921  return SDValue(N, 0);
1922}
1923
1924/// getShiftAmountOperand - Return the specified value casted to
1925/// the target's desired shift amount type.
1926SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1927  EVT OpTy = Op.getValueType();
1928  EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1929  if (OpTy == ShTy || OpTy.isVector()) return Op;
1930
1931  return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1932}
1933
1934SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1935  SDLoc dl(Node);
1936  const TargetLowering &TLI = getTargetLoweringInfo();
1937  const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1938  EVT VT = Node->getValueType(0);
1939  SDValue Tmp1 = Node->getOperand(0);
1940  SDValue Tmp2 = Node->getOperand(1);
1941  const MaybeAlign MA(Node->getConstantOperandVal(3));
1942
1943  SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1944                               Tmp2, MachinePointerInfo(V));
1945  SDValue VAList = VAListLoad;
1946
1947  if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1948    VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1949                     getConstant(MA->value() - 1, dl, VAList.getValueType()));
1950
1951    VAList =
1952        getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1953                getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1954  }
1955
1956  // Increment the pointer, VAList, to the next vaarg
1957  Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1958                 getConstant(getDataLayout().getTypeAllocSize(
1959                                               VT.getTypeForEVT(*getContext())),
1960                             dl, VAList.getValueType()));
1961  // Store the incremented VAList to the legalized pointer
1962  Tmp1 =
1963      getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1964  // Load the actual argument out of the pointer VAList
1965  return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1966}
1967
1968SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1969  SDLoc dl(Node);
1970  const TargetLowering &TLI = getTargetLoweringInfo();
1971  // This defaults to loading a pointer from the input and storing it to the
1972  // output, returning the chain.
1973  const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1974  const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1975  SDValue Tmp1 =
1976      getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1977              Node->getOperand(2), MachinePointerInfo(VS));
1978  return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1979                  MachinePointerInfo(VD));
1980}
1981
1982SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1983  MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1984  unsigned ByteSize = VT.getStoreSize();
1985  Type *Ty = VT.getTypeForEVT(*getContext());
1986  unsigned StackAlign =
1987      std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1988
1989  int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1990  return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1991}
1992
1993SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1994  unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1995  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1996  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1997  const DataLayout &DL = getDataLayout();
1998  unsigned Align =
1999      std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
2000
2001  MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
2002  int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
2003  return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2004}
2005
2006SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2007                                ISD::CondCode Cond, const SDLoc &dl) {
2008  EVT OpVT = N1.getValueType();
2009
2010  // These setcc operations always fold.
2011  switch (Cond) {
2012  default: break;
2013  case ISD::SETFALSE:
2014  case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2015  case ISD::SETTRUE:
2016  case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2017
2018  case ISD::SETOEQ:
2019  case ISD::SETOGT:
2020  case ISD::SETOGE:
2021  case ISD::SETOLT:
2022  case ISD::SETOLE:
2023  case ISD::SETONE:
2024  case ISD::SETO:
2025  case ISD::SETUO:
2026  case ISD::SETUEQ:
2027  case ISD::SETUNE:
2028    assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2029    break;
2030  }
2031
2032  if (OpVT.isInteger()) {
2033    // For EQ and NE, we can always pick a value for the undef to make the
2034    // predicate pass or fail, so we can return undef.
2035    // Matches behavior in llvm::ConstantFoldCompareInstruction.
2036    // icmp eq/ne X, undef -> undef.
2037    if ((N1.isUndef() || N2.isUndef()) &&
2038        (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2039      return getUNDEF(VT);
2040
2041    // If both operands are undef, we can return undef for int comparison.
2042    // icmp undef, undef -> undef.
2043    if (N1.isUndef() && N2.isUndef())
2044      return getUNDEF(VT);
2045
2046    // icmp X, X -> true/false
2047    // icmp X, undef -> true/false because undef could be X.
2048    if (N1 == N2)
2049      return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2050  }
2051
2052  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2053    const APInt &C2 = N2C->getAPIntValue();
2054    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2055      const APInt &C1 = N1C->getAPIntValue();
2056
2057      switch (Cond) {
2058      default: llvm_unreachable("Unknown integer setcc!");
2059      case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2060      case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2061      case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2062      case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2063      case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2064      case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2065      case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2066      case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2067      case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2068      case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2069      }
2070    }
2071  }
2072
2073  auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2074  auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2075
2076  if (N1CFP && N2CFP) {
2077    APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2078    switch (Cond) {
2079    default: break;
2080    case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2081                        return getUNDEF(VT);
2082                      LLVM_FALLTHROUGH;
2083    case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2084                                             OpVT);
2085    case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2086                        return getUNDEF(VT);
2087                      LLVM_FALLTHROUGH;
2088    case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2089                                             R==APFloat::cmpLessThan, dl, VT,
2090                                             OpVT);
2091    case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2092                        return getUNDEF(VT);
2093                      LLVM_FALLTHROUGH;
2094    case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2095                                             OpVT);
2096    case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2097                        return getUNDEF(VT);
2098                      LLVM_FALLTHROUGH;
2099    case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2100                                             VT, OpVT);
2101    case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2102                        return getUNDEF(VT);
2103                      LLVM_FALLTHROUGH;
2104    case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2105                                             R==APFloat::cmpEqual, dl, VT,
2106                                             OpVT);
2107    case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2108                        return getUNDEF(VT);
2109                      LLVM_FALLTHROUGH;
2110    case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2111                                         R==APFloat::cmpEqual, dl, VT, OpVT);
2112    case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2113                                             OpVT);
2114    case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2115                                             OpVT);
2116    case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2117                                             R==APFloat::cmpEqual, dl, VT,
2118                                             OpVT);
2119    case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2120                                             OpVT);
2121    case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2122                                             R==APFloat::cmpLessThan, dl, VT,
2123                                             OpVT);
2124    case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2125                                             R==APFloat::cmpUnordered, dl, VT,
2126                                             OpVT);
2127    case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2128                                             VT, OpVT);
2129    case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2130                                             OpVT);
2131    }
2132  } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2133    // Ensure that the constant occurs on the RHS.
2134    ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2135    if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2136      return SDValue();
2137    return getSetCC(dl, VT, N2, N1, SwappedCond);
2138  } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2139             (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2140    // If an operand is known to be a nan (or undef that could be a nan), we can
2141    // fold it.
2142    // Choosing NaN for the undef will always make unordered comparison succeed
2143    // and ordered comparison fails.
2144    // Matches behavior in llvm::ConstantFoldCompareInstruction.
2145    switch (ISD::getUnorderedFlavor(Cond)) {
2146    default:
2147      llvm_unreachable("Unknown flavor!");
2148    case 0: // Known false.
2149      return getBoolConstant(false, dl, VT, OpVT);
2150    case 1: // Known true.
2151      return getBoolConstant(true, dl, VT, OpVT);
2152    case 2: // Undefined.
2153      return getUNDEF(VT);
2154    }
2155  }
2156
2157  // Could not fold it.
2158  return SDValue();
2159}
2160
2161/// See if the specified operand can be simplified with the knowledge that only
2162/// the bits specified by DemandedBits are used.
2163/// TODO: really we should be making this into the DAG equivalent of
2164/// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2165SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2166  EVT VT = V.getValueType();
2167  APInt DemandedElts = VT.isVector()
2168                           ? APInt::getAllOnesValue(VT.getVectorNumElements())
2169                           : APInt(1, 1);
2170  return GetDemandedBits(V, DemandedBits, DemandedElts);
2171}
2172
2173/// See if the specified operand can be simplified with the knowledge that only
2174/// the bits specified by DemandedBits are used in the elements specified by
2175/// DemandedElts.
2176/// TODO: really we should be making this into the DAG equivalent of
2177/// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2178SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2179                                      const APInt &DemandedElts) {
2180  switch (V.getOpcode()) {
2181  default:
2182    break;
2183  case ISD::Constant: {
2184    auto *CV = cast<ConstantSDNode>(V.getNode());
2185    assert(CV && "Const value should be ConstSDNode.");
2186    const APInt &CVal = CV->getAPIntValue();
2187    APInt NewVal = CVal & DemandedBits;
2188    if (NewVal != CVal)
2189      return getConstant(NewVal, SDLoc(V), V.getValueType());
2190    break;
2191  }
2192  case ISD::OR:
2193  case ISD::XOR:
2194  case ISD::SIGN_EXTEND_INREG:
2195    return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2196                                                *this, 0);
2197  case ISD::SRL:
2198    // Only look at single-use SRLs.
2199    if (!V.getNode()->hasOneUse())
2200      break;
2201    if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2202      // See if we can recursively simplify the LHS.
2203      unsigned Amt = RHSC->getZExtValue();
2204
2205      // Watch out for shift count overflow though.
2206      if (Amt >= DemandedBits.getBitWidth())
2207        break;
2208      APInt SrcDemandedBits = DemandedBits << Amt;
2209      if (SDValue SimplifyLHS =
2210              GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2211        return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2212                       V.getOperand(1));
2213    }
2214    break;
2215  case ISD::AND: {
2216    // X & -1 -> X (ignoring bits which aren't demanded).
2217    // Also handle the case where masked out bits in X are known to be zero.
2218    if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2219      const APInt &AndVal = RHSC->getAPIntValue();
2220      if (DemandedBits.isSubsetOf(AndVal) ||
2221          DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2222                                  AndVal))
2223        return V.getOperand(0);
2224    }
2225    break;
2226  }
2227  case ISD::ANY_EXTEND: {
2228    SDValue Src = V.getOperand(0);
2229    unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2230    // Being conservative here - only peek through if we only demand bits in the
2231    // non-extended source (even though the extended bits are technically
2232    // undef).
2233    if (DemandedBits.getActiveBits() > SrcBitWidth)
2234      break;
2235    APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth);
2236    if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits))
2237      return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2238    break;
2239  }
2240  }
2241  return SDValue();
2242}
2243
2244/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2245/// use this predicate to simplify operations downstream.
2246bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2247  unsigned BitWidth = Op.getScalarValueSizeInBits();
2248  return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2249}
2250
2251/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2252/// this predicate to simplify operations downstream.  Mask is known to be zero
2253/// for bits that V cannot have.
2254bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2255                                     unsigned Depth) const {
2256  EVT VT = V.getValueType();
2257  APInt DemandedElts = VT.isVector()
2258                           ? APInt::getAllOnesValue(VT.getVectorNumElements())
2259                           : APInt(1, 1);
2260  return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2261}
2262
2263/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2264/// DemandedElts.  We use this predicate to simplify operations downstream.
2265/// Mask is known to be zero for bits that V cannot have.
2266bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2267                                     const APInt &DemandedElts,
2268                                     unsigned Depth) const {
2269  return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2270}
2271
2272/// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2273bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2274                                        unsigned Depth) const {
2275  return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2276}
2277
2278/// isSplatValue - Return true if the vector V has the same value
2279/// across all DemandedElts.
2280bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2281                                APInt &UndefElts) {
2282  if (!DemandedElts)
2283    return false; // No demanded elts, better to assume we don't know anything.
2284
2285  EVT VT = V.getValueType();
2286  assert(VT.isVector() && "Vector type expected");
2287
2288  unsigned NumElts = VT.getVectorNumElements();
2289  assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2290  UndefElts = APInt::getNullValue(NumElts);
2291
2292  switch (V.getOpcode()) {
2293  case ISD::BUILD_VECTOR: {
2294    SDValue Scl;
2295    for (unsigned i = 0; i != NumElts; ++i) {
2296      SDValue Op = V.getOperand(i);
2297      if (Op.isUndef()) {
2298        UndefElts.setBit(i);
2299        continue;
2300      }
2301      if (!DemandedElts[i])
2302        continue;
2303      if (Scl && Scl != Op)
2304        return false;
2305      Scl = Op;
2306    }
2307    return true;
2308  }
2309  case ISD::VECTOR_SHUFFLE: {
2310    // Check if this is a shuffle node doing a splat.
2311    // TODO: Do we need to handle shuffle(splat, undef, mask)?
2312    int SplatIndex = -1;
2313    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2314    for (int i = 0; i != (int)NumElts; ++i) {
2315      int M = Mask[i];
2316      if (M < 0) {
2317        UndefElts.setBit(i);
2318        continue;
2319      }
2320      if (!DemandedElts[i])
2321        continue;
2322      if (0 <= SplatIndex && SplatIndex != M)
2323        return false;
2324      SplatIndex = M;
2325    }
2326    return true;
2327  }
2328  case ISD::EXTRACT_SUBVECTOR: {
2329    SDValue Src = V.getOperand(0);
2330    ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2331    unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2332    if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2333      // Offset the demanded elts by the subvector index.
2334      uint64_t Idx = SubIdx->getZExtValue();
2335      APInt UndefSrcElts;
2336      APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2337      if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2338        UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2339        return true;
2340      }
2341    }
2342    break;
2343  }
2344  case ISD::ADD:
2345  case ISD::SUB:
2346  case ISD::AND: {
2347    APInt UndefLHS, UndefRHS;
2348    SDValue LHS = V.getOperand(0);
2349    SDValue RHS = V.getOperand(1);
2350    if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2351        isSplatValue(RHS, DemandedElts, UndefRHS)) {
2352      UndefElts = UndefLHS | UndefRHS;
2353      return true;
2354    }
2355    break;
2356  }
2357  }
2358
2359  return false;
2360}
2361
2362/// Helper wrapper to main isSplatValue function.
2363bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2364  EVT VT = V.getValueType();
2365  assert(VT.isVector() && "Vector type expected");
2366  unsigned NumElts = VT.getVectorNumElements();
2367
2368  APInt UndefElts;
2369  APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2370  return isSplatValue(V, DemandedElts, UndefElts) &&
2371         (AllowUndefs || !UndefElts);
2372}
2373
2374SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2375  V = peekThroughExtractSubvectors(V);
2376
2377  EVT VT = V.getValueType();
2378  unsigned Opcode = V.getOpcode();
2379  switch (Opcode) {
2380  default: {
2381    APInt UndefElts;
2382    APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2383    if (isSplatValue(V, DemandedElts, UndefElts)) {
2384      // Handle case where all demanded elements are UNDEF.
2385      if (DemandedElts.isSubsetOf(UndefElts)) {
2386        SplatIdx = 0;
2387        return getUNDEF(VT);
2388      }
2389      SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2390      return V;
2391    }
2392    break;
2393  }
2394  case ISD::VECTOR_SHUFFLE: {
2395    // Check if this is a shuffle node doing a splat.
2396    // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2397    // getTargetVShiftNode currently struggles without the splat source.
2398    auto *SVN = cast<ShuffleVectorSDNode>(V);
2399    if (!SVN->isSplat())
2400      break;
2401    int Idx = SVN->getSplatIndex();
2402    int NumElts = V.getValueType().getVectorNumElements();
2403    SplatIdx = Idx % NumElts;
2404    return V.getOperand(Idx / NumElts);
2405  }
2406  }
2407
2408  return SDValue();
2409}
2410
2411SDValue SelectionDAG::getSplatValue(SDValue V) {
2412  int SplatIdx;
2413  if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2414    return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2415                   SrcVector.getValueType().getScalarType(), SrcVector,
2416                   getIntPtrConstant(SplatIdx, SDLoc(V)));
2417  return SDValue();
2418}
2419
2420/// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2421/// is less than the element bit-width of the shift node, return it.
2422static const APInt *getValidShiftAmountConstant(SDValue V,
2423                                                const APInt &DemandedElts) {
2424  unsigned BitWidth = V.getScalarValueSizeInBits();
2425  if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2426    // Shifting more than the bitwidth is not valid.
2427    const APInt &ShAmt = SA->getAPIntValue();
2428    if (ShAmt.ult(BitWidth))
2429      return &ShAmt;
2430  }
2431  return nullptr;
2432}
2433
2434/// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2435/// than the element bit-width of the shift node, return the minimum value.
2436static const APInt *
2437getValidMinimumShiftAmountConstant(SDValue V, const APInt &DemandedElts) {
2438  unsigned BitWidth = V.getScalarValueSizeInBits();
2439  auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2440  if (!BV)
2441    return nullptr;
2442  const APInt *MinShAmt = nullptr;
2443  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2444    if (!DemandedElts[i])
2445      continue;
2446    auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2447    if (!SA)
2448      return nullptr;
2449    // Shifting more than the bitwidth is not valid.
2450    const APInt &ShAmt = SA->getAPIntValue();
2451    if (ShAmt.uge(BitWidth))
2452      return nullptr;
2453    if (MinShAmt && MinShAmt->ule(ShAmt))
2454      continue;
2455    MinShAmt = &ShAmt;
2456  }
2457  return MinShAmt;
2458}
2459
2460/// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2461/// than the element bit-width of the shift node, return the maximum value.
2462static const APInt *
2463getValidMaximumShiftAmountConstant(SDValue V, const APInt &DemandedElts) {
2464  unsigned BitWidth = V.getScalarValueSizeInBits();
2465  auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2466  if (!BV)
2467    return nullptr;
2468  const APInt *MaxShAmt = nullptr;
2469  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2470    if (!DemandedElts[i])
2471      continue;
2472    auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2473    if (!SA)
2474      return nullptr;
2475    // Shifting more than the bitwidth is not valid.
2476    const APInt &ShAmt = SA->getAPIntValue();
2477    if (ShAmt.uge(BitWidth))
2478      return nullptr;
2479    if (MaxShAmt && MaxShAmt->uge(ShAmt))
2480      continue;
2481    MaxShAmt = &ShAmt;
2482  }
2483  return MaxShAmt;
2484}
2485
2486/// Determine which bits of Op are known to be either zero or one and return
2487/// them in Known. For vectors, the known bits are those that are shared by
2488/// every vector element.
2489KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2490  EVT VT = Op.getValueType();
2491  APInt DemandedElts = VT.isVector()
2492                           ? APInt::getAllOnesValue(VT.getVectorNumElements())
2493                           : APInt(1, 1);
2494  return computeKnownBits(Op, DemandedElts, Depth);
2495}
2496
2497/// Determine which bits of Op are known to be either zero or one and return
2498/// them in Known. The DemandedElts argument allows us to only collect the known
2499/// bits that are shared by the requested vector elements.
2500KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2501                                         unsigned Depth) const {
2502  unsigned BitWidth = Op.getScalarValueSizeInBits();
2503
2504  KnownBits Known(BitWidth);   // Don't know anything.
2505
2506  if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2507    // We know all of the bits for a constant!
2508    Known.One = C->getAPIntValue();
2509    Known.Zero = ~Known.One;
2510    return Known;
2511  }
2512  if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2513    // We know all of the bits for a constant fp!
2514    Known.One = C->getValueAPF().bitcastToAPInt();
2515    Known.Zero = ~Known.One;
2516    return Known;
2517  }
2518
2519  if (Depth >= MaxRecursionDepth)
2520    return Known;  // Limit search depth.
2521
2522  KnownBits Known2;
2523  unsigned NumElts = DemandedElts.getBitWidth();
2524  assert((!Op.getValueType().isVector() ||
2525          NumElts == Op.getValueType().getVectorNumElements()) &&
2526         "Unexpected vector size");
2527
2528  if (!DemandedElts)
2529    return Known;  // No demanded elts, better to assume we don't know anything.
2530
2531  unsigned Opcode = Op.getOpcode();
2532  switch (Opcode) {
2533  case ISD::BUILD_VECTOR:
2534    // Collect the known bits that are shared by every demanded vector element.
2535    Known.Zero.setAllBits(); Known.One.setAllBits();
2536    for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2537      if (!DemandedElts[i])
2538        continue;
2539
2540      SDValue SrcOp = Op.getOperand(i);
2541      Known2 = computeKnownBits(SrcOp, Depth + 1);
2542
2543      // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2544      if (SrcOp.getValueSizeInBits() != BitWidth) {
2545        assert(SrcOp.getValueSizeInBits() > BitWidth &&
2546               "Expected BUILD_VECTOR implicit truncation");
2547        Known2 = Known2.trunc(BitWidth);
2548      }
2549
2550      // Known bits are the values that are shared by every demanded element.
2551      Known.One &= Known2.One;
2552      Known.Zero &= Known2.Zero;
2553
2554      // If we don't know any bits, early out.
2555      if (Known.isUnknown())
2556        break;
2557    }
2558    break;
2559  case ISD::VECTOR_SHUFFLE: {
2560    // Collect the known bits that are shared by every vector element referenced
2561    // by the shuffle.
2562    APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2563    Known.Zero.setAllBits(); Known.One.setAllBits();
2564    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2565    assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2566    for (unsigned i = 0; i != NumElts; ++i) {
2567      if (!DemandedElts[i])
2568        continue;
2569
2570      int M = SVN->getMaskElt(i);
2571      if (M < 0) {
2572        // For UNDEF elements, we don't know anything about the common state of
2573        // the shuffle result.
2574        Known.resetAll();
2575        DemandedLHS.clearAllBits();
2576        DemandedRHS.clearAllBits();
2577        break;
2578      }
2579
2580      if ((unsigned)M < NumElts)
2581        DemandedLHS.setBit((unsigned)M % NumElts);
2582      else
2583        DemandedRHS.setBit((unsigned)M % NumElts);
2584    }
2585    // Known bits are the values that are shared by every demanded element.
2586    if (!!DemandedLHS) {
2587      SDValue LHS = Op.getOperand(0);
2588      Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2589      Known.One &= Known2.One;
2590      Known.Zero &= Known2.Zero;
2591    }
2592    // If we don't know any bits, early out.
2593    if (Known.isUnknown())
2594      break;
2595    if (!!DemandedRHS) {
2596      SDValue RHS = Op.getOperand(1);
2597      Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2598      Known.One &= Known2.One;
2599      Known.Zero &= Known2.Zero;
2600    }
2601    break;
2602  }
2603  case ISD::CONCAT_VECTORS: {
2604    // Split DemandedElts and test each of the demanded subvectors.
2605    Known.Zero.setAllBits(); Known.One.setAllBits();
2606    EVT SubVectorVT = Op.getOperand(0).getValueType();
2607    unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2608    unsigned NumSubVectors = Op.getNumOperands();
2609    for (unsigned i = 0; i != NumSubVectors; ++i) {
2610      APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2611      DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2612      if (!!DemandedSub) {
2613        SDValue Sub = Op.getOperand(i);
2614        Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2615        Known.One &= Known2.One;
2616        Known.Zero &= Known2.Zero;
2617      }
2618      // If we don't know any bits, early out.
2619      if (Known.isUnknown())
2620        break;
2621    }
2622    break;
2623  }
2624  case ISD::INSERT_SUBVECTOR: {
2625    // If we know the element index, demand any elements from the subvector and
2626    // the remainder from the src its inserted into, otherwise demand them all.
2627    SDValue Src = Op.getOperand(0);
2628    SDValue Sub = Op.getOperand(1);
2629    ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2630    unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2631    if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2632      Known.One.setAllBits();
2633      Known.Zero.setAllBits();
2634      uint64_t Idx = SubIdx->getZExtValue();
2635      APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2636      if (!!DemandedSubElts) {
2637        Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2638        if (Known.isUnknown())
2639          break; // early-out.
2640      }
2641      APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2642      APInt DemandedSrcElts = DemandedElts & ~SubMask;
2643      if (!!DemandedSrcElts) {
2644        Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2645        Known.One &= Known2.One;
2646        Known.Zero &= Known2.Zero;
2647      }
2648    } else {
2649      Known = computeKnownBits(Sub, Depth + 1);
2650      if (Known.isUnknown())
2651        break; // early-out.
2652      Known2 = computeKnownBits(Src, Depth + 1);
2653      Known.One &= Known2.One;
2654      Known.Zero &= Known2.Zero;
2655    }
2656    break;
2657  }
2658  case ISD::EXTRACT_SUBVECTOR: {
2659    // If we know the element index, just demand that subvector elements,
2660    // otherwise demand them all.
2661    SDValue Src = Op.getOperand(0);
2662    ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2663    unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2664    APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
2665    if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2666      // Offset the demanded elts by the subvector index.
2667      uint64_t Idx = SubIdx->getZExtValue();
2668      DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2669    }
2670    Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2671    break;
2672  }
2673  case ISD::SCALAR_TO_VECTOR: {
2674    // We know about scalar_to_vector as much as we know about it source,
2675    // which becomes the first element of otherwise unknown vector.
2676    if (DemandedElts != 1)
2677      break;
2678
2679    SDValue N0 = Op.getOperand(0);
2680    Known = computeKnownBits(N0, Depth + 1);
2681    if (N0.getValueSizeInBits() != BitWidth)
2682      Known = Known.trunc(BitWidth);
2683
2684    break;
2685  }
2686  case ISD::BITCAST: {
2687    SDValue N0 = Op.getOperand(0);
2688    EVT SubVT = N0.getValueType();
2689    unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2690
2691    // Ignore bitcasts from unsupported types.
2692    if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2693      break;
2694
2695    // Fast handling of 'identity' bitcasts.
2696    if (BitWidth == SubBitWidth) {
2697      Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2698      break;
2699    }
2700
2701    bool IsLE = getDataLayout().isLittleEndian();
2702
2703    // Bitcast 'small element' vector to 'large element' scalar/vector.
2704    if ((BitWidth % SubBitWidth) == 0) {
2705      assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2706
2707      // Collect known bits for the (larger) output by collecting the known
2708      // bits from each set of sub elements and shift these into place.
2709      // We need to separately call computeKnownBits for each set of
2710      // sub elements as the knownbits for each is likely to be different.
2711      unsigned SubScale = BitWidth / SubBitWidth;
2712      APInt SubDemandedElts(NumElts * SubScale, 0);
2713      for (unsigned i = 0; i != NumElts; ++i)
2714        if (DemandedElts[i])
2715          SubDemandedElts.setBit(i * SubScale);
2716
2717      for (unsigned i = 0; i != SubScale; ++i) {
2718        Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2719                         Depth + 1);
2720        unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2721        Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2722        Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2723      }
2724    }
2725
2726    // Bitcast 'large element' scalar/vector to 'small element' vector.
2727    if ((SubBitWidth % BitWidth) == 0) {
2728      assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2729
2730      // Collect known bits for the (smaller) output by collecting the known
2731      // bits from the overlapping larger input elements and extracting the
2732      // sub sections we actually care about.
2733      unsigned SubScale = SubBitWidth / BitWidth;
2734      APInt SubDemandedElts(NumElts / SubScale, 0);
2735      for (unsigned i = 0; i != NumElts; ++i)
2736        if (DemandedElts[i])
2737          SubDemandedElts.setBit(i / SubScale);
2738
2739      Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2740
2741      Known.Zero.setAllBits(); Known.One.setAllBits();
2742      for (unsigned i = 0; i != NumElts; ++i)
2743        if (DemandedElts[i]) {
2744          unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2745          unsigned Offset = (Shifts % SubScale) * BitWidth;
2746          Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2747          Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2748          // If we don't know any bits, early out.
2749          if (Known.isUnknown())
2750            break;
2751        }
2752    }
2753    break;
2754  }
2755  case ISD::AND:
2756    // If either the LHS or the RHS are Zero, the result is zero.
2757    Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2758    Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2759
2760    // Output known-1 bits are only known if set in both the LHS & RHS.
2761    Known.One &= Known2.One;
2762    // Output known-0 are known to be clear if zero in either the LHS | RHS.
2763    Known.Zero |= Known2.Zero;
2764    break;
2765  case ISD::OR:
2766    Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2767    Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2768
2769    // Output known-0 bits are only known if clear in both the LHS & RHS.
2770    Known.Zero &= Known2.Zero;
2771    // Output known-1 are known to be set if set in either the LHS | RHS.
2772    Known.One |= Known2.One;
2773    break;
2774  case ISD::XOR: {
2775    Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2776    Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2777
2778    // Output known-0 bits are known if clear or set in both the LHS & RHS.
2779    APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2780    // Output known-1 are known to be set if set in only one of the LHS, RHS.
2781    Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2782    Known.Zero = KnownZeroOut;
2783    break;
2784  }
2785  case ISD::MUL: {
2786    Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2787    Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2788
2789    // If low bits are zero in either operand, output low known-0 bits.
2790    // Also compute a conservative estimate for high known-0 bits.
2791    // More trickiness is possible, but this is sufficient for the
2792    // interesting case of alignment computation.
2793    unsigned TrailZ = Known.countMinTrailingZeros() +
2794                      Known2.countMinTrailingZeros();
2795    unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2796                               Known2.countMinLeadingZeros(),
2797                               BitWidth) - BitWidth;
2798
2799    Known.resetAll();
2800    Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2801    Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2802    break;
2803  }
2804  case ISD::UDIV: {
2805    // For the purposes of computing leading zeros we can conservatively
2806    // treat a udiv as a logical right shift by the power of 2 known to
2807    // be less than the denominator.
2808    Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2809    unsigned LeadZ = Known2.countMinLeadingZeros();
2810
2811    Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2812    unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2813    if (RHSMaxLeadingZeros != BitWidth)
2814      LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2815
2816    Known.Zero.setHighBits(LeadZ);
2817    break;
2818  }
2819  case ISD::SELECT:
2820  case ISD::VSELECT:
2821    Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2822    // If we don't know any bits, early out.
2823    if (Known.isUnknown())
2824      break;
2825    Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2826
2827    // Only known if known in both the LHS and RHS.
2828    Known.One &= Known2.One;
2829    Known.Zero &= Known2.Zero;
2830    break;
2831  case ISD::SELECT_CC:
2832    Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2833    // If we don't know any bits, early out.
2834    if (Known.isUnknown())
2835      break;
2836    Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2837
2838    // Only known if known in both the LHS and RHS.
2839    Known.One &= Known2.One;
2840    Known.Zero &= Known2.Zero;
2841    break;
2842  case ISD::SMULO:
2843  case ISD::UMULO:
2844  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2845    if (Op.getResNo() != 1)
2846      break;
2847    // The boolean result conforms to getBooleanContents.
2848    // If we know the result of a setcc has the top bits zero, use this info.
2849    // We know that we have an integer-based boolean since these operations
2850    // are only available for integer.
2851    if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2852            TargetLowering::ZeroOrOneBooleanContent &&
2853        BitWidth > 1)
2854      Known.Zero.setBitsFrom(1);
2855    break;
2856  case ISD::SETCC:
2857  case ISD::STRICT_FSETCC:
2858  case ISD::STRICT_FSETCCS: {
2859    unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2860    // If we know the result of a setcc has the top bits zero, use this info.
2861    if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2862            TargetLowering::ZeroOrOneBooleanContent &&
2863        BitWidth > 1)
2864      Known.Zero.setBitsFrom(1);
2865    break;
2866  }
2867  case ISD::SHL:
2868    Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2869
2870    if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2871      unsigned Shift = ShAmt->getZExtValue();
2872      Known.Zero <<= Shift;
2873      Known.One <<= Shift;
2874      // Low bits are known zero.
2875      Known.Zero.setLowBits(Shift);
2876      break;
2877    }
2878
2879    // No matter the shift amount, the trailing zeros will stay zero.
2880    Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2881    Known.One.clearAllBits();
2882
2883    // Minimum shift low bits are known zero.
2884    if (const APInt *ShMinAmt =
2885            getValidMinimumShiftAmountConstant(Op, DemandedElts))
2886      Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2887    break;
2888  case ISD::SRL:
2889    Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2890
2891    if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2892      unsigned Shift = ShAmt->getZExtValue();
2893      Known.Zero.lshrInPlace(Shift);
2894      Known.One.lshrInPlace(Shift);
2895      // High bits are known zero.
2896      Known.Zero.setHighBits(Shift);
2897      break;
2898    }
2899
2900    // No matter the shift amount, the leading zeros will stay zero.
2901    Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2902    Known.One.clearAllBits();
2903
2904    // Minimum shift high bits are known zero.
2905    if (const APInt *ShMinAmt =
2906            getValidMinimumShiftAmountConstant(Op, DemandedElts))
2907      Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2908    break;
2909  case ISD::SRA:
2910    if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2911      Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2912      unsigned Shift = ShAmt->getZExtValue();
2913      // Sign extend known zero/one bit (else is unknown).
2914      Known.Zero.ashrInPlace(Shift);
2915      Known.One.ashrInPlace(Shift);
2916    }
2917    break;
2918  case ISD::FSHL:
2919  case ISD::FSHR:
2920    if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2921      unsigned Amt = C->getAPIntValue().urem(BitWidth);
2922
2923      // For fshl, 0-shift returns the 1st arg.
2924      // For fshr, 0-shift returns the 2nd arg.
2925      if (Amt == 0) {
2926        Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2927                                 DemandedElts, Depth + 1);
2928        break;
2929      }
2930
2931      // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2932      // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2933      Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2934      Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2935      if (Opcode == ISD::FSHL) {
2936        Known.One <<= Amt;
2937        Known.Zero <<= Amt;
2938        Known2.One.lshrInPlace(BitWidth - Amt);
2939        Known2.Zero.lshrInPlace(BitWidth - Amt);
2940      } else {
2941        Known.One <<= BitWidth - Amt;
2942        Known.Zero <<= BitWidth - Amt;
2943        Known2.One.lshrInPlace(Amt);
2944        Known2.Zero.lshrInPlace(Amt);
2945      }
2946      Known.One |= Known2.One;
2947      Known.Zero |= Known2.Zero;
2948    }
2949    break;
2950  case ISD::SIGN_EXTEND_INREG: {
2951    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2952    unsigned EBits = EVT.getScalarSizeInBits();
2953
2954    // Sign extension.  Compute the demanded bits in the result that are not
2955    // present in the input.
2956    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2957
2958    APInt InSignMask = APInt::getSignMask(EBits);
2959    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2960
2961    // If the sign extended bits are demanded, we know that the sign
2962    // bit is demanded.
2963    InSignMask = InSignMask.zext(BitWidth);
2964    if (NewBits.getBoolValue())
2965      InputDemandedBits |= InSignMask;
2966
2967    Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2968    Known.One &= InputDemandedBits;
2969    Known.Zero &= InputDemandedBits;
2970
2971    // If the sign bit of the input is known set or clear, then we know the
2972    // top bits of the result.
2973    if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2974      Known.Zero |= NewBits;
2975      Known.One  &= ~NewBits;
2976    } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2977      Known.One  |= NewBits;
2978      Known.Zero &= ~NewBits;
2979    } else {                              // Input sign bit unknown
2980      Known.Zero &= ~NewBits;
2981      Known.One  &= ~NewBits;
2982    }
2983    break;
2984  }
2985  case ISD::CTTZ:
2986  case ISD::CTTZ_ZERO_UNDEF: {
2987    Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2988    // If we have a known 1, its position is our upper bound.
2989    unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2990    unsigned LowBits = Log2_32(PossibleTZ) + 1;
2991    Known.Zero.setBitsFrom(LowBits);
2992    break;
2993  }
2994  case ISD::CTLZ:
2995  case ISD::CTLZ_ZERO_UNDEF: {
2996    Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2997    // If we have a known 1, its position is our upper bound.
2998    unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2999    unsigned LowBits = Log2_32(PossibleLZ) + 1;
3000    Known.Zero.setBitsFrom(LowBits);
3001    break;
3002  }
3003  case ISD::CTPOP: {
3004    Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3005    // If we know some of the bits are zero, they can't be one.
3006    unsigned PossibleOnes = Known2.countMaxPopulation();
3007    Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3008    break;
3009  }
3010  case ISD::LOAD: {
3011    LoadSDNode *LD = cast<LoadSDNode>(Op);
3012    const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3013    if (ISD::isNON_EXTLoad(LD) && Cst) {
3014      // Determine any common known bits from the loaded constant pool value.
3015      Type *CstTy = Cst->getType();
3016      if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3017        // If its a vector splat, then we can (quickly) reuse the scalar path.
3018        // NOTE: We assume all elements match and none are UNDEF.
3019        if (CstTy->isVectorTy()) {
3020          if (const Constant *Splat = Cst->getSplatValue()) {
3021            Cst = Splat;
3022            CstTy = Cst->getType();
3023          }
3024        }
3025        // TODO - do we need to handle different bitwidths?
3026        if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3027          // Iterate across all vector elements finding common known bits.
3028          Known.One.setAllBits();
3029          Known.Zero.setAllBits();
3030          for (unsigned i = 0; i != NumElts; ++i) {
3031            if (!DemandedElts[i])
3032              continue;
3033            if (Constant *Elt = Cst->getAggregateElement(i)) {
3034              if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3035                const APInt &Value = CInt->getValue();
3036                Known.One &= Value;
3037                Known.Zero &= ~Value;
3038                continue;
3039              }
3040              if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3041                APInt Value = CFP->getValueAPF().bitcastToAPInt();
3042                Known.One &= Value;
3043                Known.Zero &= ~Value;
3044                continue;
3045              }
3046            }
3047            Known.One.clearAllBits();
3048            Known.Zero.clearAllBits();
3049            break;
3050          }
3051        } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3052          if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3053            const APInt &Value = CInt->getValue();
3054            Known.One = Value;
3055            Known.Zero = ~Value;
3056          } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3057            APInt Value = CFP->getValueAPF().bitcastToAPInt();
3058            Known.One = Value;
3059            Known.Zero = ~Value;
3060          }
3061        }
3062      }
3063    } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3064      // If this is a ZEXTLoad and we are looking at the loaded value.
3065      EVT VT = LD->getMemoryVT();
3066      unsigned MemBits = VT.getScalarSizeInBits();
3067      Known.Zero.setBitsFrom(MemBits);
3068    } else if (const MDNode *Ranges = LD->getRanges()) {
3069      if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3070        computeKnownBitsFromRangeMetadata(*Ranges, Known);
3071    }
3072    break;
3073  }
3074  case ISD::ZERO_EXTEND_VECTOR_INREG: {
3075    EVT InVT = Op.getOperand(0).getValueType();
3076    APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3077    Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3078    Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
3079    break;
3080  }
3081  case ISD::ZERO_EXTEND: {
3082    Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3083    Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
3084    break;
3085  }
3086  case ISD::SIGN_EXTEND_VECTOR_INREG: {
3087    EVT InVT = Op.getOperand(0).getValueType();
3088    APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3089    Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3090    // If the sign bit is known to be zero or one, then sext will extend
3091    // it to the top bits, else it will just zext.
3092    Known = Known.sext(BitWidth);
3093    break;
3094  }
3095  case ISD::SIGN_EXTEND: {
3096    Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3097    // If the sign bit is known to be zero or one, then sext will extend
3098    // it to the top bits, else it will just zext.
3099    Known = Known.sext(BitWidth);
3100    break;
3101  }
3102  case ISD::ANY_EXTEND: {
3103    Known = computeKnownBits(Op.getOperand(0), Depth+1);
3104    Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3105    break;
3106  }
3107  case ISD::TRUNCATE: {
3108    Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3109    Known = Known.trunc(BitWidth);
3110    break;
3111  }
3112  case ISD::AssertZext: {
3113    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3114    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3115    Known = computeKnownBits(Op.getOperand(0), Depth+1);
3116    Known.Zero |= (~InMask);
3117    Known.One  &= (~Known.Zero);
3118    break;
3119  }
3120  case ISD::FGETSIGN:
3121    // All bits are zero except the low bit.
3122    Known.Zero.setBitsFrom(1);
3123    break;
3124  case ISD::USUBO:
3125  case ISD::SSUBO:
3126    if (Op.getResNo() == 1) {
3127      // If we know the result of a setcc has the top bits zero, use this info.
3128      if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3129              TargetLowering::ZeroOrOneBooleanContent &&
3130          BitWidth > 1)
3131        Known.Zero.setBitsFrom(1);
3132      break;
3133    }
3134    LLVM_FALLTHROUGH;
3135  case ISD::SUB:
3136  case ISD::SUBC: {
3137    Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3138    Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3139    Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3140                                        Known, Known2);
3141    break;
3142  }
3143  case ISD::UADDO:
3144  case ISD::SADDO:
3145  case ISD::ADDCARRY:
3146    if (Op.getResNo() == 1) {
3147      // If we know the result of a setcc has the top bits zero, use this info.
3148      if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3149              TargetLowering::ZeroOrOneBooleanContent &&
3150          BitWidth > 1)
3151        Known.Zero.setBitsFrom(1);
3152      break;
3153    }
3154    LLVM_FALLTHROUGH;
3155  case ISD::ADD:
3156  case ISD::ADDC:
3157  case ISD::ADDE: {
3158    assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3159
3160    // With ADDE and ADDCARRY, a carry bit may be added in.
3161    KnownBits Carry(1);
3162    if (Opcode == ISD::ADDE)
3163      // Can't track carry from glue, set carry to unknown.
3164      Carry.resetAll();
3165    else if (Opcode == ISD::ADDCARRY)
3166      // TODO: Compute known bits for the carry operand. Not sure if it is worth
3167      // the trouble (how often will we find a known carry bit). And I haven't
3168      // tested this very much yet, but something like this might work:
3169      //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3170      //   Carry = Carry.zextOrTrunc(1, false);
3171      Carry.resetAll();
3172    else
3173      Carry.setAllZero();
3174
3175    Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3176    Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3177    Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3178    break;
3179  }
3180  case ISD::SREM:
3181    if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3182      const APInt &RA = Rem->getAPIntValue().abs();
3183      if (RA.isPowerOf2()) {
3184        APInt LowBits = RA - 1;
3185        Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3186
3187        // The low bits of the first operand are unchanged by the srem.
3188        Known.Zero = Known2.Zero & LowBits;
3189        Known.One = Known2.One & LowBits;
3190
3191        // If the first operand is non-negative or has all low bits zero, then
3192        // the upper bits are all zero.
3193        if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3194          Known.Zero |= ~LowBits;
3195
3196        // If the first operand is negative and not all low bits are zero, then
3197        // the upper bits are all one.
3198        if (Known2.isNegative() && LowBits.intersects(Known2.One))
3199          Known.One |= ~LowBits;
3200        assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3201      }
3202    }
3203    break;
3204  case ISD::UREM: {
3205    if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3206      const APInt &RA = Rem->getAPIntValue();
3207      if (RA.isPowerOf2()) {
3208        APInt LowBits = (RA - 1);
3209        Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3210
3211        // The upper bits are all zero, the lower ones are unchanged.
3212        Known.Zero = Known2.Zero | ~LowBits;
3213        Known.One = Known2.One & LowBits;
3214        break;
3215      }
3216    }
3217
3218    // Since the result is less than or equal to either operand, any leading
3219    // zero bits in either operand must also exist in the result.
3220    Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3221    Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3222
3223    uint32_t Leaders =
3224        std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3225    Known.resetAll();
3226    Known.Zero.setHighBits(Leaders);
3227    break;
3228  }
3229  case ISD::EXTRACT_ELEMENT: {
3230    Known = computeKnownBits(Op.getOperand(0), Depth+1);
3231    const unsigned Index = Op.getConstantOperandVal(1);
3232    const unsigned EltBitWidth = Op.getValueSizeInBits();
3233
3234    // Remove low part of known bits mask
3235    Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3236    Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3237
3238    // Remove high part of known bit mask
3239    Known = Known.trunc(EltBitWidth);
3240    break;
3241  }
3242  case ISD::EXTRACT_VECTOR_ELT: {
3243    SDValue InVec = Op.getOperand(0);
3244    SDValue EltNo = Op.getOperand(1);
3245    EVT VecVT = InVec.getValueType();
3246    const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3247    const unsigned NumSrcElts = VecVT.getVectorNumElements();
3248    // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3249    // anything about the extended bits.
3250    if (BitWidth > EltBitWidth)
3251      Known = Known.trunc(EltBitWidth);
3252    ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3253    if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3254      // If we know the element index, just demand that vector element.
3255      unsigned Idx = ConstEltNo->getZExtValue();
3256      APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3257      Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3258    } else {
3259      // Unknown element index, so ignore DemandedElts and demand them all.
3260      Known = computeKnownBits(InVec, Depth + 1);
3261    }
3262    if (BitWidth > EltBitWidth)
3263      Known = Known.zext(BitWidth, false /* => any extend */);
3264    break;
3265  }
3266  case ISD::INSERT_VECTOR_ELT: {
3267    SDValue InVec = Op.getOperand(0);
3268    SDValue InVal = Op.getOperand(1);
3269    SDValue EltNo = Op.getOperand(2);
3270
3271    ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3272    if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3273      // If we know the element index, split the demand between the
3274      // source vector and the inserted element.
3275      Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3276      unsigned EltIdx = CEltNo->getZExtValue();
3277
3278      // If we demand the inserted element then add its common known bits.
3279      if (DemandedElts[EltIdx]) {
3280        Known2 = computeKnownBits(InVal, Depth + 1);
3281        Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3282        Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3283      }
3284
3285      // If we demand the source vector then add its common known bits, ensuring
3286      // that we don't demand the inserted element.
3287      APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3288      if (!!VectorElts) {
3289        Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3290        Known.One &= Known2.One;
3291        Known.Zero &= Known2.Zero;
3292      }
3293    } else {
3294      // Unknown element index, so ignore DemandedElts and demand them all.
3295      Known = computeKnownBits(InVec, Depth + 1);
3296      Known2 = computeKnownBits(InVal, Depth + 1);
3297      Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3298      Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3299    }
3300    break;
3301  }
3302  case ISD::BITREVERSE: {
3303    Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3304    Known.Zero = Known2.Zero.reverseBits();
3305    Known.One = Known2.One.reverseBits();
3306    break;
3307  }
3308  case ISD::BSWAP: {
3309    Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3310    Known.Zero = Known2.Zero.byteSwap();
3311    Known.One = Known2.One.byteSwap();
3312    break;
3313  }
3314  case ISD::ABS: {
3315    Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3316
3317    // If the source's MSB is zero then we know the rest of the bits already.
3318    if (Known2.isNonNegative()) {
3319      Known.Zero = Known2.Zero;
3320      Known.One = Known2.One;
3321      break;
3322    }
3323
3324    // We only know that the absolute values's MSB will be zero iff there is
3325    // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3326    Known2.One.clearSignBit();
3327    if (Known2.One.getBoolValue()) {
3328      Known.Zero = APInt::getSignMask(BitWidth);
3329      break;
3330    }
3331    break;
3332  }
3333  case ISD::UMIN: {
3334    Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3335    Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3336
3337    // UMIN - we know that the result will have the maximum of the
3338    // known zero leading bits of the inputs.
3339    unsigned LeadZero = Known.countMinLeadingZeros();
3340    LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3341
3342    Known.Zero &= Known2.Zero;
3343    Known.One &= Known2.One;
3344    Known.Zero.setHighBits(LeadZero);
3345    break;
3346  }
3347  case ISD::UMAX: {
3348    Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3349    Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3350
3351    // UMAX - we know that the result will have the maximum of the
3352    // known one leading bits of the inputs.
3353    unsigned LeadOne = Known.countMinLeadingOnes();
3354    LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3355
3356    Known.Zero &= Known2.Zero;
3357    Known.One &= Known2.One;
3358    Known.One.setHighBits(LeadOne);
3359    break;
3360  }
3361  case ISD::SMIN:
3362  case ISD::SMAX: {
3363    // If we have a clamp pattern, we know that the number of sign bits will be
3364    // the minimum of the clamp min/max range.
3365    bool IsMax = (Opcode == ISD::SMAX);
3366    ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3367    if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3368      if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3369        CstHigh =
3370            isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3371    if (CstLow && CstHigh) {
3372      if (!IsMax)
3373        std::swap(CstLow, CstHigh);
3374
3375      const APInt &ValueLow = CstLow->getAPIntValue();
3376      const APInt &ValueHigh = CstHigh->getAPIntValue();
3377      if (ValueLow.sle(ValueHigh)) {
3378        unsigned LowSignBits = ValueLow.getNumSignBits();
3379        unsigned HighSignBits = ValueHigh.getNumSignBits();
3380        unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3381        if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3382          Known.One.setHighBits(MinSignBits);
3383          break;
3384        }
3385        if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3386          Known.Zero.setHighBits(MinSignBits);
3387          break;
3388        }
3389      }
3390    }
3391
3392    // Fallback - just get the shared known bits of the operands.
3393    Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3394    if (Known.isUnknown()) break; // Early-out
3395    Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3396    Known.Zero &= Known2.Zero;
3397    Known.One &= Known2.One;
3398    break;
3399  }
3400  case ISD::FrameIndex:
3401  case ISD::TargetFrameIndex:
3402    TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3403    break;
3404
3405  default:
3406    if (Opcode < ISD::BUILTIN_OP_END)
3407      break;
3408    LLVM_FALLTHROUGH;
3409  case ISD::INTRINSIC_WO_CHAIN:
3410  case ISD::INTRINSIC_W_CHAIN:
3411  case ISD::INTRINSIC_VOID:
3412    // Allow the target to implement this method for its nodes.
3413    TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3414    break;
3415  }
3416
3417  assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3418  return Known;
3419}
3420
3421SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3422                                                             SDValue N1) const {
3423  // X + 0 never overflow
3424  if (isNullConstant(N1))
3425    return OFK_Never;
3426
3427  KnownBits N1Known = computeKnownBits(N1);
3428  if (N1Known.Zero.getBoolValue()) {
3429    KnownBits N0Known = computeKnownBits(N0);
3430
3431    bool overflow;
3432    (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3433    if (!overflow)
3434      return OFK_Never;
3435  }
3436
3437  // mulhi + 1 never overflow
3438  if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3439      (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3440    return OFK_Never;
3441
3442  if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3443    KnownBits N0Known = computeKnownBits(N0);
3444
3445    if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3446      return OFK_Never;
3447  }
3448
3449  return OFK_Sometime;
3450}
3451
3452bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3453  EVT OpVT = Val.getValueType();
3454  unsigned BitWidth = OpVT.getScalarSizeInBits();
3455
3456  // Is the constant a known power of 2?
3457  if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3458    return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3459
3460  // A left-shift of a constant one will have exactly one bit set because
3461  // shifting the bit off the end is undefined.
3462  if (Val.getOpcode() == ISD::SHL) {
3463    auto *C = isConstOrConstSplat(Val.getOperand(0));
3464    if (C && C->getAPIntValue() == 1)
3465      return true;
3466  }
3467
3468  // Similarly, a logical right-shift of a constant sign-bit will have exactly
3469  // one bit set.
3470  if (Val.getOpcode() == ISD::SRL) {
3471    auto *C = isConstOrConstSplat(Val.getOperand(0));
3472    if (C && C->getAPIntValue().isSignMask())
3473      return true;
3474  }
3475
3476  // Are all operands of a build vector constant powers of two?
3477  if (Val.getOpcode() == ISD::BUILD_VECTOR)
3478    if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3479          if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3480            return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3481          return false;
3482        }))
3483      return true;
3484
3485  // More could be done here, though the above checks are enough
3486  // to handle some common cases.
3487
3488  // Fall back to computeKnownBits to catch other known cases.
3489  KnownBits Known = computeKnownBits(Val);
3490  return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3491}
3492
3493unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3494  EVT VT = Op.getValueType();
3495  APInt DemandedElts = VT.isVector()
3496                           ? APInt::getAllOnesValue(VT.getVectorNumElements())
3497                           : APInt(1, 1);
3498  return ComputeNumSignBits(Op, DemandedElts, Depth);
3499}
3500
3501unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3502                                          unsigned Depth) const {
3503  EVT VT = Op.getValueType();
3504  assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3505  unsigned VTBits = VT.getScalarSizeInBits();
3506  unsigned NumElts = DemandedElts.getBitWidth();
3507  unsigned Tmp, Tmp2;
3508  unsigned FirstAnswer = 1;
3509
3510  if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3511    const APInt &Val = C->getAPIntValue();
3512    return Val.getNumSignBits();
3513  }
3514
3515  if (Depth >= MaxRecursionDepth)
3516    return 1;  // Limit search depth.
3517
3518  if (!DemandedElts)
3519    return 1;  // No demanded elts, better to assume we don't know anything.
3520
3521  unsigned Opcode = Op.getOpcode();
3522  switch (Opcode) {
3523  default: break;
3524  case ISD::AssertSext:
3525    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3526    return VTBits-Tmp+1;
3527  case ISD::AssertZext:
3528    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3529    return VTBits-Tmp;
3530
3531  case ISD::BUILD_VECTOR:
3532    Tmp = VTBits;
3533    for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3534      if (!DemandedElts[i])
3535        continue;
3536
3537      SDValue SrcOp = Op.getOperand(i);
3538      Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3539
3540      // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3541      if (SrcOp.getValueSizeInBits() != VTBits) {
3542        assert(SrcOp.getValueSizeInBits() > VTBits &&
3543               "Expected BUILD_VECTOR implicit truncation");
3544        unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3545        Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3546      }
3547      Tmp = std::min(Tmp, Tmp2);
3548    }
3549    return Tmp;
3550
3551  case ISD::VECTOR_SHUFFLE: {
3552    // Collect the minimum number of sign bits that are shared by every vector
3553    // element referenced by the shuffle.
3554    APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3555    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3556    assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3557    for (unsigned i = 0; i != NumElts; ++i) {
3558      int M = SVN->getMaskElt(i);
3559      if (!DemandedElts[i])
3560        continue;
3561      // For UNDEF elements, we don't know anything about the common state of
3562      // the shuffle result.
3563      if (M < 0)
3564        return 1;
3565      if ((unsigned)M < NumElts)
3566        DemandedLHS.setBit((unsigned)M % NumElts);
3567      else
3568        DemandedRHS.setBit((unsigned)M % NumElts);
3569    }
3570    Tmp = std::numeric_limits<unsigned>::max();
3571    if (!!DemandedLHS)
3572      Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3573    if (!!DemandedRHS) {
3574      Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3575      Tmp = std::min(Tmp, Tmp2);
3576    }
3577    // If we don't know anything, early out and try computeKnownBits fall-back.
3578    if (Tmp == 1)
3579      break;
3580    assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3581    return Tmp;
3582  }
3583
3584  case ISD::BITCAST: {
3585    SDValue N0 = Op.getOperand(0);
3586    EVT SrcVT = N0.getValueType();
3587    unsigned SrcBits = SrcVT.getScalarSizeInBits();
3588
3589    // Ignore bitcasts from unsupported types..
3590    if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3591      break;
3592
3593    // Fast handling of 'identity' bitcasts.
3594    if (VTBits == SrcBits)
3595      return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3596
3597    bool IsLE = getDataLayout().isLittleEndian();
3598
3599    // Bitcast 'large element' scalar/vector to 'small element' vector.
3600    if ((SrcBits % VTBits) == 0) {
3601      assert(VT.isVector() && "Expected bitcast to vector");
3602
3603      unsigned Scale = SrcBits / VTBits;
3604      APInt SrcDemandedElts(NumElts / Scale, 0);
3605      for (unsigned i = 0; i != NumElts; ++i)
3606        if (DemandedElts[i])
3607          SrcDemandedElts.setBit(i / Scale);
3608
3609      // Fast case - sign splat can be simply split across the small elements.
3610      Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3611      if (Tmp == SrcBits)
3612        return VTBits;
3613
3614      // Slow case - determine how far the sign extends into each sub-element.
3615      Tmp2 = VTBits;
3616      for (unsigned i = 0; i != NumElts; ++i)
3617        if (DemandedElts[i]) {
3618          unsigned SubOffset = i % Scale;
3619          SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3620          SubOffset = SubOffset * VTBits;
3621          if (Tmp <= SubOffset)
3622            return 1;
3623          Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3624        }
3625      return Tmp2;
3626    }
3627    break;
3628  }
3629
3630  case ISD::SIGN_EXTEND:
3631    Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3632    return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3633  case ISD::SIGN_EXTEND_INREG:
3634    // Max of the input and what this extends.
3635    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3636    Tmp = VTBits-Tmp+1;
3637    Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3638    return std::max(Tmp, Tmp2);
3639  case ISD::SIGN_EXTEND_VECTOR_INREG: {
3640    SDValue Src = Op.getOperand(0);
3641    EVT SrcVT = Src.getValueType();
3642    APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3643    Tmp = VTBits - SrcVT.getScalarSizeInBits();
3644    return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3645  }
3646  case ISD::SRA:
3647    Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3648    // SRA X, C -> adds C sign bits.
3649    if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts))
3650      Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3651    else if (const APInt *ShAmt =
3652                 getValidMinimumShiftAmountConstant(Op, DemandedElts))
3653      Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3654    return Tmp;
3655  case ISD::SHL:
3656    if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
3657      // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3658      Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3659      if (ShAmt->ult(Tmp))
3660        return Tmp - ShAmt->getZExtValue();
3661    } else if (const APInt *ShAmt =
3662                   getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3663      Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3664      if (ShAmt->ult(Tmp))
3665        return Tmp - ShAmt->getZExtValue();
3666    }
3667    break;
3668  case ISD::AND:
3669  case ISD::OR:
3670  case ISD::XOR:    // NOT is handled here.
3671    // Logical binary ops preserve the number of sign bits at the worst.
3672    Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3673    if (Tmp != 1) {
3674      Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3675      FirstAnswer = std::min(Tmp, Tmp2);
3676      // We computed what we know about the sign bits as our first
3677      // answer. Now proceed to the generic code that uses
3678      // computeKnownBits, and pick whichever answer is better.
3679    }
3680    break;
3681
3682  case ISD::SELECT:
3683  case ISD::VSELECT:
3684    Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3685    if (Tmp == 1) return 1;  // Early out.
3686    Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3687    return std::min(Tmp, Tmp2);
3688  case ISD::SELECT_CC:
3689    Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3690    if (Tmp == 1) return 1;  // Early out.
3691    Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3692    return std::min(Tmp, Tmp2);
3693
3694  case ISD::SMIN:
3695  case ISD::SMAX: {
3696    // If we have a clamp pattern, we know that the number of sign bits will be
3697    // the minimum of the clamp min/max range.
3698    bool IsMax = (Opcode == ISD::SMAX);
3699    ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3700    if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3701      if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3702        CstHigh =
3703            isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3704    if (CstLow && CstHigh) {
3705      if (!IsMax)
3706        std::swap(CstLow, CstHigh);
3707      if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3708        Tmp = CstLow->getAPIntValue().getNumSignBits();
3709        Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3710        return std::min(Tmp, Tmp2);
3711      }
3712    }
3713
3714    // Fallback - just get the minimum number of sign bits of the operands.
3715    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3716    if (Tmp == 1)
3717      return 1;  // Early out.
3718    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3719    return std::min(Tmp, Tmp2);
3720  }
3721  case ISD::UMIN:
3722  case ISD::UMAX:
3723    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3724    if (Tmp == 1)
3725      return 1;  // Early out.
3726    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3727    return std::min(Tmp, Tmp2);
3728  case ISD::SADDO:
3729  case ISD::UADDO:
3730  case ISD::SSUBO:
3731  case ISD::USUBO:
3732  case ISD::SMULO:
3733  case ISD::UMULO:
3734    if (Op.getResNo() != 1)
3735      break;
3736    // The boolean result conforms to getBooleanContents.  Fall through.
3737    // If setcc returns 0/-1, all bits are sign bits.
3738    // We know that we have an integer-based boolean since these operations
3739    // are only available for integer.
3740    if (TLI->getBooleanContents(VT.isVector(), false) ==
3741        TargetLowering::ZeroOrNegativeOneBooleanContent)
3742      return VTBits;
3743    break;
3744  case ISD::SETCC:
3745  case ISD::STRICT_FSETCC:
3746  case ISD::STRICT_FSETCCS: {
3747    unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3748    // If setcc returns 0/-1, all bits are sign bits.
3749    if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3750        TargetLowering::ZeroOrNegativeOneBooleanContent)
3751      return VTBits;
3752    break;
3753  }
3754  case ISD::ROTL:
3755  case ISD::ROTR:
3756    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3757      unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3758
3759      // Handle rotate right by N like a rotate left by 32-N.
3760      if (Opcode == ISD::ROTR)
3761        RotAmt = (VTBits - RotAmt) % VTBits;
3762
3763      // If we aren't rotating out all of the known-in sign bits, return the
3764      // number that are left.  This handles rotl(sext(x), 1) for example.
3765      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3766      if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3767    }
3768    break;
3769  case ISD::ADD:
3770  case ISD::ADDC:
3771    // Add can have at most one carry bit.  Thus we know that the output
3772    // is, at worst, one more bit than the inputs.
3773    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3774    if (Tmp == 1) return 1;  // Early out.
3775
3776    // Special case decrementing a value (ADD X, -1):
3777    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3778      if (CRHS->isAllOnesValue()) {
3779        KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3780
3781        // If the input is known to be 0 or 1, the output is 0/-1, which is all
3782        // sign bits set.
3783        if ((Known.Zero | 1).isAllOnesValue())
3784          return VTBits;
3785
3786        // If we are subtracting one from a positive number, there is no carry
3787        // out of the result.
3788        if (Known.isNonNegative())
3789          return Tmp;
3790      }
3791
3792    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3793    if (Tmp2 == 1) return 1;
3794    return std::min(Tmp, Tmp2)-1;
3795
3796  case ISD::SUB:
3797    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3798    if (Tmp2 == 1) return 1;
3799
3800    // Handle NEG.
3801    if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3802      if (CLHS->isNullValue()) {
3803        KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3804        // If the input is known to be 0 or 1, the output is 0/-1, which is all
3805        // sign bits set.
3806        if ((Known.Zero | 1).isAllOnesValue())
3807          return VTBits;
3808
3809        // If the input is known to be positive (the sign bit is known clear),
3810        // the output of the NEG has the same number of sign bits as the input.
3811        if (Known.isNonNegative())
3812          return Tmp2;
3813
3814        // Otherwise, we treat this like a SUB.
3815      }
3816
3817    // Sub can have at most one carry bit.  Thus we know that the output
3818    // is, at worst, one more bit than the inputs.
3819    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3820    if (Tmp == 1) return 1;  // Early out.
3821    return std::min(Tmp, Tmp2)-1;
3822  case ISD::MUL: {
3823    // The output of the Mul can be at most twice the valid bits in the inputs.
3824    unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3825    if (SignBitsOp0 == 1)
3826      break;
3827    unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3828    if (SignBitsOp1 == 1)
3829      break;
3830    unsigned OutValidBits =
3831        (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3832    return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3833  }
3834  case ISD::TRUNCATE: {
3835    // Check if the sign bits of source go down as far as the truncated value.
3836    unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3837    unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3838    if (NumSrcSignBits > (NumSrcBits - VTBits))
3839      return NumSrcSignBits - (NumSrcBits - VTBits);
3840    break;
3841  }
3842  case ISD::EXTRACT_ELEMENT: {
3843    const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3844    const int BitWidth = Op.getValueSizeInBits();
3845    const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3846
3847    // Get reverse index (starting from 1), Op1 value indexes elements from
3848    // little end. Sign starts at big end.
3849    const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3850
3851    // If the sign portion ends in our element the subtraction gives correct
3852    // result. Otherwise it gives either negative or > bitwidth result
3853    return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3854  }
3855  case ISD::INSERT_VECTOR_ELT: {
3856    SDValue InVec = Op.getOperand(0);
3857    SDValue InVal = Op.getOperand(1);
3858    SDValue EltNo = Op.getOperand(2);
3859
3860    ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3861    if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3862      // If we know the element index, split the demand between the
3863      // source vector and the inserted element.
3864      unsigned EltIdx = CEltNo->getZExtValue();
3865
3866      // If we demand the inserted element then get its sign bits.
3867      Tmp = std::numeric_limits<unsigned>::max();
3868      if (DemandedElts[EltIdx]) {
3869        // TODO - handle implicit truncation of inserted elements.
3870        if (InVal.getScalarValueSizeInBits() != VTBits)
3871          break;
3872        Tmp = ComputeNumSignBits(InVal, Depth + 1);
3873      }
3874
3875      // If we demand the source vector then get its sign bits, and determine
3876      // the minimum.
3877      APInt VectorElts = DemandedElts;
3878      VectorElts.clearBit(EltIdx);
3879      if (!!VectorElts) {
3880        Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3881        Tmp = std::min(Tmp, Tmp2);
3882      }
3883    } else {
3884      // Unknown element index, so ignore DemandedElts and demand them all.
3885      Tmp = ComputeNumSignBits(InVec, Depth + 1);
3886      Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3887      Tmp = std::min(Tmp, Tmp2);
3888    }
3889    assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3890    return Tmp;
3891  }
3892  case ISD::EXTRACT_VECTOR_ELT: {
3893    SDValue InVec = Op.getOperand(0);
3894    SDValue EltNo = Op.getOperand(1);
3895    EVT VecVT = InVec.getValueType();
3896    const unsigned BitWidth = Op.getValueSizeInBits();
3897    const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3898    const unsigned NumSrcElts = VecVT.getVectorNumElements();
3899
3900    // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3901    // anything about sign bits. But if the sizes match we can derive knowledge
3902    // about sign bits from the vector operand.
3903    if (BitWidth != EltBitWidth)
3904      break;
3905
3906    // If we know the element index, just demand that vector element, else for
3907    // an unknown element index, ignore DemandedElts and demand them all.
3908    APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3909    ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3910    if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3911      DemandedSrcElts =
3912          APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3913
3914    return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3915  }
3916  case ISD::EXTRACT_SUBVECTOR: {
3917    // If we know the element index, just demand that subvector elements,
3918    // otherwise demand them all.
3919    SDValue Src = Op.getOperand(0);
3920    ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3921    unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3922    APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
3923    if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3924      // Offset the demanded elts by the subvector index.
3925      uint64_t Idx = SubIdx->getZExtValue();
3926      DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3927    }
3928    return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3929  }
3930  case ISD::CONCAT_VECTORS: {
3931    // Determine the minimum number of sign bits across all demanded
3932    // elts of the input vectors. Early out if the result is already 1.
3933    Tmp = std::numeric_limits<unsigned>::max();
3934    EVT SubVectorVT = Op.getOperand(0).getValueType();
3935    unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3936    unsigned NumSubVectors = Op.getNumOperands();
3937    for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3938      APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3939      DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3940      if (!DemandedSub)
3941        continue;
3942      Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3943      Tmp = std::min(Tmp, Tmp2);
3944    }
3945    assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3946    return Tmp;
3947  }
3948  case ISD::INSERT_SUBVECTOR: {
3949    // If we know the element index, demand any elements from the subvector and
3950    // the remainder from the src its inserted into, otherwise demand them all.
3951    SDValue Src = Op.getOperand(0);
3952    SDValue Sub = Op.getOperand(1);
3953    auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3954    unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3955    if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3956      Tmp = std::numeric_limits<unsigned>::max();
3957      uint64_t Idx = SubIdx->getZExtValue();
3958      APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3959      if (!!DemandedSubElts) {
3960        Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3961        if (Tmp == 1) return 1; // early-out
3962      }
3963      APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3964      APInt DemandedSrcElts = DemandedElts & ~SubMask;
3965      if (!!DemandedSrcElts) {
3966        Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3967        Tmp = std::min(Tmp, Tmp2);
3968      }
3969      assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3970      return Tmp;
3971    }
3972
3973    // Not able to determine the index so just assume worst case.
3974    Tmp = ComputeNumSignBits(Sub, Depth + 1);
3975    if (Tmp == 1) return 1; // early-out
3976    Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3977    Tmp = std::min(Tmp, Tmp2);
3978    assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3979    return Tmp;
3980  }
3981  }
3982
3983  // If we are looking at the loaded value of the SDNode.
3984  if (Op.getResNo() == 0) {
3985    // Handle LOADX separately here. EXTLOAD case will fallthrough.
3986    if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3987      unsigned ExtType = LD->getExtensionType();
3988      switch (ExtType) {
3989      default: break;
3990      case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3991        Tmp = LD->getMemoryVT().getScalarSizeInBits();
3992        return VTBits - Tmp + 1;
3993      case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3994        Tmp = LD->getMemoryVT().getScalarSizeInBits();
3995        return VTBits - Tmp;
3996      case ISD::NON_EXTLOAD:
3997        if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3998          // We only need to handle vectors - computeKnownBits should handle
3999          // scalar cases.
4000          Type *CstTy = Cst->getType();
4001          if (CstTy->isVectorTy() &&
4002              (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4003            Tmp = VTBits;
4004            for (unsigned i = 0; i != NumElts; ++i) {
4005              if (!DemandedElts[i])
4006                continue;
4007              if (Constant *Elt = Cst->getAggregateElement(i)) {
4008                if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4009                  const APInt &Value = CInt->getValue();
4010                  Tmp = std::min(Tmp, Value.getNumSignBits());
4011                  continue;
4012                }
4013                if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4014                  APInt Value = CFP->getValueAPF().bitcastToAPInt();
4015                  Tmp = std::min(Tmp, Value.getNumSignBits());
4016                  continue;
4017                }
4018              }
4019              // Unknown type. Conservatively assume no bits match sign bit.
4020              return 1;
4021            }
4022            return Tmp;
4023          }
4024        }
4025        break;
4026      }
4027    }
4028  }
4029
4030  // Allow the target to implement this method for its nodes.
4031  if (Opcode >= ISD::BUILTIN_OP_END ||
4032      Opcode == ISD::INTRINSIC_WO_CHAIN ||
4033      Opcode == ISD::INTRINSIC_W_CHAIN ||
4034      Opcode == ISD::INTRINSIC_VOID) {
4035    unsigned NumBits =
4036        TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4037    if (NumBits > 1)
4038      FirstAnswer = std::max(FirstAnswer, NumBits);
4039  }
4040
4041  // Finally, if we can prove that the top bits of the result are 0's or 1's,
4042  // use this information.
4043  KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4044
4045  APInt Mask;
4046  if (Known.isNonNegative()) {        // sign bit is 0
4047    Mask = Known.Zero;
4048  } else if (Known.isNegative()) {  // sign bit is 1;
4049    Mask = Known.One;
4050  } else {
4051    // Nothing known.
4052    return FirstAnswer;
4053  }
4054
4055  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
4056  // the number of identical bits in the top of the input value.
4057  Mask = ~Mask;
4058  Mask <<= Mask.getBitWidth()-VTBits;
4059  // Return # leading zeros.  We use 'min' here in case Val was zero before
4060  // shifting.  We don't want to return '64' as for an i32 "0".
4061  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
4062}
4063
4064bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4065  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4066      !isa<ConstantSDNode>(Op.getOperand(1)))
4067    return false;
4068
4069  if (Op.getOpcode() == ISD::OR &&
4070      !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4071    return false;
4072
4073  return true;
4074}
4075
4076bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4077  // If we're told that NaNs won't happen, assume they won't.
4078  if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4079    return true;
4080
4081  if (Depth >= MaxRecursionDepth)
4082    return false; // Limit search depth.
4083
4084  // TODO: Handle vectors.
4085  // If the value is a constant, we can obviously see if it is a NaN or not.
4086  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4087    return !C->getValueAPF().isNaN() ||
4088           (SNaN && !C->getValueAPF().isSignaling());
4089  }
4090
4091  unsigned Opcode = Op.getOpcode();
4092  switch (Opcode) {
4093  case ISD::FADD:
4094  case ISD::FSUB:
4095  case ISD::FMUL:
4096  case ISD::FDIV:
4097  case ISD::FREM:
4098  case ISD::FSIN:
4099  case ISD::FCOS: {
4100    if (SNaN)
4101      return true;
4102    // TODO: Need isKnownNeverInfinity
4103    return false;
4104  }
4105  case ISD::FCANONICALIZE:
4106  case ISD::FEXP:
4107  case ISD::FEXP2:
4108  case ISD::FTRUNC:
4109  case ISD::FFLOOR:
4110  case ISD::FCEIL:
4111  case ISD::FROUND:
4112  case ISD::FRINT:
4113  case ISD::FNEARBYINT: {
4114    if (SNaN)
4115      return true;
4116    return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4117  }
4118  case ISD::FABS:
4119  case ISD::FNEG:
4120  case ISD::FCOPYSIGN: {
4121    return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4122  }
4123  case ISD::SELECT:
4124    return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4125           isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4126  case ISD::FP_EXTEND:
4127  case ISD::FP_ROUND: {
4128    if (SNaN)
4129      return true;
4130    return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4131  }
4132  case ISD::SINT_TO_FP:
4133  case ISD::UINT_TO_FP:
4134    return true;
4135  case ISD::FMA:
4136  case ISD::FMAD: {
4137    if (SNaN)
4138      return true;
4139    return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4140           isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4141           isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4142  }
4143  case ISD::FSQRT: // Need is known positive
4144  case ISD::FLOG:
4145  case ISD::FLOG2:
4146  case ISD::FLOG10:
4147  case ISD::FPOWI:
4148  case ISD::FPOW: {
4149    if (SNaN)
4150      return true;
4151    // TODO: Refine on operand
4152    return false;
4153  }
4154  case ISD::FMINNUM:
4155  case ISD::FMAXNUM: {
4156    // Only one needs to be known not-nan, since it will be returned if the
4157    // other ends up being one.
4158    return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4159           isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4160  }
4161  case ISD::FMINNUM_IEEE:
4162  case ISD::FMAXNUM_IEEE: {
4163    if (SNaN)
4164      return true;
4165    // This can return a NaN if either operand is an sNaN, or if both operands
4166    // are NaN.
4167    return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4168            isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4169           (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4170            isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4171  }
4172  case ISD::FMINIMUM:
4173  case ISD::FMAXIMUM: {
4174    // TODO: Does this quiet or return the origina NaN as-is?
4175    return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4176           isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4177  }
4178  case ISD::EXTRACT_VECTOR_ELT: {
4179    return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4180  }
4181  default:
4182    if (Opcode >= ISD::BUILTIN_OP_END ||
4183        Opcode == ISD::INTRINSIC_WO_CHAIN ||
4184        Opcode == ISD::INTRINSIC_W_CHAIN ||
4185        Opcode == ISD::INTRINSIC_VOID) {
4186      return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4187    }
4188
4189    return false;
4190  }
4191}
4192
4193bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4194  assert(Op.getValueType().isFloatingPoint() &&
4195         "Floating point type expected");
4196
4197  // If the value is a constant, we can obviously see if it is a zero or not.
4198  // TODO: Add BuildVector support.
4199  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4200    return !C->isZero();
4201  return false;
4202}
4203
4204bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4205  assert(!Op.getValueType().isFloatingPoint() &&
4206         "Floating point types unsupported - use isKnownNeverZeroFloat");
4207
4208  // If the value is a constant, we can obviously see if it is a zero or not.
4209  if (ISD::matchUnaryPredicate(
4210          Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4211    return true;
4212
4213  // TODO: Recognize more cases here.
4214  switch (Op.getOpcode()) {
4215  default: break;
4216  case ISD::OR:
4217    if (isKnownNeverZero(Op.getOperand(1)) ||
4218        isKnownNeverZero(Op.getOperand(0)))
4219      return true;
4220    break;
4221  }
4222
4223  return false;
4224}
4225
4226bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4227  // Check the obvious case.
4228  if (A == B) return true;
4229
4230  // For for negative and positive zero.
4231  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4232    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4233      if (CA->isZero() && CB->isZero()) return true;
4234
4235  // Otherwise they may not be equal.
4236  return false;
4237}
4238
4239// FIXME: unify with llvm::haveNoCommonBitsSet.
4240// FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4241bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4242  assert(A.getValueType() == B.getValueType() &&
4243         "Values must have the same type");
4244  return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4245}
4246
4247static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4248                                ArrayRef<SDValue> Ops,
4249                                SelectionDAG &DAG) {
4250  int NumOps = Ops.size();
4251  assert(NumOps != 0 && "Can't build an empty vector!");
4252  assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4253         "Incorrect element count in BUILD_VECTOR!");
4254
4255  // BUILD_VECTOR of UNDEFs is UNDEF.
4256  if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4257    return DAG.getUNDEF(VT);
4258
4259  // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4260  SDValue IdentitySrc;
4261  bool IsIdentity = true;
4262  for (int i = 0; i != NumOps; ++i) {
4263    if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4264        Ops[i].getOperand(0).getValueType() != VT ||
4265        (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4266        !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4267        cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4268      IsIdentity = false;
4269      break;
4270    }
4271    IdentitySrc = Ops[i].getOperand(0);
4272  }
4273  if (IsIdentity)
4274    return IdentitySrc;
4275
4276  return SDValue();
4277}
4278
4279/// Try to simplify vector concatenation to an input value, undef, or build
4280/// vector.
4281static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4282                                  ArrayRef<SDValue> Ops,
4283                                  SelectionDAG &DAG) {
4284  assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4285  assert(llvm::all_of(Ops,
4286                      [Ops](SDValue Op) {
4287                        return Ops[0].getValueType() == Op.getValueType();
4288                      }) &&
4289         "Concatenation of vectors with inconsistent value types!");
4290  assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4291             VT.getVectorNumElements() &&
4292         "Incorrect element count in vector concatenation!");
4293
4294  if (Ops.size() == 1)
4295    return Ops[0];
4296
4297  // Concat of UNDEFs is UNDEF.
4298  if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4299    return DAG.getUNDEF(VT);
4300
4301  // Scan the operands and look for extract operations from a single source
4302  // that correspond to insertion at the same location via this concatenation:
4303  // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4304  SDValue IdentitySrc;
4305  bool IsIdentity = true;
4306  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4307    SDValue Op = Ops[i];
4308    unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4309    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4310        Op.getOperand(0).getValueType() != VT ||
4311        (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4312        !isa<ConstantSDNode>(Op.getOperand(1)) ||
4313        Op.getConstantOperandVal(1) != IdentityIndex) {
4314      IsIdentity = false;
4315      break;
4316    }
4317    assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4318           "Unexpected identity source vector for concat of extracts");
4319    IdentitySrc = Op.getOperand(0);
4320  }
4321  if (IsIdentity) {
4322    assert(IdentitySrc && "Failed to set source vector of extracts");
4323    return IdentitySrc;
4324  }
4325
4326  // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4327  // simplified to one big BUILD_VECTOR.
4328  // FIXME: Add support for SCALAR_TO_VECTOR as well.
4329  EVT SVT = VT.getScalarType();
4330  SmallVector<SDValue, 16> Elts;
4331  for (SDValue Op : Ops) {
4332    EVT OpVT = Op.getValueType();
4333    if (Op.isUndef())
4334      Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4335    else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4336      Elts.append(Op->op_begin(), Op->op_end());
4337    else
4338      return SDValue();
4339  }
4340
4341  // BUILD_VECTOR requires all inputs to be of the same type, find the
4342  // maximum type and extend them all.
4343  for (SDValue Op : Elts)
4344    SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4345
4346  if (SVT.bitsGT(VT.getScalarType()))
4347    for (SDValue &Op : Elts)
4348      Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4349               ? DAG.getZExtOrTrunc(Op, DL, SVT)
4350               : DAG.getSExtOrTrunc(Op, DL, SVT);
4351
4352  SDValue V = DAG.getBuildVector(VT, DL, Elts);
4353  NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4354  return V;
4355}
4356
4357/// Gets or creates the specified node.
4358SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4359  FoldingSetNodeID ID;
4360  AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4361  void *IP = nullptr;
4362  if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4363    return SDValue(E, 0);
4364
4365  auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4366                              getVTList(VT));
4367  CSEMap.InsertNode(N, IP);
4368
4369  InsertNode(N);
4370  SDValue V = SDValue(N, 0);
4371  NewSDValueDbgMsg(V, "Creating new node: ", this);
4372  return V;
4373}
4374
4375SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4376                              SDValue Operand, const SDNodeFlags Flags) {
4377  // Constant fold unary operations with an integer constant operand. Even
4378  // opaque constant will be folded, because the folding of unary operations
4379  // doesn't create new constants with different values. Nevertheless, the
4380  // opaque flag is preserved during folding to prevent future folding with
4381  // other constants.
4382  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4383    const APInt &Val = C->getAPIntValue();
4384    switch (Opcode) {
4385    default: break;
4386    case ISD::SIGN_EXTEND:
4387      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4388                         C->isTargetOpcode(), C->isOpaque());
4389    case ISD::TRUNCATE:
4390      if (C->isOpaque())
4391        break;
4392      LLVM_FALLTHROUGH;
4393    case ISD::ANY_EXTEND:
4394    case ISD::ZERO_EXTEND:
4395      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4396                         C->isTargetOpcode(), C->isOpaque());
4397    case ISD::UINT_TO_FP:
4398    case ISD::SINT_TO_FP: {
4399      APFloat apf(EVTToAPFloatSemantics(VT),
4400                  APInt::getNullValue(VT.getSizeInBits()));
4401      (void)apf.convertFromAPInt(Val,
4402                                 Opcode==ISD::SINT_TO_FP,
4403                                 APFloat::rmNearestTiesToEven);
4404      return getConstantFP(apf, DL, VT);
4405    }
4406    case ISD::BITCAST:
4407      if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4408        return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4409      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4410        return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4411      if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4412        return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4413      if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4414        return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4415      break;
4416    case ISD::ABS:
4417      return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4418                         C->isOpaque());
4419    case ISD::BITREVERSE:
4420      return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4421                         C->isOpaque());
4422    case ISD::BSWAP:
4423      return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4424                         C->isOpaque());
4425    case ISD::CTPOP:
4426      return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4427                         C->isOpaque());
4428    case ISD::CTLZ:
4429    case ISD::CTLZ_ZERO_UNDEF:
4430      return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4431                         C->isOpaque());
4432    case ISD::CTTZ:
4433    case ISD::CTTZ_ZERO_UNDEF:
4434      return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4435                         C->isOpaque());
4436    case ISD::FP16_TO_FP: {
4437      bool Ignored;
4438      APFloat FPV(APFloat::IEEEhalf(),
4439                  (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4440
4441      // This can return overflow, underflow, or inexact; we don't care.
4442      // FIXME need to be more flexible about rounding mode.
4443      (void)FPV.convert(EVTToAPFloatSemantics(VT),
4444                        APFloat::rmNearestTiesToEven, &Ignored);
4445      return getConstantFP(FPV, DL, VT);
4446    }
4447    }
4448  }
4449
4450  // Constant fold unary operations with a floating point constant operand.
4451  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4452    APFloat V = C->getValueAPF();    // make copy
4453    switch (Opcode) {
4454    case ISD::FNEG:
4455      V.changeSign();
4456      return getConstantFP(V, DL, VT);
4457    case ISD::FABS:
4458      V.clearSign();
4459      return getConstantFP(V, DL, VT);
4460    case ISD::FCEIL: {
4461      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4462      if (fs == APFloat::opOK || fs == APFloat::opInexact)
4463        return getConstantFP(V, DL, VT);
4464      break;
4465    }
4466    case ISD::FTRUNC: {
4467      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4468      if (fs == APFloat::opOK || fs == APFloat::opInexact)
4469        return getConstantFP(V, DL, VT);
4470      break;
4471    }
4472    case ISD::FFLOOR: {
4473      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4474      if (fs == APFloat::opOK || fs == APFloat::opInexact)
4475        return getConstantFP(V, DL, VT);
4476      break;
4477    }
4478    case ISD::FP_EXTEND: {
4479      bool ignored;
4480      // This can return overflow, underflow, or inexact; we don't care.
4481      // FIXME need to be more flexible about rounding mode.
4482      (void)V.convert(EVTToAPFloatSemantics(VT),
4483                      APFloat::rmNearestTiesToEven, &ignored);
4484      return getConstantFP(V, DL, VT);
4485    }
4486    case ISD::FP_TO_SINT:
4487    case ISD::FP_TO_UINT: {
4488      bool ignored;
4489      APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4490      // FIXME need to be more flexible about rounding mode.
4491      APFloat::opStatus s =
4492          V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4493      if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4494        break;
4495      return getConstant(IntVal, DL, VT);
4496    }
4497    case ISD::BITCAST:
4498      if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4499        return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4500      else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4501        return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4502      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4503        return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4504      break;
4505    case ISD::FP_TO_FP16: {
4506      bool Ignored;
4507      // This can return overflow, underflow, or inexact; we don't care.
4508      // FIXME need to be more flexible about rounding mode.
4509      (void)V.convert(APFloat::IEEEhalf(),
4510                      APFloat::rmNearestTiesToEven, &Ignored);
4511      return getConstant(V.bitcastToAPInt(), DL, VT);
4512    }
4513    }
4514  }
4515
4516  // Constant fold unary operations with a vector integer or float operand.
4517  if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4518    if (BV->isConstant()) {
4519      switch (Opcode) {
4520      default:
4521        // FIXME: Entirely reasonable to perform folding of other unary
4522        // operations here as the need arises.
4523        break;
4524      case ISD::FNEG:
4525      case ISD::FABS:
4526      case ISD::FCEIL:
4527      case ISD::FTRUNC:
4528      case ISD::FFLOOR:
4529      case ISD::FP_EXTEND:
4530      case ISD::FP_TO_SINT:
4531      case ISD::FP_TO_UINT:
4532      case ISD::TRUNCATE:
4533      case ISD::ANY_EXTEND:
4534      case ISD::ZERO_EXTEND:
4535      case ISD::SIGN_EXTEND:
4536      case ISD::UINT_TO_FP:
4537      case ISD::SINT_TO_FP:
4538      case ISD::ABS:
4539      case ISD::BITREVERSE:
4540      case ISD::BSWAP:
4541      case ISD::CTLZ:
4542      case ISD::CTLZ_ZERO_UNDEF:
4543      case ISD::CTTZ:
4544      case ISD::CTTZ_ZERO_UNDEF:
4545      case ISD::CTPOP: {
4546        SDValue Ops = { Operand };
4547        if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4548          return Fold;
4549      }
4550      }
4551    }
4552  }
4553
4554  unsigned OpOpcode = Operand.getNode()->getOpcode();
4555  switch (Opcode) {
4556  case ISD::TokenFactor:
4557  case ISD::MERGE_VALUES:
4558  case ISD::CONCAT_VECTORS:
4559    return Operand;         // Factor, merge or concat of one node?  No need.
4560  case ISD::BUILD_VECTOR: {
4561    // Attempt to simplify BUILD_VECTOR.
4562    SDValue Ops[] = {Operand};
4563    if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4564      return V;
4565    break;
4566  }
4567  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4568  case ISD::FP_EXTEND:
4569    assert(VT.isFloatingPoint() &&
4570           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4571    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4572    assert((!VT.isVector() ||
4573            VT.getVectorNumElements() ==
4574            Operand.getValueType().getVectorNumElements()) &&
4575           "Vector element count mismatch!");
4576    assert(Operand.getValueType().bitsLT(VT) &&
4577           "Invalid fpext node, dst < src!");
4578    if (Operand.isUndef())
4579      return getUNDEF(VT);
4580    break;
4581  case ISD::FP_TO_SINT:
4582  case ISD::FP_TO_UINT:
4583    if (Operand.isUndef())
4584      return getUNDEF(VT);
4585    break;
4586  case ISD::SINT_TO_FP:
4587  case ISD::UINT_TO_FP:
4588    // [us]itofp(undef) = 0, because the result value is bounded.
4589    if (Operand.isUndef())
4590      return getConstantFP(0.0, DL, VT);
4591    break;
4592  case ISD::SIGN_EXTEND:
4593    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4594           "Invalid SIGN_EXTEND!");
4595    assert(VT.isVector() == Operand.getValueType().isVector() &&
4596           "SIGN_EXTEND result type type should be vector iff the operand "
4597           "type is vector!");
4598    if (Operand.getValueType() == VT) return Operand;   // noop extension
4599    assert((!VT.isVector() ||
4600            VT.getVectorNumElements() ==
4601            Operand.getValueType().getVectorNumElements()) &&
4602           "Vector element count mismatch!");
4603    assert(Operand.getValueType().bitsLT(VT) &&
4604           "Invalid sext node, dst < src!");
4605    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4606      return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4607    else if (OpOpcode == ISD::UNDEF)
4608      // sext(undef) = 0, because the top bits will all be the same.
4609      return getConstant(0, DL, VT);
4610    break;
4611  case ISD::ZERO_EXTEND:
4612    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4613           "Invalid ZERO_EXTEND!");
4614    assert(VT.isVector() == Operand.getValueType().isVector() &&
4615           "ZERO_EXTEND result type type should be vector iff the operand "
4616           "type is vector!");
4617    if (Operand.getValueType() == VT) return Operand;   // noop extension
4618    assert((!VT.isVector() ||
4619            VT.getVectorNumElements() ==
4620            Operand.getValueType().getVectorNumElements()) &&
4621           "Vector element count mismatch!");
4622    assert(Operand.getValueType().bitsLT(VT) &&
4623           "Invalid zext node, dst < src!");
4624    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4625      return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4626    else if (OpOpcode == ISD::UNDEF)
4627      // zext(undef) = 0, because the top bits will be zero.
4628      return getConstant(0, DL, VT);
4629    break;
4630  case ISD::ANY_EXTEND:
4631    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4632           "Invalid ANY_EXTEND!");
4633    assert(VT.isVector() == Operand.getValueType().isVector() &&
4634           "ANY_EXTEND result type type should be vector iff the operand "
4635           "type is vector!");
4636    if (Operand.getValueType() == VT) return Operand;   // noop extension
4637    assert((!VT.isVector() ||
4638            VT.getVectorNumElements() ==
4639            Operand.getValueType().getVectorNumElements()) &&
4640           "Vector element count mismatch!");
4641    assert(Operand.getValueType().bitsLT(VT) &&
4642           "Invalid anyext node, dst < src!");
4643
4644    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4645        OpOpcode == ISD::ANY_EXTEND)
4646      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4647      return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4648    else if (OpOpcode == ISD::UNDEF)
4649      return getUNDEF(VT);
4650
4651    // (ext (trunc x)) -> x
4652    if (OpOpcode == ISD::TRUNCATE) {
4653      SDValue OpOp = Operand.getOperand(0);
4654      if (OpOp.getValueType() == VT) {
4655        transferDbgValues(Operand, OpOp);
4656        return OpOp;
4657      }
4658    }
4659    break;
4660  case ISD::TRUNCATE:
4661    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4662           "Invalid TRUNCATE!");
4663    assert(VT.isVector() == Operand.getValueType().isVector() &&
4664           "TRUNCATE result type type should be vector iff the operand "
4665           "type is vector!");
4666    if (Operand.getValueType() == VT) return Operand;   // noop truncate
4667    assert((!VT.isVector() ||
4668            VT.getVectorNumElements() ==
4669            Operand.getValueType().getVectorNumElements()) &&
4670           "Vector element count mismatch!");
4671    assert(Operand.getValueType().bitsGT(VT) &&
4672           "Invalid truncate node, src < dst!");
4673    if (OpOpcode == ISD::TRUNCATE)
4674      return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4675    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4676        OpOpcode == ISD::ANY_EXTEND) {
4677      // If the source is smaller than the dest, we still need an extend.
4678      if (Operand.getOperand(0).getValueType().getScalarType()
4679            .bitsLT(VT.getScalarType()))
4680        return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4681      if (Operand.getOperand(0).getValueType().bitsGT(VT))
4682        return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4683      return Operand.getOperand(0);
4684    }
4685    if (OpOpcode == ISD::UNDEF)
4686      return getUNDEF(VT);
4687    break;
4688  case ISD::ANY_EXTEND_VECTOR_INREG:
4689  case ISD::ZERO_EXTEND_VECTOR_INREG:
4690  case ISD::SIGN_EXTEND_VECTOR_INREG:
4691    assert(VT.isVector() && "This DAG node is restricted to vector types.");
4692    assert(Operand.getValueType().bitsLE(VT) &&
4693           "The input must be the same size or smaller than the result.");
4694    assert(VT.getVectorNumElements() <
4695             Operand.getValueType().getVectorNumElements() &&
4696           "The destination vector type must have fewer lanes than the input.");
4697    break;
4698  case ISD::ABS:
4699    assert(VT.isInteger() && VT == Operand.getValueType() &&
4700           "Invalid ABS!");
4701    if (OpOpcode == ISD::UNDEF)
4702      return getUNDEF(VT);
4703    break;
4704  case ISD::BSWAP:
4705    assert(VT.isInteger() && VT == Operand.getValueType() &&
4706           "Invalid BSWAP!");
4707    assert((VT.getScalarSizeInBits() % 16 == 0) &&
4708           "BSWAP types must be a multiple of 16 bits!");
4709    if (OpOpcode == ISD::UNDEF)
4710      return getUNDEF(VT);
4711    break;
4712  case ISD::BITREVERSE:
4713    assert(VT.isInteger() && VT == Operand.getValueType() &&
4714           "Invalid BITREVERSE!");
4715    if (OpOpcode == ISD::UNDEF)
4716      return getUNDEF(VT);
4717    break;
4718  case ISD::BITCAST:
4719    // Basic sanity checking.
4720    assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4721           "Cannot BITCAST between types of different sizes!");
4722    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4723    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4724      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4725    if (OpOpcode == ISD::UNDEF)
4726      return getUNDEF(VT);
4727    break;
4728  case ISD::SCALAR_TO_VECTOR:
4729    assert(VT.isVector() && !Operand.getValueType().isVector() &&
4730           (VT.getVectorElementType() == Operand.getValueType() ||
4731            (VT.getVectorElementType().isInteger() &&
4732             Operand.getValueType().isInteger() &&
4733             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4734           "Illegal SCALAR_TO_VECTOR node!");
4735    if (OpOpcode == ISD::UNDEF)
4736      return getUNDEF(VT);
4737    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4738    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4739        isa<ConstantSDNode>(Operand.getOperand(1)) &&
4740        Operand.getConstantOperandVal(1) == 0 &&
4741        Operand.getOperand(0).getValueType() == VT)
4742      return Operand.getOperand(0);
4743    break;
4744  case ISD::FNEG:
4745    // Negation of an unknown bag of bits is still completely undefined.
4746    if (OpOpcode == ISD::UNDEF)
4747      return getUNDEF(VT);
4748
4749    if (OpOpcode == ISD::FNEG)  // --X -> X
4750      return Operand.getOperand(0);
4751    break;
4752  case ISD::FABS:
4753    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4754      return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4755    break;
4756  }
4757
4758  SDNode *N;
4759  SDVTList VTs = getVTList(VT);
4760  SDValue Ops[] = {Operand};
4761  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4762    FoldingSetNodeID ID;
4763    AddNodeIDNode(ID, Opcode, VTs, Ops);
4764    void *IP = nullptr;
4765    if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4766      E->intersectFlagsWith(Flags);
4767      return SDValue(E, 0);
4768    }
4769
4770    N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4771    N->setFlags(Flags);
4772    createOperands(N, Ops);
4773    CSEMap.InsertNode(N, IP);
4774  } else {
4775    N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4776    createOperands(N, Ops);
4777  }
4778
4779  InsertNode(N);
4780  SDValue V = SDValue(N, 0);
4781  NewSDValueDbgMsg(V, "Creating new node: ", this);
4782  return V;
4783}
4784
4785static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4786                                       const APInt &C2) {
4787  switch (Opcode) {
4788  case ISD::ADD:  return C1 + C2;
4789  case ISD::SUB:  return C1 - C2;
4790  case ISD::MUL:  return C1 * C2;
4791  case ISD::AND:  return C1 & C2;
4792  case ISD::OR:   return C1 | C2;
4793  case ISD::XOR:  return C1 ^ C2;
4794  case ISD::SHL:  return C1 << C2;
4795  case ISD::SRL:  return C1.lshr(C2);
4796  case ISD::SRA:  return C1.ashr(C2);
4797  case ISD::ROTL: return C1.rotl(C2);
4798  case ISD::ROTR: return C1.rotr(C2);
4799  case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4800  case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4801  case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4802  case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4803  case ISD::SADDSAT: return C1.sadd_sat(C2);
4804  case ISD::UADDSAT: return C1.uadd_sat(C2);
4805  case ISD::SSUBSAT: return C1.ssub_sat(C2);
4806  case ISD::USUBSAT: return C1.usub_sat(C2);
4807  case ISD::UDIV:
4808    if (!C2.getBoolValue())
4809      break;
4810    return C1.udiv(C2);
4811  case ISD::UREM:
4812    if (!C2.getBoolValue())
4813      break;
4814    return C1.urem(C2);
4815  case ISD::SDIV:
4816    if (!C2.getBoolValue())
4817      break;
4818    return C1.sdiv(C2);
4819  case ISD::SREM:
4820    if (!C2.getBoolValue())
4821      break;
4822    return C1.srem(C2);
4823  }
4824  return llvm::None;
4825}
4826
4827SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4828                                             EVT VT, const ConstantSDNode *C1,
4829                                             const ConstantSDNode *C2) {
4830  if (C1->isOpaque() || C2->isOpaque())
4831    return SDValue();
4832  if (Optional<APInt> Folded =
4833          FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()))
4834    return getConstant(Folded.getValue(), DL, VT);
4835  return SDValue();
4836}
4837
4838SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4839                                       const GlobalAddressSDNode *GA,
4840                                       const SDNode *N2) {
4841  if (GA->getOpcode() != ISD::GlobalAddress)
4842    return SDValue();
4843  if (!TLI->isOffsetFoldingLegal(GA))
4844    return SDValue();
4845  auto *C2 = dyn_cast<ConstantSDNode>(N2);
4846  if (!C2)
4847    return SDValue();
4848  int64_t Offset = C2->getSExtValue();
4849  switch (Opcode) {
4850  case ISD::ADD: break;
4851  case ISD::SUB: Offset = -uint64_t(Offset); break;
4852  default: return SDValue();
4853  }
4854  return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4855                          GA->getOffset() + uint64_t(Offset));
4856}
4857
4858bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4859  switch (Opcode) {
4860  case ISD::SDIV:
4861  case ISD::UDIV:
4862  case ISD::SREM:
4863  case ISD::UREM: {
4864    // If a divisor is zero/undef or any element of a divisor vector is
4865    // zero/undef, the whole op is undef.
4866    assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4867    SDValue Divisor = Ops[1];
4868    if (Divisor.isUndef() || isNullConstant(Divisor))
4869      return true;
4870
4871    return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4872           llvm::any_of(Divisor->op_values(),
4873                        [](SDValue V) { return V.isUndef() ||
4874                                        isNullConstant(V); });
4875    // TODO: Handle signed overflow.
4876  }
4877  // TODO: Handle oversized shifts.
4878  default:
4879    return false;
4880  }
4881}
4882
4883SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4884                                             EVT VT, SDNode *N1, SDNode *N2) {
4885  // If the opcode is a target-specific ISD node, there's nothing we can
4886  // do here and the operand rules may not line up with the below, so
4887  // bail early.
4888  if (Opcode >= ISD::BUILTIN_OP_END)
4889    return SDValue();
4890
4891  if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4892    return getUNDEF(VT);
4893
4894  // Handle the case of two scalars.
4895  if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4896    if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4897      SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4898      assert((!Folded || !VT.isVector()) &&
4899             "Can't fold vectors ops with scalar operands");
4900      return Folded;
4901    }
4902  }
4903
4904  // fold (add Sym, c) -> Sym+c
4905  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4906    return FoldSymbolOffset(Opcode, VT, GA, N2);
4907  if (TLI->isCommutativeBinOp(Opcode))
4908    if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4909      return FoldSymbolOffset(Opcode, VT, GA, N1);
4910
4911  // For vectors, extract each constant element and fold them individually.
4912  // Either input may be an undef value.
4913  auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4914  if (!BV1 && !N1->isUndef())
4915    return SDValue();
4916  auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4917  if (!BV2 && !N2->isUndef())
4918    return SDValue();
4919  // If both operands are undef, that's handled the same way as scalars.
4920  if (!BV1 && !BV2)
4921    return SDValue();
4922
4923  assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4924         "Vector binop with different number of elements in operands?");
4925
4926  EVT SVT = VT.getScalarType();
4927  EVT LegalSVT = SVT;
4928  if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4929    LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4930    if (LegalSVT.bitsLT(SVT))
4931      return SDValue();
4932  }
4933  SmallVector<SDValue, 4> Outputs;
4934  unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4935  for (unsigned I = 0; I != NumOps; ++I) {
4936    SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4937    SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4938    if (SVT.isInteger()) {
4939      if (V1->getValueType(0).bitsGT(SVT))
4940        V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4941      if (V2->getValueType(0).bitsGT(SVT))
4942        V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4943    }
4944
4945    if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4946      return SDValue();
4947
4948    // Fold one vector element.
4949    SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4950    if (LegalSVT != SVT)
4951      ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4952
4953    // Scalar folding only succeeded if the result is a constant or UNDEF.
4954    if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4955        ScalarResult.getOpcode() != ISD::ConstantFP)
4956      return SDValue();
4957    Outputs.push_back(ScalarResult);
4958  }
4959
4960  assert(VT.getVectorNumElements() == Outputs.size() &&
4961         "Vector size mismatch!");
4962
4963  // We may have a vector type but a scalar result. Create a splat.
4964  Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4965
4966  // Build a big vector out of the scalar elements we generated.
4967  return getBuildVector(VT, SDLoc(), Outputs);
4968}
4969
4970// TODO: Merge with FoldConstantArithmetic
4971SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4972                                                   const SDLoc &DL, EVT VT,
4973                                                   ArrayRef<SDValue> Ops,
4974                                                   const SDNodeFlags Flags) {
4975  // If the opcode is a target-specific ISD node, there's nothing we can
4976  // do here and the operand rules may not line up with the below, so
4977  // bail early.
4978  if (Opcode >= ISD::BUILTIN_OP_END)
4979    return SDValue();
4980
4981  if (isUndef(Opcode, Ops))
4982    return getUNDEF(VT);
4983
4984  // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4985  if (!VT.isVector())
4986    return SDValue();
4987
4988  unsigned NumElts = VT.getVectorNumElements();
4989
4990  auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4991    return !Op.getValueType().isVector() ||
4992           Op.getValueType().getVectorNumElements() == NumElts;
4993  };
4994
4995  auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4996    BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4997    return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4998           (BV && BV->isConstant());
4999  };
5000
5001  // All operands must be vector types with the same number of elements as
5002  // the result type and must be either UNDEF or a build vector of constant
5003  // or UNDEF scalars.
5004  if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5005      !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5006    return SDValue();
5007
5008  // If we are comparing vectors, then the result needs to be a i1 boolean
5009  // that is then sign-extended back to the legal result type.
5010  EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5011
5012  // Find legal integer scalar type for constant promotion and
5013  // ensure that its scalar size is at least as large as source.
5014  EVT LegalSVT = VT.getScalarType();
5015  if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5016    LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5017    if (LegalSVT.bitsLT(VT.getScalarType()))
5018      return SDValue();
5019  }
5020
5021  // Constant fold each scalar lane separately.
5022  SmallVector<SDValue, 4> ScalarResults;
5023  for (unsigned i = 0; i != NumElts; i++) {
5024    SmallVector<SDValue, 4> ScalarOps;
5025    for (SDValue Op : Ops) {
5026      EVT InSVT = Op.getValueType().getScalarType();
5027      BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5028      if (!InBV) {
5029        // We've checked that this is UNDEF or a constant of some kind.
5030        if (Op.isUndef())
5031          ScalarOps.push_back(getUNDEF(InSVT));
5032        else
5033          ScalarOps.push_back(Op);
5034        continue;
5035      }
5036
5037      SDValue ScalarOp = InBV->getOperand(i);
5038      EVT ScalarVT = ScalarOp.getValueType();
5039
5040      // Build vector (integer) scalar operands may need implicit
5041      // truncation - do this before constant folding.
5042      if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5043        ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5044
5045      ScalarOps.push_back(ScalarOp);
5046    }
5047
5048    // Constant fold the scalar operands.
5049    SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5050
5051    // Legalize the (integer) scalar constant if necessary.
5052    if (LegalSVT != SVT)
5053      ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5054
5055    // Scalar folding only succeeded if the result is a constant or UNDEF.
5056    if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5057        ScalarResult.getOpcode() != ISD::ConstantFP)
5058      return SDValue();
5059    ScalarResults.push_back(ScalarResult);
5060  }
5061
5062  SDValue V = getBuildVector(VT, DL, ScalarResults);
5063  NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5064  return V;
5065}
5066
5067SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5068                                         EVT VT, SDValue N1, SDValue N2) {
5069  // TODO: We don't do any constant folding for strict FP opcodes here, but we
5070  //       should. That will require dealing with a potentially non-default
5071  //       rounding mode, checking the "opStatus" return value from the APFloat
5072  //       math calculations, and possibly other variations.
5073  auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5074  auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5075  if (N1CFP && N2CFP) {
5076    APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5077    switch (Opcode) {
5078    case ISD::FADD:
5079      C1.add(C2, APFloat::rmNearestTiesToEven);
5080      return getConstantFP(C1, DL, VT);
5081    case ISD::FSUB:
5082      C1.subtract(C2, APFloat::rmNearestTiesToEven);
5083      return getConstantFP(C1, DL, VT);
5084    case ISD::FMUL:
5085      C1.multiply(C2, APFloat::rmNearestTiesToEven);
5086      return getConstantFP(C1, DL, VT);
5087    case ISD::FDIV:
5088      C1.divide(C2, APFloat::rmNearestTiesToEven);
5089      return getConstantFP(C1, DL, VT);
5090    case ISD::FREM:
5091      C1.mod(C2);
5092      return getConstantFP(C1, DL, VT);
5093    case ISD::FCOPYSIGN:
5094      C1.copySign(C2);
5095      return getConstantFP(C1, DL, VT);
5096    default: break;
5097    }
5098  }
5099  if (N1CFP && Opcode == ISD::FP_ROUND) {
5100    APFloat C1 = N1CFP->getValueAPF();    // make copy
5101    bool Unused;
5102    // This can return overflow, underflow, or inexact; we don't care.
5103    // FIXME need to be more flexible about rounding mode.
5104    (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5105                      &Unused);
5106    return getConstantFP(C1, DL, VT);
5107  }
5108
5109  switch (Opcode) {
5110  case ISD::FADD:
5111  case ISD::FSUB:
5112  case ISD::FMUL:
5113  case ISD::FDIV:
5114  case ISD::FREM:
5115    // If both operands are undef, the result is undef. If 1 operand is undef,
5116    // the result is NaN. This should match the behavior of the IR optimizer.
5117    if (N1.isUndef() && N2.isUndef())
5118      return getUNDEF(VT);
5119    if (N1.isUndef() || N2.isUndef())
5120      return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5121  }
5122  return SDValue();
5123}
5124
5125SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5126                              SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5127  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5128  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5129  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5130  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5131
5132  // Canonicalize constant to RHS if commutative.
5133  if (TLI->isCommutativeBinOp(Opcode)) {
5134    if (N1C && !N2C) {
5135      std::swap(N1C, N2C);
5136      std::swap(N1, N2);
5137    } else if (N1CFP && !N2CFP) {
5138      std::swap(N1CFP, N2CFP);
5139      std::swap(N1, N2);
5140    }
5141  }
5142
5143  switch (Opcode) {
5144  default: break;
5145  case ISD::TokenFactor:
5146    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5147           N2.getValueType() == MVT::Other && "Invalid token factor!");
5148    // Fold trivial token factors.
5149    if (N1.getOpcode() == ISD::EntryToken) return N2;
5150    if (N2.getOpcode() == ISD::EntryToken) return N1;
5151    if (N1 == N2) return N1;
5152    break;
5153  case ISD::BUILD_VECTOR: {
5154    // Attempt to simplify BUILD_VECTOR.
5155    SDValue Ops[] = {N1, N2};
5156    if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5157      return V;
5158    break;
5159  }
5160  case ISD::CONCAT_VECTORS: {
5161    SDValue Ops[] = {N1, N2};
5162    if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5163      return V;
5164    break;
5165  }
5166  case ISD::AND:
5167    assert(VT.isInteger() && "This operator does not apply to FP types!");
5168    assert(N1.getValueType() == N2.getValueType() &&
5169           N1.getValueType() == VT && "Binary operator types must match!");
5170    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5171    // worth handling here.
5172    if (N2C && N2C->isNullValue())
5173      return N2;
5174    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5175      return N1;
5176    break;
5177  case ISD::OR:
5178  case ISD::XOR:
5179  case ISD::ADD:
5180  case ISD::SUB:
5181    assert(VT.isInteger() && "This operator does not apply to FP types!");
5182    assert(N1.getValueType() == N2.getValueType() &&
5183           N1.getValueType() == VT && "Binary operator types must match!");
5184    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5185    // it's worth handling here.
5186    if (N2C && N2C->isNullValue())
5187      return N1;
5188    break;
5189  case ISD::UDIV:
5190  case ISD::UREM:
5191  case ISD::MULHU:
5192  case ISD::MULHS:
5193  case ISD::MUL:
5194  case ISD::SDIV:
5195  case ISD::SREM:
5196  case ISD::SMIN:
5197  case ISD::SMAX:
5198  case ISD::UMIN:
5199  case ISD::UMAX:
5200  case ISD::SADDSAT:
5201  case ISD::SSUBSAT:
5202  case ISD::UADDSAT:
5203  case ISD::USUBSAT:
5204    assert(VT.isInteger() && "This operator does not apply to FP types!");
5205    assert(N1.getValueType() == N2.getValueType() &&
5206           N1.getValueType() == VT && "Binary operator types must match!");
5207    break;
5208  case ISD::FADD:
5209  case ISD::FSUB:
5210  case ISD::FMUL:
5211  case ISD::FDIV:
5212  case ISD::FREM:
5213    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5214    assert(N1.getValueType() == N2.getValueType() &&
5215           N1.getValueType() == VT && "Binary operator types must match!");
5216    if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5217      return V;
5218    break;
5219  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5220    assert(N1.getValueType() == VT &&
5221           N1.getValueType().isFloatingPoint() &&
5222           N2.getValueType().isFloatingPoint() &&
5223           "Invalid FCOPYSIGN!");
5224    break;
5225  case ISD::SHL:
5226  case ISD::SRA:
5227  case ISD::SRL:
5228    if (SDValue V = simplifyShift(N1, N2))
5229      return V;
5230    LLVM_FALLTHROUGH;
5231  case ISD::ROTL:
5232  case ISD::ROTR:
5233    assert(VT == N1.getValueType() &&
5234           "Shift operators return type must be the same as their first arg");
5235    assert(VT.isInteger() && N2.getValueType().isInteger() &&
5236           "Shifts only work on integers");
5237    assert((!VT.isVector() || VT == N2.getValueType()) &&
5238           "Vector shift amounts must be in the same as their first arg");
5239    // Verify that the shift amount VT is big enough to hold valid shift
5240    // amounts.  This catches things like trying to shift an i1024 value by an
5241    // i8, which is easy to fall into in generic code that uses
5242    // TLI.getShiftAmount().
5243    assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5244           "Invalid use of small shift amount with oversized value!");
5245
5246    // Always fold shifts of i1 values so the code generator doesn't need to
5247    // handle them.  Since we know the size of the shift has to be less than the
5248    // size of the value, the shift/rotate count is guaranteed to be zero.
5249    if (VT == MVT::i1)
5250      return N1;
5251    if (N2C && N2C->isNullValue())
5252      return N1;
5253    break;
5254  case ISD::FP_ROUND:
5255    assert(VT.isFloatingPoint() &&
5256           N1.getValueType().isFloatingPoint() &&
5257           VT.bitsLE(N1.getValueType()) &&
5258           N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5259           "Invalid FP_ROUND!");
5260    if (N1.getValueType() == VT) return N1;  // noop conversion.
5261    break;
5262  case ISD::AssertSext:
5263  case ISD::AssertZext: {
5264    EVT EVT = cast<VTSDNode>(N2)->getVT();
5265    assert(VT == N1.getValueType() && "Not an inreg extend!");
5266    assert(VT.isInteger() && EVT.isInteger() &&
5267           "Cannot *_EXTEND_INREG FP types");
5268    assert(!EVT.isVector() &&
5269           "AssertSExt/AssertZExt type should be the vector element type "
5270           "rather than the vector type!");
5271    assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5272    if (VT.getScalarType() == EVT) return N1; // noop assertion.
5273    break;
5274  }
5275  case ISD::SIGN_EXTEND_INREG: {
5276    EVT EVT = cast<VTSDNode>(N2)->getVT();
5277    assert(VT == N1.getValueType() && "Not an inreg extend!");
5278    assert(VT.isInteger() && EVT.isInteger() &&
5279           "Cannot *_EXTEND_INREG FP types");
5280    assert(EVT.isVector() == VT.isVector() &&
5281           "SIGN_EXTEND_INREG type should be vector iff the operand "
5282           "type is vector!");
5283    assert((!EVT.isVector() ||
5284            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5285           "Vector element counts must match in SIGN_EXTEND_INREG");
5286    assert(EVT.bitsLE(VT) && "Not extending!");
5287    if (EVT == VT) return N1;  // Not actually extending
5288
5289    auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5290      unsigned FromBits = EVT.getScalarSizeInBits();
5291      Val <<= Val.getBitWidth() - FromBits;
5292      Val.ashrInPlace(Val.getBitWidth() - FromBits);
5293      return getConstant(Val, DL, ConstantVT);
5294    };
5295
5296    if (N1C) {
5297      const APInt &Val = N1C->getAPIntValue();
5298      return SignExtendInReg(Val, VT);
5299    }
5300    if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5301      SmallVector<SDValue, 8> Ops;
5302      llvm::EVT OpVT = N1.getOperand(0).getValueType();
5303      for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5304        SDValue Op = N1.getOperand(i);
5305        if (Op.isUndef()) {
5306          Ops.push_back(getUNDEF(OpVT));
5307          continue;
5308        }
5309        ConstantSDNode *C = cast<ConstantSDNode>(Op);
5310        APInt Val = C->getAPIntValue();
5311        Ops.push_back(SignExtendInReg(Val, OpVT));
5312      }
5313      return getBuildVector(VT, DL, Ops);
5314    }
5315    break;
5316  }
5317  case ISD::EXTRACT_VECTOR_ELT:
5318    assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5319           "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5320             element type of the vector.");
5321
5322    // Extract from an undefined value or using an undefined index is undefined.
5323    if (N1.isUndef() || N2.isUndef())
5324      return getUNDEF(VT);
5325
5326    // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5327    if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5328      return getUNDEF(VT);
5329
5330    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5331    // expanding copies of large vectors from registers.
5332    if (N2C &&
5333        N1.getOpcode() == ISD::CONCAT_VECTORS &&
5334        N1.getNumOperands() > 0) {
5335      unsigned Factor =
5336        N1.getOperand(0).getValueType().getVectorNumElements();
5337      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5338                     N1.getOperand(N2C->getZExtValue() / Factor),
5339                     getConstant(N2C->getZExtValue() % Factor, DL,
5340                                 N2.getValueType()));
5341    }
5342
5343    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5344    // expanding large vector constants.
5345    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5346      SDValue Elt = N1.getOperand(N2C->getZExtValue());
5347
5348      if (VT != Elt.getValueType())
5349        // If the vector element type is not legal, the BUILD_VECTOR operands
5350        // are promoted and implicitly truncated, and the result implicitly
5351        // extended. Make that explicit here.
5352        Elt = getAnyExtOrTrunc(Elt, DL, VT);
5353
5354      return Elt;
5355    }
5356
5357    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5358    // operations are lowered to scalars.
5359    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5360      // If the indices are the same, return the inserted element else
5361      // if the indices are known different, extract the element from
5362      // the original vector.
5363      SDValue N1Op2 = N1.getOperand(2);
5364      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5365
5366      if (N1Op2C && N2C) {
5367        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5368          if (VT == N1.getOperand(1).getValueType())
5369            return N1.getOperand(1);
5370          else
5371            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5372        }
5373
5374        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5375      }
5376    }
5377
5378    // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5379    // when vector types are scalarized and v1iX is legal.
5380    // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5381    if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5382        N1.getValueType().getVectorNumElements() == 1) {
5383      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5384                     N1.getOperand(1));
5385    }
5386    break;
5387  case ISD::EXTRACT_ELEMENT:
5388    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5389    assert(!N1.getValueType().isVector() && !VT.isVector() &&
5390           (N1.getValueType().isInteger() == VT.isInteger()) &&
5391           N1.getValueType() != VT &&
5392           "Wrong types for EXTRACT_ELEMENT!");
5393
5394    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5395    // 64-bit integers into 32-bit parts.  Instead of building the extract of
5396    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5397    if (N1.getOpcode() == ISD::BUILD_PAIR)
5398      return N1.getOperand(N2C->getZExtValue());
5399
5400    // EXTRACT_ELEMENT of a constant int is also very common.
5401    if (N1C) {
5402      unsigned ElementSize = VT.getSizeInBits();
5403      unsigned Shift = ElementSize * N2C->getZExtValue();
5404      APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5405      return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5406    }
5407    break;
5408  case ISD::EXTRACT_SUBVECTOR:
5409    if (VT.isSimple() && N1.getValueType().isSimple()) {
5410      assert(VT.isVector() && N1.getValueType().isVector() &&
5411             "Extract subvector VTs must be a vectors!");
5412      assert(VT.getVectorElementType() ==
5413             N1.getValueType().getVectorElementType() &&
5414             "Extract subvector VTs must have the same element type!");
5415      assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5416             "Extract subvector must be from larger vector to smaller vector!");
5417
5418      if (N2C) {
5419        assert((VT.getVectorNumElements() + N2C->getZExtValue()
5420                <= N1.getValueType().getVectorNumElements())
5421               && "Extract subvector overflow!");
5422      }
5423
5424      // Trivial extraction.
5425      if (VT.getSimpleVT() == N1.getSimpleValueType())
5426        return N1;
5427
5428      // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5429      if (N1.isUndef())
5430        return getUNDEF(VT);
5431
5432      // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5433      // the concat have the same type as the extract.
5434      if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5435          N1.getNumOperands() > 0 &&
5436          VT == N1.getOperand(0).getValueType()) {
5437        unsigned Factor = VT.getVectorNumElements();
5438        return N1.getOperand(N2C->getZExtValue() / Factor);
5439      }
5440
5441      // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5442      // during shuffle legalization.
5443      if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5444          VT == N1.getOperand(1).getValueType())
5445        return N1.getOperand(1);
5446    }
5447    break;
5448  }
5449
5450  // Perform trivial constant folding.
5451  if (SDValue SV =
5452          FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5453    return SV;
5454
5455  if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5456    return V;
5457
5458  // Canonicalize an UNDEF to the RHS, even over a constant.
5459  if (N1.isUndef()) {
5460    if (TLI->isCommutativeBinOp(Opcode)) {
5461      std::swap(N1, N2);
5462    } else {
5463      switch (Opcode) {
5464      case ISD::SIGN_EXTEND_INREG:
5465      case ISD::SUB:
5466        return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5467      case ISD::UDIV:
5468      case ISD::SDIV:
5469      case ISD::UREM:
5470      case ISD::SREM:
5471      case ISD::SSUBSAT:
5472      case ISD::USUBSAT:
5473        return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5474      }
5475    }
5476  }
5477
5478  // Fold a bunch of operators when the RHS is undef.
5479  if (N2.isUndef()) {
5480    switch (Opcode) {
5481    case ISD::XOR:
5482      if (N1.isUndef())
5483        // Handle undef ^ undef -> 0 special case. This is a common
5484        // idiom (misuse).
5485        return getConstant(0, DL, VT);
5486      LLVM_FALLTHROUGH;
5487    case ISD::ADD:
5488    case ISD::SUB:
5489    case ISD::UDIV:
5490    case ISD::SDIV:
5491    case ISD::UREM:
5492    case ISD::SREM:
5493      return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5494    case ISD::MUL:
5495    case ISD::AND:
5496    case ISD::SSUBSAT:
5497    case ISD::USUBSAT:
5498      return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5499    case ISD::OR:
5500    case ISD::SADDSAT:
5501    case ISD::UADDSAT:
5502      return getAllOnesConstant(DL, VT);
5503    }
5504  }
5505
5506  // Memoize this node if possible.
5507  SDNode *N;
5508  SDVTList VTs = getVTList(VT);
5509  SDValue Ops[] = {N1, N2};
5510  if (VT != MVT::Glue) {
5511    FoldingSetNodeID ID;
5512    AddNodeIDNode(ID, Opcode, VTs, Ops);
5513    void *IP = nullptr;
5514    if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5515      E->intersectFlagsWith(Flags);
5516      return SDValue(E, 0);
5517    }
5518
5519    N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5520    N->setFlags(Flags);
5521    createOperands(N, Ops);
5522    CSEMap.InsertNode(N, IP);
5523  } else {
5524    N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5525    createOperands(N, Ops);
5526  }
5527
5528  InsertNode(N);
5529  SDValue V = SDValue(N, 0);
5530  NewSDValueDbgMsg(V, "Creating new node: ", this);
5531  return V;
5532}
5533
5534SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5535                              SDValue N1, SDValue N2, SDValue N3,
5536                              const SDNodeFlags Flags) {
5537  // Perform various simplifications.
5538  switch (Opcode) {
5539  case ISD::FMA: {
5540    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5541    assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5542           N3.getValueType() == VT && "FMA types must match!");
5543    ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5544    ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5545    ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5546    if (N1CFP && N2CFP && N3CFP) {
5547      APFloat  V1 = N1CFP->getValueAPF();
5548      const APFloat &V2 = N2CFP->getValueAPF();
5549      const APFloat &V3 = N3CFP->getValueAPF();
5550      V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5551      return getConstantFP(V1, DL, VT);
5552    }
5553    break;
5554  }
5555  case ISD::BUILD_VECTOR: {
5556    // Attempt to simplify BUILD_VECTOR.
5557    SDValue Ops[] = {N1, N2, N3};
5558    if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5559      return V;
5560    break;
5561  }
5562  case ISD::CONCAT_VECTORS: {
5563    SDValue Ops[] = {N1, N2, N3};
5564    if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5565      return V;
5566    break;
5567  }
5568  case ISD::SETCC: {
5569    assert(VT.isInteger() && "SETCC result type must be an integer!");
5570    assert(N1.getValueType() == N2.getValueType() &&
5571           "SETCC operands must have the same type!");
5572    assert(VT.isVector() == N1.getValueType().isVector() &&
5573           "SETCC type should be vector iff the operand type is vector!");
5574    assert((!VT.isVector() ||
5575            VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5576           "SETCC vector element counts must match!");
5577    // Use FoldSetCC to simplify SETCC's.
5578    if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5579      return V;
5580    // Vector constant folding.
5581    SDValue Ops[] = {N1, N2, N3};
5582    if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5583      NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5584      return V;
5585    }
5586    break;
5587  }
5588  case ISD::SELECT:
5589  case ISD::VSELECT:
5590    if (SDValue V = simplifySelect(N1, N2, N3))
5591      return V;
5592    break;
5593  case ISD::VECTOR_SHUFFLE:
5594    llvm_unreachable("should use getVectorShuffle constructor!");
5595  case ISD::INSERT_VECTOR_ELT: {
5596    ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5597    // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5598    if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5599      return getUNDEF(VT);
5600
5601    // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5602    if (N3.isUndef())
5603      return getUNDEF(VT);
5604
5605    // If the inserted element is an UNDEF, just use the input vector.
5606    if (N2.isUndef())
5607      return N1;
5608
5609    break;
5610  }
5611  case ISD::INSERT_SUBVECTOR: {
5612    // Inserting undef into undef is still undef.
5613    if (N1.isUndef() && N2.isUndef())
5614      return getUNDEF(VT);
5615    SDValue Index = N3;
5616    if (VT.isSimple() && N1.getValueType().isSimple()
5617        && N2.getValueType().isSimple()) {
5618      assert(VT.isVector() && N1.getValueType().isVector() &&
5619             N2.getValueType().isVector() &&
5620             "Insert subvector VTs must be a vectors");
5621      assert(VT == N1.getValueType() &&
5622             "Dest and insert subvector source types must match!");
5623      assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5624             "Insert subvector must be from smaller vector to larger vector!");
5625      if (isa<ConstantSDNode>(Index)) {
5626        assert((N2.getValueType().getVectorNumElements() +
5627                cast<ConstantSDNode>(Index)->getZExtValue()
5628                <= VT.getVectorNumElements())
5629               && "Insert subvector overflow!");
5630      }
5631
5632      // Trivial insertion.
5633      if (VT.getSimpleVT() == N2.getSimpleValueType())
5634        return N2;
5635
5636      // If this is an insert of an extracted vector into an undef vector, we
5637      // can just use the input to the extract.
5638      if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5639          N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5640        return N2.getOperand(0);
5641    }
5642    break;
5643  }
5644  case ISD::BITCAST:
5645    // Fold bit_convert nodes from a type to themselves.
5646    if (N1.getValueType() == VT)
5647      return N1;
5648    break;
5649  }
5650
5651  // Memoize node if it doesn't produce a flag.
5652  SDNode *N;
5653  SDVTList VTs = getVTList(VT);
5654  SDValue Ops[] = {N1, N2, N3};
5655  if (VT != MVT::Glue) {
5656    FoldingSetNodeID ID;
5657    AddNodeIDNode(ID, Opcode, VTs, Ops);
5658    void *IP = nullptr;
5659    if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5660      E->intersectFlagsWith(Flags);
5661      return SDValue(E, 0);
5662    }
5663
5664    N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5665    N->setFlags(Flags);
5666    createOperands(N, Ops);
5667    CSEMap.InsertNode(N, IP);
5668  } else {
5669    N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5670    createOperands(N, Ops);
5671  }
5672
5673  InsertNode(N);
5674  SDValue V = SDValue(N, 0);
5675  NewSDValueDbgMsg(V, "Creating new node: ", this);
5676  return V;
5677}
5678
5679SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5680                              SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5681  SDValue Ops[] = { N1, N2, N3, N4 };
5682  return getNode(Opcode, DL, VT, Ops);
5683}
5684
5685SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5686                              SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5687                              SDValue N5) {
5688  SDValue Ops[] = { N1, N2, N3, N4, N5 };
5689  return getNode(Opcode, DL, VT, Ops);
5690}
5691
5692/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5693/// the incoming stack arguments to be loaded from the stack.
5694SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5695  SmallVector<SDValue, 8> ArgChains;
5696
5697  // Include the original chain at the beginning of the list. When this is
5698  // used by target LowerCall hooks, this helps legalize find the
5699  // CALLSEQ_BEGIN node.
5700  ArgChains.push_back(Chain);
5701
5702  // Add a chain value for each stack argument.
5703  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5704       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5705    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5706      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5707        if (FI->getIndex() < 0)
5708          ArgChains.push_back(SDValue(L, 1));
5709
5710  // Build a tokenfactor for all the chains.
5711  return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5712}
5713
5714/// getMemsetValue - Vectorized representation of the memset value
5715/// operand.
5716static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5717                              const SDLoc &dl) {
5718  assert(!Value.isUndef());
5719
5720  unsigned NumBits = VT.getScalarSizeInBits();
5721  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5722    assert(C->getAPIntValue().getBitWidth() == 8);
5723    APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5724    if (VT.isInteger()) {
5725      bool IsOpaque = VT.getSizeInBits() > 64 ||
5726          !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5727      return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5728    }
5729    return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5730                             VT);
5731  }
5732
5733  assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5734  EVT IntVT = VT.getScalarType();
5735  if (!IntVT.isInteger())
5736    IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5737
5738  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5739  if (NumBits > 8) {
5740    // Use a multiplication with 0x010101... to extend the input to the
5741    // required length.
5742    APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5743    Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5744                        DAG.getConstant(Magic, dl, IntVT));
5745  }
5746
5747  if (VT != Value.getValueType() && !VT.isInteger())
5748    Value = DAG.getBitcast(VT.getScalarType(), Value);
5749  if (VT != Value.getValueType())
5750    Value = DAG.getSplatBuildVector(VT, dl, Value);
5751
5752  return Value;
5753}
5754
5755/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5756/// used when a memcpy is turned into a memset when the source is a constant
5757/// string ptr.
5758static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5759                                  const TargetLowering &TLI,
5760                                  const ConstantDataArraySlice &Slice) {
5761  // Handle vector with all elements zero.
5762  if (Slice.Array == nullptr) {
5763    if (VT.isInteger())
5764      return DAG.getConstant(0, dl, VT);
5765    else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5766      return DAG.getConstantFP(0.0, dl, VT);
5767    else if (VT.isVector()) {
5768      unsigned NumElts = VT.getVectorNumElements();
5769      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5770      return DAG.getNode(ISD::BITCAST, dl, VT,
5771                         DAG.getConstant(0, dl,
5772                                         EVT::getVectorVT(*DAG.getContext(),
5773                                                          EltVT, NumElts)));
5774    } else
5775      llvm_unreachable("Expected type!");
5776  }
5777
5778  assert(!VT.isVector() && "Can't handle vector type here!");
5779  unsigned NumVTBits = VT.getSizeInBits();
5780  unsigned NumVTBytes = NumVTBits / 8;
5781  unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5782
5783  APInt Val(NumVTBits, 0);
5784  if (DAG.getDataLayout().isLittleEndian()) {
5785    for (unsigned i = 0; i != NumBytes; ++i)
5786      Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5787  } else {
5788    for (unsigned i = 0; i != NumBytes; ++i)
5789      Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5790  }
5791
5792  // If the "cost" of materializing the integer immediate is less than the cost
5793  // of a load, then it is cost effective to turn the load into the immediate.
5794  Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5795  if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5796    return DAG.getConstant(Val, dl, VT);
5797  return SDValue(nullptr, 0);
5798}
5799
5800SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5801                                           const SDLoc &DL,
5802                                           const SDNodeFlags Flags) {
5803  EVT VT = Base.getValueType();
5804  return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5805}
5806
5807SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5808                                           const SDLoc &DL,
5809                                           const SDNodeFlags Flags) {
5810  assert(Offset.getValueType().isInteger());
5811  EVT BasePtrVT = Ptr.getValueType();
5812  return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5813}
5814
5815/// Returns true if memcpy source is constant data.
5816static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5817  uint64_t SrcDelta = 0;
5818  GlobalAddressSDNode *G = nullptr;
5819  if (Src.getOpcode() == ISD::GlobalAddress)
5820    G = cast<GlobalAddressSDNode>(Src);
5821  else if (Src.getOpcode() == ISD::ADD &&
5822           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5823           Src.getOperand(1).getOpcode() == ISD::Constant) {
5824    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5825    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5826  }
5827  if (!G)
5828    return false;
5829
5830  return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5831                                  SrcDelta + G->getOffset());
5832}
5833
5834static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5835                                      SelectionDAG &DAG) {
5836  // On Darwin, -Os means optimize for size without hurting performance, so
5837  // only really optimize for size when -Oz (MinSize) is used.
5838  if (MF.getTarget().getTargetTriple().isOSDarwin())
5839    return MF.getFunction().hasMinSize();
5840  return DAG.shouldOptForSize();
5841}
5842
5843static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5844                          SmallVector<SDValue, 32> &OutChains, unsigned From,
5845                          unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5846                          SmallVector<SDValue, 16> &OutStoreChains) {
5847  assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5848  assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5849  SmallVector<SDValue, 16> GluedLoadChains;
5850  for (unsigned i = From; i < To; ++i) {
5851    OutChains.push_back(OutLoadChains[i]);
5852    GluedLoadChains.push_back(OutLoadChains[i]);
5853  }
5854
5855  // Chain for all loads.
5856  SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5857                                  GluedLoadChains);
5858
5859  for (unsigned i = From; i < To; ++i) {
5860    StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5861    SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5862                                  ST->getBasePtr(), ST->getMemoryVT(),
5863                                  ST->getMemOperand());
5864    OutChains.push_back(NewStore);
5865  }
5866}
5867
5868static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5869                                       SDValue Chain, SDValue Dst, SDValue Src,
5870                                       uint64_t Size, unsigned Alignment,
5871                                       bool isVol, bool AlwaysInline,
5872                                       MachinePointerInfo DstPtrInfo,
5873                                       MachinePointerInfo SrcPtrInfo) {
5874  // Turn a memcpy of undef to nop.
5875  // FIXME: We need to honor volatile even is Src is undef.
5876  if (Src.isUndef())
5877    return Chain;
5878
5879  // Expand memcpy to a series of load and store ops if the size operand falls
5880  // below a certain threshold.
5881  // TODO: In the AlwaysInline case, if the size is big then generate a loop
5882  // rather than maybe a humongous number of loads and stores.
5883  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5884  const DataLayout &DL = DAG.getDataLayout();
5885  LLVMContext &C = *DAG.getContext();
5886  std::vector<EVT> MemOps;
5887  bool DstAlignCanChange = false;
5888  MachineFunction &MF = DAG.getMachineFunction();
5889  MachineFrameInfo &MFI = MF.getFrameInfo();
5890  bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
5891  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5892  if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5893    DstAlignCanChange = true;
5894  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5895  if (Alignment > SrcAlign)
5896    SrcAlign = Alignment;
5897  ConstantDataArraySlice Slice;
5898  bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5899  bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5900  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5901
5902  if (!TLI.findOptimalMemOpLowering(
5903          MemOps, Limit, Size, (DstAlignCanChange ? 0 : Alignment),
5904          (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false,
5905          /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant,
5906          /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(),
5907          SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5908    return SDValue();
5909
5910  if (DstAlignCanChange) {
5911    Type *Ty = MemOps[0].getTypeForEVT(C);
5912    unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5913
5914    // Don't promote to an alignment that would require dynamic stack
5915    // realignment.
5916    const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5917    if (!TRI->needsStackRealignment(MF))
5918      while (NewAlign > Alignment &&
5919             DL.exceedsNaturalStackAlignment(Align(NewAlign)))
5920        NewAlign /= 2;
5921
5922    if (NewAlign > Alignment) {
5923      // Give the stack frame object a larger alignment if needed.
5924      if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5925        MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5926      Alignment = NewAlign;
5927    }
5928  }
5929
5930  MachineMemOperand::Flags MMOFlags =
5931      isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5932  SmallVector<SDValue, 16> OutLoadChains;
5933  SmallVector<SDValue, 16> OutStoreChains;
5934  SmallVector<SDValue, 32> OutChains;
5935  unsigned NumMemOps = MemOps.size();
5936  uint64_t SrcOff = 0, DstOff = 0;
5937  for (unsigned i = 0; i != NumMemOps; ++i) {
5938    EVT VT = MemOps[i];
5939    unsigned VTSize = VT.getSizeInBits() / 8;
5940    SDValue Value, Store;
5941
5942    if (VTSize > Size) {
5943      // Issuing an unaligned load / store pair  that overlaps with the previous
5944      // pair. Adjust the offset accordingly.
5945      assert(i == NumMemOps-1 && i != 0);
5946      SrcOff -= VTSize - Size;
5947      DstOff -= VTSize - Size;
5948    }
5949
5950    if (CopyFromConstant &&
5951        (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5952      // It's unlikely a store of a vector immediate can be done in a single
5953      // instruction. It would require a load from a constantpool first.
5954      // We only handle zero vectors here.
5955      // FIXME: Handle other cases where store of vector immediate is done in
5956      // a single instruction.
5957      ConstantDataArraySlice SubSlice;
5958      if (SrcOff < Slice.Length) {
5959        SubSlice = Slice;
5960        SubSlice.move(SrcOff);
5961      } else {
5962        // This is an out-of-bounds access and hence UB. Pretend we read zero.
5963        SubSlice.Array = nullptr;
5964        SubSlice.Offset = 0;
5965        SubSlice.Length = VTSize;
5966      }
5967      Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5968      if (Value.getNode()) {
5969        Store = DAG.getStore(
5970            Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5971            DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
5972        OutChains.push_back(Store);
5973      }
5974    }
5975
5976    if (!Store.getNode()) {
5977      // The type might not be legal for the target.  This should only happen
5978      // if the type is smaller than a legal type, as on PPC, so the right
5979      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5980      // to Load/Store if NVT==VT.
5981      // FIXME does the case above also need this?
5982      EVT NVT = TLI.getTypeToTransformTo(C, VT);
5983      assert(NVT.bitsGE(VT));
5984
5985      bool isDereferenceable =
5986        SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5987      MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5988      if (isDereferenceable)
5989        SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5990
5991      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5992                             DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5993                             SrcPtrInfo.getWithOffset(SrcOff), VT,
5994                             MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5995      OutLoadChains.push_back(Value.getValue(1));
5996
5997      Store = DAG.getTruncStore(
5998          Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5999          DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6000      OutStoreChains.push_back(Store);
6001    }
6002    SrcOff += VTSize;
6003    DstOff += VTSize;
6004    Size -= VTSize;
6005  }
6006
6007  unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6008                                TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6009  unsigned NumLdStInMemcpy = OutStoreChains.size();
6010
6011  if (NumLdStInMemcpy) {
6012    // It may be that memcpy might be converted to memset if it's memcpy
6013    // of constants. In such a case, we won't have loads and stores, but
6014    // just stores. In the absence of loads, there is nothing to gang up.
6015    if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6016      // If target does not care, just leave as it.
6017      for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6018        OutChains.push_back(OutLoadChains[i]);
6019        OutChains.push_back(OutStoreChains[i]);
6020      }
6021    } else {
6022      // Ld/St less than/equal limit set by target.
6023      if (NumLdStInMemcpy <= GluedLdStLimit) {
6024          chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6025                                        NumLdStInMemcpy, OutLoadChains,
6026                                        OutStoreChains);
6027      } else {
6028        unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6029        unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6030        unsigned GlueIter = 0;
6031
6032        for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6033          unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6034          unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6035
6036          chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6037                                       OutLoadChains, OutStoreChains);
6038          GlueIter += GluedLdStLimit;
6039        }
6040
6041        // Residual ld/st.
6042        if (RemainingLdStInMemcpy) {
6043          chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6044                                        RemainingLdStInMemcpy, OutLoadChains,
6045                                        OutStoreChains);
6046        }
6047      }
6048    }
6049  }
6050  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6051}
6052
6053static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6054                                        SDValue Chain, SDValue Dst, SDValue Src,
6055                                        uint64_t Size, unsigned Align,
6056                                        bool isVol, bool AlwaysInline,
6057                                        MachinePointerInfo DstPtrInfo,
6058                                        MachinePointerInfo SrcPtrInfo) {
6059  // Turn a memmove of undef to nop.
6060  // FIXME: We need to honor volatile even is Src is undef.
6061  if (Src.isUndef())
6062    return Chain;
6063
6064  // Expand memmove to a series of load and store ops if the size operand falls
6065  // below a certain threshold.
6066  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6067  const DataLayout &DL = DAG.getDataLayout();
6068  LLVMContext &C = *DAG.getContext();
6069  std::vector<EVT> MemOps;
6070  bool DstAlignCanChange = false;
6071  MachineFunction &MF = DAG.getMachineFunction();
6072  MachineFrameInfo &MFI = MF.getFrameInfo();
6073  bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6074  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6075  if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6076    DstAlignCanChange = true;
6077  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6078  if (Align > SrcAlign)
6079    SrcAlign = Align;
6080  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6081  // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
6082  // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
6083  // correct code.
6084  bool AllowOverlap = false;
6085  if (!TLI.findOptimalMemOpLowering(
6086          MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign,
6087          /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
6088          AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6089          MF.getFunction().getAttributes()))
6090    return SDValue();
6091
6092  if (DstAlignCanChange) {
6093    Type *Ty = MemOps[0].getTypeForEVT(C);
6094    unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
6095    if (NewAlign > Align) {
6096      // Give the stack frame object a larger alignment if needed.
6097      if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6098        MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6099      Align = NewAlign;
6100    }
6101  }
6102
6103  MachineMemOperand::Flags MMOFlags =
6104      isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6105  uint64_t SrcOff = 0, DstOff = 0;
6106  SmallVector<SDValue, 8> LoadValues;
6107  SmallVector<SDValue, 8> LoadChains;
6108  SmallVector<SDValue, 8> OutChains;
6109  unsigned NumMemOps = MemOps.size();
6110  for (unsigned i = 0; i < NumMemOps; i++) {
6111    EVT VT = MemOps[i];
6112    unsigned VTSize = VT.getSizeInBits() / 8;
6113    SDValue Value;
6114
6115    bool isDereferenceable =
6116      SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6117    MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6118    if (isDereferenceable)
6119      SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6120
6121    Value =
6122        DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6123                    SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
6124    LoadValues.push_back(Value);
6125    LoadChains.push_back(Value.getValue(1));
6126    SrcOff += VTSize;
6127  }
6128  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6129  OutChains.clear();
6130  for (unsigned i = 0; i < NumMemOps; i++) {
6131    EVT VT = MemOps[i];
6132    unsigned VTSize = VT.getSizeInBits() / 8;
6133    SDValue Store;
6134
6135    Store = DAG.getStore(Chain, dl, LoadValues[i],
6136                         DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6137                         DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
6138    OutChains.push_back(Store);
6139    DstOff += VTSize;
6140  }
6141
6142  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6143}
6144
6145/// Lower the call to 'memset' intrinsic function into a series of store
6146/// operations.
6147///
6148/// \param DAG Selection DAG where lowered code is placed.
6149/// \param dl Link to corresponding IR location.
6150/// \param Chain Control flow dependency.
6151/// \param Dst Pointer to destination memory location.
6152/// \param Src Value of byte to write into the memory.
6153/// \param Size Number of bytes to write.
6154/// \param Align Alignment of the destination in bytes.
6155/// \param isVol True if destination is volatile.
6156/// \param DstPtrInfo IR information on the memory pointer.
6157/// \returns New head in the control flow, if lowering was successful, empty
6158/// SDValue otherwise.
6159///
6160/// The function tries to replace 'llvm.memset' intrinsic with several store
6161/// operations and value calculation code. This is usually profitable for small
6162/// memory size.
6163static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6164                               SDValue Chain, SDValue Dst, SDValue Src,
6165                               uint64_t Size, unsigned Align, bool isVol,
6166                               MachinePointerInfo DstPtrInfo) {
6167  // Turn a memset of undef to nop.
6168  // FIXME: We need to honor volatile even is Src is undef.
6169  if (Src.isUndef())
6170    return Chain;
6171
6172  // Expand memset to a series of load/store ops if the size operand
6173  // falls below a certain threshold.
6174  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6175  std::vector<EVT> MemOps;
6176  bool DstAlignCanChange = false;
6177  MachineFunction &MF = DAG.getMachineFunction();
6178  MachineFrameInfo &MFI = MF.getFrameInfo();
6179  bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6180  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6181  if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6182    DstAlignCanChange = true;
6183  bool IsZeroVal =
6184    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6185  if (!TLI.findOptimalMemOpLowering(
6186          MemOps, TLI.getMaxStoresPerMemset(OptSize), Size,
6187          (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true,
6188          /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
6189          /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u,
6190          MF.getFunction().getAttributes()))
6191    return SDValue();
6192
6193  if (DstAlignCanChange) {
6194    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6195    unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6196    if (NewAlign > Align) {
6197      // Give the stack frame object a larger alignment if needed.
6198      if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6199        MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6200      Align = NewAlign;
6201    }
6202  }
6203
6204  SmallVector<SDValue, 8> OutChains;
6205  uint64_t DstOff = 0;
6206  unsigned NumMemOps = MemOps.size();
6207
6208  // Find the largest store and generate the bit pattern for it.
6209  EVT LargestVT = MemOps[0];
6210  for (unsigned i = 1; i < NumMemOps; i++)
6211    if (MemOps[i].bitsGT(LargestVT))
6212      LargestVT = MemOps[i];
6213  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6214
6215  for (unsigned i = 0; i < NumMemOps; i++) {
6216    EVT VT = MemOps[i];
6217    unsigned VTSize = VT.getSizeInBits() / 8;
6218    if (VTSize > Size) {
6219      // Issuing an unaligned load / store pair  that overlaps with the previous
6220      // pair. Adjust the offset accordingly.
6221      assert(i == NumMemOps-1 && i != 0);
6222      DstOff -= VTSize - Size;
6223    }
6224
6225    // If this store is smaller than the largest store see whether we can get
6226    // the smaller value for free with a truncate.
6227    SDValue Value = MemSetValue;
6228    if (VT.bitsLT(LargestVT)) {
6229      if (!LargestVT.isVector() && !VT.isVector() &&
6230          TLI.isTruncateFree(LargestVT, VT))
6231        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6232      else
6233        Value = getMemsetValue(Src, VT, DAG, dl);
6234    }
6235    assert(Value.getValueType() == VT && "Value with wrong type.");
6236    SDValue Store = DAG.getStore(
6237        Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6238        DstPtrInfo.getWithOffset(DstOff), Align,
6239        isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6240    OutChains.push_back(Store);
6241    DstOff += VT.getSizeInBits() / 8;
6242    Size -= VTSize;
6243  }
6244
6245  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6246}
6247
6248static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6249                                            unsigned AS) {
6250  // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6251  // pointer operands can be losslessly bitcasted to pointers of address space 0
6252  if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6253    report_fatal_error("cannot lower memory intrinsic in address space " +
6254                       Twine(AS));
6255  }
6256}
6257
6258SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6259                                SDValue Src, SDValue Size, unsigned Align,
6260                                bool isVol, bool AlwaysInline, bool isTailCall,
6261                                MachinePointerInfo DstPtrInfo,
6262                                MachinePointerInfo SrcPtrInfo) {
6263  assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6264
6265  // Check to see if we should lower the memcpy to loads and stores first.
6266  // For cases within the target-specified limits, this is the best choice.
6267  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6268  if (ConstantSize) {
6269    // Memcpy with size zero? Just return the original chain.
6270    if (ConstantSize->isNullValue())
6271      return Chain;
6272
6273    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6274                                             ConstantSize->getZExtValue(),Align,
6275                                isVol, false, DstPtrInfo, SrcPtrInfo);
6276    if (Result.getNode())
6277      return Result;
6278  }
6279
6280  // Then check to see if we should lower the memcpy with target-specific
6281  // code. If the target chooses to do this, this is the next best.
6282  if (TSI) {
6283    SDValue Result = TSI->EmitTargetCodeForMemcpy(
6284        *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6285        DstPtrInfo, SrcPtrInfo);
6286    if (Result.getNode())
6287      return Result;
6288  }
6289
6290  // If we really need inline code and the target declined to provide it,
6291  // use a (potentially long) sequence of loads and stores.
6292  if (AlwaysInline) {
6293    assert(ConstantSize && "AlwaysInline requires a constant size!");
6294    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6295                                   ConstantSize->getZExtValue(), Align, isVol,
6296                                   true, DstPtrInfo, SrcPtrInfo);
6297  }
6298
6299  checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6300  checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6301
6302  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6303  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6304  // respect volatile, so they may do things like read or write memory
6305  // beyond the given memory regions. But fixing this isn't easy, and most
6306  // people don't care.
6307
6308  // Emit a library call.
6309  TargetLowering::ArgListTy Args;
6310  TargetLowering::ArgListEntry Entry;
6311  Entry.Ty = Type::getInt8PtrTy(*getContext());
6312  Entry.Node = Dst; Args.push_back(Entry);
6313  Entry.Node = Src; Args.push_back(Entry);
6314
6315  Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6316  Entry.Node = Size; Args.push_back(Entry);
6317  // FIXME: pass in SDLoc
6318  TargetLowering::CallLoweringInfo CLI(*this);
6319  CLI.setDebugLoc(dl)
6320      .setChain(Chain)
6321      .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6322                    Dst.getValueType().getTypeForEVT(*getContext()),
6323                    getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6324                                      TLI->getPointerTy(getDataLayout())),
6325                    std::move(Args))
6326      .setDiscardResult()
6327      .setTailCall(isTailCall);
6328
6329  std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6330  return CallResult.second;
6331}
6332
6333SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6334                                      SDValue Dst, unsigned DstAlign,
6335                                      SDValue Src, unsigned SrcAlign,
6336                                      SDValue Size, Type *SizeTy,
6337                                      unsigned ElemSz, bool isTailCall,
6338                                      MachinePointerInfo DstPtrInfo,
6339                                      MachinePointerInfo SrcPtrInfo) {
6340  // Emit a library call.
6341  TargetLowering::ArgListTy Args;
6342  TargetLowering::ArgListEntry Entry;
6343  Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6344  Entry.Node = Dst;
6345  Args.push_back(Entry);
6346
6347  Entry.Node = Src;
6348  Args.push_back(Entry);
6349
6350  Entry.Ty = SizeTy;
6351  Entry.Node = Size;
6352  Args.push_back(Entry);
6353
6354  RTLIB::Libcall LibraryCall =
6355      RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6356  if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6357    report_fatal_error("Unsupported element size");
6358
6359  TargetLowering::CallLoweringInfo CLI(*this);
6360  CLI.setDebugLoc(dl)
6361      .setChain(Chain)
6362      .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6363                    Type::getVoidTy(*getContext()),
6364                    getExternalSymbol(TLI->getLibcallName(LibraryCall),
6365                                      TLI->getPointerTy(getDataLayout())),
6366                    std::move(Args))
6367      .setDiscardResult()
6368      .setTailCall(isTailCall);
6369
6370  std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6371  return CallResult.second;
6372}
6373
6374SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6375                                 SDValue Src, SDValue Size, unsigned Align,
6376                                 bool isVol, bool isTailCall,
6377                                 MachinePointerInfo DstPtrInfo,
6378                                 MachinePointerInfo SrcPtrInfo) {
6379  assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6380
6381  // Check to see if we should lower the memmove to loads and stores first.
6382  // For cases within the target-specified limits, this is the best choice.
6383  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6384  if (ConstantSize) {
6385    // Memmove with size zero? Just return the original chain.
6386    if (ConstantSize->isNullValue())
6387      return Chain;
6388
6389    SDValue Result =
6390      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6391                               ConstantSize->getZExtValue(), Align, isVol,
6392                               false, DstPtrInfo, SrcPtrInfo);
6393    if (Result.getNode())
6394      return Result;
6395  }
6396
6397  // Then check to see if we should lower the memmove with target-specific
6398  // code. If the target chooses to do this, this is the next best.
6399  if (TSI) {
6400    SDValue Result = TSI->EmitTargetCodeForMemmove(
6401        *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6402    if (Result.getNode())
6403      return Result;
6404  }
6405
6406  checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6407  checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6408
6409  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6410  // not be safe.  See memcpy above for more details.
6411
6412  // Emit a library call.
6413  TargetLowering::ArgListTy Args;
6414  TargetLowering::ArgListEntry Entry;
6415  Entry.Ty = Type::getInt8PtrTy(*getContext());
6416  Entry.Node = Dst; Args.push_back(Entry);
6417  Entry.Node = Src; Args.push_back(Entry);
6418
6419  Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6420  Entry.Node = Size; Args.push_back(Entry);
6421  // FIXME:  pass in SDLoc
6422  TargetLowering::CallLoweringInfo CLI(*this);
6423  CLI.setDebugLoc(dl)
6424      .setChain(Chain)
6425      .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6426                    Dst.getValueType().getTypeForEVT(*getContext()),
6427                    getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6428                                      TLI->getPointerTy(getDataLayout())),
6429                    std::move(Args))
6430      .setDiscardResult()
6431      .setTailCall(isTailCall);
6432
6433  std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6434  return CallResult.second;
6435}
6436
6437SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6438                                       SDValue Dst, unsigned DstAlign,
6439                                       SDValue Src, unsigned SrcAlign,
6440                                       SDValue Size, Type *SizeTy,
6441                                       unsigned ElemSz, bool isTailCall,
6442                                       MachinePointerInfo DstPtrInfo,
6443                                       MachinePointerInfo SrcPtrInfo) {
6444  // Emit a library call.
6445  TargetLowering::ArgListTy Args;
6446  TargetLowering::ArgListEntry Entry;
6447  Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6448  Entry.Node = Dst;
6449  Args.push_back(Entry);
6450
6451  Entry.Node = Src;
6452  Args.push_back(Entry);
6453
6454  Entry.Ty = SizeTy;
6455  Entry.Node = Size;
6456  Args.push_back(Entry);
6457
6458  RTLIB::Libcall LibraryCall =
6459      RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6460  if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6461    report_fatal_error("Unsupported element size");
6462
6463  TargetLowering::CallLoweringInfo CLI(*this);
6464  CLI.setDebugLoc(dl)
6465      .setChain(Chain)
6466      .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6467                    Type::getVoidTy(*getContext()),
6468                    getExternalSymbol(TLI->getLibcallName(LibraryCall),
6469                                      TLI->getPointerTy(getDataLayout())),
6470                    std::move(Args))
6471      .setDiscardResult()
6472      .setTailCall(isTailCall);
6473
6474  std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6475  return CallResult.second;
6476}
6477
6478SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6479                                SDValue Src, SDValue Size, unsigned Align,
6480                                bool isVol, bool isTailCall,
6481                                MachinePointerInfo DstPtrInfo) {
6482  assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6483
6484  // Check to see if we should lower the memset to stores first.
6485  // For cases within the target-specified limits, this is the best choice.
6486  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6487  if (ConstantSize) {
6488    // Memset with size zero? Just return the original chain.
6489    if (ConstantSize->isNullValue())
6490      return Chain;
6491
6492    SDValue Result =
6493      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6494                      Align, isVol, DstPtrInfo);
6495
6496    if (Result.getNode())
6497      return Result;
6498  }
6499
6500  // Then check to see if we should lower the memset with target-specific
6501  // code. If the target chooses to do this, this is the next best.
6502  if (TSI) {
6503    SDValue Result = TSI->EmitTargetCodeForMemset(
6504        *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6505    if (Result.getNode())
6506      return Result;
6507  }
6508
6509  checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6510
6511  // Emit a library call.
6512  TargetLowering::ArgListTy Args;
6513  TargetLowering::ArgListEntry Entry;
6514  Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6515  Args.push_back(Entry);
6516  Entry.Node = Src;
6517  Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6518  Args.push_back(Entry);
6519  Entry.Node = Size;
6520  Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6521  Args.push_back(Entry);
6522
6523  // FIXME: pass in SDLoc
6524  TargetLowering::CallLoweringInfo CLI(*this);
6525  CLI.setDebugLoc(dl)
6526      .setChain(Chain)
6527      .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6528                    Dst.getValueType().getTypeForEVT(*getContext()),
6529                    getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6530                                      TLI->getPointerTy(getDataLayout())),
6531                    std::move(Args))
6532      .setDiscardResult()
6533      .setTailCall(isTailCall);
6534
6535  std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6536  return CallResult.second;
6537}
6538
6539SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6540                                      SDValue Dst, unsigned DstAlign,
6541                                      SDValue Value, SDValue Size, Type *SizeTy,
6542                                      unsigned ElemSz, bool isTailCall,
6543                                      MachinePointerInfo DstPtrInfo) {
6544  // Emit a library call.
6545  TargetLowering::ArgListTy Args;
6546  TargetLowering::ArgListEntry Entry;
6547  Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6548  Entry.Node = Dst;
6549  Args.push_back(Entry);
6550
6551  Entry.Ty = Type::getInt8Ty(*getContext());
6552  Entry.Node = Value;
6553  Args.push_back(Entry);
6554
6555  Entry.Ty = SizeTy;
6556  Entry.Node = Size;
6557  Args.push_back(Entry);
6558
6559  RTLIB::Libcall LibraryCall =
6560      RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6561  if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6562    report_fatal_error("Unsupported element size");
6563
6564  TargetLowering::CallLoweringInfo CLI(*this);
6565  CLI.setDebugLoc(dl)
6566      .setChain(Chain)
6567      .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6568                    Type::getVoidTy(*getContext()),
6569                    getExternalSymbol(TLI->getLibcallName(LibraryCall),
6570                                      TLI->getPointerTy(getDataLayout())),
6571                    std::move(Args))
6572      .setDiscardResult()
6573      .setTailCall(isTailCall);
6574
6575  std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6576  return CallResult.second;
6577}
6578
6579SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6580                                SDVTList VTList, ArrayRef<SDValue> Ops,
6581                                MachineMemOperand *MMO) {
6582  FoldingSetNodeID ID;
6583  ID.AddInteger(MemVT.getRawBits());
6584  AddNodeIDNode(ID, Opcode, VTList, Ops);
6585  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6586  void* IP = nullptr;
6587  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6588    cast<AtomicSDNode>(E)->refineAlignment(MMO);
6589    return SDValue(E, 0);
6590  }
6591
6592  auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6593                                    VTList, MemVT, MMO);
6594  createOperands(N, Ops);
6595
6596  CSEMap.InsertNode(N, IP);
6597  InsertNode(N);
6598  return SDValue(N, 0);
6599}
6600
6601SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6602                                       EVT MemVT, SDVTList VTs, SDValue Chain,
6603                                       SDValue Ptr, SDValue Cmp, SDValue Swp,
6604                                       MachineMemOperand *MMO) {
6605  assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6606         Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6607  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6608
6609  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6610  return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6611}
6612
6613SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6614                                SDValue Chain, SDValue Ptr, SDValue Val,
6615                                MachineMemOperand *MMO) {
6616  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6617          Opcode == ISD::ATOMIC_LOAD_SUB ||
6618          Opcode == ISD::ATOMIC_LOAD_AND ||
6619          Opcode == ISD::ATOMIC_LOAD_CLR ||
6620          Opcode == ISD::ATOMIC_LOAD_OR ||
6621          Opcode == ISD::ATOMIC_LOAD_XOR ||
6622          Opcode == ISD::ATOMIC_LOAD_NAND ||
6623          Opcode == ISD::ATOMIC_LOAD_MIN ||
6624          Opcode == ISD::ATOMIC_LOAD_MAX ||
6625          Opcode == ISD::ATOMIC_LOAD_UMIN ||
6626          Opcode == ISD::ATOMIC_LOAD_UMAX ||
6627          Opcode == ISD::ATOMIC_LOAD_FADD ||
6628          Opcode == ISD::ATOMIC_LOAD_FSUB ||
6629          Opcode == ISD::ATOMIC_SWAP ||
6630          Opcode == ISD::ATOMIC_STORE) &&
6631         "Invalid Atomic Op");
6632
6633  EVT VT = Val.getValueType();
6634
6635  SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6636                                               getVTList(VT, MVT::Other);
6637  SDValue Ops[] = {Chain, Ptr, Val};
6638  return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6639}
6640
6641SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6642                                EVT VT, SDValue Chain, SDValue Ptr,
6643                                MachineMemOperand *MMO) {
6644  assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6645
6646  SDVTList VTs = getVTList(VT, MVT::Other);
6647  SDValue Ops[] = {Chain, Ptr};
6648  return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6649}
6650
6651/// getMergeValues - Create a MERGE_VALUES node from the given operands.
6652SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6653  if (Ops.size() == 1)
6654    return Ops[0];
6655
6656  SmallVector<EVT, 4> VTs;
6657  VTs.reserve(Ops.size());
6658  for (unsigned i = 0; i < Ops.size(); ++i)
6659    VTs.push_back(Ops[i].getValueType());
6660  return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6661}
6662
6663SDValue SelectionDAG::getMemIntrinsicNode(
6664    unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6665    EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6666    MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6667  if (Align == 0)  // Ensure that codegen never sees alignment 0
6668    Align = getEVTAlignment(MemVT);
6669
6670  if (!Size && MemVT.isScalableVector())
6671    Size = MemoryLocation::UnknownSize;
6672  else if (!Size)
6673    Size = MemVT.getStoreSize();
6674
6675  MachineFunction &MF = getMachineFunction();
6676  MachineMemOperand *MMO =
6677      MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6678
6679  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6680}
6681
6682SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6683                                          SDVTList VTList,
6684                                          ArrayRef<SDValue> Ops, EVT MemVT,
6685                                          MachineMemOperand *MMO) {
6686  assert((Opcode == ISD::INTRINSIC_VOID ||
6687          Opcode == ISD::INTRINSIC_W_CHAIN ||
6688          Opcode == ISD::PREFETCH ||
6689          Opcode == ISD::LIFETIME_START ||
6690          Opcode == ISD::LIFETIME_END ||
6691          ((int)Opcode <= std::numeric_limits<int>::max() &&
6692           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6693         "Opcode is not a memory-accessing opcode!");
6694
6695  // Memoize the node unless it returns a flag.
6696  MemIntrinsicSDNode *N;
6697  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6698    FoldingSetNodeID ID;
6699    AddNodeIDNode(ID, Opcode, VTList, Ops);
6700    ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6701        Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6702    ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6703    void *IP = nullptr;
6704    if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6705      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6706      return SDValue(E, 0);
6707    }
6708
6709    N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6710                                      VTList, MemVT, MMO);
6711    createOperands(N, Ops);
6712
6713  CSEMap.InsertNode(N, IP);
6714  } else {
6715    N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6716                                      VTList, MemVT, MMO);
6717    createOperands(N, Ops);
6718  }
6719  InsertNode(N);
6720  SDValue V(N, 0);
6721  NewSDValueDbgMsg(V, "Creating new node: ", this);
6722  return V;
6723}
6724
6725SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6726                                      SDValue Chain, int FrameIndex,
6727                                      int64_t Size, int64_t Offset) {
6728  const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6729  const auto VTs = getVTList(MVT::Other);
6730  SDValue Ops[2] = {
6731      Chain,
6732      getFrameIndex(FrameIndex,
6733                    getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6734                    true)};
6735
6736  FoldingSetNodeID ID;
6737  AddNodeIDNode(ID, Opcode, VTs, Ops);
6738  ID.AddInteger(FrameIndex);
6739  ID.AddInteger(Size);
6740  ID.AddInteger(Offset);
6741  void *IP = nullptr;
6742  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6743    return SDValue(E, 0);
6744
6745  LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6746      Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6747  createOperands(N, Ops);
6748  CSEMap.InsertNode(N, IP);
6749  InsertNode(N);
6750  SDValue V(N, 0);
6751  NewSDValueDbgMsg(V, "Creating new node: ", this);
6752  return V;
6753}
6754
6755/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6756/// MachinePointerInfo record from it.  This is particularly useful because the
6757/// code generator has many cases where it doesn't bother passing in a
6758/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6759static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6760                                           SelectionDAG &DAG, SDValue Ptr,
6761                                           int64_t Offset = 0) {
6762  // If this is FI+Offset, we can model it.
6763  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6764    return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6765                                             FI->getIndex(), Offset);
6766
6767  // If this is (FI+Offset1)+Offset2, we can model it.
6768  if (Ptr.getOpcode() != ISD::ADD ||
6769      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6770      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6771    return Info;
6772
6773  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6774  return MachinePointerInfo::getFixedStack(
6775      DAG.getMachineFunction(), FI,
6776      Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6777}
6778
6779/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6780/// MachinePointerInfo record from it.  This is particularly useful because the
6781/// code generator has many cases where it doesn't bother passing in a
6782/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6783static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6784                                           SelectionDAG &DAG, SDValue Ptr,
6785                                           SDValue OffsetOp) {
6786  // If the 'Offset' value isn't a constant, we can't handle this.
6787  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6788    return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6789  if (OffsetOp.isUndef())
6790    return InferPointerInfo(Info, DAG, Ptr);
6791  return Info;
6792}
6793
6794SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6795                              EVT VT, const SDLoc &dl, SDValue Chain,
6796                              SDValue Ptr, SDValue Offset,
6797                              MachinePointerInfo PtrInfo, EVT MemVT,
6798                              unsigned Alignment,
6799                              MachineMemOperand::Flags MMOFlags,
6800                              const AAMDNodes &AAInfo, const MDNode *Ranges) {
6801  assert(Chain.getValueType() == MVT::Other &&
6802        "Invalid chain type");
6803  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6804    Alignment = getEVTAlignment(MemVT);
6805
6806  MMOFlags |= MachineMemOperand::MOLoad;
6807  assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6808  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6809  // clients.
6810  if (PtrInfo.V.isNull())
6811    PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6812
6813  MachineFunction &MF = getMachineFunction();
6814  MachineMemOperand *MMO = MF.getMachineMemOperand(
6815      PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6816  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6817}
6818
6819SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6820                              EVT VT, const SDLoc &dl, SDValue Chain,
6821                              SDValue Ptr, SDValue Offset, EVT MemVT,
6822                              MachineMemOperand *MMO) {
6823  if (VT == MemVT) {
6824    ExtType = ISD::NON_EXTLOAD;
6825  } else if (ExtType == ISD::NON_EXTLOAD) {
6826    assert(VT == MemVT && "Non-extending load from different memory type!");
6827  } else {
6828    // Extending load.
6829    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6830           "Should only be an extending load, not truncating!");
6831    assert(VT.isInteger() == MemVT.isInteger() &&
6832           "Cannot convert from FP to Int or Int -> FP!");
6833    assert(VT.isVector() == MemVT.isVector() &&
6834           "Cannot use an ext load to convert to or from a vector!");
6835    assert((!VT.isVector() ||
6836            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6837           "Cannot use an ext load to change the number of vector elements!");
6838  }
6839
6840  bool Indexed = AM != ISD::UNINDEXED;
6841  assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6842
6843  SDVTList VTs = Indexed ?
6844    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6845  SDValue Ops[] = { Chain, Ptr, Offset };
6846  FoldingSetNodeID ID;
6847  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6848  ID.AddInteger(MemVT.getRawBits());
6849  ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6850      dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6851  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6852  void *IP = nullptr;
6853  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6854    cast<LoadSDNode>(E)->refineAlignment(MMO);
6855    return SDValue(E, 0);
6856  }
6857  auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6858                                  ExtType, MemVT, MMO);
6859  createOperands(N, Ops);
6860
6861  CSEMap.InsertNode(N, IP);
6862  InsertNode(N);
6863  SDValue V(N, 0);
6864  NewSDValueDbgMsg(V, "Creating new node: ", this);
6865  return V;
6866}
6867
6868SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6869                              SDValue Ptr, MachinePointerInfo PtrInfo,
6870                              unsigned Alignment,
6871                              MachineMemOperand::Flags MMOFlags,
6872                              const AAMDNodes &AAInfo, const MDNode *Ranges) {
6873  SDValue Undef = getUNDEF(Ptr.getValueType());
6874  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6875                 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6876}
6877
6878SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6879                              SDValue Ptr, MachineMemOperand *MMO) {
6880  SDValue Undef = getUNDEF(Ptr.getValueType());
6881  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6882                 VT, MMO);
6883}
6884
6885SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6886                                 EVT VT, SDValue Chain, SDValue Ptr,
6887                                 MachinePointerInfo PtrInfo, EVT MemVT,
6888                                 unsigned Alignment,
6889                                 MachineMemOperand::Flags MMOFlags,
6890                                 const AAMDNodes &AAInfo) {
6891  SDValue Undef = getUNDEF(Ptr.getValueType());
6892  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6893                 MemVT, Alignment, MMOFlags, AAInfo);
6894}
6895
6896SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6897                                 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6898                                 MachineMemOperand *MMO) {
6899  SDValue Undef = getUNDEF(Ptr.getValueType());
6900  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6901                 MemVT, MMO);
6902}
6903
6904SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6905                                     SDValue Base, SDValue Offset,
6906                                     ISD::MemIndexedMode AM) {
6907  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6908  assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6909  // Don't propagate the invariant or dereferenceable flags.
6910  auto MMOFlags =
6911      LD->getMemOperand()->getFlags() &
6912      ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6913  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6914                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
6915                 LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6916                 LD->getAAInfo());
6917}
6918
6919SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6920                               SDValue Ptr, MachinePointerInfo PtrInfo,
6921                               unsigned Alignment,
6922                               MachineMemOperand::Flags MMOFlags,
6923                               const AAMDNodes &AAInfo) {
6924  assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6925  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6926    Alignment = getEVTAlignment(Val.getValueType());
6927
6928  MMOFlags |= MachineMemOperand::MOStore;
6929  assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6930
6931  if (PtrInfo.V.isNull())
6932    PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6933
6934  MachineFunction &MF = getMachineFunction();
6935  MachineMemOperand *MMO = MF.getMachineMemOperand(
6936      PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6937  return getStore(Chain, dl, Val, Ptr, MMO);
6938}
6939
6940SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6941                               SDValue Ptr, MachineMemOperand *MMO) {
6942  assert(Chain.getValueType() == MVT::Other &&
6943        "Invalid chain type");
6944  EVT VT = Val.getValueType();
6945  SDVTList VTs = getVTList(MVT::Other);
6946  SDValue Undef = getUNDEF(Ptr.getValueType());
6947  SDValue Ops[] = { Chain, Val, Ptr, Undef };
6948  FoldingSetNodeID ID;
6949  AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6950  ID.AddInteger(VT.getRawBits());
6951  ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6952      dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6953  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6954  void *IP = nullptr;
6955  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6956    cast<StoreSDNode>(E)->refineAlignment(MMO);
6957    return SDValue(E, 0);
6958  }
6959  auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6960                                   ISD::UNINDEXED, false, VT, MMO);
6961  createOperands(N, Ops);
6962
6963  CSEMap.InsertNode(N, IP);
6964  InsertNode(N);
6965  SDValue V(N, 0);
6966  NewSDValueDbgMsg(V, "Creating new node: ", this);
6967  return V;
6968}
6969
6970SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6971                                    SDValue Ptr, MachinePointerInfo PtrInfo,
6972                                    EVT SVT, unsigned Alignment,
6973                                    MachineMemOperand::Flags MMOFlags,
6974                                    const AAMDNodes &AAInfo) {
6975  assert(Chain.getValueType() == MVT::Other &&
6976        "Invalid chain type");
6977  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6978    Alignment = getEVTAlignment(SVT);
6979
6980  MMOFlags |= MachineMemOperand::MOStore;
6981  assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6982
6983  if (PtrInfo.V.isNull())
6984    PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6985
6986  MachineFunction &MF = getMachineFunction();
6987  MachineMemOperand *MMO = MF.getMachineMemOperand(
6988      PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6989  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6990}
6991
6992SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6993                                    SDValue Ptr, EVT SVT,
6994                                    MachineMemOperand *MMO) {
6995  EVT VT = Val.getValueType();
6996
6997  assert(Chain.getValueType() == MVT::Other &&
6998        "Invalid chain type");
6999  if (VT == SVT)
7000    return getStore(Chain, dl, Val, Ptr, MMO);
7001
7002  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7003         "Should only be a truncating store, not extending!");
7004  assert(VT.isInteger() == SVT.isInteger() &&
7005         "Can't do FP-INT conversion!");
7006  assert(VT.isVector() == SVT.isVector() &&
7007         "Cannot use trunc store to convert to or from a vector!");
7008  assert((!VT.isVector() ||
7009          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7010         "Cannot use trunc store to change the number of vector elements!");
7011
7012  SDVTList VTs = getVTList(MVT::Other);
7013  SDValue Undef = getUNDEF(Ptr.getValueType());
7014  SDValue Ops[] = { Chain, Val, Ptr, Undef };
7015  FoldingSetNodeID ID;
7016  AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7017  ID.AddInteger(SVT.getRawBits());
7018  ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7019      dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7020  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7021  void *IP = nullptr;
7022  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7023    cast<StoreSDNode>(E)->refineAlignment(MMO);
7024    return SDValue(E, 0);
7025  }
7026  auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7027                                   ISD::UNINDEXED, true, SVT, MMO);
7028  createOperands(N, Ops);
7029
7030  CSEMap.InsertNode(N, IP);
7031  InsertNode(N);
7032  SDValue V(N, 0);
7033  NewSDValueDbgMsg(V, "Creating new node: ", this);
7034  return V;
7035}
7036
7037SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7038                                      SDValue Base, SDValue Offset,
7039                                      ISD::MemIndexedMode AM) {
7040  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7041  assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7042  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7043  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7044  FoldingSetNodeID ID;
7045  AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7046  ID.AddInteger(ST->getMemoryVT().getRawBits());
7047  ID.AddInteger(ST->getRawSubclassData());
7048  ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7049  void *IP = nullptr;
7050  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7051    return SDValue(E, 0);
7052
7053  auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7054                                   ST->isTruncatingStore(), ST->getMemoryVT(),
7055                                   ST->getMemOperand());
7056  createOperands(N, Ops);
7057
7058  CSEMap.InsertNode(N, IP);
7059  InsertNode(N);
7060  SDValue V(N, 0);
7061  NewSDValueDbgMsg(V, "Creating new node: ", this);
7062  return V;
7063}
7064
7065SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7066                                    SDValue Base, SDValue Offset, SDValue Mask,
7067                                    SDValue PassThru, EVT MemVT,
7068                                    MachineMemOperand *MMO,
7069                                    ISD::MemIndexedMode AM,
7070                                    ISD::LoadExtType ExtTy, bool isExpanding) {
7071  bool Indexed = AM != ISD::UNINDEXED;
7072  assert((Indexed || Offset.isUndef()) &&
7073         "Unindexed masked load with an offset!");
7074  SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7075                         : getVTList(VT, MVT::Other);
7076  SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7077  FoldingSetNodeID ID;
7078  AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7079  ID.AddInteger(MemVT.getRawBits());
7080  ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7081      dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7082  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7083  void *IP = nullptr;
7084  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7085    cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7086    return SDValue(E, 0);
7087  }
7088  auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7089                                        AM, ExtTy, isExpanding, MemVT, MMO);
7090  createOperands(N, Ops);
7091
7092  CSEMap.InsertNode(N, IP);
7093  InsertNode(N);
7094  SDValue V(N, 0);
7095  NewSDValueDbgMsg(V, "Creating new node: ", this);
7096  return V;
7097}
7098
7099SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7100                                           SDValue Base, SDValue Offset,
7101                                           ISD::MemIndexedMode AM) {
7102  MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7103  assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7104  return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7105                       Offset, LD->getMask(), LD->getPassThru(),
7106                       LD->getMemoryVT(), LD->getMemOperand(), AM,
7107                       LD->getExtensionType(), LD->isExpandingLoad());
7108}
7109
7110SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7111                                     SDValue Val, SDValue Base, SDValue Offset,
7112                                     SDValue Mask, EVT MemVT,
7113                                     MachineMemOperand *MMO,
7114                                     ISD::MemIndexedMode AM, bool IsTruncating,
7115                                     bool IsCompressing) {
7116  assert(Chain.getValueType() == MVT::Other &&
7117        "Invalid chain type");
7118  bool Indexed = AM != ISD::UNINDEXED;
7119  assert((Indexed || Offset.isUndef()) &&
7120         "Unindexed masked store with an offset!");
7121  SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7122                         : getVTList(MVT::Other);
7123  SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7124  FoldingSetNodeID ID;
7125  AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7126  ID.AddInteger(MemVT.getRawBits());
7127  ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7128      dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7129  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7130  void *IP = nullptr;
7131  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7132    cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7133    return SDValue(E, 0);
7134  }
7135  auto *N =
7136      newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7137                                   IsTruncating, IsCompressing, MemVT, MMO);
7138  createOperands(N, Ops);
7139
7140  CSEMap.InsertNode(N, IP);
7141  InsertNode(N);
7142  SDValue V(N, 0);
7143  NewSDValueDbgMsg(V, "Creating new node: ", this);
7144  return V;
7145}
7146
7147SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7148                                            SDValue Base, SDValue Offset,
7149                                            ISD::MemIndexedMode AM) {
7150  MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7151  assert(ST->getOffset().isUndef() &&
7152         "Masked store is already a indexed store!");
7153  return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7154                        ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7155                        AM, ST->isTruncatingStore(), ST->isCompressingStore());
7156}
7157
7158SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7159                                      ArrayRef<SDValue> Ops,
7160                                      MachineMemOperand *MMO,
7161                                      ISD::MemIndexType IndexType) {
7162  assert(Ops.size() == 6 && "Incompatible number of operands");
7163
7164  FoldingSetNodeID ID;
7165  AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7166  ID.AddInteger(VT.getRawBits());
7167  ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7168      dl.getIROrder(), VTs, VT, MMO, IndexType));
7169  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7170  void *IP = nullptr;
7171  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7172    cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7173    return SDValue(E, 0);
7174  }
7175
7176  auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7177                                          VTs, VT, MMO, IndexType);
7178  createOperands(N, Ops);
7179
7180  assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7181         "Incompatible type of the PassThru value in MaskedGatherSDNode");
7182  assert(N->getMask().getValueType().getVectorNumElements() ==
7183             N->getValueType(0).getVectorNumElements() &&
7184         "Vector width mismatch between mask and data");
7185  assert(N->getIndex().getValueType().getVectorNumElements() >=
7186             N->getValueType(0).getVectorNumElements() &&
7187         "Vector width mismatch between index and data");
7188  assert(isa<ConstantSDNode>(N->getScale()) &&
7189         cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7190         "Scale should be a constant power of 2");
7191
7192  CSEMap.InsertNode(N, IP);
7193  InsertNode(N);
7194  SDValue V(N, 0);
7195  NewSDValueDbgMsg(V, "Creating new node: ", this);
7196  return V;
7197}
7198
7199SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7200                                       ArrayRef<SDValue> Ops,
7201                                       MachineMemOperand *MMO,
7202                                       ISD::MemIndexType IndexType) {
7203  assert(Ops.size() == 6 && "Incompatible number of operands");
7204
7205  FoldingSetNodeID ID;
7206  AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7207  ID.AddInteger(VT.getRawBits());
7208  ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7209      dl.getIROrder(), VTs, VT, MMO, IndexType));
7210  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7211  void *IP = nullptr;
7212  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7213    cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7214    return SDValue(E, 0);
7215  }
7216  auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7217                                           VTs, VT, MMO, IndexType);
7218  createOperands(N, Ops);
7219
7220  assert(N->getMask().getValueType().getVectorNumElements() ==
7221             N->getValue().getValueType().getVectorNumElements() &&
7222         "Vector width mismatch between mask and data");
7223  assert(N->getIndex().getValueType().getVectorNumElements() >=
7224             N->getValue().getValueType().getVectorNumElements() &&
7225         "Vector width mismatch between index and data");
7226  assert(isa<ConstantSDNode>(N->getScale()) &&
7227         cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7228         "Scale should be a constant power of 2");
7229
7230  CSEMap.InsertNode(N, IP);
7231  InsertNode(N);
7232  SDValue V(N, 0);
7233  NewSDValueDbgMsg(V, "Creating new node: ", this);
7234  return V;
7235}
7236
7237SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7238  // select undef, T, F --> T (if T is a constant), otherwise F
7239  // select, ?, undef, F --> F
7240  // select, ?, T, undef --> T
7241  if (Cond.isUndef())
7242    return isConstantValueOfAnyType(T) ? T : F;
7243  if (T.isUndef())
7244    return F;
7245  if (F.isUndef())
7246    return T;
7247
7248  // select true, T, F --> T
7249  // select false, T, F --> F
7250  if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7251    return CondC->isNullValue() ? F : T;
7252
7253  // TODO: This should simplify VSELECT with constant condition using something
7254  // like this (but check boolean contents to be complete?):
7255  //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7256  //    return T;
7257  //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7258  //    return F;
7259
7260  // select ?, T, T --> T
7261  if (T == F)
7262    return T;
7263
7264  return SDValue();
7265}
7266
7267SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7268  // shift undef, Y --> 0 (can always assume that the undef value is 0)
7269  if (X.isUndef())
7270    return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7271  // shift X, undef --> undef (because it may shift by the bitwidth)
7272  if (Y.isUndef())
7273    return getUNDEF(X.getValueType());
7274
7275  // shift 0, Y --> 0
7276  // shift X, 0 --> X
7277  if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7278    return X;
7279
7280  // shift X, C >= bitwidth(X) --> undef
7281  // All vector elements must be too big (or undef) to avoid partial undefs.
7282  auto isShiftTooBig = [X](ConstantSDNode *Val) {
7283    return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7284  };
7285  if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7286    return getUNDEF(X.getValueType());
7287
7288  return SDValue();
7289}
7290
7291// TODO: Use fast-math-flags to enable more simplifications.
7292SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7293  ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7294  if (!YC)
7295    return SDValue();
7296
7297  // X + -0.0 --> X
7298  if (Opcode == ISD::FADD)
7299    if (YC->getValueAPF().isNegZero())
7300      return X;
7301
7302  // X - +0.0 --> X
7303  if (Opcode == ISD::FSUB)
7304    if (YC->getValueAPF().isPosZero())
7305      return X;
7306
7307  // X * 1.0 --> X
7308  // X / 1.0 --> X
7309  if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7310    if (YC->getValueAPF().isExactlyValue(1.0))
7311      return X;
7312
7313  return SDValue();
7314}
7315
7316SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7317                               SDValue Ptr, SDValue SV, unsigned Align) {
7318  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7319  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7320}
7321
7322SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7323                              ArrayRef<SDUse> Ops) {
7324  switch (Ops.size()) {
7325  case 0: return getNode(Opcode, DL, VT);
7326  case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7327  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7328  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7329  default: break;
7330  }
7331
7332  // Copy from an SDUse array into an SDValue array for use with
7333  // the regular getNode logic.
7334  SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7335  return getNode(Opcode, DL, VT, NewOps);
7336}
7337
7338SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7339                              ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7340  unsigned NumOps = Ops.size();
7341  switch (NumOps) {
7342  case 0: return getNode(Opcode, DL, VT);
7343  case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7344  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7345  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7346  default: break;
7347  }
7348
7349  switch (Opcode) {
7350  default: break;
7351  case ISD::BUILD_VECTOR:
7352    // Attempt to simplify BUILD_VECTOR.
7353    if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7354      return V;
7355    break;
7356  case ISD::CONCAT_VECTORS:
7357    if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7358      return V;
7359    break;
7360  case ISD::SELECT_CC:
7361    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7362    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7363           "LHS and RHS of condition must have same type!");
7364    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7365           "True and False arms of SelectCC must have same type!");
7366    assert(Ops[2].getValueType() == VT &&
7367           "select_cc node must be of same type as true and false value!");
7368    break;
7369  case ISD::BR_CC:
7370    assert(NumOps == 5 && "BR_CC takes 5 operands!");
7371    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7372           "LHS/RHS of comparison should match types!");
7373    break;
7374  }
7375
7376  // Memoize nodes.
7377  SDNode *N;
7378  SDVTList VTs = getVTList(VT);
7379
7380  if (VT != MVT::Glue) {
7381    FoldingSetNodeID ID;
7382    AddNodeIDNode(ID, Opcode, VTs, Ops);
7383    void *IP = nullptr;
7384
7385    if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7386      return SDValue(E, 0);
7387
7388    N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7389    createOperands(N, Ops);
7390
7391    CSEMap.InsertNode(N, IP);
7392  } else {
7393    N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7394    createOperands(N, Ops);
7395  }
7396
7397  InsertNode(N);
7398  SDValue V(N, 0);
7399  NewSDValueDbgMsg(V, "Creating new node: ", this);
7400  return V;
7401}
7402
7403SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7404                              ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7405  return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7406}
7407
7408SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7409                              ArrayRef<SDValue> Ops) {
7410  if (VTList.NumVTs == 1)
7411    return getNode(Opcode, DL, VTList.VTs[0], Ops);
7412
7413  switch (Opcode) {
7414  case ISD::STRICT_FP_EXTEND:
7415    assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7416           "Invalid STRICT_FP_EXTEND!");
7417    assert(VTList.VTs[0].isFloatingPoint() &&
7418           Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7419    assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7420           "STRICT_FP_EXTEND result type should be vector iff the operand "
7421           "type is vector!");
7422    assert((!VTList.VTs[0].isVector() ||
7423            VTList.VTs[0].getVectorNumElements() ==
7424            Ops[1].getValueType().getVectorNumElements()) &&
7425           "Vector element count mismatch!");
7426    assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7427           "Invalid fpext node, dst <= src!");
7428    break;
7429  case ISD::STRICT_FP_ROUND:
7430    assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7431    assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7432           "STRICT_FP_ROUND result type should be vector iff the operand "
7433           "type is vector!");
7434    assert((!VTList.VTs[0].isVector() ||
7435            VTList.VTs[0].getVectorNumElements() ==
7436            Ops[1].getValueType().getVectorNumElements()) &&
7437           "Vector element count mismatch!");
7438    assert(VTList.VTs[0].isFloatingPoint() &&
7439           Ops[1].getValueType().isFloatingPoint() &&
7440           VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7441           isa<ConstantSDNode>(Ops[2]) &&
7442           (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7443            cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7444           "Invalid STRICT_FP_ROUND!");
7445    break;
7446#if 0
7447  // FIXME: figure out how to safely handle things like
7448  // int foo(int x) { return 1 << (x & 255); }
7449  // int bar() { return foo(256); }
7450  case ISD::SRA_PARTS:
7451  case ISD::SRL_PARTS:
7452  case ISD::SHL_PARTS:
7453    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7454        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7455      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7456    else if (N3.getOpcode() == ISD::AND)
7457      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7458        // If the and is only masking out bits that cannot effect the shift,
7459        // eliminate the and.
7460        unsigned NumBits = VT.getScalarSizeInBits()*2;
7461        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7462          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7463      }
7464    break;
7465#endif
7466  }
7467
7468  // Memoize the node unless it returns a flag.
7469  SDNode *N;
7470  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7471    FoldingSetNodeID ID;
7472    AddNodeIDNode(ID, Opcode, VTList, Ops);
7473    void *IP = nullptr;
7474    if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7475      return SDValue(E, 0);
7476
7477    N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7478    createOperands(N, Ops);
7479    CSEMap.InsertNode(N, IP);
7480  } else {
7481    N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7482    createOperands(N, Ops);
7483  }
7484  InsertNode(N);
7485  SDValue V(N, 0);
7486  NewSDValueDbgMsg(V, "Creating new node: ", this);
7487  return V;
7488}
7489
7490SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7491                              SDVTList VTList) {
7492  return getNode(Opcode, DL, VTList, None);
7493}
7494
7495SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7496                              SDValue N1) {
7497  SDValue Ops[] = { N1 };
7498  return getNode(Opcode, DL, VTList, Ops);
7499}
7500
7501SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7502                              SDValue N1, SDValue N2) {
7503  SDValue Ops[] = { N1, N2 };
7504  return getNode(Opcode, DL, VTList, Ops);
7505}
7506
7507SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7508                              SDValue N1, SDValue N2, SDValue N3) {
7509  SDValue Ops[] = { N1, N2, N3 };
7510  return getNode(Opcode, DL, VTList, Ops);
7511}
7512
7513SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7514                              SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7515  SDValue Ops[] = { N1, N2, N3, N4 };
7516  return getNode(Opcode, DL, VTList, Ops);
7517}
7518
7519SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7520                              SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7521                              SDValue N5) {
7522  SDValue Ops[] = { N1, N2, N3, N4, N5 };
7523  return getNode(Opcode, DL, VTList, Ops);
7524}
7525
7526SDVTList SelectionDAG::getVTList(EVT VT) {
7527  return makeVTList(SDNode::getValueTypeList(VT), 1);
7528}
7529
7530SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7531  FoldingSetNodeID ID;
7532  ID.AddInteger(2U);
7533  ID.AddInteger(VT1.getRawBits());
7534  ID.AddInteger(VT2.getRawBits());
7535
7536  void *IP = nullptr;
7537  SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7538  if (!Result) {
7539    EVT *Array = Allocator.Allocate<EVT>(2);
7540    Array[0] = VT1;
7541    Array[1] = VT2;
7542    Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7543    VTListMap.InsertNode(Result, IP);
7544  }
7545  return Result->getSDVTList();
7546}
7547
7548SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7549  FoldingSetNodeID ID;
7550  ID.AddInteger(3U);
7551  ID.AddInteger(VT1.getRawBits());
7552  ID.AddInteger(VT2.getRawBits());
7553  ID.AddInteger(VT3.getRawBits());
7554
7555  void *IP = nullptr;
7556  SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7557  if (!Result) {
7558    EVT *Array = Allocator.Allocate<EVT>(3);
7559    Array[0] = VT1;
7560    Array[1] = VT2;
7561    Array[2] = VT3;
7562    Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7563    VTListMap.InsertNode(Result, IP);
7564  }
7565  return Result->getSDVTList();
7566}
7567
7568SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7569  FoldingSetNodeID ID;
7570  ID.AddInteger(4U);
7571  ID.AddInteger(VT1.getRawBits());
7572  ID.AddInteger(VT2.getRawBits());
7573  ID.AddInteger(VT3.getRawBits());
7574  ID.AddInteger(VT4.getRawBits());
7575
7576  void *IP = nullptr;
7577  SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7578  if (!Result) {
7579    EVT *Array = Allocator.Allocate<EVT>(4);
7580    Array[0] = VT1;
7581    Array[1] = VT2;
7582    Array[2] = VT3;
7583    Array[3] = VT4;
7584    Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7585    VTListMap.InsertNode(Result, IP);
7586  }
7587  return Result->getSDVTList();
7588}
7589
7590SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7591  unsigned NumVTs = VTs.size();
7592  FoldingSetNodeID ID;
7593  ID.AddInteger(NumVTs);
7594  for (unsigned index = 0; index < NumVTs; index++) {
7595    ID.AddInteger(VTs[index].getRawBits());
7596  }
7597
7598  void *IP = nullptr;
7599  SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7600  if (!Result) {
7601    EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7602    llvm::copy(VTs, Array);
7603    Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7604    VTListMap.InsertNode(Result, IP);
7605  }
7606  return Result->getSDVTList();
7607}
7608
7609
7610/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7611/// specified operands.  If the resultant node already exists in the DAG,
7612/// this does not modify the specified node, instead it returns the node that
7613/// already exists.  If the resultant node does not exist in the DAG, the
7614/// input node is returned.  As a degenerate case, if you specify the same
7615/// input operands as the node already has, the input node is returned.
7616SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7617  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7618
7619  // Check to see if there is no change.
7620  if (Op == N->getOperand(0)) return N;
7621
7622  // See if the modified node already exists.
7623  void *InsertPos = nullptr;
7624  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7625    return Existing;
7626
7627  // Nope it doesn't.  Remove the node from its current place in the maps.
7628  if (InsertPos)
7629    if (!RemoveNodeFromCSEMaps(N))
7630      InsertPos = nullptr;
7631
7632  // Now we update the operands.
7633  N->OperandList[0].set(Op);
7634
7635  updateDivergence(N);
7636  // If this gets put into a CSE map, add it.
7637  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7638  return N;
7639}
7640
7641SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7642  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7643
7644  // Check to see if there is no change.
7645  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7646    return N;   // No operands changed, just return the input node.
7647
7648  // See if the modified node already exists.
7649  void *InsertPos = nullptr;
7650  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7651    return Existing;
7652
7653  // Nope it doesn't.  Remove the node from its current place in the maps.
7654  if (InsertPos)
7655    if (!RemoveNodeFromCSEMaps(N))
7656      InsertPos = nullptr;
7657
7658  // Now we update the operands.
7659  if (N->OperandList[0] != Op1)
7660    N->OperandList[0].set(Op1);
7661  if (N->OperandList[1] != Op2)
7662    N->OperandList[1].set(Op2);
7663
7664  updateDivergence(N);
7665  // If this gets put into a CSE map, add it.
7666  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7667  return N;
7668}
7669
7670SDNode *SelectionDAG::
7671UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7672  SDValue Ops[] = { Op1, Op2, Op3 };
7673  return UpdateNodeOperands(N, Ops);
7674}
7675
7676SDNode *SelectionDAG::
7677UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7678                   SDValue Op3, SDValue Op4) {
7679  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7680  return UpdateNodeOperands(N, Ops);
7681}
7682
7683SDNode *SelectionDAG::
7684UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7685                   SDValue Op3, SDValue Op4, SDValue Op5) {
7686  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7687  return UpdateNodeOperands(N, Ops);
7688}
7689
7690SDNode *SelectionDAG::
7691UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7692  unsigned NumOps = Ops.size();
7693  assert(N->getNumOperands() == NumOps &&
7694         "Update with wrong number of operands");
7695
7696  // If no operands changed just return the input node.
7697  if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7698    return N;
7699
7700  // See if the modified node already exists.
7701  void *InsertPos = nullptr;
7702  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7703    return Existing;
7704
7705  // Nope it doesn't.  Remove the node from its current place in the maps.
7706  if (InsertPos)
7707    if (!RemoveNodeFromCSEMaps(N))
7708      InsertPos = nullptr;
7709
7710  // Now we update the operands.
7711  for (unsigned i = 0; i != NumOps; ++i)
7712    if (N->OperandList[i] != Ops[i])
7713      N->OperandList[i].set(Ops[i]);
7714
7715  updateDivergence(N);
7716  // If this gets put into a CSE map, add it.
7717  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7718  return N;
7719}
7720
7721/// DropOperands - Release the operands and set this node to have
7722/// zero operands.
7723void SDNode::DropOperands() {
7724  // Unlike the code in MorphNodeTo that does this, we don't need to
7725  // watch for dead nodes here.
7726  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7727    SDUse &Use = *I++;
7728    Use.set(SDValue());
7729  }
7730}
7731
7732void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7733                                  ArrayRef<MachineMemOperand *> NewMemRefs) {
7734  if (NewMemRefs.empty()) {
7735    N->clearMemRefs();
7736    return;
7737  }
7738
7739  // Check if we can avoid allocating by storing a single reference directly.
7740  if (NewMemRefs.size() == 1) {
7741    N->MemRefs = NewMemRefs[0];
7742    N->NumMemRefs = 1;
7743    return;
7744  }
7745
7746  MachineMemOperand **MemRefsBuffer =
7747      Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7748  llvm::copy(NewMemRefs, MemRefsBuffer);
7749  N->MemRefs = MemRefsBuffer;
7750  N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7751}
7752
7753/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7754/// machine opcode.
7755///
7756SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7757                                   EVT VT) {
7758  SDVTList VTs = getVTList(VT);
7759  return SelectNodeTo(N, MachineOpc, VTs, None);
7760}
7761
7762SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7763                                   EVT VT, SDValue Op1) {
7764  SDVTList VTs = getVTList(VT);
7765  SDValue Ops[] = { Op1 };
7766  return SelectNodeTo(N, MachineOpc, VTs, Ops);
7767}
7768
7769SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7770                                   EVT VT, SDValue Op1,
7771                                   SDValue Op2) {
7772  SDVTList VTs = getVTList(VT);
7773  SDValue Ops[] = { Op1, Op2 };
7774  return SelectNodeTo(N, MachineOpc, VTs, Ops);
7775}
7776
7777SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7778                                   EVT VT, SDValue Op1,
7779                                   SDValue Op2, SDValue Op3) {
7780  SDVTList VTs = getVTList(VT);
7781  SDValue Ops[] = { Op1, Op2, Op3 };
7782  return SelectNodeTo(N, MachineOpc, VTs, Ops);
7783}
7784
7785SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7786                                   EVT VT, ArrayRef<SDValue> Ops) {
7787  SDVTList VTs = getVTList(VT);
7788  return SelectNodeTo(N, MachineOpc, VTs, Ops);
7789}
7790
7791SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7792                                   EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7793  SDVTList VTs = getVTList(VT1, VT2);
7794  return SelectNodeTo(N, MachineOpc, VTs, Ops);
7795}
7796
7797SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7798                                   EVT VT1, EVT VT2) {
7799  SDVTList VTs = getVTList(VT1, VT2);
7800  return SelectNodeTo(N, MachineOpc, VTs, None);
7801}
7802
7803SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7804                                   EVT VT1, EVT VT2, EVT VT3,
7805                                   ArrayRef<SDValue> Ops) {
7806  SDVTList VTs = getVTList(VT1, VT2, VT3);
7807  return SelectNodeTo(N, MachineOpc, VTs, Ops);
7808}
7809
7810SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7811                                   EVT VT1, EVT VT2,
7812                                   SDValue Op1, SDValue Op2) {
7813  SDVTList VTs = getVTList(VT1, VT2);
7814  SDValue Ops[] = { Op1, Op2 };
7815  return SelectNodeTo(N, MachineOpc, VTs, Ops);
7816}
7817
7818SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7819                                   SDVTList VTs,ArrayRef<SDValue> Ops) {
7820  SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7821  // Reset the NodeID to -1.
7822  New->setNodeId(-1);
7823  if (New != N) {
7824    ReplaceAllUsesWith(N, New);
7825    RemoveDeadNode(N);
7826  }
7827  return New;
7828}
7829
7830/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7831/// the line number information on the merged node since it is not possible to
7832/// preserve the information that operation is associated with multiple lines.
7833/// This will make the debugger working better at -O0, were there is a higher
7834/// probability having other instructions associated with that line.
7835///
7836/// For IROrder, we keep the smaller of the two
7837SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7838  DebugLoc NLoc = N->getDebugLoc();
7839  if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7840    N->setDebugLoc(DebugLoc());
7841  }
7842  unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7843  N->setIROrder(Order);
7844  return N;
7845}
7846
7847/// MorphNodeTo - This *mutates* the specified node to have the specified
7848/// return type, opcode, and operands.
7849///
7850/// Note that MorphNodeTo returns the resultant node.  If there is already a
7851/// node of the specified opcode and operands, it returns that node instead of
7852/// the current one.  Note that the SDLoc need not be the same.
7853///
7854/// Using MorphNodeTo is faster than creating a new node and swapping it in
7855/// with ReplaceAllUsesWith both because it often avoids allocating a new
7856/// node, and because it doesn't require CSE recalculation for any of
7857/// the node's users.
7858///
7859/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7860/// As a consequence it isn't appropriate to use from within the DAG combiner or
7861/// the legalizer which maintain worklists that would need to be updated when
7862/// deleting things.
7863SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7864                                  SDVTList VTs, ArrayRef<SDValue> Ops) {
7865  // If an identical node already exists, use it.
7866  void *IP = nullptr;
7867  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7868    FoldingSetNodeID ID;
7869    AddNodeIDNode(ID, Opc, VTs, Ops);
7870    if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7871      return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7872  }
7873
7874  if (!RemoveNodeFromCSEMaps(N))
7875    IP = nullptr;
7876
7877  // Start the morphing.
7878  N->NodeType = Opc;
7879  N->ValueList = VTs.VTs;
7880  N->NumValues = VTs.NumVTs;
7881
7882  // Clear the operands list, updating used nodes to remove this from their
7883  // use list.  Keep track of any operands that become dead as a result.
7884  SmallPtrSet<SDNode*, 16> DeadNodeSet;
7885  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7886    SDUse &Use = *I++;
7887    SDNode *Used = Use.getNode();
7888    Use.set(SDValue());
7889    if (Used->use_empty())
7890      DeadNodeSet.insert(Used);
7891  }
7892
7893  // For MachineNode, initialize the memory references information.
7894  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7895    MN->clearMemRefs();
7896
7897  // Swap for an appropriately sized array from the recycler.
7898  removeOperands(N);
7899  createOperands(N, Ops);
7900
7901  // Delete any nodes that are still dead after adding the uses for the
7902  // new operands.
7903  if (!DeadNodeSet.empty()) {
7904    SmallVector<SDNode *, 16> DeadNodes;
7905    for (SDNode *N : DeadNodeSet)
7906      if (N->use_empty())
7907        DeadNodes.push_back(N);
7908    RemoveDeadNodes(DeadNodes);
7909  }
7910
7911  if (IP)
7912    CSEMap.InsertNode(N, IP);   // Memoize the new node.
7913  return N;
7914}
7915
7916SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7917  unsigned OrigOpc = Node->getOpcode();
7918  unsigned NewOpc;
7919  switch (OrigOpc) {
7920  default:
7921    llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7922#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
7923  case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
7924#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7925  case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
7926#include "llvm/IR/ConstrainedOps.def"
7927  }
7928
7929  assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7930
7931  // We're taking this node out of the chain, so we need to re-link things.
7932  SDValue InputChain = Node->getOperand(0);
7933  SDValue OutputChain = SDValue(Node, 1);
7934  ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7935
7936  SmallVector<SDValue, 3> Ops;
7937  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7938    Ops.push_back(Node->getOperand(i));
7939
7940  SDVTList VTs = getVTList(Node->getValueType(0));
7941  SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7942
7943  // MorphNodeTo can operate in two ways: if an existing node with the
7944  // specified operands exists, it can just return it.  Otherwise, it
7945  // updates the node in place to have the requested operands.
7946  if (Res == Node) {
7947    // If we updated the node in place, reset the node ID.  To the isel,
7948    // this should be just like a newly allocated machine node.
7949    Res->setNodeId(-1);
7950  } else {
7951    ReplaceAllUsesWith(Node, Res);
7952    RemoveDeadNode(Node);
7953  }
7954
7955  return Res;
7956}
7957
7958/// getMachineNode - These are used for target selectors to create a new node
7959/// with specified return type(s), MachineInstr opcode, and operands.
7960///
7961/// Note that getMachineNode returns the resultant node.  If there is already a
7962/// node of the specified opcode and operands, it returns that node instead of
7963/// the current one.
7964MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7965                                            EVT VT) {
7966  SDVTList VTs = getVTList(VT);
7967  return getMachineNode(Opcode, dl, VTs, None);
7968}
7969
7970MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7971                                            EVT VT, SDValue Op1) {
7972  SDVTList VTs = getVTList(VT);
7973  SDValue Ops[] = { Op1 };
7974  return getMachineNode(Opcode, dl, VTs, Ops);
7975}
7976
7977MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7978                                            EVT VT, SDValue Op1, SDValue Op2) {
7979  SDVTList VTs = getVTList(VT);
7980  SDValue Ops[] = { Op1, Op2 };
7981  return getMachineNode(Opcode, dl, VTs, Ops);
7982}
7983
7984MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7985                                            EVT VT, SDValue Op1, SDValue Op2,
7986                                            SDValue Op3) {
7987  SDVTList VTs = getVTList(VT);
7988  SDValue Ops[] = { Op1, Op2, Op3 };
7989  return getMachineNode(Opcode, dl, VTs, Ops);
7990}
7991
7992MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7993                                            EVT VT, ArrayRef<SDValue> Ops) {
7994  SDVTList VTs = getVTList(VT);
7995  return getMachineNode(Opcode, dl, VTs, Ops);
7996}
7997
7998MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7999                                            EVT VT1, EVT VT2, SDValue Op1,
8000                                            SDValue Op2) {
8001  SDVTList VTs = getVTList(VT1, VT2);
8002  SDValue Ops[] = { Op1, Op2 };
8003  return getMachineNode(Opcode, dl, VTs, Ops);
8004}
8005
8006MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8007                                            EVT VT1, EVT VT2, SDValue Op1,
8008                                            SDValue Op2, SDValue Op3) {
8009  SDVTList VTs = getVTList(VT1, VT2);
8010  SDValue Ops[] = { Op1, Op2, Op3 };
8011  return getMachineNode(Opcode, dl, VTs, Ops);
8012}
8013
8014MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8015                                            EVT VT1, EVT VT2,
8016                                            ArrayRef<SDValue> Ops) {
8017  SDVTList VTs = getVTList(VT1, VT2);
8018  return getMachineNode(Opcode, dl, VTs, Ops);
8019}
8020
8021MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8022                                            EVT VT1, EVT VT2, EVT VT3,
8023                                            SDValue Op1, SDValue Op2) {
8024  SDVTList VTs = getVTList(VT1, VT2, VT3);
8025  SDValue Ops[] = { Op1, Op2 };
8026  return getMachineNode(Opcode, dl, VTs, Ops);
8027}
8028
8029MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8030                                            EVT VT1, EVT VT2, EVT VT3,
8031                                            SDValue Op1, SDValue Op2,
8032                                            SDValue Op3) {
8033  SDVTList VTs = getVTList(VT1, VT2, VT3);
8034  SDValue Ops[] = { Op1, Op2, Op3 };
8035  return getMachineNode(Opcode, dl, VTs, Ops);
8036}
8037
8038MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8039                                            EVT VT1, EVT VT2, EVT VT3,
8040                                            ArrayRef<SDValue> Ops) {
8041  SDVTList VTs = getVTList(VT1, VT2, VT3);
8042  return getMachineNode(Opcode, dl, VTs, Ops);
8043}
8044
8045MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8046                                            ArrayRef<EVT> ResultTys,
8047                                            ArrayRef<SDValue> Ops) {
8048  SDVTList VTs = getVTList(ResultTys);
8049  return getMachineNode(Opcode, dl, VTs, Ops);
8050}
8051
8052MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8053                                            SDVTList VTs,
8054                                            ArrayRef<SDValue> Ops) {
8055  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8056  MachineSDNode *N;
8057  void *IP = nullptr;
8058
8059  if (DoCSE) {
8060    FoldingSetNodeID ID;
8061    AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8062    IP = nullptr;
8063    if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8064      return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8065    }
8066  }
8067
8068  // Allocate a new MachineSDNode.
8069  N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8070  createOperands(N, Ops);
8071
8072  if (DoCSE)
8073    CSEMap.InsertNode(N, IP);
8074
8075  InsertNode(N);
8076  NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8077  return N;
8078}
8079
8080/// getTargetExtractSubreg - A convenience function for creating
8081/// TargetOpcode::EXTRACT_SUBREG nodes.
8082SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8083                                             SDValue Operand) {
8084  SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8085  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8086                                  VT, Operand, SRIdxVal);
8087  return SDValue(Subreg, 0);
8088}
8089
8090/// getTargetInsertSubreg - A convenience function for creating
8091/// TargetOpcode::INSERT_SUBREG nodes.
8092SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8093                                            SDValue Operand, SDValue Subreg) {
8094  SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8095  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8096                                  VT, Operand, Subreg, SRIdxVal);
8097  return SDValue(Result, 0);
8098}
8099
8100/// getNodeIfExists - Get the specified node if it's already available, or
8101/// else return NULL.
8102SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8103                                      ArrayRef<SDValue> Ops,
8104                                      const SDNodeFlags Flags) {
8105  if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8106    FoldingSetNodeID ID;
8107    AddNodeIDNode(ID, Opcode, VTList, Ops);
8108    void *IP = nullptr;
8109    if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8110      E->intersectFlagsWith(Flags);
8111      return E;
8112    }
8113  }
8114  return nullptr;
8115}
8116
8117/// getDbgValue - Creates a SDDbgValue node.
8118///
8119/// SDNode
8120SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8121                                      SDNode *N, unsigned R, bool IsIndirect,
8122                                      const DebugLoc &DL, unsigned O) {
8123  assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8124         "Expected inlined-at fields to agree");
8125  return new (DbgInfo->getAlloc())
8126      SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8127}
8128
8129/// Constant
8130SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8131                                              DIExpression *Expr,
8132                                              const Value *C,
8133                                              const DebugLoc &DL, unsigned O) {
8134  assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8135         "Expected inlined-at fields to agree");
8136  return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8137}
8138
8139/// FrameIndex
8140SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8141                                                DIExpression *Expr, unsigned FI,
8142                                                bool IsIndirect,
8143                                                const DebugLoc &DL,
8144                                                unsigned O) {
8145  assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8146         "Expected inlined-at fields to agree");
8147  return new (DbgInfo->getAlloc())
8148      SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8149}
8150
8151/// VReg
8152SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8153                                          DIExpression *Expr,
8154                                          unsigned VReg, bool IsIndirect,
8155                                          const DebugLoc &DL, unsigned O) {
8156  assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8157         "Expected inlined-at fields to agree");
8158  return new (DbgInfo->getAlloc())
8159      SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8160}
8161
8162void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8163                                     unsigned OffsetInBits, unsigned SizeInBits,
8164                                     bool InvalidateDbg) {
8165  SDNode *FromNode = From.getNode();
8166  SDNode *ToNode = To.getNode();
8167  assert(FromNode && ToNode && "Can't modify dbg values");
8168
8169  // PR35338
8170  // TODO: assert(From != To && "Redundant dbg value transfer");
8171  // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8172  if (From == To || FromNode == ToNode)
8173    return;
8174
8175  if (!FromNode->getHasDebugValue())
8176    return;
8177
8178  SmallVector<SDDbgValue *, 2> ClonedDVs;
8179  for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8180    if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8181      continue;
8182
8183    // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8184
8185    // Just transfer the dbg value attached to From.
8186    if (Dbg->getResNo() != From.getResNo())
8187      continue;
8188
8189    DIVariable *Var = Dbg->getVariable();
8190    auto *Expr = Dbg->getExpression();
8191    // If a fragment is requested, update the expression.
8192    if (SizeInBits) {
8193      // When splitting a larger (e.g., sign-extended) value whose
8194      // lower bits are described with an SDDbgValue, do not attempt
8195      // to transfer the SDDbgValue to the upper bits.
8196      if (auto FI = Expr->getFragmentInfo())
8197        if (OffsetInBits + SizeInBits > FI->SizeInBits)
8198          continue;
8199      auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8200                                                             SizeInBits);
8201      if (!Fragment)
8202        continue;
8203      Expr = *Fragment;
8204    }
8205    // Clone the SDDbgValue and move it to To.
8206    SDDbgValue *Clone = getDbgValue(
8207        Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8208        std::max(ToNode->getIROrder(), Dbg->getOrder()));
8209    ClonedDVs.push_back(Clone);
8210
8211    if (InvalidateDbg) {
8212      // Invalidate value and indicate the SDDbgValue should not be emitted.
8213      Dbg->setIsInvalidated();
8214      Dbg->setIsEmitted();
8215    }
8216  }
8217
8218  for (SDDbgValue *Dbg : ClonedDVs)
8219    AddDbgValue(Dbg, ToNode, false);
8220}
8221
8222void SelectionDAG::salvageDebugInfo(SDNode &N) {
8223  if (!N.getHasDebugValue())
8224    return;
8225
8226  SmallVector<SDDbgValue *, 2> ClonedDVs;
8227  for (auto DV : GetDbgValues(&N)) {
8228    if (DV->isInvalidated())
8229      continue;
8230    switch (N.getOpcode()) {
8231    default:
8232      break;
8233    case ISD::ADD:
8234      SDValue N0 = N.getOperand(0);
8235      SDValue N1 = N.getOperand(1);
8236      if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8237          isConstantIntBuildVectorOrConstantInt(N1)) {
8238        uint64_t Offset = N.getConstantOperandVal(1);
8239        // Rewrite an ADD constant node into a DIExpression. Since we are
8240        // performing arithmetic to compute the variable's *value* in the
8241        // DIExpression, we need to mark the expression with a
8242        // DW_OP_stack_value.
8243        auto *DIExpr = DV->getExpression();
8244        DIExpr =
8245            DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8246        SDDbgValue *Clone =
8247            getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8248                        DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8249        ClonedDVs.push_back(Clone);
8250        DV->setIsInvalidated();
8251        DV->setIsEmitted();
8252        LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8253                   N0.getNode()->dumprFull(this);
8254                   dbgs() << " into " << *DIExpr << '\n');
8255      }
8256    }
8257  }
8258
8259  for (SDDbgValue *Dbg : ClonedDVs)
8260    AddDbgValue(Dbg, Dbg->getSDNode(), false);
8261}
8262
8263/// Creates a SDDbgLabel node.
8264SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8265                                      const DebugLoc &DL, unsigned O) {
8266  assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8267         "Expected inlined-at fields to agree");
8268  return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8269}
8270
8271namespace {
8272
8273/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8274/// pointed to by a use iterator is deleted, increment the use iterator
8275/// so that it doesn't dangle.
8276///
8277class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8278  SDNode::use_iterator &UI;
8279  SDNode::use_iterator &UE;
8280
8281  void NodeDeleted(SDNode *N, SDNode *E) override {
8282    // Increment the iterator as needed.
8283    while (UI != UE && N == *UI)
8284      ++UI;
8285  }
8286
8287public:
8288  RAUWUpdateListener(SelectionDAG &d,
8289                     SDNode::use_iterator &ui,
8290                     SDNode::use_iterator &ue)
8291    : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8292};
8293
8294} // end anonymous namespace
8295
8296/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8297/// This can cause recursive merging of nodes in the DAG.
8298///
8299/// This version assumes From has a single result value.
8300///
8301void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8302  SDNode *From = FromN.getNode();
8303  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8304         "Cannot replace with this method!");
8305  assert(From != To.getNode() && "Cannot replace uses of with self");
8306
8307  // Preserve Debug Values
8308  transferDbgValues(FromN, To);
8309
8310  // Iterate over all the existing uses of From. New uses will be added
8311  // to the beginning of the use list, which we avoid visiting.
8312  // This specifically avoids visiting uses of From that arise while the
8313  // replacement is happening, because any such uses would be the result
8314  // of CSE: If an existing node looks like From after one of its operands
8315  // is replaced by To, we don't want to replace of all its users with To
8316  // too. See PR3018 for more info.
8317  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8318  RAUWUpdateListener Listener(*this, UI, UE);
8319  while (UI != UE) {
8320    SDNode *User = *UI;
8321
8322    // This node is about to morph, remove its old self from the CSE maps.
8323    RemoveNodeFromCSEMaps(User);
8324
8325    // A user can appear in a use list multiple times, and when this
8326    // happens the uses are usually next to each other in the list.
8327    // To help reduce the number of CSE recomputations, process all
8328    // the uses of this user that we can find this way.
8329    do {
8330      SDUse &Use = UI.getUse();
8331      ++UI;
8332      Use.set(To);
8333      if (To->isDivergent() != From->isDivergent())
8334        updateDivergence(User);
8335    } while (UI != UE && *UI == User);
8336    // Now that we have modified User, add it back to the CSE maps.  If it
8337    // already exists there, recursively merge the results together.
8338    AddModifiedNodeToCSEMaps(User);
8339  }
8340
8341  // If we just RAUW'd the root, take note.
8342  if (FromN == getRoot())
8343    setRoot(To);
8344}
8345
8346/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8347/// This can cause recursive merging of nodes in the DAG.
8348///
8349/// This version assumes that for each value of From, there is a
8350/// corresponding value in To in the same position with the same type.
8351///
8352void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8353#ifndef NDEBUG
8354  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8355    assert((!From->hasAnyUseOfValue(i) ||
8356            From->getValueType(i) == To->getValueType(i)) &&
8357           "Cannot use this version of ReplaceAllUsesWith!");
8358#endif
8359
8360  // Handle the trivial case.
8361  if (From == To)
8362    return;
8363
8364  // Preserve Debug Info. Only do this if there's a use.
8365  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8366    if (From->hasAnyUseOfValue(i)) {
8367      assert((i < To->getNumValues()) && "Invalid To location");
8368      transferDbgValues(SDValue(From, i), SDValue(To, i));
8369    }
8370
8371  // Iterate over just the existing users of From. See the comments in
8372  // the ReplaceAllUsesWith above.
8373  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8374  RAUWUpdateListener Listener(*this, UI, UE);
8375  while (UI != UE) {
8376    SDNode *User = *UI;
8377
8378    // This node is about to morph, remove its old self from the CSE maps.
8379    RemoveNodeFromCSEMaps(User);
8380
8381    // A user can appear in a use list multiple times, and when this
8382    // happens the uses are usually next to each other in the list.
8383    // To help reduce the number of CSE recomputations, process all
8384    // the uses of this user that we can find this way.
8385    do {
8386      SDUse &Use = UI.getUse();
8387      ++UI;
8388      Use.setNode(To);
8389      if (To->isDivergent() != From->isDivergent())
8390        updateDivergence(User);
8391    } while (UI != UE && *UI == User);
8392
8393    // Now that we have modified User, add it back to the CSE maps.  If it
8394    // already exists there, recursively merge the results together.
8395    AddModifiedNodeToCSEMaps(User);
8396  }
8397
8398  // If we just RAUW'd the root, take note.
8399  if (From == getRoot().getNode())
8400    setRoot(SDValue(To, getRoot().getResNo()));
8401}
8402
8403/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8404/// This can cause recursive merging of nodes in the DAG.
8405///
8406/// This version can replace From with any result values.  To must match the
8407/// number and types of values returned by From.
8408void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8409  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8410    return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8411
8412  // Preserve Debug Info.
8413  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8414    transferDbgValues(SDValue(From, i), To[i]);
8415
8416  // Iterate over just the existing users of From. See the comments in
8417  // the ReplaceAllUsesWith above.
8418  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8419  RAUWUpdateListener Listener(*this, UI, UE);
8420  while (UI != UE) {
8421    SDNode *User = *UI;
8422
8423    // This node is about to morph, remove its old self from the CSE maps.
8424    RemoveNodeFromCSEMaps(User);
8425
8426    // A user can appear in a use list multiple times, and when this happens the
8427    // uses are usually next to each other in the list.  To help reduce the
8428    // number of CSE and divergence recomputations, process all the uses of this
8429    // user that we can find this way.
8430    bool To_IsDivergent = false;
8431    do {
8432      SDUse &Use = UI.getUse();
8433      const SDValue &ToOp = To[Use.getResNo()];
8434      ++UI;
8435      Use.set(ToOp);
8436      To_IsDivergent |= ToOp->isDivergent();
8437    } while (UI != UE && *UI == User);
8438
8439    if (To_IsDivergent != From->isDivergent())
8440      updateDivergence(User);
8441
8442    // Now that we have modified User, add it back to the CSE maps.  If it
8443    // already exists there, recursively merge the results together.
8444    AddModifiedNodeToCSEMaps(User);
8445  }
8446
8447  // If we just RAUW'd the root, take note.
8448  if (From == getRoot().getNode())
8449    setRoot(SDValue(To[getRoot().getResNo()]));
8450}
8451
8452/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8453/// uses of other values produced by From.getNode() alone.  The Deleted
8454/// vector is handled the same way as for ReplaceAllUsesWith.
8455void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8456  // Handle the really simple, really trivial case efficiently.
8457  if (From == To) return;
8458
8459  // Handle the simple, trivial, case efficiently.
8460  if (From.getNode()->getNumValues() == 1) {
8461    ReplaceAllUsesWith(From, To);
8462    return;
8463  }
8464
8465  // Preserve Debug Info.
8466  transferDbgValues(From, To);
8467
8468  // Iterate over just the existing users of From. See the comments in
8469  // the ReplaceAllUsesWith above.
8470  SDNode::use_iterator UI = From.getNode()->use_begin(),
8471                       UE = From.getNode()->use_end();
8472  RAUWUpdateListener Listener(*this, UI, UE);
8473  while (UI != UE) {
8474    SDNode *User = *UI;
8475    bool UserRemovedFromCSEMaps = false;
8476
8477    // A user can appear in a use list multiple times, and when this
8478    // happens the uses are usually next to each other in the list.
8479    // To help reduce the number of CSE recomputations, process all
8480    // the uses of this user that we can find this way.
8481    do {
8482      SDUse &Use = UI.getUse();
8483
8484      // Skip uses of different values from the same node.
8485      if (Use.getResNo() != From.getResNo()) {
8486        ++UI;
8487        continue;
8488      }
8489
8490      // If this node hasn't been modified yet, it's still in the CSE maps,
8491      // so remove its old self from the CSE maps.
8492      if (!UserRemovedFromCSEMaps) {
8493        RemoveNodeFromCSEMaps(User);
8494        UserRemovedFromCSEMaps = true;
8495      }
8496
8497      ++UI;
8498      Use.set(To);
8499      if (To->isDivergent() != From->isDivergent())
8500        updateDivergence(User);
8501    } while (UI != UE && *UI == User);
8502    // We are iterating over all uses of the From node, so if a use
8503    // doesn't use the specific value, no changes are made.
8504    if (!UserRemovedFromCSEMaps)
8505      continue;
8506
8507    // Now that we have modified User, add it back to the CSE maps.  If it
8508    // already exists there, recursively merge the results together.
8509    AddModifiedNodeToCSEMaps(User);
8510  }
8511
8512  // If we just RAUW'd the root, take note.
8513  if (From == getRoot())
8514    setRoot(To);
8515}
8516
8517namespace {
8518
8519  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8520  /// to record information about a use.
8521  struct UseMemo {
8522    SDNode *User;
8523    unsigned Index;
8524    SDUse *Use;
8525  };
8526
8527  /// operator< - Sort Memos by User.
8528  bool operator<(const UseMemo &L, const UseMemo &R) {
8529    return (intptr_t)L.User < (intptr_t)R.User;
8530  }
8531
8532} // end anonymous namespace
8533
8534void SelectionDAG::updateDivergence(SDNode * N)
8535{
8536  if (TLI->isSDNodeAlwaysUniform(N))
8537    return;
8538  bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8539  for (auto &Op : N->ops()) {
8540    if (Op.Val.getValueType() != MVT::Other)
8541      IsDivergent |= Op.getNode()->isDivergent();
8542  }
8543  if (N->SDNodeBits.IsDivergent != IsDivergent) {
8544    N->SDNodeBits.IsDivergent = IsDivergent;
8545    for (auto U : N->uses()) {
8546      updateDivergence(U);
8547    }
8548  }
8549}
8550
8551void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8552  DenseMap<SDNode *, unsigned> Degree;
8553  Order.reserve(AllNodes.size());
8554  for (auto &N : allnodes()) {
8555    unsigned NOps = N.getNumOperands();
8556    Degree[&N] = NOps;
8557    if (0 == NOps)
8558      Order.push_back(&N);
8559  }
8560  for (size_t I = 0; I != Order.size(); ++I) {
8561    SDNode *N = Order[I];
8562    for (auto U : N->uses()) {
8563      unsigned &UnsortedOps = Degree[U];
8564      if (0 == --UnsortedOps)
8565        Order.push_back(U);
8566    }
8567  }
8568}
8569
8570#ifndef NDEBUG
8571void SelectionDAG::VerifyDAGDiverence() {
8572  std::vector<SDNode *> TopoOrder;
8573  CreateTopologicalOrder(TopoOrder);
8574  const TargetLowering &TLI = getTargetLoweringInfo();
8575  DenseMap<const SDNode *, bool> DivergenceMap;
8576  for (auto &N : allnodes()) {
8577    DivergenceMap[&N] = false;
8578  }
8579  for (auto N : TopoOrder) {
8580    bool IsDivergent = DivergenceMap[N];
8581    bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8582    for (auto &Op : N->ops()) {
8583      if (Op.Val.getValueType() != MVT::Other)
8584        IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8585    }
8586    if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8587      DivergenceMap[N] = true;
8588    }
8589  }
8590  for (auto &N : allnodes()) {
8591    (void)N;
8592    assert(DivergenceMap[&N] == N.isDivergent() &&
8593           "Divergence bit inconsistency detected\n");
8594  }
8595}
8596#endif
8597
8598/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8599/// uses of other values produced by From.getNode() alone.  The same value
8600/// may appear in both the From and To list.  The Deleted vector is
8601/// handled the same way as for ReplaceAllUsesWith.
8602void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8603                                              const SDValue *To,
8604                                              unsigned Num){
8605  // Handle the simple, trivial case efficiently.
8606  if (Num == 1)
8607    return ReplaceAllUsesOfValueWith(*From, *To);
8608
8609  transferDbgValues(*From, *To);
8610
8611  // Read up all the uses and make records of them. This helps
8612  // processing new uses that are introduced during the
8613  // replacement process.
8614  SmallVector<UseMemo, 4> Uses;
8615  for (unsigned i = 0; i != Num; ++i) {
8616    unsigned FromResNo = From[i].getResNo();
8617    SDNode *FromNode = From[i].getNode();
8618    for (SDNode::use_iterator UI = FromNode->use_begin(),
8619         E = FromNode->use_end(); UI != E; ++UI) {
8620      SDUse &Use = UI.getUse();
8621      if (Use.getResNo() == FromResNo) {
8622        UseMemo Memo = { *UI, i, &Use };
8623        Uses.push_back(Memo);
8624      }
8625    }
8626  }
8627
8628  // Sort the uses, so that all the uses from a given User are together.
8629  llvm::sort(Uses);
8630
8631  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8632       UseIndex != UseIndexEnd; ) {
8633    // We know that this user uses some value of From.  If it is the right
8634    // value, update it.
8635    SDNode *User = Uses[UseIndex].User;
8636
8637    // This node is about to morph, remove its old self from the CSE maps.
8638    RemoveNodeFromCSEMaps(User);
8639
8640    // The Uses array is sorted, so all the uses for a given User
8641    // are next to each other in the list.
8642    // To help reduce the number of CSE recomputations, process all
8643    // the uses of this user that we can find this way.
8644    do {
8645      unsigned i = Uses[UseIndex].Index;
8646      SDUse &Use = *Uses[UseIndex].Use;
8647      ++UseIndex;
8648
8649      Use.set(To[i]);
8650    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8651
8652    // Now that we have modified User, add it back to the CSE maps.  If it
8653    // already exists there, recursively merge the results together.
8654    AddModifiedNodeToCSEMaps(User);
8655  }
8656}
8657
8658/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8659/// based on their topological order. It returns the maximum id and a vector
8660/// of the SDNodes* in assigned order by reference.
8661unsigned SelectionDAG::AssignTopologicalOrder() {
8662  unsigned DAGSize = 0;
8663
8664  // SortedPos tracks the progress of the algorithm. Nodes before it are
8665  // sorted, nodes after it are unsorted. When the algorithm completes
8666  // it is at the end of the list.
8667  allnodes_iterator SortedPos = allnodes_begin();
8668
8669  // Visit all the nodes. Move nodes with no operands to the front of
8670  // the list immediately. Annotate nodes that do have operands with their
8671  // operand count. Before we do this, the Node Id fields of the nodes
8672  // may contain arbitrary values. After, the Node Id fields for nodes
8673  // before SortedPos will contain the topological sort index, and the
8674  // Node Id fields for nodes At SortedPos and after will contain the
8675  // count of outstanding operands.
8676  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8677    SDNode *N = &*I++;
8678    checkForCycles(N, this);
8679    unsigned Degree = N->getNumOperands();
8680    if (Degree == 0) {
8681      // A node with no uses, add it to the result array immediately.
8682      N->setNodeId(DAGSize++);
8683      allnodes_iterator Q(N);
8684      if (Q != SortedPos)
8685        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8686      assert(SortedPos != AllNodes.end() && "Overran node list");
8687      ++SortedPos;
8688    } else {
8689      // Temporarily use the Node Id as scratch space for the degree count.
8690      N->setNodeId(Degree);
8691    }
8692  }
8693
8694  // Visit all the nodes. As we iterate, move nodes into sorted order,
8695  // such that by the time the end is reached all nodes will be sorted.
8696  for (SDNode &Node : allnodes()) {
8697    SDNode *N = &Node;
8698    checkForCycles(N, this);
8699    // N is in sorted position, so all its uses have one less operand
8700    // that needs to be sorted.
8701    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8702         UI != UE; ++UI) {
8703      SDNode *P = *UI;
8704      unsigned Degree = P->getNodeId();
8705      assert(Degree != 0 && "Invalid node degree");
8706      --Degree;
8707      if (Degree == 0) {
8708        // All of P's operands are sorted, so P may sorted now.
8709        P->setNodeId(DAGSize++);
8710        if (P->getIterator() != SortedPos)
8711          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8712        assert(SortedPos != AllNodes.end() && "Overran node list");
8713        ++SortedPos;
8714      } else {
8715        // Update P's outstanding operand count.
8716        P->setNodeId(Degree);
8717      }
8718    }
8719    if (Node.getIterator() == SortedPos) {
8720#ifndef NDEBUG
8721      allnodes_iterator I(N);
8722      SDNode *S = &*++I;
8723      dbgs() << "Overran sorted position:\n";
8724      S->dumprFull(this); dbgs() << "\n";
8725      dbgs() << "Checking if this is due to cycles\n";
8726      checkForCycles(this, true);
8727#endif
8728      llvm_unreachable(nullptr);
8729    }
8730  }
8731
8732  assert(SortedPos == AllNodes.end() &&
8733         "Topological sort incomplete!");
8734  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8735         "First node in topological sort is not the entry token!");
8736  assert(AllNodes.front().getNodeId() == 0 &&
8737         "First node in topological sort has non-zero id!");
8738  assert(AllNodes.front().getNumOperands() == 0 &&
8739         "First node in topological sort has operands!");
8740  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8741         "Last node in topologic sort has unexpected id!");
8742  assert(AllNodes.back().use_empty() &&
8743         "Last node in topologic sort has users!");
8744  assert(DAGSize == allnodes_size() && "Node count mismatch!");
8745  return DAGSize;
8746}
8747
8748/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8749/// value is produced by SD.
8750void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8751  if (SD) {
8752    assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8753    SD->setHasDebugValue(true);
8754  }
8755  DbgInfo->add(DB, SD, isParameter);
8756}
8757
8758void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8759  DbgInfo->add(DB);
8760}
8761
8762SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8763                                                   SDValue NewMemOp) {
8764  assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8765  // The new memory operation must have the same position as the old load in
8766  // terms of memory dependency. Create a TokenFactor for the old load and new
8767  // memory operation and update uses of the old load's output chain to use that
8768  // TokenFactor.
8769  SDValue OldChain = SDValue(OldLoad, 1);
8770  SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8771  if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8772    return NewChain;
8773
8774  SDValue TokenFactor =
8775      getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8776  ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8777  UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8778  return TokenFactor;
8779}
8780
8781SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8782                                                     Function **OutFunction) {
8783  assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8784
8785  auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8786  auto *Module = MF->getFunction().getParent();
8787  auto *Function = Module->getFunction(Symbol);
8788
8789  if (OutFunction != nullptr)
8790      *OutFunction = Function;
8791
8792  if (Function != nullptr) {
8793    auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8794    return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8795  }
8796
8797  std::string ErrorStr;
8798  raw_string_ostream ErrorFormatter(ErrorStr);
8799
8800  ErrorFormatter << "Undefined external symbol ";
8801  ErrorFormatter << '"' << Symbol << '"';
8802  ErrorFormatter.flush();
8803
8804  report_fatal_error(ErrorStr);
8805}
8806
8807//===----------------------------------------------------------------------===//
8808//                              SDNode Class
8809//===----------------------------------------------------------------------===//
8810
8811bool llvm::isNullConstant(SDValue V) {
8812  ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8813  return Const != nullptr && Const->isNullValue();
8814}
8815
8816bool llvm::isNullFPConstant(SDValue V) {
8817  ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8818  return Const != nullptr && Const->isZero() && !Const->isNegative();
8819}
8820
8821bool llvm::isAllOnesConstant(SDValue V) {
8822  ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8823  return Const != nullptr && Const->isAllOnesValue();
8824}
8825
8826bool llvm::isOneConstant(SDValue V) {
8827  ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8828  return Const != nullptr && Const->isOne();
8829}
8830
8831SDValue llvm::peekThroughBitcasts(SDValue V) {
8832  while (V.getOpcode() == ISD::BITCAST)
8833    V = V.getOperand(0);
8834  return V;
8835}
8836
8837SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8838  while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8839    V = V.getOperand(0);
8840  return V;
8841}
8842
8843SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8844  while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8845    V = V.getOperand(0);
8846  return V;
8847}
8848
8849bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8850  if (V.getOpcode() != ISD::XOR)
8851    return false;
8852  V = peekThroughBitcasts(V.getOperand(1));
8853  unsigned NumBits = V.getScalarValueSizeInBits();
8854  ConstantSDNode *C =
8855      isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8856  return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8857}
8858
8859ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8860                                          bool AllowTruncation) {
8861  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8862    return CN;
8863
8864  if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8865    BitVector UndefElements;
8866    ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8867
8868    // BuildVectors can truncate their operands. Ignore that case here unless
8869    // AllowTruncation is set.
8870    if (CN && (UndefElements.none() || AllowUndefs)) {
8871      EVT CVT = CN->getValueType(0);
8872      EVT NSVT = N.getValueType().getScalarType();
8873      assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8874      if (AllowTruncation || (CVT == NSVT))
8875        return CN;
8876    }
8877  }
8878
8879  return nullptr;
8880}
8881
8882ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8883                                          bool AllowUndefs,
8884                                          bool AllowTruncation) {
8885  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8886    return CN;
8887
8888  if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8889    BitVector UndefElements;
8890    ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8891
8892    // BuildVectors can truncate their operands. Ignore that case here unless
8893    // AllowTruncation is set.
8894    if (CN && (UndefElements.none() || AllowUndefs)) {
8895      EVT CVT = CN->getValueType(0);
8896      EVT NSVT = N.getValueType().getScalarType();
8897      assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8898      if (AllowTruncation || (CVT == NSVT))
8899        return CN;
8900    }
8901  }
8902
8903  return nullptr;
8904}
8905
8906ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8907  if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8908    return CN;
8909
8910  if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8911    BitVector UndefElements;
8912    ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8913    if (CN && (UndefElements.none() || AllowUndefs))
8914      return CN;
8915  }
8916
8917  return nullptr;
8918}
8919
8920ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8921                                              const APInt &DemandedElts,
8922                                              bool AllowUndefs) {
8923  if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8924    return CN;
8925
8926  if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8927    BitVector UndefElements;
8928    ConstantFPSDNode *CN =
8929        BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8930    if (CN && (UndefElements.none() || AllowUndefs))
8931      return CN;
8932  }
8933
8934  return nullptr;
8935}
8936
8937bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8938  // TODO: may want to use peekThroughBitcast() here.
8939  ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8940  return C && C->isNullValue();
8941}
8942
8943bool llvm::isOneOrOneSplat(SDValue N) {
8944  // TODO: may want to use peekThroughBitcast() here.
8945  unsigned BitWidth = N.getScalarValueSizeInBits();
8946  ConstantSDNode *C = isConstOrConstSplat(N);
8947  return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8948}
8949
8950bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8951  N = peekThroughBitcasts(N);
8952  unsigned BitWidth = N.getScalarValueSizeInBits();
8953  ConstantSDNode *C = isConstOrConstSplat(N);
8954  return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8955}
8956
8957HandleSDNode::~HandleSDNode() {
8958  DropOperands();
8959}
8960
8961GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8962                                         const DebugLoc &DL,
8963                                         const GlobalValue *GA, EVT VT,
8964                                         int64_t o, unsigned TF)
8965    : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8966  TheGlobal = GA;
8967}
8968
8969AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8970                                         EVT VT, unsigned SrcAS,
8971                                         unsigned DestAS)
8972    : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8973      SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8974
8975MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8976                     SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8977    : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8978  MemSDNodeBits.IsVolatile = MMO->isVolatile();
8979  MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8980  MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8981  MemSDNodeBits.IsInvariant = MMO->isInvariant();
8982
8983  // We check here that the size of the memory operand fits within the size of
8984  // the MMO. This is because the MMO might indicate only a possible address
8985  // range instead of specifying the affected memory addresses precisely.
8986  // TODO: Make MachineMemOperands aware of scalable vectors.
8987  assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
8988         "Size mismatch!");
8989}
8990
8991/// Profile - Gather unique data for the node.
8992///
8993void SDNode::Profile(FoldingSetNodeID &ID) const {
8994  AddNodeIDNode(ID, this);
8995}
8996
8997namespace {
8998
8999  struct EVTArray {
9000    std::vector<EVT> VTs;
9001
9002    EVTArray() {
9003      VTs.reserve(MVT::LAST_VALUETYPE);
9004      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9005        VTs.push_back(MVT((MVT::SimpleValueType)i));
9006    }
9007  };
9008
9009} // end anonymous namespace
9010
9011static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9012static ManagedStatic<EVTArray> SimpleVTArray;
9013static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9014
9015/// getValueTypeList - Return a pointer to the specified value type.
9016///
9017const EVT *SDNode::getValueTypeList(EVT VT) {
9018  if (VT.isExtended()) {
9019    sys::SmartScopedLock<true> Lock(*VTMutex);
9020    return &(*EVTs->insert(VT).first);
9021  } else {
9022    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9023           "Value type out of range!");
9024    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9025  }
9026}
9027
9028/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9029/// indicated value.  This method ignores uses of other values defined by this
9030/// operation.
9031bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9032  assert(Value < getNumValues() && "Bad value!");
9033
9034  // TODO: Only iterate over uses of a given value of the node
9035  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9036    if (UI.getUse().getResNo() == Value) {
9037      if (NUses == 0)
9038        return false;
9039      --NUses;
9040    }
9041  }
9042
9043  // Found exactly the right number of uses?
9044  return NUses == 0;
9045}
9046
9047/// hasAnyUseOfValue - Return true if there are any use of the indicated
9048/// value. This method ignores uses of other values defined by this operation.
9049bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9050  assert(Value < getNumValues() && "Bad value!");
9051
9052  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9053    if (UI.getUse().getResNo() == Value)
9054      return true;
9055
9056  return false;
9057}
9058
9059/// isOnlyUserOf - Return true if this node is the only use of N.
9060bool SDNode::isOnlyUserOf(const SDNode *N) const {
9061  bool Seen = false;
9062  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9063    SDNode *User = *I;
9064    if (User == this)
9065      Seen = true;
9066    else
9067      return false;
9068  }
9069
9070  return Seen;
9071}
9072
9073/// Return true if the only users of N are contained in Nodes.
9074bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9075  bool Seen = false;
9076  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9077    SDNode *User = *I;
9078    if (llvm::any_of(Nodes,
9079                     [&User](const SDNode *Node) { return User == Node; }))
9080      Seen = true;
9081    else
9082      return false;
9083  }
9084
9085  return Seen;
9086}
9087
9088/// isOperand - Return true if this node is an operand of N.
9089bool SDValue::isOperandOf(const SDNode *N) const {
9090  return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9091}
9092
9093bool SDNode::isOperandOf(const SDNode *N) const {
9094  return any_of(N->op_values(),
9095                [this](SDValue Op) { return this == Op.getNode(); });
9096}
9097
9098/// reachesChainWithoutSideEffects - Return true if this operand (which must
9099/// be a chain) reaches the specified operand without crossing any
9100/// side-effecting instructions on any chain path.  In practice, this looks
9101/// through token factors and non-volatile loads.  In order to remain efficient,
9102/// this only looks a couple of nodes in, it does not do an exhaustive search.
9103///
9104/// Note that we only need to examine chains when we're searching for
9105/// side-effects; SelectionDAG requires that all side-effects are represented
9106/// by chains, even if another operand would force a specific ordering. This
9107/// constraint is necessary to allow transformations like splitting loads.
9108bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9109                                             unsigned Depth) const {
9110  if (*this == Dest) return true;
9111
9112  // Don't search too deeply, we just want to be able to see through
9113  // TokenFactor's etc.
9114  if (Depth == 0) return false;
9115
9116  // If this is a token factor, all inputs to the TF happen in parallel.
9117  if (getOpcode() == ISD::TokenFactor) {
9118    // First, try a shallow search.
9119    if (is_contained((*this)->ops(), Dest)) {
9120      // We found the chain we want as an operand of this TokenFactor.
9121      // Essentially, we reach the chain without side-effects if we could
9122      // serialize the TokenFactor into a simple chain of operations with
9123      // Dest as the last operation. This is automatically true if the
9124      // chain has one use: there are no other ordering constraints.
9125      // If the chain has more than one use, we give up: some other
9126      // use of Dest might force a side-effect between Dest and the current
9127      // node.
9128      if (Dest.hasOneUse())
9129        return true;
9130    }
9131    // Next, try a deep search: check whether every operand of the TokenFactor
9132    // reaches Dest.
9133    return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9134      return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9135    });
9136  }
9137
9138  // Loads don't have side effects, look through them.
9139  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9140    if (Ld->isUnordered())
9141      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9142  }
9143  return false;
9144}
9145
9146bool SDNode::hasPredecessor(const SDNode *N) const {
9147  SmallPtrSet<const SDNode *, 32> Visited;
9148  SmallVector<const SDNode *, 16> Worklist;
9149  Worklist.push_back(this);
9150  return hasPredecessorHelper(N, Visited, Worklist);
9151}
9152
9153void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9154  this->Flags.intersectWith(Flags);
9155}
9156
9157SDValue
9158SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9159                                  ArrayRef<ISD::NodeType> CandidateBinOps,
9160                                  bool AllowPartials) {
9161  // The pattern must end in an extract from index 0.
9162  if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9163      !isNullConstant(Extract->getOperand(1)))
9164    return SDValue();
9165
9166  // Match against one of the candidate binary ops.
9167  SDValue Op = Extract->getOperand(0);
9168  if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9169        return Op.getOpcode() == unsigned(BinOp);
9170      }))
9171    return SDValue();
9172
9173  // Floating-point reductions may require relaxed constraints on the final step
9174  // of the reduction because they may reorder intermediate operations.
9175  unsigned CandidateBinOp = Op.getOpcode();
9176  if (Op.getValueType().isFloatingPoint()) {
9177    SDNodeFlags Flags = Op->getFlags();
9178    switch (CandidateBinOp) {
9179    case ISD::FADD:
9180      if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9181        return SDValue();
9182      break;
9183    default:
9184      llvm_unreachable("Unhandled FP opcode for binop reduction");
9185    }
9186  }
9187
9188  // Matching failed - attempt to see if we did enough stages that a partial
9189  // reduction from a subvector is possible.
9190  auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9191    if (!AllowPartials || !Op)
9192      return SDValue();
9193    EVT OpVT = Op.getValueType();
9194    EVT OpSVT = OpVT.getScalarType();
9195    EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9196    if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9197      return SDValue();
9198    BinOp = (ISD::NodeType)CandidateBinOp;
9199    return getNode(
9200        ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9201        getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout())));
9202  };
9203
9204  // At each stage, we're looking for something that looks like:
9205  // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9206  //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9207  //                               i32 undef, i32 undef, i32 undef, i32 undef>
9208  // %a = binop <8 x i32> %op, %s
9209  // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9210  // we expect something like:
9211  // <4,5,6,7,u,u,u,u>
9212  // <2,3,u,u,u,u,u,u>
9213  // <1,u,u,u,u,u,u,u>
9214  // While a partial reduction match would be:
9215  // <2,3,u,u,u,u,u,u>
9216  // <1,u,u,u,u,u,u,u>
9217  unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9218  SDValue PrevOp;
9219  for (unsigned i = 0; i < Stages; ++i) {
9220    unsigned MaskEnd = (1 << i);
9221
9222    if (Op.getOpcode() != CandidateBinOp)
9223      return PartialReduction(PrevOp, MaskEnd);
9224
9225    SDValue Op0 = Op.getOperand(0);
9226    SDValue Op1 = Op.getOperand(1);
9227
9228    ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9229    if (Shuffle) {
9230      Op = Op1;
9231    } else {
9232      Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9233      Op = Op0;
9234    }
9235
9236    // The first operand of the shuffle should be the same as the other operand
9237    // of the binop.
9238    if (!Shuffle || Shuffle->getOperand(0) != Op)
9239      return PartialReduction(PrevOp, MaskEnd);
9240
9241    // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9242    for (int Index = 0; Index < (int)MaskEnd; ++Index)
9243      if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9244        return PartialReduction(PrevOp, MaskEnd);
9245
9246    PrevOp = Op;
9247  }
9248
9249  BinOp = (ISD::NodeType)CandidateBinOp;
9250  return Op;
9251}
9252
9253SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9254  assert(N->getNumValues() == 1 &&
9255         "Can't unroll a vector with multiple results!");
9256
9257  EVT VT = N->getValueType(0);
9258  unsigned NE = VT.getVectorNumElements();
9259  EVT EltVT = VT.getVectorElementType();
9260  SDLoc dl(N);
9261
9262  SmallVector<SDValue, 8> Scalars;
9263  SmallVector<SDValue, 4> Operands(N->getNumOperands());
9264
9265  // If ResNE is 0, fully unroll the vector op.
9266  if (ResNE == 0)
9267    ResNE = NE;
9268  else if (NE > ResNE)
9269    NE = ResNE;
9270
9271  unsigned i;
9272  for (i= 0; i != NE; ++i) {
9273    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9274      SDValue Operand = N->getOperand(j);
9275      EVT OperandVT = Operand.getValueType();
9276      if (OperandVT.isVector()) {
9277        // A vector operand; extract a single element.
9278        EVT OperandEltVT = OperandVT.getVectorElementType();
9279        Operands[j] =
9280            getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
9281                    getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
9282      } else {
9283        // A scalar operand; just use it as is.
9284        Operands[j] = Operand;
9285      }
9286    }
9287
9288    switch (N->getOpcode()) {
9289    default: {
9290      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9291                                N->getFlags()));
9292      break;
9293    }
9294    case ISD::VSELECT:
9295      Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9296      break;
9297    case ISD::SHL:
9298    case ISD::SRA:
9299    case ISD::SRL:
9300    case ISD::ROTL:
9301    case ISD::ROTR:
9302      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9303                               getShiftAmountOperand(Operands[0].getValueType(),
9304                                                     Operands[1])));
9305      break;
9306    case ISD::SIGN_EXTEND_INREG: {
9307      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9308      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9309                                Operands[0],
9310                                getValueType(ExtVT)));
9311    }
9312    }
9313  }
9314
9315  for (; i < ResNE; ++i)
9316    Scalars.push_back(getUNDEF(EltVT));
9317
9318  EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9319  return getBuildVector(VecVT, dl, Scalars);
9320}
9321
9322std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9323    SDNode *N, unsigned ResNE) {
9324  unsigned Opcode = N->getOpcode();
9325  assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9326          Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9327          Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9328         "Expected an overflow opcode");
9329
9330  EVT ResVT = N->getValueType(0);
9331  EVT OvVT = N->getValueType(1);
9332  EVT ResEltVT = ResVT.getVectorElementType();
9333  EVT OvEltVT = OvVT.getVectorElementType();
9334  SDLoc dl(N);
9335
9336  // If ResNE is 0, fully unroll the vector op.
9337  unsigned NE = ResVT.getVectorNumElements();
9338  if (ResNE == 0)
9339    ResNE = NE;
9340  else if (NE > ResNE)
9341    NE = ResNE;
9342
9343  SmallVector<SDValue, 8> LHSScalars;
9344  SmallVector<SDValue, 8> RHSScalars;
9345  ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9346  ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9347
9348  EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9349  SDVTList VTs = getVTList(ResEltVT, SVT);
9350  SmallVector<SDValue, 8> ResScalars;
9351  SmallVector<SDValue, 8> OvScalars;
9352  for (unsigned i = 0; i < NE; ++i) {
9353    SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9354    SDValue Ov =
9355        getSelect(dl, OvEltVT, Res.getValue(1),
9356                  getBoolConstant(true, dl, OvEltVT, ResVT),
9357                  getConstant(0, dl, OvEltVT));
9358
9359    ResScalars.push_back(Res);
9360    OvScalars.push_back(Ov);
9361  }
9362
9363  ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9364  OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9365
9366  EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9367  EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9368  return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9369                        getBuildVector(NewOvVT, dl, OvScalars));
9370}
9371
9372bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9373                                                  LoadSDNode *Base,
9374                                                  unsigned Bytes,
9375                                                  int Dist) const {
9376  if (LD->isVolatile() || Base->isVolatile())
9377    return false;
9378  // TODO: probably too restrictive for atomics, revisit
9379  if (!LD->isSimple())
9380    return false;
9381  if (LD->isIndexed() || Base->isIndexed())
9382    return false;
9383  if (LD->getChain() != Base->getChain())
9384    return false;
9385  EVT VT = LD->getValueType(0);
9386  if (VT.getSizeInBits() / 8 != Bytes)
9387    return false;
9388
9389  auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9390  auto LocDecomp = BaseIndexOffset::match(LD, *this);
9391
9392  int64_t Offset = 0;
9393  if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9394    return (Dist * Bytes == Offset);
9395  return false;
9396}
9397
9398/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9399/// it cannot be inferred.
9400unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9401  // If this is a GlobalAddress + cst, return the alignment.
9402  const GlobalValue *GV = nullptr;
9403  int64_t GVOffset = 0;
9404  if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9405    unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9406    KnownBits Known(PtrWidth);
9407    llvm::computeKnownBits(GV, Known, getDataLayout());
9408    unsigned AlignBits = Known.countMinTrailingZeros();
9409    unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9410    if (Align)
9411      return MinAlign(Align, GVOffset);
9412  }
9413
9414  // If this is a direct reference to a stack slot, use information about the
9415  // stack slot's alignment.
9416  int FrameIdx = INT_MIN;
9417  int64_t FrameOffset = 0;
9418  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9419    FrameIdx = FI->getIndex();
9420  } else if (isBaseWithConstantOffset(Ptr) &&
9421             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9422    // Handle FI+Cst
9423    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9424    FrameOffset = Ptr.getConstantOperandVal(1);
9425  }
9426
9427  if (FrameIdx != INT_MIN) {
9428    const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9429    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9430                                    FrameOffset);
9431    return FIInfoAlign;
9432  }
9433
9434  return 0;
9435}
9436
9437/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9438/// which is split (or expanded) into two not necessarily identical pieces.
9439std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9440  // Currently all types are split in half.
9441  EVT LoVT, HiVT;
9442  if (!VT.isVector())
9443    LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9444  else
9445    LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9446
9447  return std::make_pair(LoVT, HiVT);
9448}
9449
9450/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9451/// low/high part.
9452std::pair<SDValue, SDValue>
9453SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9454                          const EVT &HiVT) {
9455  assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9456         N.getValueType().getVectorNumElements() &&
9457         "More vector elements requested than available!");
9458  SDValue Lo, Hi;
9459  Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9460               getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9461  Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9462               getConstant(LoVT.getVectorNumElements(), DL,
9463                           TLI->getVectorIdxTy(getDataLayout())));
9464  return std::make_pair(Lo, Hi);
9465}
9466
9467/// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9468SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9469  EVT VT = N.getValueType();
9470  EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9471                                NextPowerOf2(VT.getVectorNumElements()));
9472  return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9473                 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9474}
9475
9476void SelectionDAG::ExtractVectorElements(SDValue Op,
9477                                         SmallVectorImpl<SDValue> &Args,
9478                                         unsigned Start, unsigned Count) {
9479  EVT VT = Op.getValueType();
9480  if (Count == 0)
9481    Count = VT.getVectorNumElements();
9482
9483  EVT EltVT = VT.getVectorElementType();
9484  EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9485  SDLoc SL(Op);
9486  for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9487    Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9488                           Op, getConstant(i, SL, IdxTy)));
9489  }
9490}
9491
9492// getAddressSpace - Return the address space this GlobalAddress belongs to.
9493unsigned GlobalAddressSDNode::getAddressSpace() const {
9494  return getGlobal()->getType()->getAddressSpace();
9495}
9496
9497Type *ConstantPoolSDNode::getType() const {
9498  if (isMachineConstantPoolEntry())
9499    return Val.MachineCPVal->getType();
9500  return Val.ConstVal->getType();
9501}
9502
9503bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9504                                        unsigned &SplatBitSize,
9505                                        bool &HasAnyUndefs,
9506                                        unsigned MinSplatBits,
9507                                        bool IsBigEndian) const {
9508  EVT VT = getValueType(0);
9509  assert(VT.isVector() && "Expected a vector type");
9510  unsigned VecWidth = VT.getSizeInBits();
9511  if (MinSplatBits > VecWidth)
9512    return false;
9513
9514  // FIXME: The widths are based on this node's type, but build vectors can
9515  // truncate their operands.
9516  SplatValue = APInt(VecWidth, 0);
9517  SplatUndef = APInt(VecWidth, 0);
9518
9519  // Get the bits. Bits with undefined values (when the corresponding element
9520  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9521  // in SplatValue. If any of the values are not constant, give up and return
9522  // false.
9523  unsigned int NumOps = getNumOperands();
9524  assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9525  unsigned EltWidth = VT.getScalarSizeInBits();
9526
9527  for (unsigned j = 0; j < NumOps; ++j) {
9528    unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9529    SDValue OpVal = getOperand(i);
9530    unsigned BitPos = j * EltWidth;
9531
9532    if (OpVal.isUndef())
9533      SplatUndef.setBits(BitPos, BitPos + EltWidth);
9534    else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9535      SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9536    else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9537      SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9538    else
9539      return false;
9540  }
9541
9542  // The build_vector is all constants or undefs. Find the smallest element
9543  // size that splats the vector.
9544  HasAnyUndefs = (SplatUndef != 0);
9545
9546  // FIXME: This does not work for vectors with elements less than 8 bits.
9547  while (VecWidth > 8) {
9548    unsigned HalfSize = VecWidth / 2;
9549    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9550    APInt LowValue = SplatValue.trunc(HalfSize);
9551    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9552    APInt LowUndef = SplatUndef.trunc(HalfSize);
9553
9554    // If the two halves do not match (ignoring undef bits), stop here.
9555    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9556        MinSplatBits > HalfSize)
9557      break;
9558
9559    SplatValue = HighValue | LowValue;
9560    SplatUndef = HighUndef & LowUndef;
9561
9562    VecWidth = HalfSize;
9563  }
9564
9565  SplatBitSize = VecWidth;
9566  return true;
9567}
9568
9569SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9570                                         BitVector *UndefElements) const {
9571  if (UndefElements) {
9572    UndefElements->clear();
9573    UndefElements->resize(getNumOperands());
9574  }
9575  assert(getNumOperands() == DemandedElts.getBitWidth() &&
9576         "Unexpected vector size");
9577  if (!DemandedElts)
9578    return SDValue();
9579  SDValue Splatted;
9580  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9581    if (!DemandedElts[i])
9582      continue;
9583    SDValue Op = getOperand(i);
9584    if (Op.isUndef()) {
9585      if (UndefElements)
9586        (*UndefElements)[i] = true;
9587    } else if (!Splatted) {
9588      Splatted = Op;
9589    } else if (Splatted != Op) {
9590      return SDValue();
9591    }
9592  }
9593
9594  if (!Splatted) {
9595    unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9596    assert(getOperand(FirstDemandedIdx).isUndef() &&
9597           "Can only have a splat without a constant for all undefs.");
9598    return getOperand(FirstDemandedIdx);
9599  }
9600
9601  return Splatted;
9602}
9603
9604SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9605  APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9606  return getSplatValue(DemandedElts, UndefElements);
9607}
9608
9609ConstantSDNode *
9610BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9611                                        BitVector *UndefElements) const {
9612  return dyn_cast_or_null<ConstantSDNode>(
9613      getSplatValue(DemandedElts, UndefElements));
9614}
9615
9616ConstantSDNode *
9617BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9618  return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9619}
9620
9621ConstantFPSDNode *
9622BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9623                                          BitVector *UndefElements) const {
9624  return dyn_cast_or_null<ConstantFPSDNode>(
9625      getSplatValue(DemandedElts, UndefElements));
9626}
9627
9628ConstantFPSDNode *
9629BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9630  return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9631}
9632
9633int32_t
9634BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9635                                                   uint32_t BitWidth) const {
9636  if (ConstantFPSDNode *CN =
9637          dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9638    bool IsExact;
9639    APSInt IntVal(BitWidth);
9640    const APFloat &APF = CN->getValueAPF();
9641    if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9642            APFloat::opOK ||
9643        !IsExact)
9644      return -1;
9645
9646    return IntVal.exactLogBase2();
9647  }
9648  return -1;
9649}
9650
9651bool BuildVectorSDNode::isConstant() const {
9652  for (const SDValue &Op : op_values()) {
9653    unsigned Opc = Op.getOpcode();
9654    if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9655      return false;
9656  }
9657  return true;
9658}
9659
9660bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9661  // Find the first non-undef value in the shuffle mask.
9662  unsigned i, e;
9663  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9664    /* search */;
9665
9666  // If all elements are undefined, this shuffle can be considered a splat
9667  // (although it should eventually get simplified away completely).
9668  if (i == e)
9669    return true;
9670
9671  // Make sure all remaining elements are either undef or the same as the first
9672  // non-undef value.
9673  for (int Idx = Mask[i]; i != e; ++i)
9674    if (Mask[i] >= 0 && Mask[i] != Idx)
9675      return false;
9676  return true;
9677}
9678
9679// Returns the SDNode if it is a constant integer BuildVector
9680// or constant integer.
9681SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9682  if (isa<ConstantSDNode>(N))
9683    return N.getNode();
9684  if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9685    return N.getNode();
9686  // Treat a GlobalAddress supporting constant offset folding as a
9687  // constant integer.
9688  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9689    if (GA->getOpcode() == ISD::GlobalAddress &&
9690        TLI->isOffsetFoldingLegal(GA))
9691      return GA;
9692  return nullptr;
9693}
9694
9695SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9696  if (isa<ConstantFPSDNode>(N))
9697    return N.getNode();
9698
9699  if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9700    return N.getNode();
9701
9702  return nullptr;
9703}
9704
9705void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9706  assert(!Node->OperandList && "Node already has operands");
9707  assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9708         "too many operands to fit into SDNode");
9709  SDUse *Ops = OperandRecycler.allocate(
9710      ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9711
9712  bool IsDivergent = false;
9713  for (unsigned I = 0; I != Vals.size(); ++I) {
9714    Ops[I].setUser(Node);
9715    Ops[I].setInitial(Vals[I]);
9716    if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9717      IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9718  }
9719  Node->NumOperands = Vals.size();
9720  Node->OperandList = Ops;
9721  IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9722  if (!TLI->isSDNodeAlwaysUniform(Node))
9723    Node->SDNodeBits.IsDivergent = IsDivergent;
9724  checkForCycles(Node);
9725}
9726
9727SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9728                                     SmallVectorImpl<SDValue> &Vals) {
9729  size_t Limit = SDNode::getMaxNumOperands();
9730  while (Vals.size() > Limit) {
9731    unsigned SliceIdx = Vals.size() - Limit;
9732    auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9733    SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9734    Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9735    Vals.emplace_back(NewTF);
9736  }
9737  return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9738}
9739
9740#ifndef NDEBUG
9741static void checkForCyclesHelper(const SDNode *N,
9742                                 SmallPtrSetImpl<const SDNode*> &Visited,
9743                                 SmallPtrSetImpl<const SDNode*> &Checked,
9744                                 const llvm::SelectionDAG *DAG) {
9745  // If this node has already been checked, don't check it again.
9746  if (Checked.count(N))
9747    return;
9748
9749  // If a node has already been visited on this depth-first walk, reject it as
9750  // a cycle.
9751  if (!Visited.insert(N).second) {
9752    errs() << "Detected cycle in SelectionDAG\n";
9753    dbgs() << "Offending node:\n";
9754    N->dumprFull(DAG); dbgs() << "\n";
9755    abort();
9756  }
9757
9758  for (const SDValue &Op : N->op_values())
9759    checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9760
9761  Checked.insert(N);
9762  Visited.erase(N);
9763}
9764#endif
9765
9766void llvm::checkForCycles(const llvm::SDNode *N,
9767                          const llvm::SelectionDAG *DAG,
9768                          bool force) {
9769#ifndef NDEBUG
9770  bool check = force;
9771#ifdef EXPENSIVE_CHECKS
9772  check = true;
9773#endif  // EXPENSIVE_CHECKS
9774  if (check) {
9775    assert(N && "Checking nonexistent SDNode");
9776    SmallPtrSet<const SDNode*, 32> visited;
9777    SmallPtrSet<const SDNode*, 32> checked;
9778    checkForCyclesHelper(N, visited, checked, DAG);
9779  }
9780#endif  // !NDEBUG
9781}
9782
9783void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9784  checkForCycles(DAG->getRoot().getNode(), DAG, force);
9785}
9786