1//===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
10// register allocator for LLVM. This allocator works by constructing a PBQP
11// problem representing the register allocation problem under consideration,
12// solving this using a PBQP solver, and mapping the solution back to a
13// register assignment. If any variables are selected for spilling then spill
14// code is inserted and the process repeated.
15//
16// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
17// for register allocation. For more information on PBQP for register
18// allocation, see the following papers:
19//
20//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
21//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
22//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
23//
24//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
25//   architectures. In Proceedings of the Joint Conference on Languages,
26//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
27//   NY, USA, 139-148.
28//
29//===----------------------------------------------------------------------===//
30
31#include "llvm/CodeGen/RegAllocPBQP.h"
32#include "RegisterCoalescer.h"
33#include "Spiller.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/DenseSet.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/CodeGen/CalcSpillWeights.h"
44#include "llvm/CodeGen/LiveInterval.h"
45#include "llvm/CodeGen/LiveIntervals.h"
46#include "llvm/CodeGen/LiveRangeEdit.h"
47#include "llvm/CodeGen/LiveStacks.h"
48#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
49#include "llvm/CodeGen/MachineDominators.h"
50#include "llvm/CodeGen/MachineFunction.h"
51#include "llvm/CodeGen/MachineFunctionPass.h"
52#include "llvm/CodeGen/MachineInstr.h"
53#include "llvm/CodeGen/MachineLoopInfo.h"
54#include "llvm/CodeGen/MachineRegisterInfo.h"
55#include "llvm/CodeGen/PBQP/Graph.h"
56#include "llvm/CodeGen/PBQP/Math.h"
57#include "llvm/CodeGen/PBQP/Solution.h"
58#include "llvm/CodeGen/PBQPRAConstraint.h"
59#include "llvm/CodeGen/RegAllocRegistry.h"
60#include "llvm/CodeGen/SlotIndexes.h"
61#include "llvm/CodeGen/TargetRegisterInfo.h"
62#include "llvm/CodeGen/TargetSubtargetInfo.h"
63#include "llvm/CodeGen/VirtRegMap.h"
64#include "llvm/Config/llvm-config.h"
65#include "llvm/IR/Function.h"
66#include "llvm/IR/Module.h"
67#include "llvm/MC/MCRegisterInfo.h"
68#include "llvm/Pass.h"
69#include "llvm/Support/CommandLine.h"
70#include "llvm/Support/Compiler.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/FileSystem.h"
73#include "llvm/Support/Printable.h"
74#include "llvm/Support/raw_ostream.h"
75#include <algorithm>
76#include <cassert>
77#include <cstddef>
78#include <limits>
79#include <map>
80#include <memory>
81#include <queue>
82#include <set>
83#include <sstream>
84#include <string>
85#include <system_error>
86#include <tuple>
87#include <utility>
88#include <vector>
89
90using namespace llvm;
91
92#define DEBUG_TYPE "regalloc"
93
94static RegisterRegAlloc
95RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
96                       createDefaultPBQPRegisterAllocator);
97
98static cl::opt<bool>
99PBQPCoalescing("pbqp-coalescing",
100                cl::desc("Attempt coalescing during PBQP register allocation."),
101                cl::init(false), cl::Hidden);
102
103#ifndef NDEBUG
104static cl::opt<bool>
105PBQPDumpGraphs("pbqp-dump-graphs",
106               cl::desc("Dump graphs for each function/round in the compilation unit."),
107               cl::init(false), cl::Hidden);
108#endif
109
110namespace {
111
112///
113/// PBQP based allocators solve the register allocation problem by mapping
114/// register allocation problems to Partitioned Boolean Quadratic
115/// Programming problems.
116class RegAllocPBQP : public MachineFunctionPass {
117public:
118  static char ID;
119
120  /// Construct a PBQP register allocator.
121  RegAllocPBQP(char *cPassID = nullptr)
122      : MachineFunctionPass(ID), customPassID(cPassID) {
123    initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
124    initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
125    initializeLiveStacksPass(*PassRegistry::getPassRegistry());
126    initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
127  }
128
129  /// Return the pass name.
130  StringRef getPassName() const override { return "PBQP Register Allocator"; }
131
132  /// PBQP analysis usage.
133  void getAnalysisUsage(AnalysisUsage &au) const override;
134
135  /// Perform register allocation
136  bool runOnMachineFunction(MachineFunction &MF) override;
137
138  MachineFunctionProperties getRequiredProperties() const override {
139    return MachineFunctionProperties().set(
140        MachineFunctionProperties::Property::NoPHIs);
141  }
142
143private:
144  using LI2NodeMap = std::map<const LiveInterval *, unsigned>;
145  using Node2LIMap = std::vector<const LiveInterval *>;
146  using AllowedSet = std::vector<unsigned>;
147  using AllowedSetMap = std::vector<AllowedSet>;
148  using RegPair = std::pair<unsigned, unsigned>;
149  using CoalesceMap = std::map<RegPair, PBQP::PBQPNum>;
150  using RegSet = std::set<unsigned>;
151
152  char *customPassID;
153
154  RegSet VRegsToAlloc, EmptyIntervalVRegs;
155
156  /// Inst which is a def of an original reg and whose defs are already all
157  /// dead after remat is saved in DeadRemats. The deletion of such inst is
158  /// postponed till all the allocations are done, so its remat expr is
159  /// always available for the remat of all the siblings of the original reg.
160  SmallPtrSet<MachineInstr *, 32> DeadRemats;
161
162  /// Finds the initial set of vreg intervals to allocate.
163  void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
164
165  /// Constructs an initial graph.
166  void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
167
168  /// Spill the given VReg.
169  void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals,
170                 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
171                 Spiller &VRegSpiller);
172
173  /// Given a solved PBQP problem maps this solution back to a register
174  /// assignment.
175  bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
176                         const PBQP::Solution &Solution,
177                         VirtRegMap &VRM,
178                         Spiller &VRegSpiller);
179
180  /// Postprocessing before final spilling. Sets basic block "live in"
181  /// variables.
182  void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
183                     VirtRegMap &VRM) const;
184
185  void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
186};
187
188char RegAllocPBQP::ID = 0;
189
190/// Set spill costs for each node in the PBQP reg-alloc graph.
191class SpillCosts : public PBQPRAConstraint {
192public:
193  void apply(PBQPRAGraph &G) override {
194    LiveIntervals &LIS = G.getMetadata().LIS;
195
196    // A minimum spill costs, so that register constraints can can be set
197    // without normalization in the [0.0:MinSpillCost( interval.
198    const PBQP::PBQPNum MinSpillCost = 10.0;
199
200    for (auto NId : G.nodeIds()) {
201      PBQP::PBQPNum SpillCost =
202        LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
203      if (SpillCost == 0.0)
204        SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
205      else
206        SpillCost += MinSpillCost;
207      PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
208      NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
209      G.setNodeCosts(NId, std::move(NodeCosts));
210    }
211  }
212};
213
214/// Add interference edges between overlapping vregs.
215class Interference : public PBQPRAConstraint {
216private:
217  using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *;
218  using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>;
219  using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>;
220  using DisjointAllowedRegsCache = DenseSet<IKey>;
221  using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>;
222  using IEdgeCache = DenseSet<IEdgeKey>;
223
224  bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
225                               PBQPRAGraph::NodeId MId,
226                               const DisjointAllowedRegsCache &D) const {
227    const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
228    const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
229
230    if (NRegs == MRegs)
231      return false;
232
233    if (NRegs < MRegs)
234      return D.count(IKey(NRegs, MRegs)) > 0;
235
236    return D.count(IKey(MRegs, NRegs)) > 0;
237  }
238
239  void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
240                              PBQPRAGraph::NodeId MId,
241                              DisjointAllowedRegsCache &D) {
242    const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
243    const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
244
245    assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
246
247    if (NRegs < MRegs)
248      D.insert(IKey(NRegs, MRegs));
249    else
250      D.insert(IKey(MRegs, NRegs));
251  }
252
253  // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
254  // for the fast interference graph construction algorithm. The last is there
255  // to save us from looking up node ids via the VRegToNode map in the graph
256  // metadata.
257  using IntervalInfo =
258      std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>;
259
260  static SlotIndex getStartPoint(const IntervalInfo &I) {
261    return std::get<0>(I)->segments[std::get<1>(I)].start;
262  }
263
264  static SlotIndex getEndPoint(const IntervalInfo &I) {
265    return std::get<0>(I)->segments[std::get<1>(I)].end;
266  }
267
268  static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
269    return std::get<2>(I);
270  }
271
272  static bool lowestStartPoint(const IntervalInfo &I1,
273                               const IntervalInfo &I2) {
274    // Condition reversed because priority queue has the *highest* element at
275    // the front, rather than the lowest.
276    return getStartPoint(I1) > getStartPoint(I2);
277  }
278
279  static bool lowestEndPoint(const IntervalInfo &I1,
280                             const IntervalInfo &I2) {
281    SlotIndex E1 = getEndPoint(I1);
282    SlotIndex E2 = getEndPoint(I2);
283
284    if (E1 < E2)
285      return true;
286
287    if (E1 > E2)
288      return false;
289
290    // If two intervals end at the same point, we need a way to break the tie or
291    // the set will assume they're actually equal and refuse to insert a
292    // "duplicate". Just compare the vregs - fast and guaranteed unique.
293    return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
294  }
295
296  static bool isAtLastSegment(const IntervalInfo &I) {
297    return std::get<1>(I) == std::get<0>(I)->size() - 1;
298  }
299
300  static IntervalInfo nextSegment(const IntervalInfo &I) {
301    return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
302  }
303
304public:
305  void apply(PBQPRAGraph &G) override {
306    // The following is loosely based on the linear scan algorithm introduced in
307    // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
308    // isn't linear, because the size of the active set isn't bound by the
309    // number of registers, but rather the size of the largest clique in the
310    // graph. Still, we expect this to be better than N^2.
311    LiveIntervals &LIS = G.getMetadata().LIS;
312
313    // Interferenc matrices are incredibly regular - they're only a function of
314    // the allowed sets, so we cache them to avoid the overhead of constructing
315    // and uniquing them.
316    IMatrixCache C;
317
318    // Finding an edge is expensive in the worst case (O(max_clique(G))). So
319    // cache locally edges we have already seen.
320    IEdgeCache EC;
321
322    // Cache known disjoint allowed registers pairs
323    DisjointAllowedRegsCache D;
324
325    using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>;
326    using IntervalQueue =
327        std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
328                            decltype(&lowestStartPoint)>;
329    IntervalSet Active(lowestEndPoint);
330    IntervalQueue Inactive(lowestStartPoint);
331
332    // Start by building the inactive set.
333    for (auto NId : G.nodeIds()) {
334      unsigned VReg = G.getNodeMetadata(NId).getVReg();
335      LiveInterval &LI = LIS.getInterval(VReg);
336      assert(!LI.empty() && "PBQP graph contains node for empty interval");
337      Inactive.push(std::make_tuple(&LI, 0, NId));
338    }
339
340    while (!Inactive.empty()) {
341      // Tentatively grab the "next" interval - this choice may be overriden
342      // below.
343      IntervalInfo Cur = Inactive.top();
344
345      // Retire any active intervals that end before Cur starts.
346      IntervalSet::iterator RetireItr = Active.begin();
347      while (RetireItr != Active.end() &&
348             (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
349        // If this interval has subsequent segments, add the next one to the
350        // inactive list.
351        if (!isAtLastSegment(*RetireItr))
352          Inactive.push(nextSegment(*RetireItr));
353
354        ++RetireItr;
355      }
356      Active.erase(Active.begin(), RetireItr);
357
358      // One of the newly retired segments may actually start before the
359      // Cur segment, so re-grab the front of the inactive list.
360      Cur = Inactive.top();
361      Inactive.pop();
362
363      // At this point we know that Cur overlaps all active intervals. Add the
364      // interference edges.
365      PBQP::GraphBase::NodeId NId = getNodeId(Cur);
366      for (const auto &A : Active) {
367        PBQP::GraphBase::NodeId MId = getNodeId(A);
368
369        // Do not add an edge when the nodes' allowed registers do not
370        // intersect: there is obviously no interference.
371        if (haveDisjointAllowedRegs(G, NId, MId, D))
372          continue;
373
374        // Check that we haven't already added this edge
375        IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
376        if (EC.count(EK))
377          continue;
378
379        // This is a new edge - add it to the graph.
380        if (!createInterferenceEdge(G, NId, MId, C))
381          setDisjointAllowedRegs(G, NId, MId, D);
382        else
383          EC.insert(EK);
384      }
385
386      // Finally, add Cur to the Active set.
387      Active.insert(Cur);
388    }
389  }
390
391private:
392  // Create an Interference edge and add it to the graph, unless it is
393  // a null matrix, meaning the nodes' allowed registers do not have any
394  // interference. This case occurs frequently between integer and floating
395  // point registers for example.
396  // return true iff both nodes interferes.
397  bool createInterferenceEdge(PBQPRAGraph &G,
398                              PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
399                              IMatrixCache &C) {
400    const TargetRegisterInfo &TRI =
401        *G.getMetadata().MF.getSubtarget().getRegisterInfo();
402    const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
403    const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
404
405    // Try looking the edge costs up in the IMatrixCache first.
406    IKey K(&NRegs, &MRegs);
407    IMatrixCache::iterator I = C.find(K);
408    if (I != C.end()) {
409      G.addEdgeBypassingCostAllocator(NId, MId, I->second);
410      return true;
411    }
412
413    PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
414    bool NodesInterfere = false;
415    for (unsigned I = 0; I != NRegs.size(); ++I) {
416      unsigned PRegN = NRegs[I];
417      for (unsigned J = 0; J != MRegs.size(); ++J) {
418        unsigned PRegM = MRegs[J];
419        if (TRI.regsOverlap(PRegN, PRegM)) {
420          M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
421          NodesInterfere = true;
422        }
423      }
424    }
425
426    if (!NodesInterfere)
427      return false;
428
429    PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
430    C[K] = G.getEdgeCostsPtr(EId);
431
432    return true;
433  }
434};
435
436class Coalescing : public PBQPRAConstraint {
437public:
438  void apply(PBQPRAGraph &G) override {
439    MachineFunction &MF = G.getMetadata().MF;
440    MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
441    CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
442
443    // Scan the machine function and add a coalescing cost whenever CoalescerPair
444    // gives the Ok.
445    for (const auto &MBB : MF) {
446      for (const auto &MI : MBB) {
447        // Skip not-coalescable or already coalesced copies.
448        if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
449          continue;
450
451        unsigned DstReg = CP.getDstReg();
452        unsigned SrcReg = CP.getSrcReg();
453
454        const float Scale = 1.0f / MBFI.getEntryFreq();
455        PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;
456
457        if (CP.isPhys()) {
458          if (!MF.getRegInfo().isAllocatable(DstReg))
459            continue;
460
461          PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
462
463          const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
464            G.getNodeMetadata(NId).getAllowedRegs();
465
466          unsigned PRegOpt = 0;
467          while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
468            ++PRegOpt;
469
470          if (PRegOpt < Allowed.size()) {
471            PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
472            NewCosts[PRegOpt + 1] -= CBenefit;
473            G.setNodeCosts(NId, std::move(NewCosts));
474          }
475        } else {
476          PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
477          PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
478          const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
479            &G.getNodeMetadata(N1Id).getAllowedRegs();
480          const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
481            &G.getNodeMetadata(N2Id).getAllowedRegs();
482
483          PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
484          if (EId == G.invalidEdgeId()) {
485            PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
486                                         Allowed2->size() + 1, 0);
487            addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
488            G.addEdge(N1Id, N2Id, std::move(Costs));
489          } else {
490            if (G.getEdgeNode1Id(EId) == N2Id) {
491              std::swap(N1Id, N2Id);
492              std::swap(Allowed1, Allowed2);
493            }
494            PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
495            addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
496            G.updateEdgeCosts(EId, std::move(Costs));
497          }
498        }
499      }
500    }
501  }
502
503private:
504  void addVirtRegCoalesce(
505                    PBQPRAGraph::RawMatrix &CostMat,
506                    const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
507                    const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
508                    PBQP::PBQPNum Benefit) {
509    assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
510    assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
511    for (unsigned I = 0; I != Allowed1.size(); ++I) {
512      unsigned PReg1 = Allowed1[I];
513      for (unsigned J = 0; J != Allowed2.size(); ++J) {
514        unsigned PReg2 = Allowed2[J];
515        if (PReg1 == PReg2)
516          CostMat[I + 1][J + 1] -= Benefit;
517      }
518    }
519  }
520};
521
522} // end anonymous namespace
523
524// Out-of-line destructor/anchor for PBQPRAConstraint.
525PBQPRAConstraint::~PBQPRAConstraint() = default;
526
527void PBQPRAConstraint::anchor() {}
528
529void PBQPRAConstraintList::anchor() {}
530
531void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
532  au.setPreservesCFG();
533  au.addRequired<AAResultsWrapperPass>();
534  au.addPreserved<AAResultsWrapperPass>();
535  au.addRequired<SlotIndexes>();
536  au.addPreserved<SlotIndexes>();
537  au.addRequired<LiveIntervals>();
538  au.addPreserved<LiveIntervals>();
539  //au.addRequiredID(SplitCriticalEdgesID);
540  if (customPassID)
541    au.addRequiredID(*customPassID);
542  au.addRequired<LiveStacks>();
543  au.addPreserved<LiveStacks>();
544  au.addRequired<MachineBlockFrequencyInfo>();
545  au.addPreserved<MachineBlockFrequencyInfo>();
546  au.addRequired<MachineLoopInfo>();
547  au.addPreserved<MachineLoopInfo>();
548  au.addRequired<MachineDominatorTree>();
549  au.addPreserved<MachineDominatorTree>();
550  au.addRequired<VirtRegMap>();
551  au.addPreserved<VirtRegMap>();
552  MachineFunctionPass::getAnalysisUsage(au);
553}
554
555void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
556                                            LiveIntervals &LIS) {
557  const MachineRegisterInfo &MRI = MF.getRegInfo();
558
559  // Iterate over all live ranges.
560  for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
561    unsigned Reg = Register::index2VirtReg(I);
562    if (MRI.reg_nodbg_empty(Reg))
563      continue;
564    VRegsToAlloc.insert(Reg);
565  }
566}
567
568static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
569                                   const MachineFunction &MF) {
570  const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs();
571  for (unsigned i = 0; CSR[i] != 0; ++i)
572    if (TRI.regsOverlap(reg, CSR[i]))
573      return true;
574  return false;
575}
576
577void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
578                                   Spiller &VRegSpiller) {
579  MachineFunction &MF = G.getMetadata().MF;
580
581  LiveIntervals &LIS = G.getMetadata().LIS;
582  const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
583  const TargetRegisterInfo &TRI =
584      *G.getMetadata().MF.getSubtarget().getRegisterInfo();
585
586  std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
587
588  std::map<unsigned, std::vector<unsigned>> VRegAllowedMap;
589
590  while (!Worklist.empty()) {
591    unsigned VReg = Worklist.back();
592    Worklist.pop_back();
593
594    LiveInterval &VRegLI = LIS.getInterval(VReg);
595
596    // If this is an empty interval move it to the EmptyIntervalVRegs set then
597    // continue.
598    if (VRegLI.empty()) {
599      EmptyIntervalVRegs.insert(VRegLI.reg);
600      VRegsToAlloc.erase(VRegLI.reg);
601      continue;
602    }
603
604    const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
605
606    // Record any overlaps with regmask operands.
607    BitVector RegMaskOverlaps;
608    LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
609
610    // Compute an initial allowed set for the current vreg.
611    std::vector<unsigned> VRegAllowed;
612    ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
613    for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
614      unsigned PReg = RawPRegOrder[I];
615      if (MRI.isReserved(PReg))
616        continue;
617
618      // vregLI crosses a regmask operand that clobbers preg.
619      if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
620        continue;
621
622      // vregLI overlaps fixed regunit interference.
623      bool Interference = false;
624      for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
625        if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
626          Interference = true;
627          break;
628        }
629      }
630      if (Interference)
631        continue;
632
633      // preg is usable for this virtual register.
634      VRegAllowed.push_back(PReg);
635    }
636
637    // Check for vregs that have no allowed registers. These should be
638    // pre-spilled and the new vregs added to the worklist.
639    if (VRegAllowed.empty()) {
640      SmallVector<unsigned, 8> NewVRegs;
641      spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
642      Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end());
643      continue;
644    } else
645      VRegAllowedMap[VReg] = std::move(VRegAllowed);
646  }
647
648  for (auto &KV : VRegAllowedMap) {
649    auto VReg = KV.first;
650
651    // Move empty intervals to the EmptyIntervalVReg set.
652    if (LIS.getInterval(VReg).empty()) {
653      EmptyIntervalVRegs.insert(VReg);
654      VRegsToAlloc.erase(VReg);
655      continue;
656    }
657
658    auto &VRegAllowed = KV.second;
659
660    PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
661
662    // Tweak cost of callee saved registers, as using then force spilling and
663    // restoring them. This would only happen in the prologue / epilogue though.
664    for (unsigned i = 0; i != VRegAllowed.size(); ++i)
665      if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
666        NodeCosts[1 + i] += 1.0;
667
668    PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
669    G.getNodeMetadata(NId).setVReg(VReg);
670    G.getNodeMetadata(NId).setAllowedRegs(
671      G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
672    G.getMetadata().setNodeIdForVReg(VReg, NId);
673  }
674}
675
676void RegAllocPBQP::spillVReg(unsigned VReg,
677                             SmallVectorImpl<unsigned> &NewIntervals,
678                             MachineFunction &MF, LiveIntervals &LIS,
679                             VirtRegMap &VRM, Spiller &VRegSpiller) {
680  VRegsToAlloc.erase(VReg);
681  LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
682                    nullptr, &DeadRemats);
683  VRegSpiller.spill(LRE);
684
685  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
686  (void)TRI;
687  LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: "
688                    << LRE.getParent().weight << ", New vregs: ");
689
690  // Copy any newly inserted live intervals into the list of regs to
691  // allocate.
692  for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
693       I != E; ++I) {
694    const LiveInterval &LI = LIS.getInterval(*I);
695    assert(!LI.empty() && "Empty spill range.");
696    LLVM_DEBUG(dbgs() << printReg(LI.reg, &TRI) << " ");
697    VRegsToAlloc.insert(LI.reg);
698  }
699
700  LLVM_DEBUG(dbgs() << ")\n");
701}
702
703bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
704                                     const PBQP::Solution &Solution,
705                                     VirtRegMap &VRM,
706                                     Spiller &VRegSpiller) {
707  MachineFunction &MF = G.getMetadata().MF;
708  LiveIntervals &LIS = G.getMetadata().LIS;
709  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
710  (void)TRI;
711
712  // Set to true if we have any spills
713  bool AnotherRoundNeeded = false;
714
715  // Clear the existing allocation.
716  VRM.clearAllVirt();
717
718  // Iterate over the nodes mapping the PBQP solution to a register
719  // assignment.
720  for (auto NId : G.nodeIds()) {
721    unsigned VReg = G.getNodeMetadata(NId).getVReg();
722    unsigned AllocOption = Solution.getSelection(NId);
723
724    if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
725      unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
726      LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> "
727                        << TRI.getName(PReg) << "\n");
728      assert(PReg != 0 && "Invalid preg selected.");
729      VRM.assignVirt2Phys(VReg, PReg);
730    } else {
731      // Spill VReg. If this introduces new intervals we'll need another round
732      // of allocation.
733      SmallVector<unsigned, 8> NewVRegs;
734      spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
735      AnotherRoundNeeded |= !NewVRegs.empty();
736    }
737  }
738
739  return !AnotherRoundNeeded;
740}
741
742void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
743                                 LiveIntervals &LIS,
744                                 VirtRegMap &VRM) const {
745  MachineRegisterInfo &MRI = MF.getRegInfo();
746
747  // First allocate registers for the empty intervals.
748  for (RegSet::const_iterator
749         I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
750         I != E; ++I) {
751    LiveInterval &LI = LIS.getInterval(*I);
752
753    unsigned PReg = MRI.getSimpleHint(LI.reg);
754
755    if (PReg == 0) {
756      const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
757      const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF);
758      for (unsigned CandidateReg : RawPRegOrder) {
759        if (!VRM.getRegInfo().isReserved(CandidateReg)) {
760          PReg = CandidateReg;
761          break;
762        }
763      }
764      assert(PReg &&
765             "No un-reserved physical registers in this register class");
766    }
767
768    VRM.assignVirt2Phys(LI.reg, PReg);
769  }
770}
771
772void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
773  VRegSpiller.postOptimization();
774  /// Remove dead defs because of rematerialization.
775  for (auto DeadInst : DeadRemats) {
776    LIS.RemoveMachineInstrFromMaps(*DeadInst);
777    DeadInst->eraseFromParent();
778  }
779  DeadRemats.clear();
780}
781
782static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
783                                         unsigned NumInstr) {
784  // All intervals have a spill weight that is mostly proportional to the number
785  // of uses, with uses in loops having a bigger weight.
786  return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
787}
788
789bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
790  LiveIntervals &LIS = getAnalysis<LiveIntervals>();
791  MachineBlockFrequencyInfo &MBFI =
792    getAnalysis<MachineBlockFrequencyInfo>();
793
794  VirtRegMap &VRM = getAnalysis<VirtRegMap>();
795
796  calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(),
797                                MBFI, normalizePBQPSpillWeight);
798
799  std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
800
801  MF.getRegInfo().freezeReservedRegs(MF);
802
803  LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
804
805  // Allocator main loop:
806  //
807  // * Map current regalloc problem to a PBQP problem
808  // * Solve the PBQP problem
809  // * Map the solution back to a register allocation
810  // * Spill if necessary
811  //
812  // This process is continued till no more spills are generated.
813
814  // Find the vreg intervals in need of allocation.
815  findVRegIntervalsToAlloc(MF, LIS);
816
817#ifndef NDEBUG
818  const Function &F = MF.getFunction();
819  std::string FullyQualifiedName =
820    F.getParent()->getModuleIdentifier() + "." + F.getName().str();
821#endif
822
823  // If there are non-empty intervals allocate them using pbqp.
824  if (!VRegsToAlloc.empty()) {
825    const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
826    std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
827      std::make_unique<PBQPRAConstraintList>();
828    ConstraintsRoot->addConstraint(std::make_unique<SpillCosts>());
829    ConstraintsRoot->addConstraint(std::make_unique<Interference>());
830    if (PBQPCoalescing)
831      ConstraintsRoot->addConstraint(std::make_unique<Coalescing>());
832    ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
833
834    bool PBQPAllocComplete = false;
835    unsigned Round = 0;
836
837    while (!PBQPAllocComplete) {
838      LLVM_DEBUG(dbgs() << "  PBQP Regalloc round " << Round << ":\n");
839
840      PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
841      initializeGraph(G, VRM, *VRegSpiller);
842      ConstraintsRoot->apply(G);
843
844#ifndef NDEBUG
845      if (PBQPDumpGraphs) {
846        std::ostringstream RS;
847        RS << Round;
848        std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
849                                    ".pbqpgraph";
850        std::error_code EC;
851        raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_Text);
852        LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
853                          << GraphFileName << "\"\n");
854        G.dump(OS);
855      }
856#endif
857
858      PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
859      PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
860      ++Round;
861    }
862  }
863
864  // Finalise allocation, allocate empty ranges.
865  finalizeAlloc(MF, LIS, VRM);
866  postOptimization(*VRegSpiller, LIS);
867  VRegsToAlloc.clear();
868  EmptyIntervalVRegs.clear();
869
870  LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
871
872  return true;
873}
874
875/// Create Printable object for node and register info.
876static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
877                               const PBQP::RegAlloc::PBQPRAGraph &G) {
878  return Printable([NId, &G](raw_ostream &OS) {
879    const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
880    const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
881    unsigned VReg = G.getNodeMetadata(NId).getVReg();
882    const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
883    OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')';
884  });
885}
886
887#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
888LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
889  for (auto NId : nodeIds()) {
890    const Vector &Costs = getNodeCosts(NId);
891    assert(Costs.getLength() != 0 && "Empty vector in graph.");
892    OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
893  }
894  OS << '\n';
895
896  for (auto EId : edgeIds()) {
897    NodeId N1Id = getEdgeNode1Id(EId);
898    NodeId N2Id = getEdgeNode2Id(EId);
899    assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
900    const Matrix &M = getEdgeCosts(EId);
901    assert(M.getRows() != 0 && "No rows in matrix.");
902    assert(M.getCols() != 0 && "No cols in matrix.");
903    OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
904    OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
905    OS << M << '\n';
906  }
907}
908
909LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const {
910  dump(dbgs());
911}
912#endif
913
914void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
915  OS << "graph {\n";
916  for (auto NId : nodeIds()) {
917    OS << "  node" << NId << " [ label=\""
918       << PrintNodeInfo(NId, *this) << "\\n"
919       << getNodeCosts(NId) << "\" ]\n";
920  }
921
922  OS << "  edge [ len=" << nodeIds().size() << " ]\n";
923  for (auto EId : edgeIds()) {
924    OS << "  node" << getEdgeNode1Id(EId)
925       << " -- node" << getEdgeNode2Id(EId)
926       << " [ label=\"";
927    const Matrix &EdgeCosts = getEdgeCosts(EId);
928    for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
929      OS << EdgeCosts.getRowAsVector(i) << "\\n";
930    }
931    OS << "\" ]\n";
932  }
933  OS << "}\n";
934}
935
936FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
937  return new RegAllocPBQP(customPassID);
938}
939
940FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
941  return createPBQPRegisterAllocator();
942}
943