1//===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/CodeGen/ModuloSchedule.h"
10#include "llvm/ADT/StringExtras.h"
11#include "llvm/CodeGen/LiveIntervals.h"
12#include "llvm/CodeGen/MachineInstrBuilder.h"
13#include "llvm/CodeGen/MachineLoopUtils.h"
14#include "llvm/CodeGen/MachineRegisterInfo.h"
15#include "llvm/CodeGen/TargetInstrInfo.h"
16#include "llvm/InitializePasses.h"
17#include "llvm/MC/MCContext.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/raw_ostream.h"
21
22#define DEBUG_TYPE "pipeliner"
23using namespace llvm;
24
25void ModuloSchedule::print(raw_ostream &OS) {
26  for (MachineInstr *MI : ScheduledInstrs)
27    OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
28}
29
30//===----------------------------------------------------------------------===//
31// ModuloScheduleExpander implementation
32//===----------------------------------------------------------------------===//
33
34/// Return the register values for  the operands of a Phi instruction.
35/// This function assume the instruction is a Phi.
36static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
37                       unsigned &InitVal, unsigned &LoopVal) {
38  assert(Phi.isPHI() && "Expecting a Phi.");
39
40  InitVal = 0;
41  LoopVal = 0;
42  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
43    if (Phi.getOperand(i + 1).getMBB() != Loop)
44      InitVal = Phi.getOperand(i).getReg();
45    else
46      LoopVal = Phi.getOperand(i).getReg();
47
48  assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
49}
50
51/// Return the Phi register value that comes from the incoming block.
52static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
53  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
54    if (Phi.getOperand(i + 1).getMBB() != LoopBB)
55      return Phi.getOperand(i).getReg();
56  return 0;
57}
58
59/// Return the Phi register value that comes the loop block.
60static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
61  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
62    if (Phi.getOperand(i + 1).getMBB() == LoopBB)
63      return Phi.getOperand(i).getReg();
64  return 0;
65}
66
67void ModuloScheduleExpander::expand() {
68  BB = Schedule.getLoop()->getTopBlock();
69  Preheader = *BB->pred_begin();
70  if (Preheader == BB)
71    Preheader = *std::next(BB->pred_begin());
72
73  // Iterate over the definitions in each instruction, and compute the
74  // stage difference for each use.  Keep the maximum value.
75  for (MachineInstr *MI : Schedule.getInstructions()) {
76    int DefStage = Schedule.getStage(MI);
77    for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
78      MachineOperand &Op = MI->getOperand(i);
79      if (!Op.isReg() || !Op.isDef())
80        continue;
81
82      Register Reg = Op.getReg();
83      unsigned MaxDiff = 0;
84      bool PhiIsSwapped = false;
85      for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
86                                             EI = MRI.use_end();
87           UI != EI; ++UI) {
88        MachineOperand &UseOp = *UI;
89        MachineInstr *UseMI = UseOp.getParent();
90        int UseStage = Schedule.getStage(UseMI);
91        unsigned Diff = 0;
92        if (UseStage != -1 && UseStage >= DefStage)
93          Diff = UseStage - DefStage;
94        if (MI->isPHI()) {
95          if (isLoopCarried(*MI))
96            ++Diff;
97          else
98            PhiIsSwapped = true;
99        }
100        MaxDiff = std::max(Diff, MaxDiff);
101      }
102      RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
103    }
104  }
105
106  generatePipelinedLoop();
107}
108
109void ModuloScheduleExpander::generatePipelinedLoop() {
110  LoopInfo = TII->analyzeLoopForPipelining(BB);
111  assert(LoopInfo && "Must be able to analyze loop!");
112
113  // Create a new basic block for the kernel and add it to the CFG.
114  MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
115
116  unsigned MaxStageCount = Schedule.getNumStages() - 1;
117
118  // Remember the registers that are used in different stages. The index is
119  // the iteration, or stage, that the instruction is scheduled in.  This is
120  // a map between register names in the original block and the names created
121  // in each stage of the pipelined loop.
122  ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
123  InstrMapTy InstrMap;
124
125  SmallVector<MachineBasicBlock *, 4> PrologBBs;
126
127  // Generate the prolog instructions that set up the pipeline.
128  generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
129  MF.insert(BB->getIterator(), KernelBB);
130
131  // Rearrange the instructions to generate the new, pipelined loop,
132  // and update register names as needed.
133  for (MachineInstr *CI : Schedule.getInstructions()) {
134    if (CI->isPHI())
135      continue;
136    unsigned StageNum = Schedule.getStage(CI);
137    MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
138    updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
139    KernelBB->push_back(NewMI);
140    InstrMap[NewMI] = CI;
141  }
142
143  // Copy any terminator instructions to the new kernel, and update
144  // names as needed.
145  for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
146                                   E = BB->instr_end();
147       I != E; ++I) {
148    MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
149    updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
150    KernelBB->push_back(NewMI);
151    InstrMap[NewMI] = &*I;
152  }
153
154  NewKernel = KernelBB;
155  KernelBB->transferSuccessors(BB);
156  KernelBB->replaceSuccessor(BB, KernelBB);
157
158  generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
159                       InstrMap, MaxStageCount, MaxStageCount, false);
160  generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
161               MaxStageCount, MaxStageCount, false);
162
163  LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
164
165  SmallVector<MachineBasicBlock *, 4> EpilogBBs;
166  // Generate the epilog instructions to complete the pipeline.
167  generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
168
169  // We need this step because the register allocation doesn't handle some
170  // situations well, so we insert copies to help out.
171  splitLifetimes(KernelBB, EpilogBBs);
172
173  // Remove dead instructions due to loop induction variables.
174  removeDeadInstructions(KernelBB, EpilogBBs);
175
176  // Add branches between prolog and epilog blocks.
177  addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
178
179  delete[] VRMap;
180}
181
182void ModuloScheduleExpander::cleanup() {
183  // Remove the original loop since it's no longer referenced.
184  for (auto &I : *BB)
185    LIS.RemoveMachineInstrFromMaps(I);
186  BB->clear();
187  BB->eraseFromParent();
188}
189
190/// Generate the pipeline prolog code.
191void ModuloScheduleExpander::generateProlog(unsigned LastStage,
192                                            MachineBasicBlock *KernelBB,
193                                            ValueMapTy *VRMap,
194                                            MBBVectorTy &PrologBBs) {
195  MachineBasicBlock *PredBB = Preheader;
196  InstrMapTy InstrMap;
197
198  // Generate a basic block for each stage, not including the last stage,
199  // which will be generated in the kernel. Each basic block may contain
200  // instructions from multiple stages/iterations.
201  for (unsigned i = 0; i < LastStage; ++i) {
202    // Create and insert the prolog basic block prior to the original loop
203    // basic block.  The original loop is removed later.
204    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
205    PrologBBs.push_back(NewBB);
206    MF.insert(BB->getIterator(), NewBB);
207    NewBB->transferSuccessors(PredBB);
208    PredBB->addSuccessor(NewBB);
209    PredBB = NewBB;
210
211    // Generate instructions for each appropriate stage. Process instructions
212    // in original program order.
213    for (int StageNum = i; StageNum >= 0; --StageNum) {
214      for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
215                                       BBE = BB->getFirstTerminator();
216           BBI != BBE; ++BBI) {
217        if (Schedule.getStage(&*BBI) == StageNum) {
218          if (BBI->isPHI())
219            continue;
220          MachineInstr *NewMI =
221              cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
222          updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
223          NewBB->push_back(NewMI);
224          InstrMap[NewMI] = &*BBI;
225        }
226      }
227    }
228    rewritePhiValues(NewBB, i, VRMap, InstrMap);
229    LLVM_DEBUG({
230      dbgs() << "prolog:\n";
231      NewBB->dump();
232    });
233  }
234
235  PredBB->replaceSuccessor(BB, KernelBB);
236
237  // Check if we need to remove the branch from the preheader to the original
238  // loop, and replace it with a branch to the new loop.
239  unsigned numBranches = TII->removeBranch(*Preheader);
240  if (numBranches) {
241    SmallVector<MachineOperand, 0> Cond;
242    TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
243  }
244}
245
246/// Generate the pipeline epilog code. The epilog code finishes the iterations
247/// that were started in either the prolog or the kernel.  We create a basic
248/// block for each stage that needs to complete.
249void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
250                                            MachineBasicBlock *KernelBB,
251                                            ValueMapTy *VRMap,
252                                            MBBVectorTy &EpilogBBs,
253                                            MBBVectorTy &PrologBBs) {
254  // We need to change the branch from the kernel to the first epilog block, so
255  // this call to analyze branch uses the kernel rather than the original BB.
256  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
257  SmallVector<MachineOperand, 4> Cond;
258  bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
259  assert(!checkBranch && "generateEpilog must be able to analyze the branch");
260  if (checkBranch)
261    return;
262
263  MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
264  if (*LoopExitI == KernelBB)
265    ++LoopExitI;
266  assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
267  MachineBasicBlock *LoopExitBB = *LoopExitI;
268
269  MachineBasicBlock *PredBB = KernelBB;
270  MachineBasicBlock *EpilogStart = LoopExitBB;
271  InstrMapTy InstrMap;
272
273  // Generate a basic block for each stage, not including the last stage,
274  // which was generated for the kernel.  Each basic block may contain
275  // instructions from multiple stages/iterations.
276  int EpilogStage = LastStage + 1;
277  for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
278    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
279    EpilogBBs.push_back(NewBB);
280    MF.insert(BB->getIterator(), NewBB);
281
282    PredBB->replaceSuccessor(LoopExitBB, NewBB);
283    NewBB->addSuccessor(LoopExitBB);
284
285    if (EpilogStart == LoopExitBB)
286      EpilogStart = NewBB;
287
288    // Add instructions to the epilog depending on the current block.
289    // Process instructions in original program order.
290    for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
291      for (auto &BBI : *BB) {
292        if (BBI.isPHI())
293          continue;
294        MachineInstr *In = &BBI;
295        if ((unsigned)Schedule.getStage(In) == StageNum) {
296          // Instructions with memoperands in the epilog are updated with
297          // conservative values.
298          MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
299          updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
300          NewBB->push_back(NewMI);
301          InstrMap[NewMI] = In;
302        }
303      }
304    }
305    generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
306                         InstrMap, LastStage, EpilogStage, i == 1);
307    generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
308                 LastStage, EpilogStage, i == 1);
309    PredBB = NewBB;
310
311    LLVM_DEBUG({
312      dbgs() << "epilog:\n";
313      NewBB->dump();
314    });
315  }
316
317  // Fix any Phi nodes in the loop exit block.
318  LoopExitBB->replacePhiUsesWith(BB, PredBB);
319
320  // Create a branch to the new epilog from the kernel.
321  // Remove the original branch and add a new branch to the epilog.
322  TII->removeBranch(*KernelBB);
323  TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
324  // Add a branch to the loop exit.
325  if (EpilogBBs.size() > 0) {
326    MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
327    SmallVector<MachineOperand, 4> Cond1;
328    TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
329  }
330}
331
332/// Replace all uses of FromReg that appear outside the specified
333/// basic block with ToReg.
334static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
335                                    MachineBasicBlock *MBB,
336                                    MachineRegisterInfo &MRI,
337                                    LiveIntervals &LIS) {
338  for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
339                                         E = MRI.use_end();
340       I != E;) {
341    MachineOperand &O = *I;
342    ++I;
343    if (O.getParent()->getParent() != MBB)
344      O.setReg(ToReg);
345  }
346  if (!LIS.hasInterval(ToReg))
347    LIS.createEmptyInterval(ToReg);
348}
349
350/// Return true if the register has a use that occurs outside the
351/// specified loop.
352static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
353                            MachineRegisterInfo &MRI) {
354  for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
355                                         E = MRI.use_end();
356       I != E; ++I)
357    if (I->getParent()->getParent() != BB)
358      return true;
359  return false;
360}
361
362/// Generate Phis for the specific block in the generated pipelined code.
363/// This function looks at the Phis from the original code to guide the
364/// creation of new Phis.
365void ModuloScheduleExpander::generateExistingPhis(
366    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
367    MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
368    unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
369  // Compute the stage number for the initial value of the Phi, which
370  // comes from the prolog. The prolog to use depends on to which kernel/
371  // epilog that we're adding the Phi.
372  unsigned PrologStage = 0;
373  unsigned PrevStage = 0;
374  bool InKernel = (LastStageNum == CurStageNum);
375  if (InKernel) {
376    PrologStage = LastStageNum - 1;
377    PrevStage = CurStageNum;
378  } else {
379    PrologStage = LastStageNum - (CurStageNum - LastStageNum);
380    PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
381  }
382
383  for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
384                                   BBE = BB->getFirstNonPHI();
385       BBI != BBE; ++BBI) {
386    Register Def = BBI->getOperand(0).getReg();
387
388    unsigned InitVal = 0;
389    unsigned LoopVal = 0;
390    getPhiRegs(*BBI, BB, InitVal, LoopVal);
391
392    unsigned PhiOp1 = 0;
393    // The Phi value from the loop body typically is defined in the loop, but
394    // not always. So, we need to check if the value is defined in the loop.
395    unsigned PhiOp2 = LoopVal;
396    if (VRMap[LastStageNum].count(LoopVal))
397      PhiOp2 = VRMap[LastStageNum][LoopVal];
398
399    int StageScheduled = Schedule.getStage(&*BBI);
400    int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
401    unsigned NumStages = getStagesForReg(Def, CurStageNum);
402    if (NumStages == 0) {
403      // We don't need to generate a Phi anymore, but we need to rename any uses
404      // of the Phi value.
405      unsigned NewReg = VRMap[PrevStage][LoopVal];
406      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
407                            InitVal, NewReg);
408      if (VRMap[CurStageNum].count(LoopVal))
409        VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
410    }
411    // Adjust the number of Phis needed depending on the number of prologs left,
412    // and the distance from where the Phi is first scheduled. The number of
413    // Phis cannot exceed the number of prolog stages. Each stage can
414    // potentially define two values.
415    unsigned MaxPhis = PrologStage + 2;
416    if (!InKernel && (int)PrologStage <= LoopValStage)
417      MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
418    unsigned NumPhis = std::min(NumStages, MaxPhis);
419
420    unsigned NewReg = 0;
421    unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
422    // In the epilog, we may need to look back one stage to get the correct
423    // Phi name because the epilog and prolog blocks execute the same stage.
424    // The correct name is from the previous block only when the Phi has
425    // been completely scheduled prior to the epilog, and Phi value is not
426    // needed in multiple stages.
427    int StageDiff = 0;
428    if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
429        NumPhis == 1)
430      StageDiff = 1;
431    // Adjust the computations below when the phi and the loop definition
432    // are scheduled in different stages.
433    if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
434      StageDiff = StageScheduled - LoopValStage;
435    for (unsigned np = 0; np < NumPhis; ++np) {
436      // If the Phi hasn't been scheduled, then use the initial Phi operand
437      // value. Otherwise, use the scheduled version of the instruction. This
438      // is a little complicated when a Phi references another Phi.
439      if (np > PrologStage || StageScheduled >= (int)LastStageNum)
440        PhiOp1 = InitVal;
441      // Check if the Phi has already been scheduled in a prolog stage.
442      else if (PrologStage >= AccessStage + StageDiff + np &&
443               VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
444        PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
445      // Check if the Phi has already been scheduled, but the loop instruction
446      // is either another Phi, or doesn't occur in the loop.
447      else if (PrologStage >= AccessStage + StageDiff + np) {
448        // If the Phi references another Phi, we need to examine the other
449        // Phi to get the correct value.
450        PhiOp1 = LoopVal;
451        MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
452        int Indirects = 1;
453        while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
454          int PhiStage = Schedule.getStage(InstOp1);
455          if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
456            PhiOp1 = getInitPhiReg(*InstOp1, BB);
457          else
458            PhiOp1 = getLoopPhiReg(*InstOp1, BB);
459          InstOp1 = MRI.getVRegDef(PhiOp1);
460          int PhiOpStage = Schedule.getStage(InstOp1);
461          int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
462          if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
463              VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
464            PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
465            break;
466          }
467          ++Indirects;
468        }
469      } else
470        PhiOp1 = InitVal;
471      // If this references a generated Phi in the kernel, get the Phi operand
472      // from the incoming block.
473      if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
474        if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
475          PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
476
477      MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
478      bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
479      // In the epilog, a map lookup is needed to get the value from the kernel,
480      // or previous epilog block. How is does this depends on if the
481      // instruction is scheduled in the previous block.
482      if (!InKernel) {
483        int StageDiffAdj = 0;
484        if (LoopValStage != -1 && StageScheduled > LoopValStage)
485          StageDiffAdj = StageScheduled - LoopValStage;
486        // Use the loop value defined in the kernel, unless the kernel
487        // contains the last definition of the Phi.
488        if (np == 0 && PrevStage == LastStageNum &&
489            (StageScheduled != 0 || LoopValStage != 0) &&
490            VRMap[PrevStage - StageDiffAdj].count(LoopVal))
491          PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
492        // Use the value defined by the Phi. We add one because we switch
493        // from looking at the loop value to the Phi definition.
494        else if (np > 0 && PrevStage == LastStageNum &&
495                 VRMap[PrevStage - np + 1].count(Def))
496          PhiOp2 = VRMap[PrevStage - np + 1][Def];
497        // Use the loop value defined in the kernel.
498        else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
499                 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
500          PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
501        // Use the value defined by the Phi, unless we're generating the first
502        // epilog and the Phi refers to a Phi in a different stage.
503        else if (VRMap[PrevStage - np].count(Def) &&
504                 (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
505                  (LoopValStage == StageScheduled)))
506          PhiOp2 = VRMap[PrevStage - np][Def];
507      }
508
509      // Check if we can reuse an existing Phi. This occurs when a Phi
510      // references another Phi, and the other Phi is scheduled in an
511      // earlier stage. We can try to reuse an existing Phi up until the last
512      // stage of the current Phi.
513      if (LoopDefIsPhi) {
514        if (static_cast<int>(PrologStage - np) >= StageScheduled) {
515          int LVNumStages = getStagesForPhi(LoopVal);
516          int StageDiff = (StageScheduled - LoopValStage);
517          LVNumStages -= StageDiff;
518          // Make sure the loop value Phi has been processed already.
519          if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
520            NewReg = PhiOp2;
521            unsigned ReuseStage = CurStageNum;
522            if (isLoopCarried(*PhiInst))
523              ReuseStage -= LVNumStages;
524            // Check if the Phi to reuse has been generated yet. If not, then
525            // there is nothing to reuse.
526            if (VRMap[ReuseStage - np].count(LoopVal)) {
527              NewReg = VRMap[ReuseStage - np][LoopVal];
528
529              rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
530                                    Def, NewReg);
531              // Update the map with the new Phi name.
532              VRMap[CurStageNum - np][Def] = NewReg;
533              PhiOp2 = NewReg;
534              if (VRMap[LastStageNum - np - 1].count(LoopVal))
535                PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
536
537              if (IsLast && np == NumPhis - 1)
538                replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
539              continue;
540            }
541          }
542        }
543        if (InKernel && StageDiff > 0 &&
544            VRMap[CurStageNum - StageDiff - np].count(LoopVal))
545          PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
546      }
547
548      const TargetRegisterClass *RC = MRI.getRegClass(Def);
549      NewReg = MRI.createVirtualRegister(RC);
550
551      MachineInstrBuilder NewPhi =
552          BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
553                  TII->get(TargetOpcode::PHI), NewReg);
554      NewPhi.addReg(PhiOp1).addMBB(BB1);
555      NewPhi.addReg(PhiOp2).addMBB(BB2);
556      if (np == 0)
557        InstrMap[NewPhi] = &*BBI;
558
559      // We define the Phis after creating the new pipelined code, so
560      // we need to rename the Phi values in scheduled instructions.
561
562      unsigned PrevReg = 0;
563      if (InKernel && VRMap[PrevStage - np].count(LoopVal))
564        PrevReg = VRMap[PrevStage - np][LoopVal];
565      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
566                            NewReg, PrevReg);
567      // If the Phi has been scheduled, use the new name for rewriting.
568      if (VRMap[CurStageNum - np].count(Def)) {
569        unsigned R = VRMap[CurStageNum - np][Def];
570        rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
571                              NewReg);
572      }
573
574      // Check if we need to rename any uses that occurs after the loop. The
575      // register to replace depends on whether the Phi is scheduled in the
576      // epilog.
577      if (IsLast && np == NumPhis - 1)
578        replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
579
580      // In the kernel, a dependent Phi uses the value from this Phi.
581      if (InKernel)
582        PhiOp2 = NewReg;
583
584      // Update the map with the new Phi name.
585      VRMap[CurStageNum - np][Def] = NewReg;
586    }
587
588    while (NumPhis++ < NumStages) {
589      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
590                            NewReg, 0);
591    }
592
593    // Check if we need to rename a Phi that has been eliminated due to
594    // scheduling.
595    if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
596      replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
597  }
598}
599
600/// Generate Phis for the specified block in the generated pipelined code.
601/// These are new Phis needed because the definition is scheduled after the
602/// use in the pipelined sequence.
603void ModuloScheduleExpander::generatePhis(
604    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
605    MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
606    unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
607  // Compute the stage number that contains the initial Phi value, and
608  // the Phi from the previous stage.
609  unsigned PrologStage = 0;
610  unsigned PrevStage = 0;
611  unsigned StageDiff = CurStageNum - LastStageNum;
612  bool InKernel = (StageDiff == 0);
613  if (InKernel) {
614    PrologStage = LastStageNum - 1;
615    PrevStage = CurStageNum;
616  } else {
617    PrologStage = LastStageNum - StageDiff;
618    PrevStage = LastStageNum + StageDiff - 1;
619  }
620
621  for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
622                                   BBE = BB->instr_end();
623       BBI != BBE; ++BBI) {
624    for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
625      MachineOperand &MO = BBI->getOperand(i);
626      if (!MO.isReg() || !MO.isDef() ||
627          !Register::isVirtualRegister(MO.getReg()))
628        continue;
629
630      int StageScheduled = Schedule.getStage(&*BBI);
631      assert(StageScheduled != -1 && "Expecting scheduled instruction.");
632      Register Def = MO.getReg();
633      unsigned NumPhis = getStagesForReg(Def, CurStageNum);
634      // An instruction scheduled in stage 0 and is used after the loop
635      // requires a phi in the epilog for the last definition from either
636      // the kernel or prolog.
637      if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
638          hasUseAfterLoop(Def, BB, MRI))
639        NumPhis = 1;
640      if (!InKernel && (unsigned)StageScheduled > PrologStage)
641        continue;
642
643      unsigned PhiOp2 = VRMap[PrevStage][Def];
644      if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
645        if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
646          PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
647      // The number of Phis can't exceed the number of prolog stages. The
648      // prolog stage number is zero based.
649      if (NumPhis > PrologStage + 1 - StageScheduled)
650        NumPhis = PrologStage + 1 - StageScheduled;
651      for (unsigned np = 0; np < NumPhis; ++np) {
652        unsigned PhiOp1 = VRMap[PrologStage][Def];
653        if (np <= PrologStage)
654          PhiOp1 = VRMap[PrologStage - np][Def];
655        if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
656          if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
657            PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
658          if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
659            PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
660        }
661        if (!InKernel)
662          PhiOp2 = VRMap[PrevStage - np][Def];
663
664        const TargetRegisterClass *RC = MRI.getRegClass(Def);
665        Register NewReg = MRI.createVirtualRegister(RC);
666
667        MachineInstrBuilder NewPhi =
668            BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
669                    TII->get(TargetOpcode::PHI), NewReg);
670        NewPhi.addReg(PhiOp1).addMBB(BB1);
671        NewPhi.addReg(PhiOp2).addMBB(BB2);
672        if (np == 0)
673          InstrMap[NewPhi] = &*BBI;
674
675        // Rewrite uses and update the map. The actions depend upon whether
676        // we generating code for the kernel or epilog blocks.
677        if (InKernel) {
678          rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
679                                NewReg);
680          rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
681                                NewReg);
682
683          PhiOp2 = NewReg;
684          VRMap[PrevStage - np - 1][Def] = NewReg;
685        } else {
686          VRMap[CurStageNum - np][Def] = NewReg;
687          if (np == NumPhis - 1)
688            rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
689                                  NewReg);
690        }
691        if (IsLast && np == NumPhis - 1)
692          replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
693      }
694    }
695  }
696}
697
698/// Remove instructions that generate values with no uses.
699/// Typically, these are induction variable operations that generate values
700/// used in the loop itself.  A dead instruction has a definition with
701/// no uses, or uses that occur in the original loop only.
702void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
703                                                    MBBVectorTy &EpilogBBs) {
704  // For each epilog block, check that the value defined by each instruction
705  // is used.  If not, delete it.
706  for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
707                                     MBE = EpilogBBs.rend();
708       MBB != MBE; ++MBB)
709    for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
710                                                   ME = (*MBB)->instr_rend();
711         MI != ME;) {
712      // From DeadMachineInstructionElem. Don't delete inline assembly.
713      if (MI->isInlineAsm()) {
714        ++MI;
715        continue;
716      }
717      bool SawStore = false;
718      // Check if it's safe to remove the instruction due to side effects.
719      // We can, and want to, remove Phis here.
720      if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
721        ++MI;
722        continue;
723      }
724      bool used = true;
725      for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
726                                      MOE = MI->operands_end();
727           MOI != MOE; ++MOI) {
728        if (!MOI->isReg() || !MOI->isDef())
729          continue;
730        Register reg = MOI->getReg();
731        // Assume physical registers are used, unless they are marked dead.
732        if (Register::isPhysicalRegister(reg)) {
733          used = !MOI->isDead();
734          if (used)
735            break;
736          continue;
737        }
738        unsigned realUses = 0;
739        for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
740                                               EI = MRI.use_end();
741             UI != EI; ++UI) {
742          // Check if there are any uses that occur only in the original
743          // loop.  If so, that's not a real use.
744          if (UI->getParent()->getParent() != BB) {
745            realUses++;
746            used = true;
747            break;
748          }
749        }
750        if (realUses > 0)
751          break;
752        used = false;
753      }
754      if (!used) {
755        LIS.RemoveMachineInstrFromMaps(*MI);
756        MI++->eraseFromParent();
757        continue;
758      }
759      ++MI;
760    }
761  // In the kernel block, check if we can remove a Phi that generates a value
762  // used in an instruction removed in the epilog block.
763  for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
764                                   BBE = KernelBB->getFirstNonPHI();
765       BBI != BBE;) {
766    MachineInstr *MI = &*BBI;
767    ++BBI;
768    Register reg = MI->getOperand(0).getReg();
769    if (MRI.use_begin(reg) == MRI.use_end()) {
770      LIS.RemoveMachineInstrFromMaps(*MI);
771      MI->eraseFromParent();
772    }
773  }
774}
775
776/// For loop carried definitions, we split the lifetime of a virtual register
777/// that has uses past the definition in the next iteration. A copy with a new
778/// virtual register is inserted before the definition, which helps with
779/// generating a better register assignment.
780///
781///   v1 = phi(a, v2)     v1 = phi(a, v2)
782///   v2 = phi(b, v3)     v2 = phi(b, v3)
783///   v3 = ..             v4 = copy v1
784///   .. = V1             v3 = ..
785///                       .. = v4
786void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
787                                            MBBVectorTy &EpilogBBs) {
788  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
789  for (auto &PHI : KernelBB->phis()) {
790    Register Def = PHI.getOperand(0).getReg();
791    // Check for any Phi definition that used as an operand of another Phi
792    // in the same block.
793    for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
794                                                 E = MRI.use_instr_end();
795         I != E; ++I) {
796      if (I->isPHI() && I->getParent() == KernelBB) {
797        // Get the loop carried definition.
798        unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
799        if (!LCDef)
800          continue;
801        MachineInstr *MI = MRI.getVRegDef(LCDef);
802        if (!MI || MI->getParent() != KernelBB || MI->isPHI())
803          continue;
804        // Search through the rest of the block looking for uses of the Phi
805        // definition. If one occurs, then split the lifetime.
806        unsigned SplitReg = 0;
807        for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
808                                    KernelBB->instr_end()))
809          if (BBJ.readsRegister(Def)) {
810            // We split the lifetime when we find the first use.
811            if (SplitReg == 0) {
812              SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
813              BuildMI(*KernelBB, MI, MI->getDebugLoc(),
814                      TII->get(TargetOpcode::COPY), SplitReg)
815                  .addReg(Def);
816            }
817            BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
818          }
819        if (!SplitReg)
820          continue;
821        // Search through each of the epilog blocks for any uses to be renamed.
822        for (auto &Epilog : EpilogBBs)
823          for (auto &I : *Epilog)
824            if (I.readsRegister(Def))
825              I.substituteRegister(Def, SplitReg, 0, *TRI);
826        break;
827      }
828    }
829  }
830}
831
832/// Remove the incoming block from the Phis in a basic block.
833static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
834  for (MachineInstr &MI : *BB) {
835    if (!MI.isPHI())
836      break;
837    for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
838      if (MI.getOperand(i + 1).getMBB() == Incoming) {
839        MI.RemoveOperand(i + 1);
840        MI.RemoveOperand(i);
841        break;
842      }
843  }
844}
845
846/// Create branches from each prolog basic block to the appropriate epilog
847/// block.  These edges are needed if the loop ends before reaching the
848/// kernel.
849void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
850                                         MBBVectorTy &PrologBBs,
851                                         MachineBasicBlock *KernelBB,
852                                         MBBVectorTy &EpilogBBs,
853                                         ValueMapTy *VRMap) {
854  assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
855  MachineBasicBlock *LastPro = KernelBB;
856  MachineBasicBlock *LastEpi = KernelBB;
857
858  // Start from the blocks connected to the kernel and work "out"
859  // to the first prolog and the last epilog blocks.
860  SmallVector<MachineInstr *, 4> PrevInsts;
861  unsigned MaxIter = PrologBBs.size() - 1;
862  for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
863    // Add branches to the prolog that go to the corresponding
864    // epilog, and the fall-thru prolog/kernel block.
865    MachineBasicBlock *Prolog = PrologBBs[j];
866    MachineBasicBlock *Epilog = EpilogBBs[i];
867
868    SmallVector<MachineOperand, 4> Cond;
869    Optional<bool> StaticallyGreater =
870        LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
871    unsigned numAdded = 0;
872    if (!StaticallyGreater.hasValue()) {
873      Prolog->addSuccessor(Epilog);
874      numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
875    } else if (*StaticallyGreater == false) {
876      Prolog->addSuccessor(Epilog);
877      Prolog->removeSuccessor(LastPro);
878      LastEpi->removeSuccessor(Epilog);
879      numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
880      removePhis(Epilog, LastEpi);
881      // Remove the blocks that are no longer referenced.
882      if (LastPro != LastEpi) {
883        LastEpi->clear();
884        LastEpi->eraseFromParent();
885      }
886      if (LastPro == KernelBB) {
887        LoopInfo->disposed();
888        NewKernel = nullptr;
889      }
890      LastPro->clear();
891      LastPro->eraseFromParent();
892    } else {
893      numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
894      removePhis(Epilog, Prolog);
895    }
896    LastPro = Prolog;
897    LastEpi = Epilog;
898    for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
899                                                   E = Prolog->instr_rend();
900         I != E && numAdded > 0; ++I, --numAdded)
901      updateInstruction(&*I, false, j, 0, VRMap);
902  }
903
904  if (NewKernel) {
905    LoopInfo->setPreheader(PrologBBs[MaxIter]);
906    LoopInfo->adjustTripCount(-(MaxIter + 1));
907  }
908}
909
910/// Return true if we can compute the amount the instruction changes
911/// during each iteration. Set Delta to the amount of the change.
912bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
913  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
914  const MachineOperand *BaseOp;
915  int64_t Offset;
916  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
917    return false;
918
919  if (!BaseOp->isReg())
920    return false;
921
922  Register BaseReg = BaseOp->getReg();
923
924  MachineRegisterInfo &MRI = MF.getRegInfo();
925  // Check if there is a Phi. If so, get the definition in the loop.
926  MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
927  if (BaseDef && BaseDef->isPHI()) {
928    BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
929    BaseDef = MRI.getVRegDef(BaseReg);
930  }
931  if (!BaseDef)
932    return false;
933
934  int D = 0;
935  if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
936    return false;
937
938  Delta = D;
939  return true;
940}
941
942/// Update the memory operand with a new offset when the pipeliner
943/// generates a new copy of the instruction that refers to a
944/// different memory location.
945void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
946                                               MachineInstr &OldMI,
947                                               unsigned Num) {
948  if (Num == 0)
949    return;
950  // If the instruction has memory operands, then adjust the offset
951  // when the instruction appears in different stages.
952  if (NewMI.memoperands_empty())
953    return;
954  SmallVector<MachineMemOperand *, 2> NewMMOs;
955  for (MachineMemOperand *MMO : NewMI.memoperands()) {
956    // TODO: Figure out whether isAtomic is really necessary (see D57601).
957    if (MMO->isVolatile() || MMO->isAtomic() ||
958        (MMO->isInvariant() && MMO->isDereferenceable()) ||
959        (!MMO->getValue())) {
960      NewMMOs.push_back(MMO);
961      continue;
962    }
963    unsigned Delta;
964    if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
965      int64_t AdjOffset = Delta * Num;
966      NewMMOs.push_back(
967          MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
968    } else {
969      NewMMOs.push_back(
970          MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
971    }
972  }
973  NewMI.setMemRefs(MF, NewMMOs);
974}
975
976/// Clone the instruction for the new pipelined loop and update the
977/// memory operands, if needed.
978MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
979                                                 unsigned CurStageNum,
980                                                 unsigned InstStageNum) {
981  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
982  // Check for tied operands in inline asm instructions. This should be handled
983  // elsewhere, but I'm not sure of the best solution.
984  if (OldMI->isInlineAsm())
985    for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
986      const auto &MO = OldMI->getOperand(i);
987      if (MO.isReg() && MO.isUse())
988        break;
989      unsigned UseIdx;
990      if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
991        NewMI->tieOperands(i, UseIdx);
992    }
993  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
994  return NewMI;
995}
996
997/// Clone the instruction for the new pipelined loop. If needed, this
998/// function updates the instruction using the values saved in the
999/// InstrChanges structure.
1000MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1001    MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1002  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1003  auto It = InstrChanges.find(OldMI);
1004  if (It != InstrChanges.end()) {
1005    std::pair<unsigned, int64_t> RegAndOffset = It->second;
1006    unsigned BasePos, OffsetPos;
1007    if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1008      return nullptr;
1009    int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1010    MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1011    if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1012      NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1013    NewMI->getOperand(OffsetPos).setImm(NewOffset);
1014  }
1015  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1016  return NewMI;
1017}
1018
1019/// Update the machine instruction with new virtual registers.  This
1020/// function may change the defintions and/or uses.
1021void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1022                                               bool LastDef,
1023                                               unsigned CurStageNum,
1024                                               unsigned InstrStageNum,
1025                                               ValueMapTy *VRMap) {
1026  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
1027    MachineOperand &MO = NewMI->getOperand(i);
1028    if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1029      continue;
1030    Register reg = MO.getReg();
1031    if (MO.isDef()) {
1032      // Create a new virtual register for the definition.
1033      const TargetRegisterClass *RC = MRI.getRegClass(reg);
1034      Register NewReg = MRI.createVirtualRegister(RC);
1035      MO.setReg(NewReg);
1036      VRMap[CurStageNum][reg] = NewReg;
1037      if (LastDef)
1038        replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1039    } else if (MO.isUse()) {
1040      MachineInstr *Def = MRI.getVRegDef(reg);
1041      // Compute the stage that contains the last definition for instruction.
1042      int DefStageNum = Schedule.getStage(Def);
1043      unsigned StageNum = CurStageNum;
1044      if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1045        // Compute the difference in stages between the defintion and the use.
1046        unsigned StageDiff = (InstrStageNum - DefStageNum);
1047        // Make an adjustment to get the last definition.
1048        StageNum -= StageDiff;
1049      }
1050      if (VRMap[StageNum].count(reg))
1051        MO.setReg(VRMap[StageNum][reg]);
1052    }
1053  }
1054}
1055
1056/// Return the instruction in the loop that defines the register.
1057/// If the definition is a Phi, then follow the Phi operand to
1058/// the instruction in the loop.
1059MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1060  SmallPtrSet<MachineInstr *, 8> Visited;
1061  MachineInstr *Def = MRI.getVRegDef(Reg);
1062  while (Def->isPHI()) {
1063    if (!Visited.insert(Def).second)
1064      break;
1065    for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1066      if (Def->getOperand(i + 1).getMBB() == BB) {
1067        Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1068        break;
1069      }
1070  }
1071  return Def;
1072}
1073
1074/// Return the new name for the value from the previous stage.
1075unsigned ModuloScheduleExpander::getPrevMapVal(
1076    unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1077    ValueMapTy *VRMap, MachineBasicBlock *BB) {
1078  unsigned PrevVal = 0;
1079  if (StageNum > PhiStage) {
1080    MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1081    if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1082      // The name is defined in the previous stage.
1083      PrevVal = VRMap[StageNum - 1][LoopVal];
1084    else if (VRMap[StageNum].count(LoopVal))
1085      // The previous name is defined in the current stage when the instruction
1086      // order is swapped.
1087      PrevVal = VRMap[StageNum][LoopVal];
1088    else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1089      // The loop value hasn't yet been scheduled.
1090      PrevVal = LoopVal;
1091    else if (StageNum == PhiStage + 1)
1092      // The loop value is another phi, which has not been scheduled.
1093      PrevVal = getInitPhiReg(*LoopInst, BB);
1094    else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1095      // The loop value is another phi, which has been scheduled.
1096      PrevVal =
1097          getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1098                        LoopStage, VRMap, BB);
1099  }
1100  return PrevVal;
1101}
1102
1103/// Rewrite the Phi values in the specified block to use the mappings
1104/// from the initial operand. Once the Phi is scheduled, we switch
1105/// to using the loop value instead of the Phi value, so those names
1106/// do not need to be rewritten.
1107void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1108                                              unsigned StageNum,
1109                                              ValueMapTy *VRMap,
1110                                              InstrMapTy &InstrMap) {
1111  for (auto &PHI : BB->phis()) {
1112    unsigned InitVal = 0;
1113    unsigned LoopVal = 0;
1114    getPhiRegs(PHI, BB, InitVal, LoopVal);
1115    Register PhiDef = PHI.getOperand(0).getReg();
1116
1117    unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1118    unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1119    unsigned NumPhis = getStagesForPhi(PhiDef);
1120    if (NumPhis > StageNum)
1121      NumPhis = StageNum;
1122    for (unsigned np = 0; np <= NumPhis; ++np) {
1123      unsigned NewVal =
1124          getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1125      if (!NewVal)
1126        NewVal = InitVal;
1127      rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1128                            NewVal);
1129    }
1130  }
1131}
1132
1133/// Rewrite a previously scheduled instruction to use the register value
1134/// from the new instruction. Make sure the instruction occurs in the
1135/// basic block, and we don't change the uses in the new instruction.
1136void ModuloScheduleExpander::rewriteScheduledInstr(
1137    MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1138    unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1139    unsigned PrevReg) {
1140  bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1141  int StagePhi = Schedule.getStage(Phi) + PhiNum;
1142  // Rewrite uses that have been scheduled already to use the new
1143  // Phi register.
1144  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
1145                                         EI = MRI.use_end();
1146       UI != EI;) {
1147    MachineOperand &UseOp = *UI;
1148    MachineInstr *UseMI = UseOp.getParent();
1149    ++UI;
1150    if (UseMI->getParent() != BB)
1151      continue;
1152    if (UseMI->isPHI()) {
1153      if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1154        continue;
1155      if (getLoopPhiReg(*UseMI, BB) != OldReg)
1156        continue;
1157    }
1158    InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1159    assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1160    MachineInstr *OrigMI = OrigInstr->second;
1161    int StageSched = Schedule.getStage(OrigMI);
1162    int CycleSched = Schedule.getCycle(OrigMI);
1163    unsigned ReplaceReg = 0;
1164    // This is the stage for the scheduled instruction.
1165    if (StagePhi == StageSched && Phi->isPHI()) {
1166      int CyclePhi = Schedule.getCycle(Phi);
1167      if (PrevReg && InProlog)
1168        ReplaceReg = PrevReg;
1169      else if (PrevReg && !isLoopCarried(*Phi) &&
1170               (CyclePhi <= CycleSched || OrigMI->isPHI()))
1171        ReplaceReg = PrevReg;
1172      else
1173        ReplaceReg = NewReg;
1174    }
1175    // The scheduled instruction occurs before the scheduled Phi, and the
1176    // Phi is not loop carried.
1177    if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1178      ReplaceReg = NewReg;
1179    if (StagePhi > StageSched && Phi->isPHI())
1180      ReplaceReg = NewReg;
1181    if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1182      ReplaceReg = NewReg;
1183    if (ReplaceReg) {
1184      MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1185      UseOp.setReg(ReplaceReg);
1186    }
1187  }
1188}
1189
1190bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1191  if (!Phi.isPHI())
1192    return false;
1193  int DefCycle = Schedule.getCycle(&Phi);
1194  int DefStage = Schedule.getStage(&Phi);
1195
1196  unsigned InitVal = 0;
1197  unsigned LoopVal = 0;
1198  getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1199  MachineInstr *Use = MRI.getVRegDef(LoopVal);
1200  if (!Use || Use->isPHI())
1201    return true;
1202  int LoopCycle = Schedule.getCycle(Use);
1203  int LoopStage = Schedule.getStage(Use);
1204  return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1205}
1206
1207//===----------------------------------------------------------------------===//
1208// PeelingModuloScheduleExpander implementation
1209//===----------------------------------------------------------------------===//
1210// This is a reimplementation of ModuloScheduleExpander that works by creating
1211// a fully correct steady-state kernel and peeling off the prolog and epilogs.
1212//===----------------------------------------------------------------------===//
1213
1214namespace {
1215// Remove any dead phis in MBB. Dead phis either have only one block as input
1216// (in which case they are the identity) or have no uses.
1217void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1218                       LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1219  bool Changed = true;
1220  while (Changed) {
1221    Changed = false;
1222    for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) {
1223      MachineInstr &MI = *I++;
1224      assert(MI.isPHI());
1225      if (MRI.use_empty(MI.getOperand(0).getReg())) {
1226        if (LIS)
1227          LIS->RemoveMachineInstrFromMaps(MI);
1228        MI.eraseFromParent();
1229        Changed = true;
1230      } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1231        MRI.constrainRegClass(MI.getOperand(1).getReg(),
1232                              MRI.getRegClass(MI.getOperand(0).getReg()));
1233        MRI.replaceRegWith(MI.getOperand(0).getReg(),
1234                           MI.getOperand(1).getReg());
1235        if (LIS)
1236          LIS->RemoveMachineInstrFromMaps(MI);
1237        MI.eraseFromParent();
1238        Changed = true;
1239      }
1240    }
1241  }
1242}
1243
1244/// Rewrites the kernel block in-place to adhere to the given schedule.
1245/// KernelRewriter holds all of the state required to perform the rewriting.
1246class KernelRewriter {
1247  ModuloSchedule &S;
1248  MachineBasicBlock *BB;
1249  MachineBasicBlock *PreheaderBB, *ExitBB;
1250  MachineRegisterInfo &MRI;
1251  const TargetInstrInfo *TII;
1252  LiveIntervals *LIS;
1253
1254  // Map from register class to canonical undef register for that class.
1255  DenseMap<const TargetRegisterClass *, Register> Undefs;
1256  // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1257  // this map is only used when InitReg is non-undef.
1258  DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1259  // Map from LoopReg to phi register where the InitReg is undef.
1260  DenseMap<Register, Register> UndefPhis;
1261
1262  // Reg is used by MI. Return the new register MI should use to adhere to the
1263  // schedule. Insert phis as necessary.
1264  Register remapUse(Register Reg, MachineInstr &MI);
1265  // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1266  // If InitReg is not given it is chosen arbitrarily. It will either be undef
1267  // or will be chosen so as to share another phi.
1268  Register phi(Register LoopReg, Optional<Register> InitReg = {},
1269               const TargetRegisterClass *RC = nullptr);
1270  // Create an undef register of the given register class.
1271  Register undef(const TargetRegisterClass *RC);
1272
1273public:
1274  KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1275                 LiveIntervals *LIS = nullptr);
1276  void rewrite();
1277};
1278} // namespace
1279
1280KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1281                               LiveIntervals *LIS)
1282    : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()),
1283      ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1284      TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1285  PreheaderBB = *BB->pred_begin();
1286  if (PreheaderBB == BB)
1287    PreheaderBB = *std::next(BB->pred_begin());
1288}
1289
1290void KernelRewriter::rewrite() {
1291  // Rearrange the loop to be in schedule order. Note that the schedule may
1292  // contain instructions that are not owned by the loop block (InstrChanges and
1293  // friends), so we gracefully handle unowned instructions and delete any
1294  // instructions that weren't in the schedule.
1295  auto InsertPt = BB->getFirstTerminator();
1296  MachineInstr *FirstMI = nullptr;
1297  for (MachineInstr *MI : S.getInstructions()) {
1298    if (MI->isPHI())
1299      continue;
1300    if (MI->getParent())
1301      MI->removeFromParent();
1302    BB->insert(InsertPt, MI);
1303    if (!FirstMI)
1304      FirstMI = MI;
1305  }
1306  assert(FirstMI && "Failed to find first MI in schedule");
1307
1308  // At this point all of the scheduled instructions are between FirstMI
1309  // and the end of the block. Kill from the first non-phi to FirstMI.
1310  for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1311    if (LIS)
1312      LIS->RemoveMachineInstrFromMaps(*I);
1313    (I++)->eraseFromParent();
1314  }
1315
1316  // Now remap every instruction in the loop.
1317  for (MachineInstr &MI : *BB) {
1318    if (MI.isPHI() || MI.isTerminator())
1319      continue;
1320    for (MachineOperand &MO : MI.uses()) {
1321      if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1322        continue;
1323      Register Reg = remapUse(MO.getReg(), MI);
1324      MO.setReg(Reg);
1325    }
1326  }
1327  EliminateDeadPhis(BB, MRI, LIS);
1328
1329  // Ensure a phi exists for all instructions that are either referenced by
1330  // an illegal phi or by an instruction outside the loop. This allows us to
1331  // treat remaps of these values the same as "normal" values that come from
1332  // loop-carried phis.
1333  for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1334    if (MI->isPHI()) {
1335      Register R = MI->getOperand(0).getReg();
1336      phi(R);
1337      continue;
1338    }
1339
1340    for (MachineOperand &Def : MI->defs()) {
1341      for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1342        if (MI.getParent() != BB) {
1343          phi(Def.getReg());
1344          break;
1345        }
1346      }
1347    }
1348  }
1349}
1350
1351Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1352  MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1353  if (!Producer)
1354    return Reg;
1355
1356  int ConsumerStage = S.getStage(&MI);
1357  if (!Producer->isPHI()) {
1358    // Non-phi producers are simple to remap. Insert as many phis as the
1359    // difference between the consumer and producer stages.
1360    if (Producer->getParent() != BB)
1361      // Producer was not inside the loop. Use the register as-is.
1362      return Reg;
1363    int ProducerStage = S.getStage(Producer);
1364    assert(ConsumerStage != -1 &&
1365           "In-loop consumer should always be scheduled!");
1366    assert(ConsumerStage >= ProducerStage);
1367    unsigned StageDiff = ConsumerStage - ProducerStage;
1368
1369    for (unsigned I = 0; I < StageDiff; ++I)
1370      Reg = phi(Reg);
1371    return Reg;
1372  }
1373
1374  // First, dive through the phi chain to find the defaults for the generated
1375  // phis.
1376  SmallVector<Optional<Register>, 4> Defaults;
1377  Register LoopReg = Reg;
1378  auto LoopProducer = Producer;
1379  while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1380    LoopReg = getLoopPhiReg(*LoopProducer, BB);
1381    Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1382    LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1383    assert(LoopProducer);
1384  }
1385  int LoopProducerStage = S.getStage(LoopProducer);
1386
1387  Optional<Register> IllegalPhiDefault;
1388
1389  if (LoopProducerStage == -1) {
1390    // Do nothing.
1391  } else if (LoopProducerStage > ConsumerStage) {
1392    // This schedule is only representable if ProducerStage == ConsumerStage+1.
1393    // In addition, Consumer's cycle must be scheduled after Producer in the
1394    // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1395    // functions.
1396#ifndef NDEBUG // Silence unused variables in non-asserts mode.
1397    int LoopProducerCycle = S.getCycle(LoopProducer);
1398    int ConsumerCycle = S.getCycle(&MI);
1399#endif
1400    assert(LoopProducerCycle <= ConsumerCycle);
1401    assert(LoopProducerStage == ConsumerStage + 1);
1402    // Peel off the first phi from Defaults and insert a phi between producer
1403    // and consumer. This phi will not be at the front of the block so we
1404    // consider it illegal. It will only exist during the rewrite process; it
1405    // needs to exist while we peel off prologs because these could take the
1406    // default value. After that we can replace all uses with the loop producer
1407    // value.
1408    IllegalPhiDefault = Defaults.front();
1409    Defaults.erase(Defaults.begin());
1410  } else {
1411    assert(ConsumerStage >= LoopProducerStage);
1412    int StageDiff = ConsumerStage - LoopProducerStage;
1413    if (StageDiff > 0) {
1414      LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1415                        << " to " << (Defaults.size() + StageDiff) << "\n");
1416      // If we need more phis than we have defaults for, pad out with undefs for
1417      // the earliest phis, which are at the end of the defaults chain (the
1418      // chain is in reverse order).
1419      Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1420                                                       ? Optional<Register>()
1421                                                       : Defaults.back());
1422    }
1423  }
1424
1425  // Now we know the number of stages to jump back, insert the phi chain.
1426  auto DefaultI = Defaults.rbegin();
1427  while (DefaultI != Defaults.rend())
1428    LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1429
1430  if (IllegalPhiDefault.hasValue()) {
1431    // The consumer optionally consumes LoopProducer in the same iteration
1432    // (because the producer is scheduled at an earlier cycle than the consumer)
1433    // or the initial value. To facilitate this we create an illegal block here
1434    // by embedding a phi in the middle of the block. We will fix this up
1435    // immediately prior to pruning.
1436    auto RC = MRI.getRegClass(Reg);
1437    Register R = MRI.createVirtualRegister(RC);
1438    BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1439        .addReg(IllegalPhiDefault.getValue())
1440        .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1441        .addReg(LoopReg)
1442        .addMBB(BB); // Block choice is arbitrary and has no effect.
1443    return R;
1444  }
1445
1446  return LoopReg;
1447}
1448
1449Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1450                             const TargetRegisterClass *RC) {
1451  // If the init register is not undef, try and find an existing phi.
1452  if (InitReg.hasValue()) {
1453    auto I = Phis.find({LoopReg, InitReg.getValue()});
1454    if (I != Phis.end())
1455      return I->second;
1456  } else {
1457    for (auto &KV : Phis) {
1458      if (KV.first.first == LoopReg)
1459        return KV.second;
1460    }
1461  }
1462
1463  // InitReg is either undef or no existing phi takes InitReg as input. Try and
1464  // find a phi that takes undef as input.
1465  auto I = UndefPhis.find(LoopReg);
1466  if (I != UndefPhis.end()) {
1467    Register R = I->second;
1468    if (!InitReg.hasValue())
1469      // Found a phi taking undef as input, and this input is undef so return
1470      // without any more changes.
1471      return R;
1472    // Found a phi taking undef as input, so rewrite it to take InitReg.
1473    MachineInstr *MI = MRI.getVRegDef(R);
1474    MI->getOperand(1).setReg(InitReg.getValue());
1475    Phis.insert({{LoopReg, InitReg.getValue()}, R});
1476    MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
1477    UndefPhis.erase(I);
1478    return R;
1479  }
1480
1481  // Failed to find any existing phi to reuse, so create a new one.
1482  if (!RC)
1483    RC = MRI.getRegClass(LoopReg);
1484  Register R = MRI.createVirtualRegister(RC);
1485  if (InitReg.hasValue())
1486    MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1487  BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1488      .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
1489      .addMBB(PreheaderBB)
1490      .addReg(LoopReg)
1491      .addMBB(BB);
1492  if (!InitReg.hasValue())
1493    UndefPhis[LoopReg] = R;
1494  else
1495    Phis[{LoopReg, *InitReg}] = R;
1496  return R;
1497}
1498
1499Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1500  Register &R = Undefs[RC];
1501  if (R == 0) {
1502    // Create an IMPLICIT_DEF that defines this register if we need it.
1503    // All uses of this should be removed by the time we have finished unrolling
1504    // prologs and epilogs.
1505    R = MRI.createVirtualRegister(RC);
1506    auto *InsertBB = &PreheaderBB->getParent()->front();
1507    BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1508            TII->get(TargetOpcode::IMPLICIT_DEF), R);
1509  }
1510  return R;
1511}
1512
1513namespace {
1514/// Describes an operand in the kernel of a pipelined loop. Characteristics of
1515/// the operand are discovered, such as how many in-loop PHIs it has to jump
1516/// through and defaults for these phis.
1517class KernelOperandInfo {
1518  MachineBasicBlock *BB;
1519  MachineRegisterInfo &MRI;
1520  SmallVector<Register, 4> PhiDefaults;
1521  MachineOperand *Source;
1522  MachineOperand *Target;
1523
1524public:
1525  KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1526                    const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1527      : MRI(MRI) {
1528    Source = MO;
1529    BB = MO->getParent()->getParent();
1530    while (isRegInLoop(MO)) {
1531      MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1532      if (MI->isFullCopy()) {
1533        MO = &MI->getOperand(1);
1534        continue;
1535      }
1536      if (!MI->isPHI())
1537        break;
1538      // If this is an illegal phi, don't count it in distance.
1539      if (IllegalPhis.count(MI)) {
1540        MO = &MI->getOperand(3);
1541        continue;
1542      }
1543
1544      Register Default = getInitPhiReg(*MI, BB);
1545      MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1546                                            : &MI->getOperand(3);
1547      PhiDefaults.push_back(Default);
1548    }
1549    Target = MO;
1550  }
1551
1552  bool operator==(const KernelOperandInfo &Other) const {
1553    return PhiDefaults.size() == Other.PhiDefaults.size();
1554  }
1555
1556  void print(raw_ostream &OS) const {
1557    OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1558       << *Source->getParent();
1559  }
1560
1561private:
1562  bool isRegInLoop(MachineOperand *MO) {
1563    return MO->isReg() && MO->getReg().isVirtual() &&
1564           MRI.getVRegDef(MO->getReg())->getParent() == BB;
1565  }
1566};
1567} // namespace
1568
1569MachineBasicBlock *
1570PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1571  MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1572  if (LPD == LPD_Front)
1573    PeeledFront.push_back(NewBB);
1574  else
1575    PeeledBack.push_front(NewBB);
1576  for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1577       ++I, ++NI) {
1578    CanonicalMIs[&*I] = &*I;
1579    CanonicalMIs[&*NI] = &*I;
1580    BlockMIs[{NewBB, &*I}] = &*NI;
1581    BlockMIs[{BB, &*I}] = &*I;
1582  }
1583  return NewBB;
1584}
1585
1586void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1587                                                       int MinStage) {
1588  for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1589       I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1590    MachineInstr *MI = &*I++;
1591    int Stage = getStage(MI);
1592    if (Stage == -1 || Stage >= MinStage)
1593      continue;
1594
1595    for (MachineOperand &DefMO : MI->defs()) {
1596      SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1597      for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1598        // Only PHIs can use values from this block by construction.
1599        // Match with the equivalent PHI in B.
1600        assert(UseMI.isPHI());
1601        Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1602                                               MI->getParent());
1603        Subs.emplace_back(&UseMI, Reg);
1604      }
1605      for (auto &Sub : Subs)
1606        Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1607                                      *MRI.getTargetRegisterInfo());
1608    }
1609    if (LIS)
1610      LIS->RemoveMachineInstrFromMaps(*MI);
1611    MI->eraseFromParent();
1612  }
1613}
1614
1615void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1616    MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1617  auto InsertPt = DestBB->getFirstNonPHI();
1618  DenseMap<Register, Register> Remaps;
1619  for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) {
1620    MachineInstr *MI = &*I++;
1621    if (MI->isPHI()) {
1622      // This is an illegal PHI. If we move any instructions using an illegal
1623      // PHI, we need to create a legal Phi
1624      Register PhiR = MI->getOperand(0).getReg();
1625      auto RC = MRI.getRegClass(PhiR);
1626      Register NR = MRI.createVirtualRegister(RC);
1627      MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), DebugLoc(),
1628                                 TII->get(TargetOpcode::PHI), NR)
1629                             .addReg(PhiR)
1630                             .addMBB(SourceBB);
1631      BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI;
1632      CanonicalMIs[NI] = CanonicalMIs[MI];
1633      Remaps[PhiR] = NR;
1634      continue;
1635    }
1636    if (getStage(MI) != Stage)
1637      continue;
1638    MI->removeFromParent();
1639    DestBB->insert(InsertPt, MI);
1640    auto *KernelMI = CanonicalMIs[MI];
1641    BlockMIs[{DestBB, KernelMI}] = MI;
1642    BlockMIs.erase({SourceBB, KernelMI});
1643  }
1644  SmallVector<MachineInstr *, 4> PhiToDelete;
1645  for (MachineInstr &MI : DestBB->phis()) {
1646    assert(MI.getNumOperands() == 3);
1647    MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1648    // If the instruction referenced by the phi is moved inside the block
1649    // we don't need the phi anymore.
1650    if (getStage(Def) == Stage) {
1651      Register PhiReg = MI.getOperand(0).getReg();
1652      MRI.replaceRegWith(MI.getOperand(0).getReg(),
1653                         Def->getOperand(0).getReg());
1654      MI.getOperand(0).setReg(PhiReg);
1655      PhiToDelete.push_back(&MI);
1656    }
1657  }
1658  for (auto *P : PhiToDelete)
1659    P->eraseFromParent();
1660  InsertPt = DestBB->getFirstNonPHI();
1661  // Helper to clone Phi instructions into the destination block. We clone Phi
1662  // greedily to avoid combinatorial explosion of Phi instructions.
1663  auto clonePhi = [&](MachineInstr *Phi) {
1664    MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1665    DestBB->insert(InsertPt, NewMI);
1666    Register OrigR = Phi->getOperand(0).getReg();
1667    Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1668    NewMI->getOperand(0).setReg(R);
1669    NewMI->getOperand(1).setReg(OrigR);
1670    NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1671    Remaps[OrigR] = R;
1672    CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1673    BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1674    PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1675    return R;
1676  };
1677  for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1678    for (MachineOperand &MO : I->uses()) {
1679      if (!MO.isReg())
1680        continue;
1681      if (Remaps.count(MO.getReg()))
1682        MO.setReg(Remaps[MO.getReg()]);
1683      else {
1684        // If we are using a phi from the source block we need to add a new phi
1685        // pointing to the old one.
1686        MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1687        if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1688          Register R = clonePhi(Use);
1689          MO.setReg(R);
1690        }
1691      }
1692    }
1693  }
1694}
1695
1696Register
1697PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1698                                                  MachineInstr *Phi) {
1699  unsigned distance = PhiNodeLoopIteration[Phi];
1700  MachineInstr *CanonicalUse = CanonicalPhi;
1701  for (unsigned I = 0; I < distance; ++I) {
1702    assert(CanonicalUse->isPHI());
1703    assert(CanonicalUse->getNumOperands() == 5);
1704    unsigned LoopRegIdx = 3, InitRegIdx = 1;
1705    if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1706      std::swap(LoopRegIdx, InitRegIdx);
1707    CanonicalUse =
1708        MRI.getVRegDef(CanonicalUse->getOperand(LoopRegIdx).getReg());
1709  }
1710  return CanonicalUse->getOperand(0).getReg();
1711}
1712
1713void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1714  BitVector LS(Schedule.getNumStages(), true);
1715  BitVector AS(Schedule.getNumStages(), true);
1716  LiveStages[BB] = LS;
1717  AvailableStages[BB] = AS;
1718
1719  // Peel out the prologs.
1720  LS.reset();
1721  for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1722    LS[I] = 1;
1723    Prologs.push_back(peelKernel(LPD_Front));
1724    LiveStages[Prologs.back()] = LS;
1725    AvailableStages[Prologs.back()] = LS;
1726  }
1727
1728  // Create a block that will end up as the new loop exiting block (dominated by
1729  // all prologs and epilogs). It will only contain PHIs, in the same order as
1730  // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1731  // that the exiting block is a (sub) clone of BB. This in turn gives us the
1732  // property that any value deffed in BB but used outside of BB is used by a
1733  // PHI in the exiting block.
1734  MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1735  EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1736  // Push out the epilogs, again in reverse order.
1737  // We can't assume anything about the minumum loop trip count at this point,
1738  // so emit a fairly complex epilog.
1739
1740  // We first peel number of stages minus one epilogue. Then we remove dead
1741  // stages and reorder instructions based on their stage. If we have 3 stages
1742  // we generate first:
1743  // E0[3, 2, 1]
1744  // E1[3', 2']
1745  // E2[3'']
1746  // And then we move instructions based on their stages to have:
1747  // E0[3]
1748  // E1[2, 3']
1749  // E2[1, 2', 3'']
1750  // The transformation is legal because we only move instructions past
1751  // instructions of a previous loop iteration.
1752  for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1753    Epilogs.push_back(peelKernel(LPD_Back));
1754    MachineBasicBlock *B = Epilogs.back();
1755    filterInstructions(B, Schedule.getNumStages() - I);
1756    // Keep track at which iteration each phi belongs to. We need it to know
1757    // what version of the variable to use during prologue/epilogue stitching.
1758    EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1759    for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi)
1760      PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I;
1761  }
1762  for (size_t I = 0; I < Epilogs.size(); I++) {
1763    LS.reset();
1764    for (size_t J = I; J < Epilogs.size(); J++) {
1765      int Iteration = J;
1766      unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1767      // Move stage one block at a time so that Phi nodes are updated correctly.
1768      for (size_t K = Iteration; K > I; K--)
1769        moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1770      LS[Stage] = 1;
1771    }
1772    LiveStages[Epilogs[I]] = LS;
1773    AvailableStages[Epilogs[I]] = AS;
1774  }
1775
1776  // Now we've defined all the prolog and epilog blocks as a fallthrough
1777  // sequence, add the edges that will be followed if the loop trip count is
1778  // lower than the number of stages (connecting prologs directly with epilogs).
1779  auto PI = Prologs.begin();
1780  auto EI = Epilogs.begin();
1781  assert(Prologs.size() == Epilogs.size());
1782  for (; PI != Prologs.end(); ++PI, ++EI) {
1783    MachineBasicBlock *Pred = *(*EI)->pred_begin();
1784    (*PI)->addSuccessor(*EI);
1785    for (MachineInstr &MI : (*EI)->phis()) {
1786      Register Reg = MI.getOperand(1).getReg();
1787      MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1788      if (Use && Use->getParent() == Pred) {
1789        MachineInstr *CanonicalUse = CanonicalMIs[Use];
1790        if (CanonicalUse->isPHI()) {
1791          // If the use comes from a phi we need to skip as many phi as the
1792          // distance between the epilogue and the kernel. Trace through the phi
1793          // chain to find the right value.
1794          Reg = getPhiCanonicalReg(CanonicalUse, Use);
1795        }
1796        Reg = getEquivalentRegisterIn(Reg, *PI);
1797      }
1798      MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1799      MI.addOperand(MachineOperand::CreateMBB(*PI));
1800    }
1801  }
1802
1803  // Create a list of all blocks in order.
1804  SmallVector<MachineBasicBlock *, 8> Blocks;
1805  llvm::copy(PeeledFront, std::back_inserter(Blocks));
1806  Blocks.push_back(BB);
1807  llvm::copy(PeeledBack, std::back_inserter(Blocks));
1808
1809  // Iterate in reverse order over all instructions, remapping as we go.
1810  for (MachineBasicBlock *B : reverse(Blocks)) {
1811    for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
1812         I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1813      MachineInstr *MI = &*I++;
1814      rewriteUsesOf(MI);
1815    }
1816  }
1817  for (auto *MI : IllegalPhisToDelete) {
1818    if (LIS)
1819      LIS->RemoveMachineInstrFromMaps(*MI);
1820    MI->eraseFromParent();
1821  }
1822  IllegalPhisToDelete.clear();
1823
1824  // Now all remapping has been done, we're free to optimize the generated code.
1825  for (MachineBasicBlock *B : reverse(Blocks))
1826    EliminateDeadPhis(B, MRI, LIS);
1827  EliminateDeadPhis(ExitingBB, MRI, LIS);
1828}
1829
1830MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1831  MachineFunction &MF = *BB->getParent();
1832  MachineBasicBlock *Exit = *BB->succ_begin();
1833  if (Exit == BB)
1834    Exit = *std::next(BB->succ_begin());
1835
1836  MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1837  MF.insert(std::next(BB->getIterator()), NewBB);
1838
1839  // Clone all phis in BB into NewBB and rewrite.
1840  for (MachineInstr &MI : BB->phis()) {
1841    auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1842    Register OldR = MI.getOperand(3).getReg();
1843    Register R = MRI.createVirtualRegister(RC);
1844    SmallVector<MachineInstr *, 4> Uses;
1845    for (MachineInstr &Use : MRI.use_instructions(OldR))
1846      if (Use.getParent() != BB)
1847        Uses.push_back(&Use);
1848    for (MachineInstr *Use : Uses)
1849      Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1850                              *MRI.getTargetRegisterInfo());
1851    MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1852        .addReg(OldR)
1853        .addMBB(BB);
1854    BlockMIs[{NewBB, &MI}] = NI;
1855    CanonicalMIs[NI] = &MI;
1856  }
1857  BB->replaceSuccessor(Exit, NewBB);
1858  Exit->replacePhiUsesWith(BB, NewBB);
1859  NewBB->addSuccessor(Exit);
1860
1861  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1862  SmallVector<MachineOperand, 4> Cond;
1863  bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1864  (void)CanAnalyzeBr;
1865  assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1866  TII->removeBranch(*BB);
1867  TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1868                    Cond, DebugLoc());
1869  TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1870  return NewBB;
1871}
1872
1873Register
1874PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1875                                                       MachineBasicBlock *BB) {
1876  MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1877  unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1878  return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1879}
1880
1881void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1882  if (MI->isPHI()) {
1883    // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1884    // and it is produced by this block.
1885    Register PhiR = MI->getOperand(0).getReg();
1886    Register R = MI->getOperand(3).getReg();
1887    int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1888    if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1889      R = MI->getOperand(1).getReg();
1890    MRI.setRegClass(R, MRI.getRegClass(PhiR));
1891    MRI.replaceRegWith(PhiR, R);
1892    // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1893    // later to figure out how to remap registers.
1894    MI->getOperand(0).setReg(PhiR);
1895    IllegalPhisToDelete.push_back(MI);
1896    return;
1897  }
1898
1899  int Stage = getStage(MI);
1900  if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1901      LiveStages[MI->getParent()].test(Stage))
1902    // Instruction is live, no rewriting to do.
1903    return;
1904
1905  for (MachineOperand &DefMO : MI->defs()) {
1906    SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1907    for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1908      // Only PHIs can use values from this block by construction.
1909      // Match with the equivalent PHI in B.
1910      assert(UseMI.isPHI());
1911      Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1912                                             MI->getParent());
1913      Subs.emplace_back(&UseMI, Reg);
1914    }
1915    for (auto &Sub : Subs)
1916      Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1917                                    *MRI.getTargetRegisterInfo());
1918  }
1919  if (LIS)
1920    LIS->RemoveMachineInstrFromMaps(*MI);
1921  MI->eraseFromParent();
1922}
1923
1924void PeelingModuloScheduleExpander::fixupBranches() {
1925  // Work outwards from the kernel.
1926  bool KernelDisposed = false;
1927  int TC = Schedule.getNumStages() - 1;
1928  for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1929       ++PI, ++EI, --TC) {
1930    MachineBasicBlock *Prolog = *PI;
1931    MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1932    MachineBasicBlock *Epilog = *EI;
1933    SmallVector<MachineOperand, 4> Cond;
1934    TII->removeBranch(*Prolog);
1935    Optional<bool> StaticallyGreater =
1936        Info->createTripCountGreaterCondition(TC, *Prolog, Cond);
1937    if (!StaticallyGreater.hasValue()) {
1938      LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1939      // Dynamically branch based on Cond.
1940      TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1941    } else if (*StaticallyGreater == false) {
1942      LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1943      // Prolog never falls through; branch to epilog and orphan interior
1944      // blocks. Leave it to unreachable-block-elim to clean up.
1945      Prolog->removeSuccessor(Fallthrough);
1946      for (MachineInstr &P : Fallthrough->phis()) {
1947        P.RemoveOperand(2);
1948        P.RemoveOperand(1);
1949      }
1950      TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1951      KernelDisposed = true;
1952    } else {
1953      LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1954      // Prolog always falls through; remove incoming values in epilog.
1955      Prolog->removeSuccessor(Epilog);
1956      for (MachineInstr &P : Epilog->phis()) {
1957        P.RemoveOperand(4);
1958        P.RemoveOperand(3);
1959      }
1960    }
1961  }
1962
1963  if (!KernelDisposed) {
1964    Info->adjustTripCount(-(Schedule.getNumStages() - 1));
1965    Info->setPreheader(Prologs.back());
1966  } else {
1967    Info->disposed();
1968  }
1969}
1970
1971void PeelingModuloScheduleExpander::rewriteKernel() {
1972  KernelRewriter KR(*Schedule.getLoop(), Schedule);
1973  KR.rewrite();
1974}
1975
1976void PeelingModuloScheduleExpander::expand() {
1977  BB = Schedule.getLoop()->getTopBlock();
1978  Preheader = Schedule.getLoop()->getLoopPreheader();
1979  LLVM_DEBUG(Schedule.dump());
1980  Info = TII->analyzeLoopForPipelining(BB);
1981  assert(Info);
1982
1983  rewriteKernel();
1984  peelPrologAndEpilogs();
1985  fixupBranches();
1986}
1987
1988void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
1989  BB = Schedule.getLoop()->getTopBlock();
1990  Preheader = Schedule.getLoop()->getLoopPreheader();
1991
1992  // Dump the schedule before we invalidate and remap all its instructions.
1993  // Stash it in a string so we can print it if we found an error.
1994  std::string ScheduleDump;
1995  raw_string_ostream OS(ScheduleDump);
1996  Schedule.print(OS);
1997  OS.flush();
1998
1999  // First, run the normal ModuleScheduleExpander. We don't support any
2000  // InstrChanges.
2001  assert(LIS && "Requires LiveIntervals!");
2002  ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2003                             ModuloScheduleExpander::InstrChangesTy());
2004  MSE.expand();
2005  MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2006  if (!ExpandedKernel) {
2007    // The expander optimized away the kernel. We can't do any useful checking.
2008    MSE.cleanup();
2009    return;
2010  }
2011  // Before running the KernelRewriter, re-add BB into the CFG.
2012  Preheader->addSuccessor(BB);
2013
2014  // Now run the new expansion algorithm.
2015  KernelRewriter KR(*Schedule.getLoop(), Schedule);
2016  KR.rewrite();
2017  peelPrologAndEpilogs();
2018
2019  // Collect all illegal phis that the new algorithm created. We'll give these
2020  // to KernelOperandInfo.
2021  SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2022  for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2023    if (NI->isPHI())
2024      IllegalPhis.insert(&*NI);
2025  }
2026
2027  // Co-iterate across both kernels. We expect them to be identical apart from
2028  // phis and full COPYs (we look through both).
2029  SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2030  auto OI = ExpandedKernel->begin();
2031  auto NI = BB->begin();
2032  for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2033    while (OI->isPHI() || OI->isFullCopy())
2034      ++OI;
2035    while (NI->isPHI() || NI->isFullCopy())
2036      ++NI;
2037    assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2038    // Analyze every operand separately.
2039    for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2040         OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2041      KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2042                        KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2043  }
2044
2045  bool Failed = false;
2046  for (auto &OldAndNew : KOIs) {
2047    if (OldAndNew.first == OldAndNew.second)
2048      continue;
2049    Failed = true;
2050    errs() << "Modulo kernel validation error: [\n";
2051    errs() << " [golden] ";
2052    OldAndNew.first.print(errs());
2053    errs() << "          ";
2054    OldAndNew.second.print(errs());
2055    errs() << "]\n";
2056  }
2057
2058  if (Failed) {
2059    errs() << "Golden reference kernel:\n";
2060    ExpandedKernel->print(errs());
2061    errs() << "New kernel:\n";
2062    BB->print(errs());
2063    errs() << ScheduleDump;
2064    report_fatal_error(
2065        "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2066  }
2067
2068  // Cleanup by removing BB from the CFG again as the original
2069  // ModuloScheduleExpander intended.
2070  Preheader->removeSuccessor(BB);
2071  MSE.cleanup();
2072}
2073
2074//===----------------------------------------------------------------------===//
2075// ModuloScheduleTestPass implementation
2076//===----------------------------------------------------------------------===//
2077// This pass constructs a ModuloSchedule from its module and runs
2078// ModuloScheduleExpander.
2079//
2080// The module is expected to contain a single-block analyzable loop.
2081// The total order of instructions is taken from the loop as-is.
2082// Instructions are expected to be annotated with a PostInstrSymbol.
2083// This PostInstrSymbol must have the following format:
2084//  "Stage=%d Cycle=%d".
2085//===----------------------------------------------------------------------===//
2086
2087namespace {
2088class ModuloScheduleTest : public MachineFunctionPass {
2089public:
2090  static char ID;
2091
2092  ModuloScheduleTest() : MachineFunctionPass(ID) {
2093    initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2094  }
2095
2096  bool runOnMachineFunction(MachineFunction &MF) override;
2097  void runOnLoop(MachineFunction &MF, MachineLoop &L);
2098
2099  void getAnalysisUsage(AnalysisUsage &AU) const override {
2100    AU.addRequired<MachineLoopInfo>();
2101    AU.addRequired<LiveIntervals>();
2102    MachineFunctionPass::getAnalysisUsage(AU);
2103  }
2104};
2105} // namespace
2106
2107char ModuloScheduleTest::ID = 0;
2108
2109INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2110                      "Modulo Schedule test pass", false, false)
2111INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2112INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2113INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2114                    "Modulo Schedule test pass", false, false)
2115
2116bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2117  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2118  for (auto *L : MLI) {
2119    if (L->getTopBlock() != L->getBottomBlock())
2120      continue;
2121    runOnLoop(MF, *L);
2122    return false;
2123  }
2124  return false;
2125}
2126
2127static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2128  std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2129  std::pair<StringRef, StringRef> StageTokenAndValue =
2130      getToken(StageAndCycle.first, "-");
2131  std::pair<StringRef, StringRef> CycleTokenAndValue =
2132      getToken(StageAndCycle.second, "-");
2133  if (StageTokenAndValue.first != "Stage" ||
2134      CycleTokenAndValue.first != "_Cycle") {
2135    llvm_unreachable(
2136        "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2137    return;
2138  }
2139
2140  StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2141  CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2142
2143  dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2144}
2145
2146void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2147  LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2148  MachineBasicBlock *BB = L.getTopBlock();
2149  dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2150
2151  DenseMap<MachineInstr *, int> Cycle, Stage;
2152  std::vector<MachineInstr *> Instrs;
2153  for (MachineInstr &MI : *BB) {
2154    if (MI.isTerminator())
2155      continue;
2156    Instrs.push_back(&MI);
2157    if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2158      dbgs() << "Parsing post-instr symbol for " << MI;
2159      parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2160    }
2161  }
2162
2163  ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2164                    std::move(Stage));
2165  ModuloScheduleExpander MSE(
2166      MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2167  MSE.expand();
2168  MSE.cleanup();
2169}
2170
2171//===----------------------------------------------------------------------===//
2172// ModuloScheduleTestAnnotater implementation
2173//===----------------------------------------------------------------------===//
2174
2175void ModuloScheduleTestAnnotater::annotate() {
2176  for (MachineInstr *MI : S.getInstructions()) {
2177    SmallVector<char, 16> SV;
2178    raw_svector_ostream OS(SV);
2179    OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2180    MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2181    MI->setPostInstrSymbol(MF, Sym);
2182  }
2183}
2184