1//===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The inline spiller modifies the machine function directly instead of
10// inserting spills and restores in VirtRegMap.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Spiller.h"
15#include "SplitKit.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/MapVector.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/CodeGen/LiveInterval.h"
27#include "llvm/CodeGen/LiveIntervals.h"
28#include "llvm/CodeGen/LiveRangeCalc.h"
29#include "llvm/CodeGen/LiveRangeEdit.h"
30#include "llvm/CodeGen/LiveStacks.h"
31#include "llvm/CodeGen/MachineBasicBlock.h"
32#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
33#include "llvm/CodeGen/MachineDominators.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstr.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineInstrBundle.h"
39#include "llvm/CodeGen/MachineLoopInfo.h"
40#include "llvm/CodeGen/MachineOperand.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/SlotIndexes.h"
43#include "llvm/CodeGen/TargetInstrInfo.h"
44#include "llvm/CodeGen/TargetOpcodes.h"
45#include "llvm/CodeGen/TargetRegisterInfo.h"
46#include "llvm/CodeGen/TargetSubtargetInfo.h"
47#include "llvm/CodeGen/VirtRegMap.h"
48#include "llvm/Config/llvm-config.h"
49#include "llvm/Support/BlockFrequency.h"
50#include "llvm/Support/BranchProbability.h"
51#include "llvm/Support/CommandLine.h"
52#include "llvm/Support/Compiler.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/raw_ostream.h"
56#include <cassert>
57#include <iterator>
58#include <tuple>
59#include <utility>
60#include <vector>
61
62using namespace llvm;
63
64#define DEBUG_TYPE "regalloc"
65
66STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
67STATISTIC(NumSnippets,        "Number of spilled snippets");
68STATISTIC(NumSpills,          "Number of spills inserted");
69STATISTIC(NumSpillsRemoved,   "Number of spills removed");
70STATISTIC(NumReloads,         "Number of reloads inserted");
71STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
72STATISTIC(NumFolded,          "Number of folded stack accesses");
73STATISTIC(NumFoldedLoads,     "Number of folded loads");
74STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
75
76static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
77                                     cl::desc("Disable inline spill hoisting"));
78static cl::opt<bool>
79RestrictStatepointRemat("restrict-statepoint-remat",
80                       cl::init(false), cl::Hidden,
81                       cl::desc("Restrict remat for statepoint operands"));
82
83namespace {
84
85class HoistSpillHelper : private LiveRangeEdit::Delegate {
86  MachineFunction &MF;
87  LiveIntervals &LIS;
88  LiveStacks &LSS;
89  AliasAnalysis *AA;
90  MachineDominatorTree &MDT;
91  MachineLoopInfo &Loops;
92  VirtRegMap &VRM;
93  MachineRegisterInfo &MRI;
94  const TargetInstrInfo &TII;
95  const TargetRegisterInfo &TRI;
96  const MachineBlockFrequencyInfo &MBFI;
97
98  InsertPointAnalysis IPA;
99
100  // Map from StackSlot to the LiveInterval of the original register.
101  // Note the LiveInterval of the original register may have been deleted
102  // after it is spilled. We keep a copy here to track the range where
103  // spills can be moved.
104  DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
105
106  // Map from pair of (StackSlot and Original VNI) to a set of spills which
107  // have the same stackslot and have equal values defined by Original VNI.
108  // These spills are mergeable and are hoist candiates.
109  using MergeableSpillsMap =
110      MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
111  MergeableSpillsMap MergeableSpills;
112
113  /// This is the map from original register to a set containing all its
114  /// siblings. To hoist a spill to another BB, we need to find out a live
115  /// sibling there and use it as the source of the new spill.
116  DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap;
117
118  bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
119                     MachineBasicBlock &BB, unsigned &LiveReg);
120
121  void rmRedundantSpills(
122      SmallPtrSet<MachineInstr *, 16> &Spills,
123      SmallVectorImpl<MachineInstr *> &SpillsToRm,
124      DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
125
126  void getVisitOrders(
127      MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
128      SmallVectorImpl<MachineDomTreeNode *> &Orders,
129      SmallVectorImpl<MachineInstr *> &SpillsToRm,
130      DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
131      DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
132
133  void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
134                      SmallPtrSet<MachineInstr *, 16> &Spills,
135                      SmallVectorImpl<MachineInstr *> &SpillsToRm,
136                      DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
137
138public:
139  HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
140                   VirtRegMap &vrm)
141      : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
142        LSS(pass.getAnalysis<LiveStacks>()),
143        AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
144        MDT(pass.getAnalysis<MachineDominatorTree>()),
145        Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
146        MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
147        TRI(*mf.getSubtarget().getRegisterInfo()),
148        MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
149        IPA(LIS, mf.getNumBlockIDs()) {}
150
151  void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
152                            unsigned Original);
153  bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
154  void hoistAllSpills();
155  void LRE_DidCloneVirtReg(unsigned, unsigned) override;
156};
157
158class InlineSpiller : public Spiller {
159  MachineFunction &MF;
160  LiveIntervals &LIS;
161  LiveStacks &LSS;
162  AliasAnalysis *AA;
163  MachineDominatorTree &MDT;
164  MachineLoopInfo &Loops;
165  VirtRegMap &VRM;
166  MachineRegisterInfo &MRI;
167  const TargetInstrInfo &TII;
168  const TargetRegisterInfo &TRI;
169  const MachineBlockFrequencyInfo &MBFI;
170
171  // Variables that are valid during spill(), but used by multiple methods.
172  LiveRangeEdit *Edit;
173  LiveInterval *StackInt;
174  int StackSlot;
175  unsigned Original;
176
177  // All registers to spill to StackSlot, including the main register.
178  SmallVector<unsigned, 8> RegsToSpill;
179
180  // All COPY instructions to/from snippets.
181  // They are ignored since both operands refer to the same stack slot.
182  SmallPtrSet<MachineInstr*, 8> SnippetCopies;
183
184  // Values that failed to remat at some point.
185  SmallPtrSet<VNInfo*, 8> UsedValues;
186
187  // Dead defs generated during spilling.
188  SmallVector<MachineInstr*, 8> DeadDefs;
189
190  // Object records spills information and does the hoisting.
191  HoistSpillHelper HSpiller;
192
193  ~InlineSpiller() override = default;
194
195public:
196  InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
197      : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
198        LSS(pass.getAnalysis<LiveStacks>()),
199        AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
200        MDT(pass.getAnalysis<MachineDominatorTree>()),
201        Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
202        MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
203        TRI(*mf.getSubtarget().getRegisterInfo()),
204        MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
205        HSpiller(pass, mf, vrm) {}
206
207  void spill(LiveRangeEdit &) override;
208  void postOptimization() override;
209
210private:
211  bool isSnippet(const LiveInterval &SnipLI);
212  void collectRegsToSpill();
213
214  bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); }
215
216  bool isSibling(unsigned Reg);
217  bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
218  void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
219
220  void markValueUsed(LiveInterval*, VNInfo*);
221  bool canGuaranteeAssignmentAfterRemat(unsigned VReg, MachineInstr &MI);
222  bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
223  void reMaterializeAll();
224
225  bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
226  bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
227                         MachineInstr *LoadMI = nullptr);
228  void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
229  void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
230
231  void spillAroundUses(unsigned Reg);
232  void spillAll();
233};
234
235} // end anonymous namespace
236
237Spiller::~Spiller() = default;
238
239void Spiller::anchor() {}
240
241Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass,
242                                   MachineFunction &mf,
243                                   VirtRegMap &vrm) {
244  return new InlineSpiller(pass, mf, vrm);
245}
246
247//===----------------------------------------------------------------------===//
248//                                Snippets
249//===----------------------------------------------------------------------===//
250
251// When spilling a virtual register, we also spill any snippets it is connected
252// to. The snippets are small live ranges that only have a single real use,
253// leftovers from live range splitting. Spilling them enables memory operand
254// folding or tightens the live range around the single use.
255//
256// This minimizes register pressure and maximizes the store-to-load distance for
257// spill slots which can be important in tight loops.
258
259/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
260/// otherwise return 0.
261static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) {
262  if (!MI.isFullCopy())
263    return 0;
264  if (MI.getOperand(0).getReg() == Reg)
265    return MI.getOperand(1).getReg();
266  if (MI.getOperand(1).getReg() == Reg)
267    return MI.getOperand(0).getReg();
268  return 0;
269}
270
271/// isSnippet - Identify if a live interval is a snippet that should be spilled.
272/// It is assumed that SnipLI is a virtual register with the same original as
273/// Edit->getReg().
274bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
275  unsigned Reg = Edit->getReg();
276
277  // A snippet is a tiny live range with only a single instruction using it
278  // besides copies to/from Reg or spills/fills. We accept:
279  //
280  //   %snip = COPY %Reg / FILL fi#
281  //   %snip = USE %snip
282  //   %Reg = COPY %snip / SPILL %snip, fi#
283  //
284  if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
285    return false;
286
287  MachineInstr *UseMI = nullptr;
288
289  // Check that all uses satisfy our criteria.
290  for (MachineRegisterInfo::reg_instr_nodbg_iterator
291       RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
292       E = MRI.reg_instr_nodbg_end(); RI != E; ) {
293    MachineInstr &MI = *RI++;
294
295    // Allow copies to/from Reg.
296    if (isFullCopyOf(MI, Reg))
297      continue;
298
299    // Allow stack slot loads.
300    int FI;
301    if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
302      continue;
303
304    // Allow stack slot stores.
305    if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
306      continue;
307
308    // Allow a single additional instruction.
309    if (UseMI && &MI != UseMI)
310      return false;
311    UseMI = &MI;
312  }
313  return true;
314}
315
316/// collectRegsToSpill - Collect live range snippets that only have a single
317/// real use.
318void InlineSpiller::collectRegsToSpill() {
319  unsigned Reg = Edit->getReg();
320
321  // Main register always spills.
322  RegsToSpill.assign(1, Reg);
323  SnippetCopies.clear();
324
325  // Snippets all have the same original, so there can't be any for an original
326  // register.
327  if (Original == Reg)
328    return;
329
330  for (MachineRegisterInfo::reg_instr_iterator
331       RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
332    MachineInstr &MI = *RI++;
333    unsigned SnipReg = isFullCopyOf(MI, Reg);
334    if (!isSibling(SnipReg))
335      continue;
336    LiveInterval &SnipLI = LIS.getInterval(SnipReg);
337    if (!isSnippet(SnipLI))
338      continue;
339    SnippetCopies.insert(&MI);
340    if (isRegToSpill(SnipReg))
341      continue;
342    RegsToSpill.push_back(SnipReg);
343    LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
344    ++NumSnippets;
345  }
346}
347
348bool InlineSpiller::isSibling(unsigned Reg) {
349  return Register::isVirtualRegister(Reg) && VRM.getOriginal(Reg) == Original;
350}
351
352/// It is beneficial to spill to earlier place in the same BB in case
353/// as follows:
354/// There is an alternative def earlier in the same MBB.
355/// Hoist the spill as far as possible in SpillMBB. This can ease
356/// register pressure:
357///
358///   x = def
359///   y = use x
360///   s = copy x
361///
362/// Hoisting the spill of s to immediately after the def removes the
363/// interference between x and y:
364///
365///   x = def
366///   spill x
367///   y = use killed x
368///
369/// This hoist only helps when the copy kills its source.
370///
371bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
372                                       MachineInstr &CopyMI) {
373  SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
374#ifndef NDEBUG
375  VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
376  assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
377#endif
378
379  Register SrcReg = CopyMI.getOperand(1).getReg();
380  LiveInterval &SrcLI = LIS.getInterval(SrcReg);
381  VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
382  LiveQueryResult SrcQ = SrcLI.Query(Idx);
383  MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
384  if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
385    return false;
386
387  // Conservatively extend the stack slot range to the range of the original
388  // value. We may be able to do better with stack slot coloring by being more
389  // careful here.
390  assert(StackInt && "No stack slot assigned yet.");
391  LiveInterval &OrigLI = LIS.getInterval(Original);
392  VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
393  StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
394  LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
395                    << *StackInt << '\n');
396
397  // We are going to spill SrcVNI immediately after its def, so clear out
398  // any later spills of the same value.
399  eliminateRedundantSpills(SrcLI, SrcVNI);
400
401  MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
402  MachineBasicBlock::iterator MII;
403  if (SrcVNI->isPHIDef())
404    MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
405  else {
406    MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
407    assert(DefMI && "Defining instruction disappeared");
408    MII = DefMI;
409    ++MII;
410  }
411  // Insert spill without kill flag immediately after def.
412  TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
413                          MRI.getRegClass(SrcReg), &TRI);
414  --MII; // Point to store instruction.
415  LIS.InsertMachineInstrInMaps(*MII);
416  LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
417
418  HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
419  ++NumSpills;
420  return true;
421}
422
423/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
424/// redundant spills of this value in SLI.reg and sibling copies.
425void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
426  assert(VNI && "Missing value");
427  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
428  WorkList.push_back(std::make_pair(&SLI, VNI));
429  assert(StackInt && "No stack slot assigned yet.");
430
431  do {
432    LiveInterval *LI;
433    std::tie(LI, VNI) = WorkList.pop_back_val();
434    unsigned Reg = LI->reg;
435    LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
436                      << VNI->def << " in " << *LI << '\n');
437
438    // Regs to spill are taken care of.
439    if (isRegToSpill(Reg))
440      continue;
441
442    // Add all of VNI's live range to StackInt.
443    StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
444    LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
445
446    // Find all spills and copies of VNI.
447    for (MachineRegisterInfo::use_instr_nodbg_iterator
448         UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
449         UI != E; ) {
450      MachineInstr &MI = *UI++;
451      if (!MI.isCopy() && !MI.mayStore())
452        continue;
453      SlotIndex Idx = LIS.getInstructionIndex(MI);
454      if (LI->getVNInfoAt(Idx) != VNI)
455        continue;
456
457      // Follow sibling copies down the dominator tree.
458      if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
459        if (isSibling(DstReg)) {
460           LiveInterval &DstLI = LIS.getInterval(DstReg);
461           VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
462           assert(DstVNI && "Missing defined value");
463           assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
464           WorkList.push_back(std::make_pair(&DstLI, DstVNI));
465        }
466        continue;
467      }
468
469      // Erase spills.
470      int FI;
471      if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
472        LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
473        // eliminateDeadDefs won't normally remove stores, so switch opcode.
474        MI.setDesc(TII.get(TargetOpcode::KILL));
475        DeadDefs.push_back(&MI);
476        ++NumSpillsRemoved;
477        if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
478          --NumSpills;
479      }
480    }
481  } while (!WorkList.empty());
482}
483
484//===----------------------------------------------------------------------===//
485//                            Rematerialization
486//===----------------------------------------------------------------------===//
487
488/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
489/// instruction cannot be eliminated. See through snippet copies
490void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
491  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
492  WorkList.push_back(std::make_pair(LI, VNI));
493  do {
494    std::tie(LI, VNI) = WorkList.pop_back_val();
495    if (!UsedValues.insert(VNI).second)
496      continue;
497
498    if (VNI->isPHIDef()) {
499      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
500      for (MachineBasicBlock *P : MBB->predecessors()) {
501        VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
502        if (PVNI)
503          WorkList.push_back(std::make_pair(LI, PVNI));
504      }
505      continue;
506    }
507
508    // Follow snippet copies.
509    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
510    if (!SnippetCopies.count(MI))
511      continue;
512    LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
513    assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
514    VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
515    assert(SnipVNI && "Snippet undefined before copy");
516    WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
517  } while (!WorkList.empty());
518}
519
520bool InlineSpiller::canGuaranteeAssignmentAfterRemat(unsigned VReg,
521                                                     MachineInstr &MI) {
522  if (!RestrictStatepointRemat)
523    return true;
524  // Here's a quick explanation of the problem we're trying to handle here:
525  // * There are some pseudo instructions with more vreg uses than there are
526  //   physical registers on the machine.
527  // * This is normally handled by spilling the vreg, and folding the reload
528  //   into the user instruction.  (Thus decreasing the number of used vregs
529  //   until the remainder can be assigned to physregs.)
530  // * However, since we may try to spill vregs in any order, we can end up
531  //   trying to spill each operand to the instruction, and then rematting it
532  //   instead.  When that happens, the new live intervals (for the remats) are
533  //   expected to be trivially assignable (i.e. RS_Done).  However, since we
534  //   may have more remats than physregs, we're guaranteed to fail to assign
535  //   one.
536  // At the moment, we only handle this for STATEPOINTs since they're the only
537  // pseudo op where we've seen this.  If we start seeing other instructions
538  // with the same problem, we need to revisit this.
539  return (MI.getOpcode() != TargetOpcode::STATEPOINT);
540}
541
542/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
543bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
544  // Analyze instruction
545  SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
546  VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg, &Ops);
547
548  if (!RI.Reads)
549    return false;
550
551  SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
552  VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
553
554  if (!ParentVNI) {
555    LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
556    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
557      MachineOperand &MO = MI.getOperand(i);
558      if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
559        MO.setIsUndef();
560    }
561    LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
562    return true;
563  }
564
565  if (SnippetCopies.count(&MI))
566    return false;
567
568  LiveInterval &OrigLI = LIS.getInterval(Original);
569  VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
570  LiveRangeEdit::Remat RM(ParentVNI);
571  RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
572
573  if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
574    markValueUsed(&VirtReg, ParentVNI);
575    LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
576    return false;
577  }
578
579  // If the instruction also writes VirtReg.reg, it had better not require the
580  // same register for uses and defs.
581  if (RI.Tied) {
582    markValueUsed(&VirtReg, ParentVNI);
583    LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
584    return false;
585  }
586
587  // Before rematerializing into a register for a single instruction, try to
588  // fold a load into the instruction. That avoids allocating a new register.
589  if (RM.OrigMI->canFoldAsLoad() &&
590      foldMemoryOperand(Ops, RM.OrigMI)) {
591    Edit->markRematerialized(RM.ParentVNI);
592    ++NumFoldedLoads;
593    return true;
594  }
595
596  // If we can't guarantee that we'll be able to actually assign the new vreg,
597  // we can't remat.
598  if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg, MI)) {
599    markValueUsed(&VirtReg, ParentVNI);
600    LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
601    return false;
602  }
603
604  // Allocate a new register for the remat.
605  unsigned NewVReg = Edit->createFrom(Original);
606
607  // Finally we can rematerialize OrigMI before MI.
608  SlotIndex DefIdx =
609      Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
610
611  // We take the DebugLoc from MI, since OrigMI may be attributed to a
612  // different source location.
613  auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
614  NewMI->setDebugLoc(MI.getDebugLoc());
615
616  (void)DefIdx;
617  LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
618                    << *LIS.getInstructionFromIndex(DefIdx));
619
620  // Replace operands
621  for (const auto &OpPair : Ops) {
622    MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
623    if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
624      MO.setReg(NewVReg);
625      MO.setIsKill();
626    }
627  }
628  LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
629
630  ++NumRemats;
631  return true;
632}
633
634/// reMaterializeAll - Try to rematerialize as many uses as possible,
635/// and trim the live ranges after.
636void InlineSpiller::reMaterializeAll() {
637  if (!Edit->anyRematerializable(AA))
638    return;
639
640  UsedValues.clear();
641
642  // Try to remat before all uses of snippets.
643  bool anyRemat = false;
644  for (unsigned Reg : RegsToSpill) {
645    LiveInterval &LI = LIS.getInterval(Reg);
646    for (MachineRegisterInfo::reg_bundle_iterator
647           RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
648         RegI != E; ) {
649      MachineInstr &MI = *RegI++;
650
651      // Debug values are not allowed to affect codegen.
652      if (MI.isDebugValue())
653        continue;
654
655      assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
656             "instruction that isn't a DBG_VALUE");
657
658      anyRemat |= reMaterializeFor(LI, MI);
659    }
660  }
661  if (!anyRemat)
662    return;
663
664  // Remove any values that were completely rematted.
665  for (unsigned Reg : RegsToSpill) {
666    LiveInterval &LI = LIS.getInterval(Reg);
667    for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
668         I != E; ++I) {
669      VNInfo *VNI = *I;
670      if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
671        continue;
672      MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
673      MI->addRegisterDead(Reg, &TRI);
674      if (!MI->allDefsAreDead())
675        continue;
676      LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
677      DeadDefs.push_back(MI);
678    }
679  }
680
681  // Eliminate dead code after remat. Note that some snippet copies may be
682  // deleted here.
683  if (DeadDefs.empty())
684    return;
685  LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
686  Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
687
688  // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
689  // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
690  // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
691  // removed, PHI VNI are still left in the LiveInterval.
692  // So to get rid of unused reg, we need to check whether it has non-dbg
693  // reference instead of whether it has non-empty interval.
694  unsigned ResultPos = 0;
695  for (unsigned Reg : RegsToSpill) {
696    if (MRI.reg_nodbg_empty(Reg)) {
697      Edit->eraseVirtReg(Reg);
698      continue;
699    }
700
701    assert(LIS.hasInterval(Reg) &&
702           (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
703           "Empty and not used live-range?!");
704
705    RegsToSpill[ResultPos++] = Reg;
706  }
707  RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
708  LLVM_DEBUG(dbgs() << RegsToSpill.size()
709                    << " registers to spill after remat.\n");
710}
711
712//===----------------------------------------------------------------------===//
713//                                 Spilling
714//===----------------------------------------------------------------------===//
715
716/// If MI is a load or store of StackSlot, it can be removed.
717bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
718  int FI = 0;
719  unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI);
720  bool IsLoad = InstrReg;
721  if (!IsLoad)
722    InstrReg = TII.isStoreToStackSlot(*MI, FI);
723
724  // We have a stack access. Is it the right register and slot?
725  if (InstrReg != Reg || FI != StackSlot)
726    return false;
727
728  if (!IsLoad)
729    HSpiller.rmFromMergeableSpills(*MI, StackSlot);
730
731  LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
732  LIS.RemoveMachineInstrFromMaps(*MI);
733  MI->eraseFromParent();
734
735  if (IsLoad) {
736    ++NumReloadsRemoved;
737    --NumReloads;
738  } else {
739    ++NumSpillsRemoved;
740    --NumSpills;
741  }
742
743  return true;
744}
745
746#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
747LLVM_DUMP_METHOD
748// Dump the range of instructions from B to E with their slot indexes.
749static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
750                                               MachineBasicBlock::iterator E,
751                                               LiveIntervals const &LIS,
752                                               const char *const header,
753                                               unsigned VReg =0) {
754  char NextLine = '\n';
755  char SlotIndent = '\t';
756
757  if (std::next(B) == E) {
758    NextLine = ' ';
759    SlotIndent = ' ';
760  }
761
762  dbgs() << '\t' << header << ": " << NextLine;
763
764  for (MachineBasicBlock::iterator I = B; I != E; ++I) {
765    SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
766
767    // If a register was passed in and this instruction has it as a
768    // destination that is marked as an early clobber, print the
769    // early-clobber slot index.
770    if (VReg) {
771      MachineOperand *MO = I->findRegisterDefOperand(VReg);
772      if (MO && MO->isEarlyClobber())
773        Idx = Idx.getRegSlot(true);
774    }
775
776    dbgs() << SlotIndent << Idx << '\t' << *I;
777  }
778}
779#endif
780
781/// foldMemoryOperand - Try folding stack slot references in Ops into their
782/// instructions.
783///
784/// @param Ops    Operand indices from AnalyzeVirtRegInBundle().
785/// @param LoadMI Load instruction to use instead of stack slot when non-null.
786/// @return       True on success.
787bool InlineSpiller::
788foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
789                  MachineInstr *LoadMI) {
790  if (Ops.empty())
791    return false;
792  // Don't attempt folding in bundles.
793  MachineInstr *MI = Ops.front().first;
794  if (Ops.back().first != MI || MI->isBundled())
795    return false;
796
797  bool WasCopy = MI->isCopy();
798  unsigned ImpReg = 0;
799
800  // Spill subregs if the target allows it.
801  // We always want to spill subregs for stackmap/patchpoint pseudos.
802  bool SpillSubRegs = TII.isSubregFoldable() ||
803                      MI->getOpcode() == TargetOpcode::STATEPOINT ||
804                      MI->getOpcode() == TargetOpcode::PATCHPOINT ||
805                      MI->getOpcode() == TargetOpcode::STACKMAP;
806
807  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
808  // operands.
809  SmallVector<unsigned, 8> FoldOps;
810  for (const auto &OpPair : Ops) {
811    unsigned Idx = OpPair.second;
812    assert(MI == OpPair.first && "Instruction conflict during operand folding");
813    MachineOperand &MO = MI->getOperand(Idx);
814    if (MO.isImplicit()) {
815      ImpReg = MO.getReg();
816      continue;
817    }
818
819    if (!SpillSubRegs && MO.getSubReg())
820      return false;
821    // We cannot fold a load instruction into a def.
822    if (LoadMI && MO.isDef())
823      return false;
824    // Tied use operands should not be passed to foldMemoryOperand.
825    if (!MI->isRegTiedToDefOperand(Idx))
826      FoldOps.push_back(Idx);
827  }
828
829  // If we only have implicit uses, we won't be able to fold that.
830  // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
831  if (FoldOps.empty())
832    return false;
833
834  MachineInstrSpan MIS(MI, MI->getParent());
835
836  MachineInstr *FoldMI =
837      LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
838             : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
839  if (!FoldMI)
840    return false;
841
842  // Remove LIS for any dead defs in the original MI not in FoldMI.
843  for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
844    if (!MO->isReg())
845      continue;
846    Register Reg = MO->getReg();
847    if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
848      continue;
849    }
850    // Skip non-Defs, including undef uses and internal reads.
851    if (MO->isUse())
852      continue;
853    PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
854    if (RI.FullyDefined)
855      continue;
856    // FoldMI does not define this physreg. Remove the LI segment.
857    assert(MO->isDead() && "Cannot fold physreg def");
858    SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
859    LIS.removePhysRegDefAt(Reg, Idx);
860  }
861
862  int FI;
863  if (TII.isStoreToStackSlot(*MI, FI) &&
864      HSpiller.rmFromMergeableSpills(*MI, FI))
865    --NumSpills;
866  LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
867  if (MI->isCall())
868    MI->getMF()->moveCallSiteInfo(MI, FoldMI);
869  MI->eraseFromParent();
870
871  // Insert any new instructions other than FoldMI into the LIS maps.
872  assert(!MIS.empty() && "Unexpected empty span of instructions!");
873  for (MachineInstr &MI : MIS)
874    if (&MI != FoldMI)
875      LIS.InsertMachineInstrInMaps(MI);
876
877  // TII.foldMemoryOperand may have left some implicit operands on the
878  // instruction.  Strip them.
879  if (ImpReg)
880    for (unsigned i = FoldMI->getNumOperands(); i; --i) {
881      MachineOperand &MO = FoldMI->getOperand(i - 1);
882      if (!MO.isReg() || !MO.isImplicit())
883        break;
884      if (MO.getReg() == ImpReg)
885        FoldMI->RemoveOperand(i - 1);
886    }
887
888  LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
889                                                "folded"));
890
891  if (!WasCopy)
892    ++NumFolded;
893  else if (Ops.front().second == 0) {
894    ++NumSpills;
895    HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
896  } else
897    ++NumReloads;
898  return true;
899}
900
901void InlineSpiller::insertReload(unsigned NewVReg,
902                                 SlotIndex Idx,
903                                 MachineBasicBlock::iterator MI) {
904  MachineBasicBlock &MBB = *MI->getParent();
905
906  MachineInstrSpan MIS(MI, &MBB);
907  TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
908                           MRI.getRegClass(NewVReg), &TRI);
909
910  LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
911
912  LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
913                                                NewVReg));
914  ++NumReloads;
915}
916
917/// Check if \p Def fully defines a VReg with an undefined value.
918/// If that's the case, that means the value of VReg is actually
919/// not relevant.
920static bool isFullUndefDef(const MachineInstr &Def) {
921  if (!Def.isImplicitDef())
922    return false;
923  assert(Def.getNumOperands() == 1 &&
924         "Implicit def with more than one definition");
925  // We can say that the VReg defined by Def is undef, only if it is
926  // fully defined by Def. Otherwise, some of the lanes may not be
927  // undef and the value of the VReg matters.
928  return !Def.getOperand(0).getSubReg();
929}
930
931/// insertSpill - Insert a spill of NewVReg after MI.
932void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
933                                 MachineBasicBlock::iterator MI) {
934  MachineBasicBlock &MBB = *MI->getParent();
935
936  MachineInstrSpan MIS(MI, &MBB);
937  bool IsRealSpill = true;
938  if (isFullUndefDef(*MI)) {
939    // Don't spill undef value.
940    // Anything works for undef, in particular keeping the memory
941    // uninitialized is a viable option and it saves code size and
942    // run time.
943    BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
944        .addReg(NewVReg, getKillRegState(isKill));
945    IsRealSpill = false;
946  } else
947    TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
948                            MRI.getRegClass(NewVReg), &TRI);
949
950  LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
951
952  LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
953                                                "spill"));
954  ++NumSpills;
955  if (IsRealSpill)
956    HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original);
957}
958
959/// spillAroundUses - insert spill code around each use of Reg.
960void InlineSpiller::spillAroundUses(unsigned Reg) {
961  LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
962  LiveInterval &OldLI = LIS.getInterval(Reg);
963
964  // Iterate over instructions using Reg.
965  for (MachineRegisterInfo::reg_bundle_iterator
966       RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
967       RegI != E; ) {
968    MachineInstr *MI = &*(RegI++);
969
970    // Debug values are not allowed to affect codegen.
971    if (MI->isDebugValue()) {
972      // Modify DBG_VALUE now that the value is in a spill slot.
973      MachineBasicBlock *MBB = MI->getParent();
974      LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
975      buildDbgValueForSpill(*MBB, MI, *MI, StackSlot);
976      MBB->erase(MI);
977      continue;
978    }
979
980    assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "
981           "instruction that isn't a DBG_VALUE");
982
983    // Ignore copies to/from snippets. We'll delete them.
984    if (SnippetCopies.count(MI))
985      continue;
986
987    // Stack slot accesses may coalesce away.
988    if (coalesceStackAccess(MI, Reg))
989      continue;
990
991    // Analyze instruction.
992    SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
993    VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops);
994
995    // Find the slot index where this instruction reads and writes OldLI.
996    // This is usually the def slot, except for tied early clobbers.
997    SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
998    if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
999      if (SlotIndex::isSameInstr(Idx, VNI->def))
1000        Idx = VNI->def;
1001
1002    // Check for a sibling copy.
1003    unsigned SibReg = isFullCopyOf(*MI, Reg);
1004    if (SibReg && isSibling(SibReg)) {
1005      // This may actually be a copy between snippets.
1006      if (isRegToSpill(SibReg)) {
1007        LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1008        SnippetCopies.insert(MI);
1009        continue;
1010      }
1011      if (RI.Writes) {
1012        if (hoistSpillInsideBB(OldLI, *MI)) {
1013          // This COPY is now dead, the value is already in the stack slot.
1014          MI->getOperand(0).setIsDead();
1015          DeadDefs.push_back(MI);
1016          continue;
1017        }
1018      } else {
1019        // This is a reload for a sib-reg copy. Drop spills downstream.
1020        LiveInterval &SibLI = LIS.getInterval(SibReg);
1021        eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1022        // The COPY will fold to a reload below.
1023      }
1024    }
1025
1026    // Attempt to fold memory ops.
1027    if (foldMemoryOperand(Ops))
1028      continue;
1029
1030    // Create a new virtual register for spill/fill.
1031    // FIXME: Infer regclass from instruction alone.
1032    unsigned NewVReg = Edit->createFrom(Reg);
1033
1034    if (RI.Reads)
1035      insertReload(NewVReg, Idx, MI);
1036
1037    // Rewrite instruction operands.
1038    bool hasLiveDef = false;
1039    for (const auto &OpPair : Ops) {
1040      MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1041      MO.setReg(NewVReg);
1042      if (MO.isUse()) {
1043        if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1044          MO.setIsKill();
1045      } else {
1046        if (!MO.isDead())
1047          hasLiveDef = true;
1048      }
1049    }
1050    LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1051
1052    // FIXME: Use a second vreg if instruction has no tied ops.
1053    if (RI.Writes)
1054      if (hasLiveDef)
1055        insertSpill(NewVReg, true, MI);
1056  }
1057}
1058
1059/// spillAll - Spill all registers remaining after rematerialization.
1060void InlineSpiller::spillAll() {
1061  // Update LiveStacks now that we are committed to spilling.
1062  if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1063    StackSlot = VRM.assignVirt2StackSlot(Original);
1064    StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1065    StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1066  } else
1067    StackInt = &LSS.getInterval(StackSlot);
1068
1069  if (Original != Edit->getReg())
1070    VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1071
1072  assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1073  for (unsigned Reg : RegsToSpill)
1074    StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1075                                     StackInt->getValNumInfo(0));
1076  LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1077
1078  // Spill around uses of all RegsToSpill.
1079  for (unsigned Reg : RegsToSpill)
1080    spillAroundUses(Reg);
1081
1082  // Hoisted spills may cause dead code.
1083  if (!DeadDefs.empty()) {
1084    LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1085    Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1086  }
1087
1088  // Finally delete the SnippetCopies.
1089  for (unsigned Reg : RegsToSpill) {
1090    for (MachineRegisterInfo::reg_instr_iterator
1091         RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1092         RI != E; ) {
1093      MachineInstr &MI = *(RI++);
1094      assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1095      // FIXME: Do this with a LiveRangeEdit callback.
1096      LIS.RemoveMachineInstrFromMaps(MI);
1097      MI.eraseFromParent();
1098    }
1099  }
1100
1101  // Delete all spilled registers.
1102  for (unsigned Reg : RegsToSpill)
1103    Edit->eraseVirtReg(Reg);
1104}
1105
1106void InlineSpiller::spill(LiveRangeEdit &edit) {
1107  ++NumSpilledRanges;
1108  Edit = &edit;
1109  assert(!Register::isStackSlot(edit.getReg()) &&
1110         "Trying to spill a stack slot.");
1111  // Share a stack slot among all descendants of Original.
1112  Original = VRM.getOriginal(edit.getReg());
1113  StackSlot = VRM.getStackSlot(Original);
1114  StackInt = nullptr;
1115
1116  LLVM_DEBUG(dbgs() << "Inline spilling "
1117                    << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1118                    << ':' << edit.getParent() << "\nFrom original "
1119                    << printReg(Original) << '\n');
1120  assert(edit.getParent().isSpillable() &&
1121         "Attempting to spill already spilled value.");
1122  assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1123
1124  collectRegsToSpill();
1125  reMaterializeAll();
1126
1127  // Remat may handle everything.
1128  if (!RegsToSpill.empty())
1129    spillAll();
1130
1131  Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1132}
1133
1134/// Optimizations after all the reg selections and spills are done.
1135void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1136
1137/// When a spill is inserted, add the spill to MergeableSpills map.
1138void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1139                                            unsigned Original) {
1140  BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1141  LiveInterval &OrigLI = LIS.getInterval(Original);
1142  // save a copy of LiveInterval in StackSlotToOrigLI because the original
1143  // LiveInterval may be cleared after all its references are spilled.
1144  if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1145    auto LI = std::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight);
1146    LI->assign(OrigLI, Allocator);
1147    StackSlotToOrigLI[StackSlot] = std::move(LI);
1148  }
1149  SlotIndex Idx = LIS.getInstructionIndex(Spill);
1150  VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1151  std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1152  MergeableSpills[MIdx].insert(&Spill);
1153}
1154
1155/// When a spill is removed, remove the spill from MergeableSpills map.
1156/// Return true if the spill is removed successfully.
1157bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1158                                             int StackSlot) {
1159  auto It = StackSlotToOrigLI.find(StackSlot);
1160  if (It == StackSlotToOrigLI.end())
1161    return false;
1162  SlotIndex Idx = LIS.getInstructionIndex(Spill);
1163  VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1164  std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1165  return MergeableSpills[MIdx].erase(&Spill);
1166}
1167
1168/// Check BB to see if it is a possible target BB to place a hoisted spill,
1169/// i.e., there should be a living sibling of OrigReg at the insert point.
1170bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1171                                     MachineBasicBlock &BB, unsigned &LiveReg) {
1172  SlotIndex Idx;
1173  unsigned OrigReg = OrigLI.reg;
1174  MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
1175  if (MI != BB.end())
1176    Idx = LIS.getInstructionIndex(*MI);
1177  else
1178    Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
1179  SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1180  assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1181
1182  for (auto const SibReg : Siblings) {
1183    LiveInterval &LI = LIS.getInterval(SibReg);
1184    VNInfo *VNI = LI.getVNInfoAt(Idx);
1185    if (VNI) {
1186      LiveReg = SibReg;
1187      return true;
1188    }
1189  }
1190  return false;
1191}
1192
1193/// Remove redundant spills in the same BB. Save those redundant spills in
1194/// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1195void HoistSpillHelper::rmRedundantSpills(
1196    SmallPtrSet<MachineInstr *, 16> &Spills,
1197    SmallVectorImpl<MachineInstr *> &SpillsToRm,
1198    DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1199  // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1200  // another spill inside. If a BB contains more than one spill, only keep the
1201  // earlier spill with smaller SlotIndex.
1202  for (const auto CurrentSpill : Spills) {
1203    MachineBasicBlock *Block = CurrentSpill->getParent();
1204    MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1205    MachineInstr *PrevSpill = SpillBBToSpill[Node];
1206    if (PrevSpill) {
1207      SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1208      SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1209      MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1210      MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1211      SpillsToRm.push_back(SpillToRm);
1212      SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1213    } else {
1214      SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1215    }
1216  }
1217  for (const auto SpillToRm : SpillsToRm)
1218    Spills.erase(SpillToRm);
1219}
1220
1221/// Starting from \p Root find a top-down traversal order of the dominator
1222/// tree to visit all basic blocks containing the elements of \p Spills.
1223/// Redundant spills will be found and put into \p SpillsToRm at the same
1224/// time. \p SpillBBToSpill will be populated as part of the process and
1225/// maps a basic block to the first store occurring in the basic block.
1226/// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1227void HoistSpillHelper::getVisitOrders(
1228    MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1229    SmallVectorImpl<MachineDomTreeNode *> &Orders,
1230    SmallVectorImpl<MachineInstr *> &SpillsToRm,
1231    DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1232    DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1233  // The set contains all the possible BB nodes to which we may hoist
1234  // original spills.
1235  SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1236  // Save the BB nodes on the path from the first BB node containing
1237  // non-redundant spill to the Root node.
1238  SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1239  // All the spills to be hoisted must originate from a single def instruction
1240  // to the OrigReg. It means the def instruction should dominate all the spills
1241  // to be hoisted. We choose the BB where the def instruction is located as
1242  // the Root.
1243  MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1244  // For every node on the dominator tree with spill, walk up on the dominator
1245  // tree towards the Root node until it is reached. If there is other node
1246  // containing spill in the middle of the path, the previous spill saw will
1247  // be redundant and the node containing it will be removed. All the nodes on
1248  // the path starting from the first node with non-redundant spill to the Root
1249  // node will be added to the WorkSet, which will contain all the possible
1250  // locations where spills may be hoisted to after the loop below is done.
1251  for (const auto Spill : Spills) {
1252    MachineBasicBlock *Block = Spill->getParent();
1253    MachineDomTreeNode *Node = MDT[Block];
1254    MachineInstr *SpillToRm = nullptr;
1255    while (Node != RootIDomNode) {
1256      // If Node dominates Block, and it already contains a spill, the spill in
1257      // Block will be redundant.
1258      if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1259        SpillToRm = SpillBBToSpill[MDT[Block]];
1260        break;
1261        /// If we see the Node already in WorkSet, the path from the Node to
1262        /// the Root node must already be traversed by another spill.
1263        /// Then no need to repeat.
1264      } else if (WorkSet.count(Node)) {
1265        break;
1266      } else {
1267        NodesOnPath.insert(Node);
1268      }
1269      Node = Node->getIDom();
1270    }
1271    if (SpillToRm) {
1272      SpillsToRm.push_back(SpillToRm);
1273    } else {
1274      // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1275      // set the initial status before hoisting start. The value of BBs
1276      // containing original spills is set to 0, in order to descriminate
1277      // with BBs containing hoisted spills which will be inserted to
1278      // SpillsToKeep later during hoisting.
1279      SpillsToKeep[MDT[Block]] = 0;
1280      WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1281    }
1282    NodesOnPath.clear();
1283  }
1284
1285  // Sort the nodes in WorkSet in top-down order and save the nodes
1286  // in Orders. Orders will be used for hoisting in runHoistSpills.
1287  unsigned idx = 0;
1288  Orders.push_back(MDT.getBase().getNode(Root));
1289  do {
1290    MachineDomTreeNode *Node = Orders[idx++];
1291    const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
1292    unsigned NumChildren = Children.size();
1293    for (unsigned i = 0; i != NumChildren; ++i) {
1294      MachineDomTreeNode *Child = Children[i];
1295      if (WorkSet.count(Child))
1296        Orders.push_back(Child);
1297    }
1298  } while (idx != Orders.size());
1299  assert(Orders.size() == WorkSet.size() &&
1300         "Orders have different size with WorkSet");
1301
1302#ifndef NDEBUG
1303  LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1304  SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1305  for (; RIt != Orders.rend(); RIt++)
1306    LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1307  LLVM_DEBUG(dbgs() << "\n");
1308#endif
1309}
1310
1311/// Try to hoist spills according to BB hotness. The spills to removed will
1312/// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1313/// \p SpillsToIns.
1314void HoistSpillHelper::runHoistSpills(
1315    LiveInterval &OrigLI, VNInfo &OrigVNI,
1316    SmallPtrSet<MachineInstr *, 16> &Spills,
1317    SmallVectorImpl<MachineInstr *> &SpillsToRm,
1318    DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1319  // Visit order of dominator tree nodes.
1320  SmallVector<MachineDomTreeNode *, 32> Orders;
1321  // SpillsToKeep contains all the nodes where spills are to be inserted
1322  // during hoisting. If the spill to be inserted is an original spill
1323  // (not a hoisted one), the value of the map entry is 0. If the spill
1324  // is a hoisted spill, the value of the map entry is the VReg to be used
1325  // as the source of the spill.
1326  DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1327  // Map from BB to the first spill inside of it.
1328  DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1329
1330  rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1331
1332  MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1333  getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1334                 SpillBBToSpill);
1335
1336  // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1337  // nodes set and the cost of all the spills inside those nodes.
1338  // The nodes set are the locations where spills are to be inserted
1339  // in the subtree of current node.
1340  using NodesCostPair =
1341      std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1342  DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1343
1344  // Iterate Orders set in reverse order, which will be a bottom-up order
1345  // in the dominator tree. Once we visit a dom tree node, we know its
1346  // children have already been visited and the spill locations in the
1347  // subtrees of all the children have been determined.
1348  SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1349  for (; RIt != Orders.rend(); RIt++) {
1350    MachineBasicBlock *Block = (*RIt)->getBlock();
1351
1352    // If Block contains an original spill, simply continue.
1353    if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1354      SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1355      // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1356      SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1357      continue;
1358    }
1359
1360    // Collect spills in subtree of current node (*RIt) to
1361    // SpillsInSubTreeMap[*RIt].first.
1362    const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren();
1363    unsigned NumChildren = Children.size();
1364    for (unsigned i = 0; i != NumChildren; ++i) {
1365      MachineDomTreeNode *Child = Children[i];
1366      if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1367        continue;
1368      // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1369      // should be placed before getting the begin and end iterators of
1370      // SpillsInSubTreeMap[Child].first, or else the iterators may be
1371      // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1372      // and the map grows and then the original buckets in the map are moved.
1373      SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1374          SpillsInSubTreeMap[*RIt].first;
1375      BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1376      SubTreeCost += SpillsInSubTreeMap[Child].second;
1377      auto BI = SpillsInSubTreeMap[Child].first.begin();
1378      auto EI = SpillsInSubTreeMap[Child].first.end();
1379      SpillsInSubTree.insert(BI, EI);
1380      SpillsInSubTreeMap.erase(Child);
1381    }
1382
1383    SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1384          SpillsInSubTreeMap[*RIt].first;
1385    BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1386    // No spills in subtree, simply continue.
1387    if (SpillsInSubTree.empty())
1388      continue;
1389
1390    // Check whether Block is a possible candidate to insert spill.
1391    unsigned LiveReg = 0;
1392    if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1393      continue;
1394
1395    // If there are multiple spills that could be merged, bias a little
1396    // to hoist the spill.
1397    BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1398                                       ? BranchProbability(9, 10)
1399                                       : BranchProbability(1, 1);
1400    if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1401      // Hoist: Move spills to current Block.
1402      for (const auto SpillBB : SpillsInSubTree) {
1403        // When SpillBB is a BB contains original spill, insert the spill
1404        // to SpillsToRm.
1405        if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1406            !SpillsToKeep[SpillBB]) {
1407          MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1408          SpillsToRm.push_back(SpillToRm);
1409        }
1410        // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1411        SpillsToKeep.erase(SpillBB);
1412      }
1413      // Current Block is the BB containing the new hoisted spill. Add it to
1414      // SpillsToKeep. LiveReg is the source of the new spill.
1415      SpillsToKeep[*RIt] = LiveReg;
1416      LLVM_DEBUG({
1417        dbgs() << "spills in BB: ";
1418        for (const auto Rspill : SpillsInSubTree)
1419          dbgs() << Rspill->getBlock()->getNumber() << " ";
1420        dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1421               << "\n";
1422      });
1423      SpillsInSubTree.clear();
1424      SpillsInSubTree.insert(*RIt);
1425      SubTreeCost = MBFI.getBlockFreq(Block);
1426    }
1427  }
1428  // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1429  // save them to SpillsToIns.
1430  for (const auto &Ent : SpillsToKeep) {
1431    if (Ent.second)
1432      SpillsToIns[Ent.first->getBlock()] = Ent.second;
1433  }
1434}
1435
1436/// For spills with equal values, remove redundant spills and hoist those left
1437/// to less hot spots.
1438///
1439/// Spills with equal values will be collected into the same set in
1440/// MergeableSpills when spill is inserted. These equal spills are originated
1441/// from the same defining instruction and are dominated by the instruction.
1442/// Before hoisting all the equal spills, redundant spills inside in the same
1443/// BB are first marked to be deleted. Then starting from the spills left, walk
1444/// up on the dominator tree towards the Root node where the define instruction
1445/// is located, mark the dominated spills to be deleted along the way and
1446/// collect the BB nodes on the path from non-dominated spills to the define
1447/// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1448/// where we are considering to hoist the spills. We iterate the WorkSet in
1449/// bottom-up order, and for each node, we will decide whether to hoist spills
1450/// inside its subtree to that node. In this way, we can get benefit locally
1451/// even if hoisting all the equal spills to one cold place is impossible.
1452void HoistSpillHelper::hoistAllSpills() {
1453  SmallVector<unsigned, 4> NewVRegs;
1454  LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1455
1456  for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1457    unsigned Reg = Register::index2VirtReg(i);
1458    unsigned Original = VRM.getPreSplitReg(Reg);
1459    if (!MRI.def_empty(Reg))
1460      Virt2SiblingsMap[Original].insert(Reg);
1461  }
1462
1463  // Each entry in MergeableSpills contains a spill set with equal values.
1464  for (auto &Ent : MergeableSpills) {
1465    int Slot = Ent.first.first;
1466    LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1467    VNInfo *OrigVNI = Ent.first.second;
1468    SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1469    if (Ent.second.empty())
1470      continue;
1471
1472    LLVM_DEBUG({
1473      dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1474             << "Equal spills in BB: ";
1475      for (const auto spill : EqValSpills)
1476        dbgs() << spill->getParent()->getNumber() << " ";
1477      dbgs() << "\n";
1478    });
1479
1480    // SpillsToRm is the spill set to be removed from EqValSpills.
1481    SmallVector<MachineInstr *, 16> SpillsToRm;
1482    // SpillsToIns is the spill set to be newly inserted after hoisting.
1483    DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1484
1485    runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1486
1487    LLVM_DEBUG({
1488      dbgs() << "Finally inserted spills in BB: ";
1489      for (const auto &Ispill : SpillsToIns)
1490        dbgs() << Ispill.first->getNumber() << " ";
1491      dbgs() << "\nFinally removed spills in BB: ";
1492      for (const auto Rspill : SpillsToRm)
1493        dbgs() << Rspill->getParent()->getNumber() << " ";
1494      dbgs() << "\n";
1495    });
1496
1497    // Stack live range update.
1498    LiveInterval &StackIntvl = LSS.getInterval(Slot);
1499    if (!SpillsToIns.empty() || !SpillsToRm.empty())
1500      StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1501                                     StackIntvl.getValNumInfo(0));
1502
1503    // Insert hoisted spills.
1504    for (auto const &Insert : SpillsToIns) {
1505      MachineBasicBlock *BB = Insert.first;
1506      unsigned LiveReg = Insert.second;
1507      MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB);
1508      TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
1509                              MRI.getRegClass(LiveReg), &TRI);
1510      LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
1511      ++NumSpills;
1512    }
1513
1514    // Remove redundant spills or change them to dead instructions.
1515    NumSpills -= SpillsToRm.size();
1516    for (auto const RMEnt : SpillsToRm) {
1517      RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1518      for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1519        MachineOperand &MO = RMEnt->getOperand(i - 1);
1520        if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1521          RMEnt->RemoveOperand(i - 1);
1522      }
1523    }
1524    Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1525  }
1526}
1527
1528/// For VirtReg clone, the \p New register should have the same physreg or
1529/// stackslot as the \p old register.
1530void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
1531  if (VRM.hasPhys(Old))
1532    VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1533  else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1534    VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1535  else
1536    llvm_unreachable("VReg should be assigned either physreg or stackslot");
1537}
1538