1//===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains support for writing dwarf debug info into asm files.
10//
11//===----------------------------------------------------------------------===//
12
13#include "DwarfDebug.h"
14#include "ByteStreamer.h"
15#include "DIEHash.h"
16#include "DebugLocEntry.h"
17#include "DebugLocStream.h"
18#include "DwarfCompileUnit.h"
19#include "DwarfExpression.h"
20#include "DwarfFile.h"
21#include "DwarfUnit.h"
22#include "llvm/ADT/APInt.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/DenseSet.h"
25#include "llvm/ADT/MapVector.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringRef.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/Triple.h"
31#include "llvm/ADT/Twine.h"
32#include "llvm/BinaryFormat/Dwarf.h"
33#include "llvm/CodeGen/AccelTable.h"
34#include "llvm/CodeGen/AsmPrinter.h"
35#include "llvm/CodeGen/DIE.h"
36#include "llvm/CodeGen/LexicalScopes.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstr.h"
40#include "llvm/CodeGen/MachineModuleInfo.h"
41#include "llvm/CodeGen/MachineOperand.h"
42#include "llvm/CodeGen/TargetInstrInfo.h"
43#include "llvm/CodeGen/TargetLowering.h"
44#include "llvm/CodeGen/TargetRegisterInfo.h"
45#include "llvm/CodeGen/TargetSubtargetInfo.h"
46#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
47#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
48#include "llvm/IR/Constants.h"
49#include "llvm/IR/DebugInfoMetadata.h"
50#include "llvm/IR/DebugLoc.h"
51#include "llvm/IR/Function.h"
52#include "llvm/IR/GlobalVariable.h"
53#include "llvm/IR/Module.h"
54#include "llvm/MC/MCAsmInfo.h"
55#include "llvm/MC/MCContext.h"
56#include "llvm/MC/MCDwarf.h"
57#include "llvm/MC/MCSection.h"
58#include "llvm/MC/MCStreamer.h"
59#include "llvm/MC/MCSymbol.h"
60#include "llvm/MC/MCTargetOptions.h"
61#include "llvm/MC/MachineLocation.h"
62#include "llvm/MC/SectionKind.h"
63#include "llvm/Pass.h"
64#include "llvm/Support/Casting.h"
65#include "llvm/Support/CommandLine.h"
66#include "llvm/Support/Debug.h"
67#include "llvm/Support/ErrorHandling.h"
68#include "llvm/Support/MD5.h"
69#include "llvm/Support/MathExtras.h"
70#include "llvm/Support/Timer.h"
71#include "llvm/Support/raw_ostream.h"
72#include "llvm/Target/TargetLoweringObjectFile.h"
73#include "llvm/Target/TargetMachine.h"
74#include "llvm/Target/TargetOptions.h"
75#include <algorithm>
76#include <cassert>
77#include <cstddef>
78#include <cstdint>
79#include <iterator>
80#include <string>
81#include <utility>
82#include <vector>
83
84using namespace llvm;
85
86#define DEBUG_TYPE "dwarfdebug"
87
88STATISTIC(NumCSParams, "Number of dbg call site params created");
89
90static cl::opt<bool>
91DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
92                         cl::desc("Disable debug info printing"));
93
94static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
95    "use-dwarf-ranges-base-address-specifier", cl::Hidden,
96    cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
97
98static cl::opt<bool> GenerateARangeSection("generate-arange-section",
99                                           cl::Hidden,
100                                           cl::desc("Generate dwarf aranges"),
101                                           cl::init(false));
102
103static cl::opt<bool>
104    GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
105                           cl::desc("Generate DWARF4 type units."),
106                           cl::init(false));
107
108static cl::opt<bool> SplitDwarfCrossCuReferences(
109    "split-dwarf-cross-cu-references", cl::Hidden,
110    cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
111
112enum DefaultOnOff { Default, Enable, Disable };
113
114static cl::opt<DefaultOnOff> UnknownLocations(
115    "use-unknown-locations", cl::Hidden,
116    cl::desc("Make an absence of debug location information explicit."),
117    cl::values(clEnumVal(Default, "At top of block or after label"),
118               clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
119    cl::init(Default));
120
121static cl::opt<AccelTableKind> AccelTables(
122    "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
123    cl::values(clEnumValN(AccelTableKind::Default, "Default",
124                          "Default for platform"),
125               clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
126               clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
127               clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
128    cl::init(AccelTableKind::Default));
129
130static cl::opt<DefaultOnOff>
131DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
132                 cl::desc("Use inlined strings rather than string section."),
133                 cl::values(clEnumVal(Default, "Default for platform"),
134                            clEnumVal(Enable, "Enabled"),
135                            clEnumVal(Disable, "Disabled")),
136                 cl::init(Default));
137
138static cl::opt<bool>
139    NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
140                         cl::desc("Disable emission .debug_ranges section."),
141                         cl::init(false));
142
143static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
144    "dwarf-sections-as-references", cl::Hidden,
145    cl::desc("Use sections+offset as references rather than labels."),
146    cl::values(clEnumVal(Default, "Default for platform"),
147               clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
148    cl::init(Default));
149
150enum LinkageNameOption {
151  DefaultLinkageNames,
152  AllLinkageNames,
153  AbstractLinkageNames
154};
155
156static cl::opt<LinkageNameOption>
157    DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
158                      cl::desc("Which DWARF linkage-name attributes to emit."),
159                      cl::values(clEnumValN(DefaultLinkageNames, "Default",
160                                            "Default for platform"),
161                                 clEnumValN(AllLinkageNames, "All", "All"),
162                                 clEnumValN(AbstractLinkageNames, "Abstract",
163                                            "Abstract subprograms")),
164                      cl::init(DefaultLinkageNames));
165
166static const char *const DWARFGroupName = "dwarf";
167static const char *const DWARFGroupDescription = "DWARF Emission";
168static const char *const DbgTimerName = "writer";
169static const char *const DbgTimerDescription = "DWARF Debug Writer";
170static constexpr unsigned ULEB128PadSize = 4;
171
172void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
173  getActiveStreamer().EmitInt8(
174      Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
175                  : dwarf::OperationEncodingString(Op));
176}
177
178void DebugLocDwarfExpression::emitSigned(int64_t Value) {
179  getActiveStreamer().EmitSLEB128(Value, Twine(Value));
180}
181
182void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
183  getActiveStreamer().EmitULEB128(Value, Twine(Value));
184}
185
186void DebugLocDwarfExpression::emitData1(uint8_t Value) {
187  getActiveStreamer().EmitInt8(Value, Twine(Value));
188}
189
190void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
191  assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
192  getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize);
193}
194
195bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
196                                              unsigned MachineReg) {
197  // This information is not available while emitting .debug_loc entries.
198  return false;
199}
200
201void DebugLocDwarfExpression::enableTemporaryBuffer() {
202  assert(!IsBuffering && "Already buffering?");
203  if (!TmpBuf)
204    TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
205  IsBuffering = true;
206}
207
208void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
209
210unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
211  return TmpBuf ? TmpBuf->Bytes.size() : 0;
212}
213
214void DebugLocDwarfExpression::commitTemporaryBuffer() {
215  if (!TmpBuf)
216    return;
217  for (auto Byte : enumerate(TmpBuf->Bytes)) {
218    const char *Comment = (Byte.index() < TmpBuf->Comments.size())
219                              ? TmpBuf->Comments[Byte.index()].c_str()
220                              : "";
221    OutBS.EmitInt8(Byte.value(), Comment);
222  }
223  TmpBuf->Bytes.clear();
224  TmpBuf->Comments.clear();
225}
226
227const DIType *DbgVariable::getType() const {
228  return getVariable()->getType();
229}
230
231/// Get .debug_loc entry for the instruction range starting at MI.
232static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
233  const DIExpression *Expr = MI->getDebugExpression();
234  assert(MI->getNumOperands() == 4);
235  if (MI->getOperand(0).isReg()) {
236    auto RegOp = MI->getOperand(0);
237    auto Op1 = MI->getOperand(1);
238    // If the second operand is an immediate, this is a
239    // register-indirect address.
240    assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
241    MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
242    return DbgValueLoc(Expr, MLoc);
243  }
244  if (MI->getOperand(0).isTargetIndex()) {
245    auto Op = MI->getOperand(0);
246    return DbgValueLoc(Expr,
247                       TargetIndexLocation(Op.getIndex(), Op.getOffset()));
248  }
249  if (MI->getOperand(0).isImm())
250    return DbgValueLoc(Expr, MI->getOperand(0).getImm());
251  if (MI->getOperand(0).isFPImm())
252    return DbgValueLoc(Expr, MI->getOperand(0).getFPImm());
253  if (MI->getOperand(0).isCImm())
254    return DbgValueLoc(Expr, MI->getOperand(0).getCImm());
255
256  llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
257}
258
259void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
260  assert(FrameIndexExprs.empty() && "Already initialized?");
261  assert(!ValueLoc.get() && "Already initialized?");
262
263  assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
264  assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
265         "Wrong inlined-at");
266
267  ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
268  if (auto *E = DbgValue->getDebugExpression())
269    if (E->getNumElements())
270      FrameIndexExprs.push_back({0, E});
271}
272
273ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
274  if (FrameIndexExprs.size() == 1)
275    return FrameIndexExprs;
276
277  assert(llvm::all_of(FrameIndexExprs,
278                      [](const FrameIndexExpr &A) {
279                        return A.Expr->isFragment();
280                      }) &&
281         "multiple FI expressions without DW_OP_LLVM_fragment");
282  llvm::sort(FrameIndexExprs,
283             [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
284               return A.Expr->getFragmentInfo()->OffsetInBits <
285                      B.Expr->getFragmentInfo()->OffsetInBits;
286             });
287
288  return FrameIndexExprs;
289}
290
291void DbgVariable::addMMIEntry(const DbgVariable &V) {
292  assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
293  assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
294  assert(V.getVariable() == getVariable() && "conflicting variable");
295  assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
296
297  assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
298  assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
299
300  // FIXME: This logic should not be necessary anymore, as we now have proper
301  // deduplication. However, without it, we currently run into the assertion
302  // below, which means that we are likely dealing with broken input, i.e. two
303  // non-fragment entries for the same variable at different frame indices.
304  if (FrameIndexExprs.size()) {
305    auto *Expr = FrameIndexExprs.back().Expr;
306    if (!Expr || !Expr->isFragment())
307      return;
308  }
309
310  for (const auto &FIE : V.FrameIndexExprs)
311    // Ignore duplicate entries.
312    if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
313          return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
314        }))
315      FrameIndexExprs.push_back(FIE);
316
317  assert((FrameIndexExprs.size() == 1 ||
318          llvm::all_of(FrameIndexExprs,
319                       [](FrameIndexExpr &FIE) {
320                         return FIE.Expr && FIE.Expr->isFragment();
321                       })) &&
322         "conflicting locations for variable");
323}
324
325static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
326                                            bool GenerateTypeUnits,
327                                            DebuggerKind Tuning,
328                                            const Triple &TT) {
329  // Honor an explicit request.
330  if (AccelTables != AccelTableKind::Default)
331    return AccelTables;
332
333  // Accelerator tables with type units are currently not supported.
334  if (GenerateTypeUnits)
335    return AccelTableKind::None;
336
337  // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
338  // always implies debug_names. For lower standard versions we use apple
339  // accelerator tables on apple platforms and debug_names elsewhere.
340  if (DwarfVersion >= 5)
341    return AccelTableKind::Dwarf;
342  if (Tuning == DebuggerKind::LLDB)
343    return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
344                                   : AccelTableKind::Dwarf;
345  return AccelTableKind::None;
346}
347
348DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
349    : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
350      InfoHolder(A, "info_string", DIEValueAllocator),
351      SkeletonHolder(A, "skel_string", DIEValueAllocator),
352      IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
353  const Triple &TT = Asm->TM.getTargetTriple();
354
355  // Make sure we know our "debugger tuning".  The target option takes
356  // precedence; fall back to triple-based defaults.
357  if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
358    DebuggerTuning = Asm->TM.Options.DebuggerTuning;
359  else if (IsDarwin)
360    DebuggerTuning = DebuggerKind::LLDB;
361  else if (TT.isPS4CPU())
362    DebuggerTuning = DebuggerKind::SCE;
363  else
364    DebuggerTuning = DebuggerKind::GDB;
365
366  if (DwarfInlinedStrings == Default)
367    UseInlineStrings = TT.isNVPTX();
368  else
369    UseInlineStrings = DwarfInlinedStrings == Enable;
370
371  UseLocSection = !TT.isNVPTX();
372
373  HasAppleExtensionAttributes = tuneForLLDB();
374
375  // Handle split DWARF.
376  HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
377
378  // SCE defaults to linkage names only for abstract subprograms.
379  if (DwarfLinkageNames == DefaultLinkageNames)
380    UseAllLinkageNames = !tuneForSCE();
381  else
382    UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
383
384  unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
385  unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
386                                    : MMI->getModule()->getDwarfVersion();
387  // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
388  DwarfVersion =
389      TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
390
391  UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
392
393  // Use sections as references. Force for NVPTX.
394  if (DwarfSectionsAsReferences == Default)
395    UseSectionsAsReferences = TT.isNVPTX();
396  else
397    UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
398
399  // Don't generate type units for unsupported object file formats.
400  GenerateTypeUnits =
401      A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
402
403  TheAccelTableKind = computeAccelTableKind(
404      DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
405
406  // Work around a GDB bug. GDB doesn't support the standard opcode;
407  // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
408  // is defined as of DWARF 3.
409  // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
410  // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
411  UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
412
413  // GDB does not fully support the DWARF 4 representation for bitfields.
414  UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
415
416  // The DWARF v5 string offsets table has - possibly shared - contributions
417  // from each compile and type unit each preceded by a header. The string
418  // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
419  // a monolithic string offsets table without any header.
420  UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
421
422  Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
423}
424
425// Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
426DwarfDebug::~DwarfDebug() = default;
427
428static bool isObjCClass(StringRef Name) {
429  return Name.startswith("+") || Name.startswith("-");
430}
431
432static bool hasObjCCategory(StringRef Name) {
433  if (!isObjCClass(Name))
434    return false;
435
436  return Name.find(") ") != StringRef::npos;
437}
438
439static void getObjCClassCategory(StringRef In, StringRef &Class,
440                                 StringRef &Category) {
441  if (!hasObjCCategory(In)) {
442    Class = In.slice(In.find('[') + 1, In.find(' '));
443    Category = "";
444    return;
445  }
446
447  Class = In.slice(In.find('[') + 1, In.find('('));
448  Category = In.slice(In.find('[') + 1, In.find(' '));
449}
450
451static StringRef getObjCMethodName(StringRef In) {
452  return In.slice(In.find(' ') + 1, In.find(']'));
453}
454
455// Add the various names to the Dwarf accelerator table names.
456void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
457                                    const DISubprogram *SP, DIE &Die) {
458  if (getAccelTableKind() != AccelTableKind::Apple &&
459      CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
460    return;
461
462  if (!SP->isDefinition())
463    return;
464
465  if (SP->getName() != "")
466    addAccelName(CU, SP->getName(), Die);
467
468  // If the linkage name is different than the name, go ahead and output that as
469  // well into the name table. Only do that if we are going to actually emit
470  // that name.
471  if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
472      (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
473    addAccelName(CU, SP->getLinkageName(), Die);
474
475  // If this is an Objective-C selector name add it to the ObjC accelerator
476  // too.
477  if (isObjCClass(SP->getName())) {
478    StringRef Class, Category;
479    getObjCClassCategory(SP->getName(), Class, Category);
480    addAccelObjC(CU, Class, Die);
481    if (Category != "")
482      addAccelObjC(CU, Category, Die);
483    // Also add the base method name to the name table.
484    addAccelName(CU, getObjCMethodName(SP->getName()), Die);
485  }
486}
487
488/// Check whether we should create a DIE for the given Scope, return true
489/// if we don't create a DIE (the corresponding DIE is null).
490bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
491  if (Scope->isAbstractScope())
492    return false;
493
494  // We don't create a DIE if there is no Range.
495  const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
496  if (Ranges.empty())
497    return true;
498
499  if (Ranges.size() > 1)
500    return false;
501
502  // We don't create a DIE if we have a single Range and the end label
503  // is null.
504  return !getLabelAfterInsn(Ranges.front().second);
505}
506
507template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
508  F(CU);
509  if (auto *SkelCU = CU.getSkeleton())
510    if (CU.getCUNode()->getSplitDebugInlining())
511      F(*SkelCU);
512}
513
514bool DwarfDebug::shareAcrossDWOCUs() const {
515  return SplitDwarfCrossCuReferences;
516}
517
518void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
519                                                     LexicalScope *Scope) {
520  assert(Scope && Scope->getScopeNode());
521  assert(Scope->isAbstractScope());
522  assert(!Scope->getInlinedAt());
523
524  auto *SP = cast<DISubprogram>(Scope->getScopeNode());
525
526  // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
527  // was inlined from another compile unit.
528  if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
529    // Avoid building the original CU if it won't be used
530    SrcCU.constructAbstractSubprogramScopeDIE(Scope);
531  else {
532    auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
533    if (auto *SkelCU = CU.getSkeleton()) {
534      (shareAcrossDWOCUs() ? CU : SrcCU)
535          .constructAbstractSubprogramScopeDIE(Scope);
536      if (CU.getCUNode()->getSplitDebugInlining())
537        SkelCU->constructAbstractSubprogramScopeDIE(Scope);
538    } else
539      CU.constructAbstractSubprogramScopeDIE(Scope);
540  }
541}
542
543/// Try to interpret values loaded into registers that forward parameters
544/// for \p CallMI. Store parameters with interpreted value into \p Params.
545static void collectCallSiteParameters(const MachineInstr *CallMI,
546                                      ParamSet &Params) {
547  auto *MF = CallMI->getMF();
548  auto CalleesMap = MF->getCallSitesInfo();
549  auto CallFwdRegsInfo = CalleesMap.find(CallMI);
550
551  // There is no information for the call instruction.
552  if (CallFwdRegsInfo == CalleesMap.end())
553    return;
554
555  auto *MBB = CallMI->getParent();
556  const auto &TRI = MF->getSubtarget().getRegisterInfo();
557  const auto &TII = MF->getSubtarget().getInstrInfo();
558  const auto &TLI = MF->getSubtarget().getTargetLowering();
559
560  // Skip the call instruction.
561  auto I = std::next(CallMI->getReverseIterator());
562
563  DenseSet<unsigned> ForwardedRegWorklist;
564  // Add all the forwarding registers into the ForwardedRegWorklist.
565  for (auto ArgReg : CallFwdRegsInfo->second) {
566    bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second;
567    assert(InsertedReg && "Single register used to forward two arguments?");
568    (void)InsertedReg;
569  }
570
571  // We erase, from the ForwardedRegWorklist, those forwarding registers for
572  // which we successfully describe a loaded value (by using
573  // the describeLoadedValue()). For those remaining arguments in the working
574  // list, for which we do not describe a loaded value by
575  // the describeLoadedValue(), we try to generate an entry value expression
576  // for their call site value desctipion, if the call is within the entry MBB.
577  // The RegsForEntryValues maps a forwarding register into the register holding
578  // the entry value.
579  // TODO: Handle situations when call site parameter value can be described
580  // as the entry value within basic blocks other then the first one.
581  bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
582  DenseMap<unsigned, unsigned> RegsForEntryValues;
583
584  // If the MI is an instruction defining one or more parameters' forwarding
585  // registers, add those defines. We can currently only describe forwarded
586  // registers that are explicitly defined, but keep track of implicit defines
587  // also to remove those registers from the work list.
588  auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
589                                          SmallVectorImpl<unsigned> &Explicit,
590                                          SmallVectorImpl<unsigned> &Implicit) {
591    if (MI.isDebugInstr())
592      return;
593
594    for (const MachineOperand &MO : MI.operands()) {
595      if (MO.isReg() && MO.isDef() &&
596          Register::isPhysicalRegister(MO.getReg())) {
597        for (auto FwdReg : ForwardedRegWorklist) {
598          if (TRI->regsOverlap(FwdReg, MO.getReg())) {
599            if (MO.isImplicit())
600              Implicit.push_back(FwdReg);
601            else
602              Explicit.push_back(FwdReg);
603          }
604        }
605      }
606    }
607  };
608
609  auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) {
610    unsigned FwdReg = Reg;
611    if (ShouldTryEmitEntryVals) {
612      auto EntryValReg = RegsForEntryValues.find(Reg);
613      if (EntryValReg != RegsForEntryValues.end())
614        FwdReg = EntryValReg->second;
615    }
616
617    DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
618    Params.push_back(CSParm);
619    ++NumCSParams;
620  };
621
622  // Search for a loading value in forwarding registers.
623  for (; I != MBB->rend(); ++I) {
624    // Skip bundle headers.
625    if (I->isBundle())
626      continue;
627
628    // If the next instruction is a call we can not interpret parameter's
629    // forwarding registers or we finished the interpretation of all parameters.
630    if (I->isCall())
631      return;
632
633    if (ForwardedRegWorklist.empty())
634      return;
635
636    SmallVector<unsigned, 4> ExplicitFwdRegDefs;
637    SmallVector<unsigned, 4> ImplicitFwdRegDefs;
638    getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs);
639    if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty())
640      continue;
641
642    // If the MI clobbers more then one forwarding register we must remove
643    // all of them from the working list.
644    for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs))
645      ForwardedRegWorklist.erase(Reg);
646
647    for (auto ParamFwdReg : ExplicitFwdRegDefs) {
648      if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) {
649        if (ParamValue->first.isImm()) {
650          int64_t Val = ParamValue->first.getImm();
651          DbgValueLoc DbgLocVal(ParamValue->second, Val);
652          finishCallSiteParam(DbgLocVal, ParamFwdReg);
653        } else if (ParamValue->first.isReg()) {
654          Register RegLoc = ParamValue->first.getReg();
655          // TODO: For now, there is no use of describing the value loaded into the
656          //       register that is also the source registers (e.g. $r0 = add $r0, x).
657          if (ParamFwdReg == RegLoc)
658            continue;
659
660          unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
661          Register FP = TRI->getFrameRegister(*MF);
662          bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
663          if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
664            DbgValueLoc DbgLocVal(ParamValue->second,
665                                  MachineLocation(RegLoc,
666                                                  /*IsIndirect=*/IsSPorFP));
667            finishCallSiteParam(DbgLocVal, ParamFwdReg);
668          // TODO: Add support for entry value plus an expression.
669          } else if (ShouldTryEmitEntryVals &&
670                     ParamValue->second->getNumElements() == 0) {
671            ForwardedRegWorklist.insert(RegLoc);
672            RegsForEntryValues[RegLoc] = ParamFwdReg;
673          }
674        }
675      }
676    }
677  }
678
679  // Emit the call site parameter's value as an entry value.
680  if (ShouldTryEmitEntryVals) {
681    // Create an expression where the register's entry value is used.
682    DIExpression *EntryExpr = DIExpression::get(
683        MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
684    for (auto RegEntry : ForwardedRegWorklist) {
685      unsigned FwdReg = RegEntry;
686      auto EntryValReg = RegsForEntryValues.find(RegEntry);
687        if (EntryValReg != RegsForEntryValues.end())
688          FwdReg = EntryValReg->second;
689
690      DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry));
691      DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
692      Params.push_back(CSParm);
693      ++NumCSParams;
694    }
695  }
696}
697
698void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
699                                            DwarfCompileUnit &CU, DIE &ScopeDIE,
700                                            const MachineFunction &MF) {
701  // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
702  // the subprogram is required to have one.
703  if (!SP.areAllCallsDescribed() || !SP.isDefinition())
704    return;
705
706  // Use DW_AT_call_all_calls to express that call site entries are present
707  // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
708  // because one of its requirements is not met: call site entries for
709  // optimized-out calls are elided.
710  CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
711
712  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
713  assert(TII && "TargetInstrInfo not found: cannot label tail calls");
714  bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB();
715
716  // Emit call site entries for each call or tail call in the function.
717  for (const MachineBasicBlock &MBB : MF) {
718    for (const MachineInstr &MI : MBB.instrs()) {
719      // Bundles with call in them will pass the isCall() test below but do not
720      // have callee operand information so skip them here. Iterator will
721      // eventually reach the call MI.
722      if (MI.isBundle())
723        continue;
724
725      // Skip instructions which aren't calls. Both calls and tail-calling jump
726      // instructions (e.g TAILJMPd64) are classified correctly here.
727      if (!MI.isCall())
728        continue;
729
730      // TODO: Add support for targets with delay slots (see: beginInstruction).
731      if (MI.hasDelaySlot())
732        return;
733
734      // If this is a direct call, find the callee's subprogram.
735      // In the case of an indirect call find the register that holds
736      // the callee.
737      const MachineOperand &CalleeOp = MI.getOperand(0);
738      if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
739        continue;
740
741      unsigned CallReg = 0;
742      const DISubprogram *CalleeSP = nullptr;
743      const Function *CalleeDecl = nullptr;
744      if (CalleeOp.isReg()) {
745        CallReg = CalleeOp.getReg();
746        if (!CallReg)
747          continue;
748      } else {
749        CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
750        if (!CalleeDecl || !CalleeDecl->getSubprogram())
751          continue;
752        CalleeSP = CalleeDecl->getSubprogram();
753      }
754
755      // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
756
757      bool IsTail = TII->isTailCall(MI);
758
759      // If MI is in a bundle, the label was created after the bundle since
760      // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
761      // to search for that label below.
762      const MachineInstr *TopLevelCallMI =
763          MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
764
765      // For tail calls, for non-gdb tuning, no return PC information is needed.
766      // For regular calls (and tail calls in GDB tuning), the return PC
767      // is needed to disambiguate paths in the call graph which could lead to
768      // some target function.
769      const MCExpr *PCOffset =
770          (IsTail && !tuneForGDB())
771              ? nullptr
772              : getFunctionLocalOffsetAfterInsn(TopLevelCallMI);
773
774      // Return address of a call-like instruction for a normal call or a
775      // jump-like instruction for a tail call. This is needed for
776      // GDB + DWARF 4 tuning.
777      const MCSymbol *PCAddr =
778          ApplyGNUExtensions
779              ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
780              : nullptr;
781
782      assert((IsTail || PCOffset || PCAddr) &&
783             "Call without return PC information");
784
785      LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
786                        << (CalleeDecl ? CalleeDecl->getName()
787                                       : StringRef(MF.getSubtarget()
788                                                       .getRegisterInfo()
789                                                       ->getName(CallReg)))
790                        << (IsTail ? " [IsTail]" : "") << "\n");
791
792      DIE &CallSiteDIE =
793            CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr,
794                                         PCOffset, CallReg);
795
796      // GDB and LLDB support call site parameter debug info.
797      if (Asm->TM.Options.EnableDebugEntryValues &&
798          (tuneForGDB() || tuneForLLDB())) {
799        ParamSet Params;
800        // Try to interpret values of call site parameters.
801        collectCallSiteParameters(&MI, Params);
802        CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
803      }
804    }
805  }
806}
807
808void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
809  if (!U.hasDwarfPubSections())
810    return;
811
812  U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
813}
814
815void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
816                                      DwarfCompileUnit &NewCU) {
817  DIE &Die = NewCU.getUnitDie();
818  StringRef FN = DIUnit->getFilename();
819
820  StringRef Producer = DIUnit->getProducer();
821  StringRef Flags = DIUnit->getFlags();
822  if (!Flags.empty() && !useAppleExtensionAttributes()) {
823    std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
824    NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
825  } else
826    NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
827
828  NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
829                DIUnit->getSourceLanguage());
830  NewCU.addString(Die, dwarf::DW_AT_name, FN);
831
832  // Add DW_str_offsets_base to the unit DIE, except for split units.
833  if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
834    NewCU.addStringOffsetsStart();
835
836  if (!useSplitDwarf()) {
837    NewCU.initStmtList();
838
839    // If we're using split dwarf the compilation dir is going to be in the
840    // skeleton CU and so we don't need to duplicate it here.
841    if (!CompilationDir.empty())
842      NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
843
844    addGnuPubAttributes(NewCU, Die);
845  }
846
847  if (useAppleExtensionAttributes()) {
848    if (DIUnit->isOptimized())
849      NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
850
851    StringRef Flags = DIUnit->getFlags();
852    if (!Flags.empty())
853      NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
854
855    if (unsigned RVer = DIUnit->getRuntimeVersion())
856      NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
857                    dwarf::DW_FORM_data1, RVer);
858  }
859
860  if (DIUnit->getDWOId()) {
861    // This CU is either a clang module DWO or a skeleton CU.
862    NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
863                  DIUnit->getDWOId());
864    if (!DIUnit->getSplitDebugFilename().empty()) {
865      // This is a prefabricated skeleton CU.
866      dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
867                                         ? dwarf::DW_AT_dwo_name
868                                         : dwarf::DW_AT_GNU_dwo_name;
869      NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
870    }
871  }
872}
873// Create new DwarfCompileUnit for the given metadata node with tag
874// DW_TAG_compile_unit.
875DwarfCompileUnit &
876DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
877  if (auto *CU = CUMap.lookup(DIUnit))
878    return *CU;
879
880  CompilationDir = DIUnit->getDirectory();
881
882  auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
883      InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
884  DwarfCompileUnit &NewCU = *OwnedUnit;
885  InfoHolder.addUnit(std::move(OwnedUnit));
886
887  for (auto *IE : DIUnit->getImportedEntities())
888    NewCU.addImportedEntity(IE);
889
890  // LTO with assembly output shares a single line table amongst multiple CUs.
891  // To avoid the compilation directory being ambiguous, let the line table
892  // explicitly describe the directory of all files, never relying on the
893  // compilation directory.
894  if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
895    Asm->OutStreamer->emitDwarfFile0Directive(
896        CompilationDir, DIUnit->getFilename(),
897        NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(),
898        NewCU.getUniqueID());
899
900  if (useSplitDwarf()) {
901    NewCU.setSkeleton(constructSkeletonCU(NewCU));
902    NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
903  } else {
904    finishUnitAttributes(DIUnit, NewCU);
905    NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
906  }
907
908  // Create DIEs for function declarations used for call site debug info.
909  for (auto Scope : DIUnit->getRetainedTypes())
910    if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope))
911      NewCU.getOrCreateSubprogramDIE(SP);
912
913  CUMap.insert({DIUnit, &NewCU});
914  CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
915  return NewCU;
916}
917
918void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
919                                                  const DIImportedEntity *N) {
920  if (isa<DILocalScope>(N->getScope()))
921    return;
922  if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
923    D->addChild(TheCU.constructImportedEntityDIE(N));
924}
925
926/// Sort and unique GVEs by comparing their fragment offset.
927static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
928sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
929  llvm::sort(
930      GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
931        // Sort order: first null exprs, then exprs without fragment
932        // info, then sort by fragment offset in bits.
933        // FIXME: Come up with a more comprehensive comparator so
934        // the sorting isn't non-deterministic, and so the following
935        // std::unique call works correctly.
936        if (!A.Expr || !B.Expr)
937          return !!B.Expr;
938        auto FragmentA = A.Expr->getFragmentInfo();
939        auto FragmentB = B.Expr->getFragmentInfo();
940        if (!FragmentA || !FragmentB)
941          return !!FragmentB;
942        return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
943      });
944  GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
945                         [](DwarfCompileUnit::GlobalExpr A,
946                            DwarfCompileUnit::GlobalExpr B) {
947                           return A.Expr == B.Expr;
948                         }),
949             GVEs.end());
950  return GVEs;
951}
952
953// Emit all Dwarf sections that should come prior to the content. Create
954// global DIEs and emit initial debug info sections. This is invoked by
955// the target AsmPrinter.
956void DwarfDebug::beginModule() {
957  NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
958                     DWARFGroupDescription, TimePassesIsEnabled);
959  if (DisableDebugInfoPrinting) {
960    MMI->setDebugInfoAvailability(false);
961    return;
962  }
963
964  const Module *M = MMI->getModule();
965
966  unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
967                                       M->debug_compile_units_end());
968  // Tell MMI whether we have debug info.
969  assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
970         "DebugInfoAvailabilty initialized unexpectedly");
971  SingleCU = NumDebugCUs == 1;
972  DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
973      GVMap;
974  for (const GlobalVariable &Global : M->globals()) {
975    SmallVector<DIGlobalVariableExpression *, 1> GVs;
976    Global.getDebugInfo(GVs);
977    for (auto *GVE : GVs)
978      GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
979  }
980
981  // Create the symbol that designates the start of the unit's contribution
982  // to the string offsets table. In a split DWARF scenario, only the skeleton
983  // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
984  if (useSegmentedStringOffsetsTable())
985    (useSplitDwarf() ? SkeletonHolder : InfoHolder)
986        .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
987
988
989  // Create the symbols that designates the start of the DWARF v5 range list
990  // and locations list tables. They are located past the table headers.
991  if (getDwarfVersion() >= 5) {
992    DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
993    Holder.setRnglistsTableBaseSym(
994        Asm->createTempSymbol("rnglists_table_base"));
995
996    if (useSplitDwarf())
997      InfoHolder.setRnglistsTableBaseSym(
998          Asm->createTempSymbol("rnglists_dwo_table_base"));
999  }
1000
1001  // Create the symbol that points to the first entry following the debug
1002  // address table (.debug_addr) header.
1003  AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1004  DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1005
1006  for (DICompileUnit *CUNode : M->debug_compile_units()) {
1007    // FIXME: Move local imported entities into a list attached to the
1008    // subprogram, then this search won't be needed and a
1009    // getImportedEntities().empty() test should go below with the rest.
1010    bool HasNonLocalImportedEntities = llvm::any_of(
1011        CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1012          return !isa<DILocalScope>(IE->getScope());
1013        });
1014
1015    if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1016        CUNode->getRetainedTypes().empty() &&
1017        CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1018      continue;
1019
1020    DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1021
1022    // Global Variables.
1023    for (auto *GVE : CUNode->getGlobalVariables()) {
1024      // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1025      // already know about the variable and it isn't adding a constant
1026      // expression.
1027      auto &GVMapEntry = GVMap[GVE->getVariable()];
1028      auto *Expr = GVE->getExpression();
1029      if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1030        GVMapEntry.push_back({nullptr, Expr});
1031    }
1032    DenseSet<DIGlobalVariable *> Processed;
1033    for (auto *GVE : CUNode->getGlobalVariables()) {
1034      DIGlobalVariable *GV = GVE->getVariable();
1035      if (Processed.insert(GV).second)
1036        CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1037    }
1038
1039    for (auto *Ty : CUNode->getEnumTypes()) {
1040      // The enum types array by design contains pointers to
1041      // MDNodes rather than DIRefs. Unique them here.
1042      CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1043    }
1044    for (auto *Ty : CUNode->getRetainedTypes()) {
1045      // The retained types array by design contains pointers to
1046      // MDNodes rather than DIRefs. Unique them here.
1047      if (DIType *RT = dyn_cast<DIType>(Ty))
1048          // There is no point in force-emitting a forward declaration.
1049          CU.getOrCreateTypeDIE(RT);
1050    }
1051    // Emit imported_modules last so that the relevant context is already
1052    // available.
1053    for (auto *IE : CUNode->getImportedEntities())
1054      constructAndAddImportedEntityDIE(CU, IE);
1055  }
1056}
1057
1058void DwarfDebug::finishEntityDefinitions() {
1059  for (const auto &Entity : ConcreteEntities) {
1060    DIE *Die = Entity->getDIE();
1061    assert(Die);
1062    // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1063    // in the ConcreteEntities list, rather than looking it up again here.
1064    // DIE::getUnit isn't simple - it walks parent pointers, etc.
1065    DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1066    assert(Unit);
1067    Unit->finishEntityDefinition(Entity.get());
1068  }
1069}
1070
1071void DwarfDebug::finishSubprogramDefinitions() {
1072  for (const DISubprogram *SP : ProcessedSPNodes) {
1073    assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1074    forBothCUs(
1075        getOrCreateDwarfCompileUnit(SP->getUnit()),
1076        [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1077  }
1078}
1079
1080void DwarfDebug::finalizeModuleInfo() {
1081  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1082
1083  finishSubprogramDefinitions();
1084
1085  finishEntityDefinitions();
1086
1087  // Include the DWO file name in the hash if there's more than one CU.
1088  // This handles ThinLTO's situation where imported CUs may very easily be
1089  // duplicate with the same CU partially imported into another ThinLTO unit.
1090  StringRef DWOName;
1091  if (CUMap.size() > 1)
1092    DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1093
1094  // Handle anything that needs to be done on a per-unit basis after
1095  // all other generation.
1096  for (const auto &P : CUMap) {
1097    auto &TheCU = *P.second;
1098    if (TheCU.getCUNode()->isDebugDirectivesOnly())
1099      continue;
1100    // Emit DW_AT_containing_type attribute to connect types with their
1101    // vtable holding type.
1102    TheCU.constructContainingTypeDIEs();
1103
1104    // Add CU specific attributes if we need to add any.
1105    // If we're splitting the dwarf out now that we've got the entire
1106    // CU then add the dwo id to it.
1107    auto *SkCU = TheCU.getSkeleton();
1108
1109    bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1110
1111    if (HasSplitUnit) {
1112      dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1113                                         ? dwarf::DW_AT_dwo_name
1114                                         : dwarf::DW_AT_GNU_dwo_name;
1115      finishUnitAttributes(TheCU.getCUNode(), TheCU);
1116      TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1117                      Asm->TM.Options.MCOptions.SplitDwarfFile);
1118      SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1119                      Asm->TM.Options.MCOptions.SplitDwarfFile);
1120      // Emit a unique identifier for this CU.
1121      uint64_t ID =
1122          DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1123      if (getDwarfVersion() >= 5) {
1124        TheCU.setDWOId(ID);
1125        SkCU->setDWOId(ID);
1126      } else {
1127        TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1128                      dwarf::DW_FORM_data8, ID);
1129        SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1130                      dwarf::DW_FORM_data8, ID);
1131      }
1132
1133      if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1134        const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1135        SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1136                              Sym, Sym);
1137      }
1138    } else if (SkCU) {
1139      finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1140    }
1141
1142    // If we have code split among multiple sections or non-contiguous
1143    // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1144    // remain in the .o file, otherwise add a DW_AT_low_pc.
1145    // FIXME: We should use ranges allow reordering of code ala
1146    // .subsections_via_symbols in mach-o. This would mean turning on
1147    // ranges for all subprogram DIEs for mach-o.
1148    DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1149
1150    if (unsigned NumRanges = TheCU.getRanges().size()) {
1151      if (NumRanges > 1 && useRangesSection())
1152        // A DW_AT_low_pc attribute may also be specified in combination with
1153        // DW_AT_ranges to specify the default base address for use in
1154        // location lists (see Section 2.6.2) and range lists (see Section
1155        // 2.17.3).
1156        U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1157      else
1158        U.setBaseAddress(TheCU.getRanges().front().Begin);
1159      U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1160    }
1161
1162    // We don't keep track of which addresses are used in which CU so this
1163    // is a bit pessimistic under LTO.
1164    if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) &&
1165        (getDwarfVersion() >= 5 || HasSplitUnit))
1166      U.addAddrTableBase();
1167
1168    if (getDwarfVersion() >= 5) {
1169      if (U.hasRangeLists())
1170        U.addRnglistsBase();
1171
1172      if (!DebugLocs.getLists().empty()) {
1173        if (!useSplitDwarf())
1174          U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1175                            DebugLocs.getSym(),
1176                            TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1177      }
1178    }
1179
1180    auto *CUNode = cast<DICompileUnit>(P.first);
1181    // If compile Unit has macros, emit "DW_AT_macro_info" attribute.
1182    if (CUNode->getMacros()) {
1183      if (useSplitDwarf())
1184        TheCU.addSectionDelta(TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1185                            U.getMacroLabelBegin(),
1186                            TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1187      else
1188        U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1189                          U.getMacroLabelBegin(),
1190                          TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1191    }
1192  }
1193
1194  // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1195  for (auto *CUNode : MMI->getModule()->debug_compile_units())
1196    if (CUNode->getDWOId())
1197      getOrCreateDwarfCompileUnit(CUNode);
1198
1199  // Compute DIE offsets and sizes.
1200  InfoHolder.computeSizeAndOffsets();
1201  if (useSplitDwarf())
1202    SkeletonHolder.computeSizeAndOffsets();
1203}
1204
1205// Emit all Dwarf sections that should come after the content.
1206void DwarfDebug::endModule() {
1207  assert(CurFn == nullptr);
1208  assert(CurMI == nullptr);
1209
1210  for (const auto &P : CUMap) {
1211    auto &CU = *P.second;
1212    CU.createBaseTypeDIEs();
1213  }
1214
1215  // If we aren't actually generating debug info (check beginModule -
1216  // conditionalized on !DisableDebugInfoPrinting and the presence of the
1217  // llvm.dbg.cu metadata node)
1218  if (!MMI->hasDebugInfo())
1219    return;
1220
1221  // Finalize the debug info for the module.
1222  finalizeModuleInfo();
1223
1224  emitDebugStr();
1225
1226  if (useSplitDwarf())
1227    // Emit debug_loc.dwo/debug_loclists.dwo section.
1228    emitDebugLocDWO();
1229  else
1230    // Emit debug_loc/debug_loclists section.
1231    emitDebugLoc();
1232
1233  // Corresponding abbreviations into a abbrev section.
1234  emitAbbreviations();
1235
1236  // Emit all the DIEs into a debug info section.
1237  emitDebugInfo();
1238
1239  // Emit info into a debug aranges section.
1240  if (GenerateARangeSection)
1241    emitDebugARanges();
1242
1243  // Emit info into a debug ranges section.
1244  emitDebugRanges();
1245
1246  if (useSplitDwarf())
1247  // Emit info into a debug macinfo.dwo section.
1248    emitDebugMacinfoDWO();
1249  else
1250  // Emit info into a debug macinfo section.
1251    emitDebugMacinfo();
1252
1253  if (useSplitDwarf()) {
1254    emitDebugStrDWO();
1255    emitDebugInfoDWO();
1256    emitDebugAbbrevDWO();
1257    emitDebugLineDWO();
1258    emitDebugRangesDWO();
1259  }
1260
1261  emitDebugAddr();
1262
1263  // Emit info into the dwarf accelerator table sections.
1264  switch (getAccelTableKind()) {
1265  case AccelTableKind::Apple:
1266    emitAccelNames();
1267    emitAccelObjC();
1268    emitAccelNamespaces();
1269    emitAccelTypes();
1270    break;
1271  case AccelTableKind::Dwarf:
1272    emitAccelDebugNames();
1273    break;
1274  case AccelTableKind::None:
1275    break;
1276  case AccelTableKind::Default:
1277    llvm_unreachable("Default should have already been resolved.");
1278  }
1279
1280  // Emit the pubnames and pubtypes sections if requested.
1281  emitDebugPubSections();
1282
1283  // clean up.
1284  // FIXME: AbstractVariables.clear();
1285}
1286
1287void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1288                                               const DINode *Node,
1289                                               const MDNode *ScopeNode) {
1290  if (CU.getExistingAbstractEntity(Node))
1291    return;
1292
1293  CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1294                                       cast<DILocalScope>(ScopeNode)));
1295}
1296
1297void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1298    const DINode *Node, const MDNode *ScopeNode) {
1299  if (CU.getExistingAbstractEntity(Node))
1300    return;
1301
1302  if (LexicalScope *Scope =
1303          LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1304    CU.createAbstractEntity(Node, Scope);
1305}
1306
1307// Collect variable information from side table maintained by MF.
1308void DwarfDebug::collectVariableInfoFromMFTable(
1309    DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1310  SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1311  for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1312    if (!VI.Var)
1313      continue;
1314    assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1315           "Expected inlined-at fields to agree");
1316
1317    InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1318    Processed.insert(Var);
1319    LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1320
1321    // If variable scope is not found then skip this variable.
1322    if (!Scope)
1323      continue;
1324
1325    ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1326    auto RegVar = std::make_unique<DbgVariable>(
1327                    cast<DILocalVariable>(Var.first), Var.second);
1328    RegVar->initializeMMI(VI.Expr, VI.Slot);
1329    if (DbgVariable *DbgVar = MFVars.lookup(Var))
1330      DbgVar->addMMIEntry(*RegVar);
1331    else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1332      MFVars.insert({Var, RegVar.get()});
1333      ConcreteEntities.push_back(std::move(RegVar));
1334    }
1335  }
1336}
1337
1338/// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1339/// enclosing lexical scope. The check ensures there are no other instructions
1340/// in the same lexical scope preceding the DBG_VALUE and that its range is
1341/// either open or otherwise rolls off the end of the scope.
1342static bool validThroughout(LexicalScopes &LScopes,
1343                            const MachineInstr *DbgValue,
1344                            const MachineInstr *RangeEnd) {
1345  assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1346  auto MBB = DbgValue->getParent();
1347  auto DL = DbgValue->getDebugLoc();
1348  auto *LScope = LScopes.findLexicalScope(DL);
1349  // Scope doesn't exist; this is a dead DBG_VALUE.
1350  if (!LScope)
1351    return false;
1352  auto &LSRange = LScope->getRanges();
1353  if (LSRange.size() == 0)
1354    return false;
1355
1356  // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1357  const MachineInstr *LScopeBegin = LSRange.front().first;
1358  // Early exit if the lexical scope begins outside of the current block.
1359  if (LScopeBegin->getParent() != MBB)
1360    return false;
1361  MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1362  for (++Pred; Pred != MBB->rend(); ++Pred) {
1363    if (Pred->getFlag(MachineInstr::FrameSetup))
1364      break;
1365    auto PredDL = Pred->getDebugLoc();
1366    if (!PredDL || Pred->isMetaInstruction())
1367      continue;
1368    // Check whether the instruction preceding the DBG_VALUE is in the same
1369    // (sub)scope as the DBG_VALUE.
1370    if (DL->getScope() == PredDL->getScope())
1371      return false;
1372    auto *PredScope = LScopes.findLexicalScope(PredDL);
1373    if (!PredScope || LScope->dominates(PredScope))
1374      return false;
1375  }
1376
1377  // If the range of the DBG_VALUE is open-ended, report success.
1378  if (!RangeEnd)
1379    return true;
1380
1381  // Fail if there are instructions belonging to our scope in another block.
1382  const MachineInstr *LScopeEnd = LSRange.back().second;
1383  if (LScopeEnd->getParent() != MBB)
1384    return false;
1385
1386  // Single, constant DBG_VALUEs in the prologue are promoted to be live
1387  // throughout the function. This is a hack, presumably for DWARF v2 and not
1388  // necessarily correct. It would be much better to use a dbg.declare instead
1389  // if we know the constant is live throughout the scope.
1390  if (DbgValue->getOperand(0).isImm() && MBB->pred_empty())
1391    return true;
1392
1393  return false;
1394}
1395
1396/// Build the location list for all DBG_VALUEs in the function that
1397/// describe the same variable. The resulting DebugLocEntries will have
1398/// strict monotonically increasing begin addresses and will never
1399/// overlap. If the resulting list has only one entry that is valid
1400/// throughout variable's scope return true.
1401//
1402// See the definition of DbgValueHistoryMap::Entry for an explanation of the
1403// different kinds of history map entries. One thing to be aware of is that if
1404// a debug value is ended by another entry (rather than being valid until the
1405// end of the function), that entry's instruction may or may not be included in
1406// the range, depending on if the entry is a clobbering entry (it has an
1407// instruction that clobbers one or more preceding locations), or if it is an
1408// (overlapping) debug value entry. This distinction can be seen in the example
1409// below. The first debug value is ended by the clobbering entry 2, and the
1410// second and third debug values are ended by the overlapping debug value entry
1411// 4.
1412//
1413// Input:
1414//
1415//   History map entries [type, end index, mi]
1416//
1417// 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1418// 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1419// 2 | |    [Clobber, $reg0 = [...], -, -]
1420// 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1421// 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1422//
1423// Output [start, end) [Value...]:
1424//
1425// [0-1)    [(reg0, fragment 0, 32)]
1426// [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1427// [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1428// [4-)     [(@g, fragment 0, 96)]
1429bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1430                                   const DbgValueHistoryMap::Entries &Entries) {
1431  using OpenRange =
1432      std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1433  SmallVector<OpenRange, 4> OpenRanges;
1434  bool isSafeForSingleLocation = true;
1435  const MachineInstr *StartDebugMI = nullptr;
1436  const MachineInstr *EndMI = nullptr;
1437
1438  for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1439    const MachineInstr *Instr = EI->getInstr();
1440
1441    // Remove all values that are no longer live.
1442    size_t Index = std::distance(EB, EI);
1443    auto Last =
1444        remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1445    OpenRanges.erase(Last, OpenRanges.end());
1446
1447    // If we are dealing with a clobbering entry, this iteration will result in
1448    // a location list entry starting after the clobbering instruction.
1449    const MCSymbol *StartLabel =
1450        EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1451    assert(StartLabel &&
1452           "Forgot label before/after instruction starting a range!");
1453
1454    const MCSymbol *EndLabel;
1455    if (std::next(EI) == Entries.end()) {
1456      EndLabel = Asm->getFunctionEnd();
1457      if (EI->isClobber())
1458        EndMI = EI->getInstr();
1459    }
1460    else if (std::next(EI)->isClobber())
1461      EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1462    else
1463      EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1464    assert(EndLabel && "Forgot label after instruction ending a range!");
1465
1466    if (EI->isDbgValue())
1467      LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1468
1469    // If this history map entry has a debug value, add that to the list of
1470    // open ranges and check if its location is valid for a single value
1471    // location.
1472    if (EI->isDbgValue()) {
1473      // Do not add undef debug values, as they are redundant information in
1474      // the location list entries. An undef debug results in an empty location
1475      // description. If there are any non-undef fragments then padding pieces
1476      // with empty location descriptions will automatically be inserted, and if
1477      // all fragments are undef then the whole location list entry is
1478      // redundant.
1479      if (!Instr->isUndefDebugValue()) {
1480        auto Value = getDebugLocValue(Instr);
1481        OpenRanges.emplace_back(EI->getEndIndex(), Value);
1482
1483        // TODO: Add support for single value fragment locations.
1484        if (Instr->getDebugExpression()->isFragment())
1485          isSafeForSingleLocation = false;
1486
1487        if (!StartDebugMI)
1488          StartDebugMI = Instr;
1489      } else {
1490        isSafeForSingleLocation = false;
1491      }
1492    }
1493
1494    // Location list entries with empty location descriptions are redundant
1495    // information in DWARF, so do not emit those.
1496    if (OpenRanges.empty())
1497      continue;
1498
1499    // Omit entries with empty ranges as they do not have any effect in DWARF.
1500    if (StartLabel == EndLabel) {
1501      LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1502      continue;
1503    }
1504
1505    SmallVector<DbgValueLoc, 4> Values;
1506    for (auto &R : OpenRanges)
1507      Values.push_back(R.second);
1508    DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1509
1510    // Attempt to coalesce the ranges of two otherwise identical
1511    // DebugLocEntries.
1512    auto CurEntry = DebugLoc.rbegin();
1513    LLVM_DEBUG({
1514      dbgs() << CurEntry->getValues().size() << " Values:\n";
1515      for (auto &Value : CurEntry->getValues())
1516        Value.dump();
1517      dbgs() << "-----\n";
1518    });
1519
1520    auto PrevEntry = std::next(CurEntry);
1521    if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1522      DebugLoc.pop_back();
1523  }
1524
1525  return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1526         validThroughout(LScopes, StartDebugMI, EndMI);
1527}
1528
1529DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1530                                            LexicalScope &Scope,
1531                                            const DINode *Node,
1532                                            const DILocation *Location,
1533                                            const MCSymbol *Sym) {
1534  ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1535  if (isa<const DILocalVariable>(Node)) {
1536    ConcreteEntities.push_back(
1537        std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1538                                       Location));
1539    InfoHolder.addScopeVariable(&Scope,
1540        cast<DbgVariable>(ConcreteEntities.back().get()));
1541  } else if (isa<const DILabel>(Node)) {
1542    ConcreteEntities.push_back(
1543        std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1544                                    Location, Sym));
1545    InfoHolder.addScopeLabel(&Scope,
1546        cast<DbgLabel>(ConcreteEntities.back().get()));
1547  }
1548  return ConcreteEntities.back().get();
1549}
1550
1551// Find variables for each lexical scope.
1552void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1553                                   const DISubprogram *SP,
1554                                   DenseSet<InlinedEntity> &Processed) {
1555  // Grab the variable info that was squirreled away in the MMI side-table.
1556  collectVariableInfoFromMFTable(TheCU, Processed);
1557
1558  for (const auto &I : DbgValues) {
1559    InlinedEntity IV = I.first;
1560    if (Processed.count(IV))
1561      continue;
1562
1563    // Instruction ranges, specifying where IV is accessible.
1564    const auto &HistoryMapEntries = I.second;
1565    if (HistoryMapEntries.empty())
1566      continue;
1567
1568    LexicalScope *Scope = nullptr;
1569    const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1570    if (const DILocation *IA = IV.second)
1571      Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1572    else
1573      Scope = LScopes.findLexicalScope(LocalVar->getScope());
1574    // If variable scope is not found then skip this variable.
1575    if (!Scope)
1576      continue;
1577
1578    Processed.insert(IV);
1579    DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1580                                            *Scope, LocalVar, IV.second));
1581
1582    const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1583    assert(MInsn->isDebugValue() && "History must begin with debug value");
1584
1585    // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1586    // If the history map contains a single debug value, there may be an
1587    // additional entry which clobbers the debug value.
1588    size_t HistSize = HistoryMapEntries.size();
1589    bool SingleValueWithClobber =
1590        HistSize == 2 && HistoryMapEntries[1].isClobber();
1591    if (HistSize == 1 || SingleValueWithClobber) {
1592      const auto *End =
1593          SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1594      if (validThroughout(LScopes, MInsn, End)) {
1595        RegVar->initializeDbgValue(MInsn);
1596        continue;
1597      }
1598    }
1599
1600    // Do not emit location lists if .debug_loc secton is disabled.
1601    if (!useLocSection())
1602      continue;
1603
1604    // Handle multiple DBG_VALUE instructions describing one variable.
1605    DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1606
1607    // Build the location list for this variable.
1608    SmallVector<DebugLocEntry, 8> Entries;
1609    bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1610
1611    // Check whether buildLocationList managed to merge all locations to one
1612    // that is valid throughout the variable's scope. If so, produce single
1613    // value location.
1614    if (isValidSingleLocation) {
1615      RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1616      continue;
1617    }
1618
1619    // If the variable has a DIBasicType, extract it.  Basic types cannot have
1620    // unique identifiers, so don't bother resolving the type with the
1621    // identifier map.
1622    const DIBasicType *BT = dyn_cast<DIBasicType>(
1623        static_cast<const Metadata *>(LocalVar->getType()));
1624
1625    // Finalize the entry by lowering it into a DWARF bytestream.
1626    for (auto &Entry : Entries)
1627      Entry.finalize(*Asm, List, BT, TheCU);
1628  }
1629
1630  // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1631  // DWARF-related DbgLabel.
1632  for (const auto &I : DbgLabels) {
1633    InlinedEntity IL = I.first;
1634    const MachineInstr *MI = I.second;
1635    if (MI == nullptr)
1636      continue;
1637
1638    LexicalScope *Scope = nullptr;
1639    const DILabel *Label = cast<DILabel>(IL.first);
1640    // The scope could have an extra lexical block file.
1641    const DILocalScope *LocalScope =
1642        Label->getScope()->getNonLexicalBlockFileScope();
1643    // Get inlined DILocation if it is inlined label.
1644    if (const DILocation *IA = IL.second)
1645      Scope = LScopes.findInlinedScope(LocalScope, IA);
1646    else
1647      Scope = LScopes.findLexicalScope(LocalScope);
1648    // If label scope is not found then skip this label.
1649    if (!Scope)
1650      continue;
1651
1652    Processed.insert(IL);
1653    /// At this point, the temporary label is created.
1654    /// Save the temporary label to DbgLabel entity to get the
1655    /// actually address when generating Dwarf DIE.
1656    MCSymbol *Sym = getLabelBeforeInsn(MI);
1657    createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1658  }
1659
1660  // Collect info for variables/labels that were optimized out.
1661  for (const DINode *DN : SP->getRetainedNodes()) {
1662    if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1663      continue;
1664    LexicalScope *Scope = nullptr;
1665    if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1666      Scope = LScopes.findLexicalScope(DV->getScope());
1667    } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1668      Scope = LScopes.findLexicalScope(DL->getScope());
1669    }
1670
1671    if (Scope)
1672      createConcreteEntity(TheCU, *Scope, DN, nullptr);
1673  }
1674}
1675
1676// Process beginning of an instruction.
1677void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1678  DebugHandlerBase::beginInstruction(MI);
1679  assert(CurMI);
1680
1681  const auto *SP = MI->getMF()->getFunction().getSubprogram();
1682  if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1683    return;
1684
1685  // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1686  // If the instruction is part of the function frame setup code, do not emit
1687  // any line record, as there is no correspondence with any user code.
1688  if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1689    return;
1690  const DebugLoc &DL = MI->getDebugLoc();
1691  // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1692  // the last line number actually emitted, to see if it was line 0.
1693  unsigned LastAsmLine =
1694      Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1695
1696  // Request a label after the call in order to emit AT_return_pc information
1697  // in call site entries. TODO: Add support for targets with delay slots.
1698  if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot())
1699    requestLabelAfterInsn(MI);
1700
1701  if (DL == PrevInstLoc) {
1702    // If we have an ongoing unspecified location, nothing to do here.
1703    if (!DL)
1704      return;
1705    // We have an explicit location, same as the previous location.
1706    // But we might be coming back to it after a line 0 record.
1707    if (LastAsmLine == 0 && DL.getLine() != 0) {
1708      // Reinstate the source location but not marked as a statement.
1709      const MDNode *Scope = DL.getScope();
1710      recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1711    }
1712    return;
1713  }
1714
1715  if (!DL) {
1716    // We have an unspecified location, which might want to be line 0.
1717    // If we have already emitted a line-0 record, don't repeat it.
1718    if (LastAsmLine == 0)
1719      return;
1720    // If user said Don't Do That, don't do that.
1721    if (UnknownLocations == Disable)
1722      return;
1723    // See if we have a reason to emit a line-0 record now.
1724    // Reasons to emit a line-0 record include:
1725    // - User asked for it (UnknownLocations).
1726    // - Instruction has a label, so it's referenced from somewhere else,
1727    //   possibly debug information; we want it to have a source location.
1728    // - Instruction is at the top of a block; we don't want to inherit the
1729    //   location from the physically previous (maybe unrelated) block.
1730    if (UnknownLocations == Enable || PrevLabel ||
1731        (PrevInstBB && PrevInstBB != MI->getParent())) {
1732      // Preserve the file and column numbers, if we can, to save space in
1733      // the encoded line table.
1734      // Do not update PrevInstLoc, it remembers the last non-0 line.
1735      const MDNode *Scope = nullptr;
1736      unsigned Column = 0;
1737      if (PrevInstLoc) {
1738        Scope = PrevInstLoc.getScope();
1739        Column = PrevInstLoc.getCol();
1740      }
1741      recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1742    }
1743    return;
1744  }
1745
1746  // We have an explicit location, different from the previous location.
1747  // Don't repeat a line-0 record, but otherwise emit the new location.
1748  // (The new location might be an explicit line 0, which we do emit.)
1749  if (DL.getLine() == 0 && LastAsmLine == 0)
1750    return;
1751  unsigned Flags = 0;
1752  if (DL == PrologEndLoc) {
1753    Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1754    PrologEndLoc = DebugLoc();
1755  }
1756  // If the line changed, we call that a new statement; unless we went to
1757  // line 0 and came back, in which case it is not a new statement.
1758  unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1759  if (DL.getLine() && DL.getLine() != OldLine)
1760    Flags |= DWARF2_FLAG_IS_STMT;
1761
1762  const MDNode *Scope = DL.getScope();
1763  recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1764
1765  // If we're not at line 0, remember this location.
1766  if (DL.getLine())
1767    PrevInstLoc = DL;
1768}
1769
1770static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1771  // First known non-DBG_VALUE and non-frame setup location marks
1772  // the beginning of the function body.
1773  for (const auto &MBB : *MF)
1774    for (const auto &MI : MBB)
1775      if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1776          MI.getDebugLoc())
1777        return MI.getDebugLoc();
1778  return DebugLoc();
1779}
1780
1781/// Register a source line with debug info. Returns the  unique label that was
1782/// emitted and which provides correspondence to the source line list.
1783static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
1784                             const MDNode *S, unsigned Flags, unsigned CUID,
1785                             uint16_t DwarfVersion,
1786                             ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
1787  StringRef Fn;
1788  unsigned FileNo = 1;
1789  unsigned Discriminator = 0;
1790  if (auto *Scope = cast_or_null<DIScope>(S)) {
1791    Fn = Scope->getFilename();
1792    if (Line != 0 && DwarfVersion >= 4)
1793      if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
1794        Discriminator = LBF->getDiscriminator();
1795
1796    FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
1797                 .getOrCreateSourceID(Scope->getFile());
1798  }
1799  Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
1800                                         Discriminator, Fn);
1801}
1802
1803DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
1804                                             unsigned CUID) {
1805  // Get beginning of function.
1806  if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
1807    // Ensure the compile unit is created if the function is called before
1808    // beginFunction().
1809    (void)getOrCreateDwarfCompileUnit(
1810        MF.getFunction().getSubprogram()->getUnit());
1811    // We'd like to list the prologue as "not statements" but GDB behaves
1812    // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1813    const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
1814    ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
1815                       CUID, getDwarfVersion(), getUnits());
1816    return PrologEndLoc;
1817  }
1818  return DebugLoc();
1819}
1820
1821// Gather pre-function debug information.  Assumes being called immediately
1822// after the function entry point has been emitted.
1823void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
1824  CurFn = MF;
1825
1826  auto *SP = MF->getFunction().getSubprogram();
1827  assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
1828  if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1829    return;
1830
1831  SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(),
1832                                      Asm->getFunctionBegin()));
1833
1834  DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
1835
1836  // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1837  // belongs to so that we add to the correct per-cu line table in the
1838  // non-asm case.
1839  if (Asm->OutStreamer->hasRawTextSupport())
1840    // Use a single line table if we are generating assembly.
1841    Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1842  else
1843    Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
1844
1845  // Record beginning of function.
1846  PrologEndLoc = emitInitialLocDirective(
1847      *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
1848}
1849
1850void DwarfDebug::skippedNonDebugFunction() {
1851  // If we don't have a subprogram for this function then there will be a hole
1852  // in the range information. Keep note of this by setting the previously used
1853  // section to nullptr.
1854  PrevCU = nullptr;
1855  CurFn = nullptr;
1856}
1857
1858// Gather and emit post-function debug information.
1859void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
1860  const DISubprogram *SP = MF->getFunction().getSubprogram();
1861
1862  assert(CurFn == MF &&
1863      "endFunction should be called with the same function as beginFunction");
1864
1865  // Set DwarfDwarfCompileUnitID in MCContext to default value.
1866  Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1867
1868  LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1869  assert(!FnScope || SP == FnScope->getScopeNode());
1870  DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
1871  if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
1872    PrevLabel = nullptr;
1873    CurFn = nullptr;
1874    return;
1875  }
1876
1877  DenseSet<InlinedEntity> Processed;
1878  collectEntityInfo(TheCU, SP, Processed);
1879
1880  // Add the range of this function to the list of ranges for the CU.
1881  TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()});
1882
1883  // Under -gmlt, skip building the subprogram if there are no inlined
1884  // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
1885  // is still needed as we need its source location.
1886  if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
1887      TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
1888      LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1889    assert(InfoHolder.getScopeVariables().empty());
1890    PrevLabel = nullptr;
1891    CurFn = nullptr;
1892    return;
1893  }
1894
1895#ifndef NDEBUG
1896  size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1897#endif
1898  // Construct abstract scopes.
1899  for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1900    auto *SP = cast<DISubprogram>(AScope->getScopeNode());
1901    for (const DINode *DN : SP->getRetainedNodes()) {
1902      if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1903        continue;
1904
1905      const MDNode *Scope = nullptr;
1906      if (auto *DV = dyn_cast<DILocalVariable>(DN))
1907        Scope = DV->getScope();
1908      else if (auto *DL = dyn_cast<DILabel>(DN))
1909        Scope = DL->getScope();
1910      else
1911        llvm_unreachable("Unexpected DI type!");
1912
1913      // Collect info for variables/labels that were optimized out.
1914      ensureAbstractEntityIsCreated(TheCU, DN, Scope);
1915      assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
1916             && "ensureAbstractEntityIsCreated inserted abstract scopes");
1917    }
1918    constructAbstractSubprogramScopeDIE(TheCU, AScope);
1919  }
1920
1921  ProcessedSPNodes.insert(SP);
1922  DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
1923  if (auto *SkelCU = TheCU.getSkeleton())
1924    if (!LScopes.getAbstractScopesList().empty() &&
1925        TheCU.getCUNode()->getSplitDebugInlining())
1926      SkelCU->constructSubprogramScopeDIE(SP, FnScope);
1927
1928  // Construct call site entries.
1929  constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
1930
1931  // Clear debug info
1932  // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1933  // DbgVariables except those that are also in AbstractVariables (since they
1934  // can be used cross-function)
1935  InfoHolder.getScopeVariables().clear();
1936  InfoHolder.getScopeLabels().clear();
1937  PrevLabel = nullptr;
1938  CurFn = nullptr;
1939}
1940
1941// Register a source line with debug info. Returns the  unique label that was
1942// emitted and which provides correspondence to the source line list.
1943void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
1944                                  unsigned Flags) {
1945  ::recordSourceLine(*Asm, Line, Col, S, Flags,
1946                     Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
1947                     getDwarfVersion(), getUnits());
1948}
1949
1950//===----------------------------------------------------------------------===//
1951// Emit Methods
1952//===----------------------------------------------------------------------===//
1953
1954// Emit the debug info section.
1955void DwarfDebug::emitDebugInfo() {
1956  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1957  Holder.emitUnits(/* UseOffsets */ false);
1958}
1959
1960// Emit the abbreviation section.
1961void DwarfDebug::emitAbbreviations() {
1962  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1963
1964  Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
1965}
1966
1967void DwarfDebug::emitStringOffsetsTableHeader() {
1968  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1969  Holder.getStringPool().emitStringOffsetsTableHeader(
1970      *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
1971      Holder.getStringOffsetsStartSym());
1972}
1973
1974template <typename AccelTableT>
1975void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
1976                           StringRef TableName) {
1977  Asm->OutStreamer->SwitchSection(Section);
1978
1979  // Emit the full data.
1980  emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
1981}
1982
1983void DwarfDebug::emitAccelDebugNames() {
1984  // Don't emit anything if we have no compilation units to index.
1985  if (getUnits().empty())
1986    return;
1987
1988  emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
1989}
1990
1991// Emit visible names into a hashed accelerator table section.
1992void DwarfDebug::emitAccelNames() {
1993  emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
1994            "Names");
1995}
1996
1997// Emit objective C classes and categories into a hashed accelerator table
1998// section.
1999void DwarfDebug::emitAccelObjC() {
2000  emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2001            "ObjC");
2002}
2003
2004// Emit namespace dies into a hashed accelerator table.
2005void DwarfDebug::emitAccelNamespaces() {
2006  emitAccel(AccelNamespace,
2007            Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2008            "namespac");
2009}
2010
2011// Emit type dies into a hashed accelerator table.
2012void DwarfDebug::emitAccelTypes() {
2013  emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2014            "types");
2015}
2016
2017// Public name handling.
2018// The format for the various pubnames:
2019//
2020// dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2021// for the DIE that is named.
2022//
2023// gnu pubnames - offset/index value/name tuples where the offset is the offset
2024// into the CU and the index value is computed according to the type of value
2025// for the DIE that is named.
2026//
2027// For type units the offset is the offset of the skeleton DIE. For split dwarf
2028// it's the offset within the debug_info/debug_types dwo section, however, the
2029// reference in the pubname header doesn't change.
2030
2031/// computeIndexValue - Compute the gdb index value for the DIE and CU.
2032static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2033                                                        const DIE *Die) {
2034  // Entities that ended up only in a Type Unit reference the CU instead (since
2035  // the pub entry has offsets within the CU there's no real offset that can be
2036  // provided anyway). As it happens all such entities (namespaces and types,
2037  // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2038  // not to be true it would be necessary to persist this information from the
2039  // point at which the entry is added to the index data structure - since by
2040  // the time the index is built from that, the original type/namespace DIE in a
2041  // type unit has already been destroyed so it can't be queried for properties
2042  // like tag, etc.
2043  if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2044    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2045                                          dwarf::GIEL_EXTERNAL);
2046  dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2047
2048  // We could have a specification DIE that has our most of our knowledge,
2049  // look for that now.
2050  if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2051    DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2052    if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2053      Linkage = dwarf::GIEL_EXTERNAL;
2054  } else if (Die->findAttribute(dwarf::DW_AT_external))
2055    Linkage = dwarf::GIEL_EXTERNAL;
2056
2057  switch (Die->getTag()) {
2058  case dwarf::DW_TAG_class_type:
2059  case dwarf::DW_TAG_structure_type:
2060  case dwarf::DW_TAG_union_type:
2061  case dwarf::DW_TAG_enumeration_type:
2062    return dwarf::PubIndexEntryDescriptor(
2063        dwarf::GIEK_TYPE,
2064        dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2065            ? dwarf::GIEL_EXTERNAL
2066            : dwarf::GIEL_STATIC);
2067  case dwarf::DW_TAG_typedef:
2068  case dwarf::DW_TAG_base_type:
2069  case dwarf::DW_TAG_subrange_type:
2070    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2071  case dwarf::DW_TAG_namespace:
2072    return dwarf::GIEK_TYPE;
2073  case dwarf::DW_TAG_subprogram:
2074    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2075  case dwarf::DW_TAG_variable:
2076    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2077  case dwarf::DW_TAG_enumerator:
2078    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2079                                          dwarf::GIEL_STATIC);
2080  default:
2081    return dwarf::GIEK_NONE;
2082  }
2083}
2084
2085/// emitDebugPubSections - Emit visible names and types into debug pubnames and
2086/// pubtypes sections.
2087void DwarfDebug::emitDebugPubSections() {
2088  for (const auto &NU : CUMap) {
2089    DwarfCompileUnit *TheU = NU.second;
2090    if (!TheU->hasDwarfPubSections())
2091      continue;
2092
2093    bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2094                    DICompileUnit::DebugNameTableKind::GNU;
2095
2096    Asm->OutStreamer->SwitchSection(
2097        GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2098                 : Asm->getObjFileLowering().getDwarfPubNamesSection());
2099    emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2100
2101    Asm->OutStreamer->SwitchSection(
2102        GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2103                 : Asm->getObjFileLowering().getDwarfPubTypesSection());
2104    emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2105  }
2106}
2107
2108void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2109  if (useSectionsAsReferences())
2110    Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(),
2111                         CU.getDebugSectionOffset());
2112  else
2113    Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2114}
2115
2116void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2117                                     DwarfCompileUnit *TheU,
2118                                     const StringMap<const DIE *> &Globals) {
2119  if (auto *Skeleton = TheU->getSkeleton())
2120    TheU = Skeleton;
2121
2122  // Emit the header.
2123  Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2124  MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2125  MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2126  Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
2127
2128  Asm->OutStreamer->EmitLabel(BeginLabel);
2129
2130  Asm->OutStreamer->AddComment("DWARF Version");
2131  Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2132
2133  Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2134  emitSectionReference(*TheU);
2135
2136  Asm->OutStreamer->AddComment("Compilation Unit Length");
2137  Asm->emitInt32(TheU->getLength());
2138
2139  // Emit the pubnames for this compilation unit.
2140  for (const auto &GI : Globals) {
2141    const char *Name = GI.getKeyData();
2142    const DIE *Entity = GI.second;
2143
2144    Asm->OutStreamer->AddComment("DIE offset");
2145    Asm->emitInt32(Entity->getOffset());
2146
2147    if (GnuStyle) {
2148      dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2149      Asm->OutStreamer->AddComment(
2150          Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2151          ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2152      Asm->emitInt8(Desc.toBits());
2153    }
2154
2155    Asm->OutStreamer->AddComment("External Name");
2156    Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
2157  }
2158
2159  Asm->OutStreamer->AddComment("End Mark");
2160  Asm->emitInt32(0);
2161  Asm->OutStreamer->EmitLabel(EndLabel);
2162}
2163
2164/// Emit null-terminated strings into a debug str section.
2165void DwarfDebug::emitDebugStr() {
2166  MCSection *StringOffsetsSection = nullptr;
2167  if (useSegmentedStringOffsetsTable()) {
2168    emitStringOffsetsTableHeader();
2169    StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2170  }
2171  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2172  Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2173                     StringOffsetsSection, /* UseRelativeOffsets = */ true);
2174}
2175
2176void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2177                                   const DebugLocStream::Entry &Entry,
2178                                   const DwarfCompileUnit *CU) {
2179  auto &&Comments = DebugLocs.getComments(Entry);
2180  auto Comment = Comments.begin();
2181  auto End = Comments.end();
2182
2183  // The expressions are inserted into a byte stream rather early (see
2184  // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2185  // need to reference a base_type DIE the offset of that DIE is not yet known.
2186  // To deal with this we instead insert a placeholder early and then extract
2187  // it here and replace it with the real reference.
2188  unsigned PtrSize = Asm->MAI->getCodePointerSize();
2189  DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2190                                    DebugLocs.getBytes(Entry).size()),
2191                          Asm->getDataLayout().isLittleEndian(), PtrSize);
2192  DWARFExpression Expr(Data, getDwarfVersion(), PtrSize);
2193
2194  using Encoding = DWARFExpression::Operation::Encoding;
2195  uint64_t Offset = 0;
2196  for (auto &Op : Expr) {
2197    assert(Op.getCode() != dwarf::DW_OP_const_type &&
2198           "3 operand ops not yet supported");
2199    Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2200    Offset++;
2201    for (unsigned I = 0; I < 2; ++I) {
2202      if (Op.getDescription().Op[I] == Encoding::SizeNA)
2203        continue;
2204      if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2205          if (CU) {
2206            uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2207            assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2208            Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize);
2209          } else {
2210            // Emit a reference to the 'generic type'.
2211            Asm->EmitULEB128(0, nullptr, ULEB128PadSize);
2212          }
2213          // Make sure comments stay aligned.
2214          for (unsigned J = 0; J < ULEB128PadSize; ++J)
2215            if (Comment != End)
2216              Comment++;
2217      } else {
2218        for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2219          Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2220      }
2221      Offset = Op.getOperandEndOffset(I);
2222    }
2223    assert(Offset == Op.getEndOffset());
2224  }
2225}
2226
2227void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2228                                   const DbgValueLoc &Value,
2229                                   DwarfExpression &DwarfExpr) {
2230  auto *DIExpr = Value.getExpression();
2231  DIExpressionCursor ExprCursor(DIExpr);
2232  DwarfExpr.addFragmentOffset(DIExpr);
2233  // Regular entry.
2234  if (Value.isInt()) {
2235    if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2236               BT->getEncoding() == dwarf::DW_ATE_signed_char))
2237      DwarfExpr.addSignedConstant(Value.getInt());
2238    else
2239      DwarfExpr.addUnsignedConstant(Value.getInt());
2240  } else if (Value.isLocation()) {
2241    MachineLocation Location = Value.getLoc();
2242    if (Location.isIndirect())
2243      DwarfExpr.setMemoryLocationKind();
2244    DIExpressionCursor Cursor(DIExpr);
2245
2246    if (DIExpr->isEntryValue()) {
2247      DwarfExpr.setEntryValueFlag();
2248      DwarfExpr.beginEntryValueExpression(Cursor);
2249    }
2250
2251    const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2252    if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2253      return;
2254    return DwarfExpr.addExpression(std::move(Cursor));
2255  } else if (Value.isTargetIndexLocation()) {
2256    TargetIndexLocation Loc = Value.getTargetIndexLocation();
2257    // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2258    // encoding is supported.
2259    DwarfExpr.addWasmLocation(Loc.Index, Loc.Offset);
2260  } else if (Value.isConstantFP()) {
2261    APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
2262    DwarfExpr.addUnsignedConstant(RawBytes);
2263  }
2264  DwarfExpr.addExpression(std::move(ExprCursor));
2265}
2266
2267void DebugLocEntry::finalize(const AsmPrinter &AP,
2268                             DebugLocStream::ListBuilder &List,
2269                             const DIBasicType *BT,
2270                             DwarfCompileUnit &TheCU) {
2271  assert(!Values.empty() &&
2272         "location list entries without values are redundant");
2273  assert(Begin != End && "unexpected location list entry with empty range");
2274  DebugLocStream::EntryBuilder Entry(List, Begin, End);
2275  BufferByteStreamer Streamer = Entry.getStreamer();
2276  DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2277  const DbgValueLoc &Value = Values[0];
2278  if (Value.isFragment()) {
2279    // Emit all fragments that belong to the same variable and range.
2280    assert(llvm::all_of(Values, [](DbgValueLoc P) {
2281          return P.isFragment();
2282        }) && "all values are expected to be fragments");
2283    assert(std::is_sorted(Values.begin(), Values.end()) &&
2284           "fragments are expected to be sorted");
2285
2286    for (auto Fragment : Values)
2287      DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2288
2289  } else {
2290    assert(Values.size() == 1 && "only fragments may have >1 value");
2291    DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2292  }
2293  DwarfExpr.finalize();
2294  if (DwarfExpr.TagOffset)
2295    List.setTagOffset(*DwarfExpr.TagOffset);
2296}
2297
2298void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2299                                           const DwarfCompileUnit *CU) {
2300  // Emit the size.
2301  Asm->OutStreamer->AddComment("Loc expr size");
2302  if (getDwarfVersion() >= 5)
2303    Asm->EmitULEB128(DebugLocs.getBytes(Entry).size());
2304  else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2305    Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2306  else {
2307    // The entry is too big to fit into 16 bit, drop it as there is nothing we
2308    // can do.
2309    Asm->emitInt16(0);
2310    return;
2311  }
2312  // Emit the entry.
2313  APByteStreamer Streamer(*Asm);
2314  emitDebugLocEntry(Streamer, Entry, CU);
2315}
2316
2317// Emit the common part of the DWARF 5 range/locations list tables header.
2318static void emitListsTableHeaderStart(AsmPrinter *Asm,
2319                                      MCSymbol *TableStart,
2320                                      MCSymbol *TableEnd) {
2321  // Build the table header, which starts with the length field.
2322  Asm->OutStreamer->AddComment("Length");
2323  Asm->EmitLabelDifference(TableEnd, TableStart, 4);
2324  Asm->OutStreamer->EmitLabel(TableStart);
2325  // Version number (DWARF v5 and later).
2326  Asm->OutStreamer->AddComment("Version");
2327  Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion());
2328  // Address size.
2329  Asm->OutStreamer->AddComment("Address size");
2330  Asm->emitInt8(Asm->MAI->getCodePointerSize());
2331  // Segment selector size.
2332  Asm->OutStreamer->AddComment("Segment selector size");
2333  Asm->emitInt8(0);
2334}
2335
2336// Emit the header of a DWARF 5 range list table list table. Returns the symbol
2337// that designates the end of the table for the caller to emit when the table is
2338// complete.
2339static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2340                                         const DwarfFile &Holder) {
2341  MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start");
2342  MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end");
2343  emitListsTableHeaderStart(Asm, TableStart, TableEnd);
2344
2345  Asm->OutStreamer->AddComment("Offset entry count");
2346  Asm->emitInt32(Holder.getRangeLists().size());
2347  Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym());
2348
2349  for (const RangeSpanList &List : Holder.getRangeLists())
2350    Asm->EmitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2351                             4);
2352
2353  return TableEnd;
2354}
2355
2356// Emit the header of a DWARF 5 locations list table. Returns the symbol that
2357// designates the end of the table for the caller to emit when the table is
2358// complete.
2359static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2360                                         const DwarfDebug &DD) {
2361  MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start");
2362  MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end");
2363  emitListsTableHeaderStart(Asm, TableStart, TableEnd);
2364
2365  const auto &DebugLocs = DD.getDebugLocs();
2366
2367  Asm->OutStreamer->AddComment("Offset entry count");
2368  Asm->emitInt32(DebugLocs.getLists().size());
2369  Asm->OutStreamer->EmitLabel(DebugLocs.getSym());
2370
2371  for (const auto &List : DebugLocs.getLists())
2372    Asm->EmitLabelDifference(List.Label, DebugLocs.getSym(), 4);
2373
2374  return TableEnd;
2375}
2376
2377template <typename Ranges, typename PayloadEmitter>
2378static void emitRangeList(
2379    DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2380    const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2381    unsigned StartxLength, unsigned EndOfList,
2382    StringRef (*StringifyEnum)(unsigned),
2383    bool ShouldUseBaseAddress,
2384    PayloadEmitter EmitPayload) {
2385
2386  auto Size = Asm->MAI->getCodePointerSize();
2387  bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2388
2389  // Emit our symbol so we can find the beginning of the range.
2390  Asm->OutStreamer->EmitLabel(Sym);
2391
2392  // Gather all the ranges that apply to the same section so they can share
2393  // a base address entry.
2394  MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2395
2396  for (const auto &Range : R)
2397    SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2398
2399  const MCSymbol *CUBase = CU.getBaseAddress();
2400  bool BaseIsSet = false;
2401  for (const auto &P : SectionRanges) {
2402    auto *Base = CUBase;
2403    if (!Base && ShouldUseBaseAddress) {
2404      const MCSymbol *Begin = P.second.front()->Begin;
2405      const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2406      if (!UseDwarf5) {
2407        Base = NewBase;
2408        BaseIsSet = true;
2409        Asm->OutStreamer->EmitIntValue(-1, Size);
2410        Asm->OutStreamer->AddComment("  base address");
2411        Asm->OutStreamer->EmitSymbolValue(Base, Size);
2412      } else if (NewBase != Begin || P.second.size() > 1) {
2413        // Only use a base address if
2414        //  * the existing pool address doesn't match (NewBase != Begin)
2415        //  * or, there's more than one entry to share the base address
2416        Base = NewBase;
2417        BaseIsSet = true;
2418        Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2419        Asm->emitInt8(BaseAddressx);
2420        Asm->OutStreamer->AddComment("  base address index");
2421        Asm->EmitULEB128(DD.getAddressPool().getIndex(Base));
2422      }
2423    } else if (BaseIsSet && !UseDwarf5) {
2424      BaseIsSet = false;
2425      assert(!Base);
2426      Asm->OutStreamer->EmitIntValue(-1, Size);
2427      Asm->OutStreamer->EmitIntValue(0, Size);
2428    }
2429
2430    for (const auto *RS : P.second) {
2431      const MCSymbol *Begin = RS->Begin;
2432      const MCSymbol *End = RS->End;
2433      assert(Begin && "Range without a begin symbol?");
2434      assert(End && "Range without an end symbol?");
2435      if (Base) {
2436        if (UseDwarf5) {
2437          // Emit offset_pair when we have a base.
2438          Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2439          Asm->emitInt8(OffsetPair);
2440          Asm->OutStreamer->AddComment("  starting offset");
2441          Asm->EmitLabelDifferenceAsULEB128(Begin, Base);
2442          Asm->OutStreamer->AddComment("  ending offset");
2443          Asm->EmitLabelDifferenceAsULEB128(End, Base);
2444        } else {
2445          Asm->EmitLabelDifference(Begin, Base, Size);
2446          Asm->EmitLabelDifference(End, Base, Size);
2447        }
2448      } else if (UseDwarf5) {
2449        Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2450        Asm->emitInt8(StartxLength);
2451        Asm->OutStreamer->AddComment("  start index");
2452        Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin));
2453        Asm->OutStreamer->AddComment("  length");
2454        Asm->EmitLabelDifferenceAsULEB128(End, Begin);
2455      } else {
2456        Asm->OutStreamer->EmitSymbolValue(Begin, Size);
2457        Asm->OutStreamer->EmitSymbolValue(End, Size);
2458      }
2459      EmitPayload(*RS);
2460    }
2461  }
2462
2463  if (UseDwarf5) {
2464    Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2465    Asm->emitInt8(EndOfList);
2466  } else {
2467    // Terminate the list with two 0 values.
2468    Asm->OutStreamer->EmitIntValue(0, Size);
2469    Asm->OutStreamer->EmitIntValue(0, Size);
2470  }
2471}
2472
2473// Handles emission of both debug_loclist / debug_loclist.dwo
2474static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2475  emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2476                *List.CU, dwarf::DW_LLE_base_addressx,
2477                dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2478                dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2479                /* ShouldUseBaseAddress */ true,
2480                [&](const DebugLocStream::Entry &E) {
2481                  DD.emitDebugLocEntryLocation(E, List.CU);
2482                });
2483}
2484
2485void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2486  if (DebugLocs.getLists().empty())
2487    return;
2488
2489  Asm->OutStreamer->SwitchSection(Sec);
2490
2491  MCSymbol *TableEnd = nullptr;
2492  if (getDwarfVersion() >= 5)
2493    TableEnd = emitLoclistsTableHeader(Asm, *this);
2494
2495  for (const auto &List : DebugLocs.getLists())
2496    emitLocList(*this, Asm, List);
2497
2498  if (TableEnd)
2499    Asm->OutStreamer->EmitLabel(TableEnd);
2500}
2501
2502// Emit locations into the .debug_loc/.debug_loclists section.
2503void DwarfDebug::emitDebugLoc() {
2504  emitDebugLocImpl(
2505      getDwarfVersion() >= 5
2506          ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2507          : Asm->getObjFileLowering().getDwarfLocSection());
2508}
2509
2510// Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2511void DwarfDebug::emitDebugLocDWO() {
2512  if (getDwarfVersion() >= 5) {
2513    emitDebugLocImpl(
2514        Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2515
2516    return;
2517  }
2518
2519  for (const auto &List : DebugLocs.getLists()) {
2520    Asm->OutStreamer->SwitchSection(
2521        Asm->getObjFileLowering().getDwarfLocDWOSection());
2522    Asm->OutStreamer->EmitLabel(List.Label);
2523
2524    for (const auto &Entry : DebugLocs.getEntries(List)) {
2525      // GDB only supports startx_length in pre-standard split-DWARF.
2526      // (in v5 standard loclists, it currently* /only/ supports base_address +
2527      // offset_pair, so the implementations can't really share much since they
2528      // need to use different representations)
2529      // * as of October 2018, at least
2530      // Ideally/in v5, this could use SectionLabels to reuse existing addresses
2531      // in the address pool to minimize object size/relocations.
2532      Asm->emitInt8(dwarf::DW_LLE_startx_length);
2533      unsigned idx = AddrPool.getIndex(Entry.Begin);
2534      Asm->EmitULEB128(idx);
2535      // Also the pre-standard encoding is slightly different, emitting this as
2536      // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2537      Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4);
2538      emitDebugLocEntryLocation(Entry, List.CU);
2539    }
2540    Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2541  }
2542}
2543
2544struct ArangeSpan {
2545  const MCSymbol *Start, *End;
2546};
2547
2548// Emit a debug aranges section, containing a CU lookup for any
2549// address we can tie back to a CU.
2550void DwarfDebug::emitDebugARanges() {
2551  // Provides a unique id per text section.
2552  MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2553
2554  // Filter labels by section.
2555  for (const SymbolCU &SCU : ArangeLabels) {
2556    if (SCU.Sym->isInSection()) {
2557      // Make a note of this symbol and it's section.
2558      MCSection *Section = &SCU.Sym->getSection();
2559      if (!Section->getKind().isMetadata())
2560        SectionMap[Section].push_back(SCU);
2561    } else {
2562      // Some symbols (e.g. common/bss on mach-o) can have no section but still
2563      // appear in the output. This sucks as we rely on sections to build
2564      // arange spans. We can do it without, but it's icky.
2565      SectionMap[nullptr].push_back(SCU);
2566    }
2567  }
2568
2569  DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2570
2571  for (auto &I : SectionMap) {
2572    MCSection *Section = I.first;
2573    SmallVector<SymbolCU, 8> &List = I.second;
2574    if (List.size() < 1)
2575      continue;
2576
2577    // If we have no section (e.g. common), just write out
2578    // individual spans for each symbol.
2579    if (!Section) {
2580      for (const SymbolCU &Cur : List) {
2581        ArangeSpan Span;
2582        Span.Start = Cur.Sym;
2583        Span.End = nullptr;
2584        assert(Cur.CU);
2585        Spans[Cur.CU].push_back(Span);
2586      }
2587      continue;
2588    }
2589
2590    // Sort the symbols by offset within the section.
2591    llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2592      unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2593      unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2594
2595      // Symbols with no order assigned should be placed at the end.
2596      // (e.g. section end labels)
2597      if (IA == 0)
2598        return false;
2599      if (IB == 0)
2600        return true;
2601      return IA < IB;
2602    });
2603
2604    // Insert a final terminator.
2605    List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2606
2607    // Build spans between each label.
2608    const MCSymbol *StartSym = List[0].Sym;
2609    for (size_t n = 1, e = List.size(); n < e; n++) {
2610      const SymbolCU &Prev = List[n - 1];
2611      const SymbolCU &Cur = List[n];
2612
2613      // Try and build the longest span we can within the same CU.
2614      if (Cur.CU != Prev.CU) {
2615        ArangeSpan Span;
2616        Span.Start = StartSym;
2617        Span.End = Cur.Sym;
2618        assert(Prev.CU);
2619        Spans[Prev.CU].push_back(Span);
2620        StartSym = Cur.Sym;
2621      }
2622    }
2623  }
2624
2625  // Start the dwarf aranges section.
2626  Asm->OutStreamer->SwitchSection(
2627      Asm->getObjFileLowering().getDwarfARangesSection());
2628
2629  unsigned PtrSize = Asm->MAI->getCodePointerSize();
2630
2631  // Build a list of CUs used.
2632  std::vector<DwarfCompileUnit *> CUs;
2633  for (const auto &it : Spans) {
2634    DwarfCompileUnit *CU = it.first;
2635    CUs.push_back(CU);
2636  }
2637
2638  // Sort the CU list (again, to ensure consistent output order).
2639  llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2640    return A->getUniqueID() < B->getUniqueID();
2641  });
2642
2643  // Emit an arange table for each CU we used.
2644  for (DwarfCompileUnit *CU : CUs) {
2645    std::vector<ArangeSpan> &List = Spans[CU];
2646
2647    // Describe the skeleton CU's offset and length, not the dwo file's.
2648    if (auto *Skel = CU->getSkeleton())
2649      CU = Skel;
2650
2651    // Emit size of content not including length itself.
2652    unsigned ContentSize =
2653        sizeof(int16_t) + // DWARF ARange version number
2654        sizeof(int32_t) + // Offset of CU in the .debug_info section
2655        sizeof(int8_t) +  // Pointer Size (in bytes)
2656        sizeof(int8_t);   // Segment Size (in bytes)
2657
2658    unsigned TupleSize = PtrSize * 2;
2659
2660    // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2661    unsigned Padding =
2662        offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));
2663
2664    ContentSize += Padding;
2665    ContentSize += (List.size() + 1) * TupleSize;
2666
2667    // For each compile unit, write the list of spans it covers.
2668    Asm->OutStreamer->AddComment("Length of ARange Set");
2669    Asm->emitInt32(ContentSize);
2670    Asm->OutStreamer->AddComment("DWARF Arange version number");
2671    Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2672    Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2673    emitSectionReference(*CU);
2674    Asm->OutStreamer->AddComment("Address Size (in bytes)");
2675    Asm->emitInt8(PtrSize);
2676    Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2677    Asm->emitInt8(0);
2678
2679    Asm->OutStreamer->emitFill(Padding, 0xff);
2680
2681    for (const ArangeSpan &Span : List) {
2682      Asm->EmitLabelReference(Span.Start, PtrSize);
2683
2684      // Calculate the size as being from the span start to it's end.
2685      if (Span.End) {
2686        Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
2687      } else {
2688        // For symbols without an end marker (e.g. common), we
2689        // write a single arange entry containing just that one symbol.
2690        uint64_t Size = SymSize[Span.Start];
2691        if (Size == 0)
2692          Size = 1;
2693
2694        Asm->OutStreamer->EmitIntValue(Size, PtrSize);
2695      }
2696    }
2697
2698    Asm->OutStreamer->AddComment("ARange terminator");
2699    Asm->OutStreamer->EmitIntValue(0, PtrSize);
2700    Asm->OutStreamer->EmitIntValue(0, PtrSize);
2701  }
2702}
2703
2704/// Emit a single range list. We handle both DWARF v5 and earlier.
2705static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2706                          const RangeSpanList &List) {
2707  emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2708                dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2709                dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2710                llvm::dwarf::RangeListEncodingString,
2711                List.CU->getCUNode()->getRangesBaseAddress() ||
2712                    DD.getDwarfVersion() >= 5,
2713                [](auto) {});
2714}
2715
2716void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2717  if (Holder.getRangeLists().empty())
2718    return;
2719
2720  assert(useRangesSection());
2721  assert(!CUMap.empty());
2722  assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2723    return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2724  }));
2725
2726  Asm->OutStreamer->SwitchSection(Section);
2727
2728  MCSymbol *TableEnd = nullptr;
2729  if (getDwarfVersion() >= 5)
2730    TableEnd = emitRnglistsTableHeader(Asm, Holder);
2731
2732  for (const RangeSpanList &List : Holder.getRangeLists())
2733    emitRangeList(*this, Asm, List);
2734
2735  if (TableEnd)
2736    Asm->OutStreamer->EmitLabel(TableEnd);
2737}
2738
2739/// Emit address ranges into the .debug_ranges section or into the DWARF v5
2740/// .debug_rnglists section.
2741void DwarfDebug::emitDebugRanges() {
2742  const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2743
2744  emitDebugRangesImpl(Holder,
2745                      getDwarfVersion() >= 5
2746                          ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2747                          : Asm->getObjFileLowering().getDwarfRangesSection());
2748}
2749
2750void DwarfDebug::emitDebugRangesDWO() {
2751  emitDebugRangesImpl(InfoHolder,
2752                      Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2753}
2754
2755void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2756  for (auto *MN : Nodes) {
2757    if (auto *M = dyn_cast<DIMacro>(MN))
2758      emitMacro(*M);
2759    else if (auto *F = dyn_cast<DIMacroFile>(MN))
2760      emitMacroFile(*F, U);
2761    else
2762      llvm_unreachable("Unexpected DI type!");
2763  }
2764}
2765
2766void DwarfDebug::emitMacro(DIMacro &M) {
2767  Asm->EmitULEB128(M.getMacinfoType());
2768  Asm->EmitULEB128(M.getLine());
2769  StringRef Name = M.getName();
2770  StringRef Value = M.getValue();
2771  Asm->OutStreamer->EmitBytes(Name);
2772  if (!Value.empty()) {
2773    // There should be one space between macro name and macro value.
2774    Asm->emitInt8(' ');
2775    Asm->OutStreamer->EmitBytes(Value);
2776  }
2777  Asm->emitInt8('\0');
2778}
2779
2780void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
2781  assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
2782  Asm->EmitULEB128(dwarf::DW_MACINFO_start_file);
2783  Asm->EmitULEB128(F.getLine());
2784  Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile()));
2785  handleMacroNodes(F.getElements(), U);
2786  Asm->EmitULEB128(dwarf::DW_MACINFO_end_file);
2787}
2788
2789void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
2790  for (const auto &P : CUMap) {
2791    auto &TheCU = *P.second;
2792    auto *SkCU = TheCU.getSkeleton();
2793    DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
2794    auto *CUNode = cast<DICompileUnit>(P.first);
2795    DIMacroNodeArray Macros = CUNode->getMacros();
2796    if (Macros.empty())
2797      continue;
2798    Asm->OutStreamer->SwitchSection(Section);
2799    Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin());
2800    handleMacroNodes(Macros, U);
2801    Asm->OutStreamer->AddComment("End Of Macro List Mark");
2802    Asm->emitInt8(0);
2803  }
2804}
2805
2806/// Emit macros into a debug macinfo section.
2807void DwarfDebug::emitDebugMacinfo() {
2808  emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoSection());
2809}
2810
2811void DwarfDebug::emitDebugMacinfoDWO() {
2812  emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection());
2813}
2814
2815// DWARF5 Experimental Separate Dwarf emitters.
2816
2817void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
2818                                  std::unique_ptr<DwarfCompileUnit> NewU) {
2819
2820  if (!CompilationDir.empty())
2821    NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
2822
2823  addGnuPubAttributes(*NewU, Die);
2824
2825  SkeletonHolder.addUnit(std::move(NewU));
2826}
2827
2828DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
2829
2830  auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
2831      CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
2832      UnitKind::Skeleton);
2833  DwarfCompileUnit &NewCU = *OwnedUnit;
2834  NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
2835
2836  NewCU.initStmtList();
2837
2838  if (useSegmentedStringOffsetsTable())
2839    NewCU.addStringOffsetsStart();
2840
2841  initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
2842
2843  return NewCU;
2844}
2845
2846// Emit the .debug_info.dwo section for separated dwarf. This contains the
2847// compile units that would normally be in debug_info.
2848void DwarfDebug::emitDebugInfoDWO() {
2849  assert(useSplitDwarf() && "No split dwarf debug info?");
2850  // Don't emit relocations into the dwo file.
2851  InfoHolder.emitUnits(/* UseOffsets */ true);
2852}
2853
2854// Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2855// abbreviations for the .debug_info.dwo section.
2856void DwarfDebug::emitDebugAbbrevDWO() {
2857  assert(useSplitDwarf() && "No split dwarf?");
2858  InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
2859}
2860
2861void DwarfDebug::emitDebugLineDWO() {
2862  assert(useSplitDwarf() && "No split dwarf?");
2863  SplitTypeUnitFileTable.Emit(
2864      *Asm->OutStreamer, MCDwarfLineTableParams(),
2865      Asm->getObjFileLowering().getDwarfLineDWOSection());
2866}
2867
2868void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
2869  assert(useSplitDwarf() && "No split dwarf?");
2870  InfoHolder.getStringPool().emitStringOffsetsTableHeader(
2871      *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
2872      InfoHolder.getStringOffsetsStartSym());
2873}
2874
2875// Emit the .debug_str.dwo section for separated dwarf. This contains the
2876// string section and is identical in format to traditional .debug_str
2877// sections.
2878void DwarfDebug::emitDebugStrDWO() {
2879  if (useSegmentedStringOffsetsTable())
2880    emitStringOffsetsTableHeaderDWO();
2881  assert(useSplitDwarf() && "No split dwarf?");
2882  MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
2883  InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
2884                         OffSec, /* UseRelativeOffsets = */ false);
2885}
2886
2887// Emit address pool.
2888void DwarfDebug::emitDebugAddr() {
2889  AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
2890}
2891
2892MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
2893  if (!useSplitDwarf())
2894    return nullptr;
2895  const DICompileUnit *DIUnit = CU.getCUNode();
2896  SplitTypeUnitFileTable.maybeSetRootFile(
2897      DIUnit->getDirectory(), DIUnit->getFilename(),
2898      CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
2899  return &SplitTypeUnitFileTable;
2900}
2901
2902uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
2903  MD5 Hash;
2904  Hash.update(Identifier);
2905  // ... take the least significant 8 bytes and return those. Our MD5
2906  // implementation always returns its results in little endian, so we actually
2907  // need the "high" word.
2908  MD5::MD5Result Result;
2909  Hash.final(Result);
2910  return Result.high();
2911}
2912
2913void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
2914                                      StringRef Identifier, DIE &RefDie,
2915                                      const DICompositeType *CTy) {
2916  // Fast path if we're building some type units and one has already used the
2917  // address pool we know we're going to throw away all this work anyway, so
2918  // don't bother building dependent types.
2919  if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
2920    return;
2921
2922  auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
2923  if (!Ins.second) {
2924    CU.addDIETypeSignature(RefDie, Ins.first->second);
2925    return;
2926  }
2927
2928  bool TopLevelType = TypeUnitsUnderConstruction.empty();
2929  AddrPool.resetUsedFlag();
2930
2931  auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
2932                                                    getDwoLineTable(CU));
2933  DwarfTypeUnit &NewTU = *OwnedUnit;
2934  DIE &UnitDie = NewTU.getUnitDie();
2935  TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
2936
2937  NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
2938                CU.getLanguage());
2939
2940  uint64_t Signature = makeTypeSignature(Identifier);
2941  NewTU.setTypeSignature(Signature);
2942  Ins.first->second = Signature;
2943
2944  if (useSplitDwarf()) {
2945    MCSection *Section =
2946        getDwarfVersion() <= 4
2947            ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
2948            : Asm->getObjFileLowering().getDwarfInfoDWOSection();
2949    NewTU.setSection(Section);
2950  } else {
2951    MCSection *Section =
2952        getDwarfVersion() <= 4
2953            ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
2954            : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
2955    NewTU.setSection(Section);
2956    // Non-split type units reuse the compile unit's line table.
2957    CU.applyStmtList(UnitDie);
2958  }
2959
2960  // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
2961  // units.
2962  if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
2963    NewTU.addStringOffsetsStart();
2964
2965  NewTU.setType(NewTU.createTypeDIE(CTy));
2966
2967  if (TopLevelType) {
2968    auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
2969    TypeUnitsUnderConstruction.clear();
2970
2971    // Types referencing entries in the address table cannot be placed in type
2972    // units.
2973    if (AddrPool.hasBeenUsed()) {
2974
2975      // Remove all the types built while building this type.
2976      // This is pessimistic as some of these types might not be dependent on
2977      // the type that used an address.
2978      for (const auto &TU : TypeUnitsToAdd)
2979        TypeSignatures.erase(TU.second);
2980
2981      // Construct this type in the CU directly.
2982      // This is inefficient because all the dependent types will be rebuilt
2983      // from scratch, including building them in type units, discovering that
2984      // they depend on addresses, throwing them out and rebuilding them.
2985      CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
2986      return;
2987    }
2988
2989    // If the type wasn't dependent on fission addresses, finish adding the type
2990    // and all its dependent types.
2991    for (auto &TU : TypeUnitsToAdd) {
2992      InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
2993      InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
2994    }
2995  }
2996  CU.addDIETypeSignature(RefDie, Signature);
2997}
2998
2999DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3000    : DD(DD),
3001      TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
3002  DD->TypeUnitsUnderConstruction.clear();
3003  assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
3004}
3005
3006DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3007  DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3008  DD->AddrPool.resetUsedFlag();
3009}
3010
3011DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3012  return NonTypeUnitContext(this);
3013}
3014
3015// Add the Name along with its companion DIE to the appropriate accelerator
3016// table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3017// AccelTableKind::Apple, we use the table we got as an argument). If
3018// accelerator tables are disabled, this function does nothing.
3019template <typename DataT>
3020void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3021                                  AccelTable<DataT> &AppleAccel, StringRef Name,
3022                                  const DIE &Die) {
3023  if (getAccelTableKind() == AccelTableKind::None)
3024    return;
3025
3026  if (getAccelTableKind() != AccelTableKind::Apple &&
3027      CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3028    return;
3029
3030  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3031  DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3032
3033  switch (getAccelTableKind()) {
3034  case AccelTableKind::Apple:
3035    AppleAccel.addName(Ref, Die);
3036    break;
3037  case AccelTableKind::Dwarf:
3038    AccelDebugNames.addName(Ref, Die);
3039    break;
3040  case AccelTableKind::Default:
3041    llvm_unreachable("Default should have already been resolved.");
3042  case AccelTableKind::None:
3043    llvm_unreachable("None handled above");
3044  }
3045}
3046
3047void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3048                              const DIE &Die) {
3049  addAccelNameImpl(CU, AccelNames, Name, Die);
3050}
3051
3052void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3053                              const DIE &Die) {
3054  // ObjC names go only into the Apple accelerator tables.
3055  if (getAccelTableKind() == AccelTableKind::Apple)
3056    addAccelNameImpl(CU, AccelObjC, Name, Die);
3057}
3058
3059void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3060                                   const DIE &Die) {
3061  addAccelNameImpl(CU, AccelNamespace, Name, Die);
3062}
3063
3064void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3065                              const DIE &Die, char Flags) {
3066  addAccelNameImpl(CU, AccelTypes, Name, Die);
3067}
3068
3069uint16_t DwarfDebug::getDwarfVersion() const {
3070  return Asm->OutStreamer->getContext().getDwarfVersion();
3071}
3072
3073const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3074  return SectionLabels.find(S)->second;
3075}
3076