1//===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the AsmPrinter class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/AsmPrinter.h"
14#include "CodeViewDebug.h"
15#include "DwarfDebug.h"
16#include "DwarfException.h"
17#include "WasmException.h"
18#include "WinCFGuard.h"
19#include "WinException.h"
20#include "llvm/ADT/APFloat.h"
21#include "llvm/ADT/APInt.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/ADT/StringRef.h"
29#include "llvm/ADT/Triple.h"
30#include "llvm/ADT/Twine.h"
31#include "llvm/Analysis/ConstantFolding.h"
32#include "llvm/Analysis/EHPersonalities.h"
33#include "llvm/Analysis/OptimizationRemarkEmitter.h"
34#include "llvm/Analysis/ProfileSummaryInfo.h"
35#include "llvm/BinaryFormat/COFF.h"
36#include "llvm/BinaryFormat/Dwarf.h"
37#include "llvm/BinaryFormat/ELF.h"
38#include "llvm/CodeGen/GCMetadata.h"
39#include "llvm/CodeGen/GCMetadataPrinter.h"
40#include "llvm/CodeGen/GCStrategy.h"
41#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
42#include "llvm/CodeGen/MachineBasicBlock.h"
43#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44#include "llvm/CodeGen/MachineConstantPool.h"
45#include "llvm/CodeGen/MachineDominators.h"
46#include "llvm/CodeGen/MachineFrameInfo.h"
47#include "llvm/CodeGen/MachineFunction.h"
48#include "llvm/CodeGen/MachineFunctionPass.h"
49#include "llvm/CodeGen/MachineInstr.h"
50#include "llvm/CodeGen/MachineInstrBundle.h"
51#include "llvm/CodeGen/MachineJumpTableInfo.h"
52#include "llvm/CodeGen/MachineLoopInfo.h"
53#include "llvm/CodeGen/MachineMemOperand.h"
54#include "llvm/CodeGen/MachineModuleInfo.h"
55#include "llvm/CodeGen/MachineModuleInfoImpls.h"
56#include "llvm/CodeGen/MachineOperand.h"
57#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
58#include "llvm/CodeGen/MachineSizeOpts.h"
59#include "llvm/CodeGen/StackMaps.h"
60#include "llvm/CodeGen/TargetFrameLowering.h"
61#include "llvm/CodeGen/TargetInstrInfo.h"
62#include "llvm/CodeGen/TargetLowering.h"
63#include "llvm/CodeGen/TargetOpcodes.h"
64#include "llvm/CodeGen/TargetRegisterInfo.h"
65#include "llvm/IR/BasicBlock.h"
66#include "llvm/IR/Comdat.h"
67#include "llvm/IR/Constant.h"
68#include "llvm/IR/Constants.h"
69#include "llvm/IR/DataLayout.h"
70#include "llvm/IR/DebugInfoMetadata.h"
71#include "llvm/IR/DerivedTypes.h"
72#include "llvm/IR/Function.h"
73#include "llvm/IR/GlobalAlias.h"
74#include "llvm/IR/GlobalIFunc.h"
75#include "llvm/IR/GlobalIndirectSymbol.h"
76#include "llvm/IR/GlobalObject.h"
77#include "llvm/IR/GlobalValue.h"
78#include "llvm/IR/GlobalVariable.h"
79#include "llvm/IR/Instruction.h"
80#include "llvm/IR/Mangler.h"
81#include "llvm/IR/Metadata.h"
82#include "llvm/IR/Module.h"
83#include "llvm/IR/Operator.h"
84#include "llvm/IR/RemarkStreamer.h"
85#include "llvm/IR/Type.h"
86#include "llvm/IR/Value.h"
87#include "llvm/MC/MCAsmInfo.h"
88#include "llvm/MC/MCContext.h"
89#include "llvm/MC/MCDirectives.h"
90#include "llvm/MC/MCDwarf.h"
91#include "llvm/MC/MCExpr.h"
92#include "llvm/MC/MCInst.h"
93#include "llvm/MC/MCSection.h"
94#include "llvm/MC/MCSectionCOFF.h"
95#include "llvm/MC/MCSectionELF.h"
96#include "llvm/MC/MCSectionMachO.h"
97#include "llvm/MC/MCSectionXCOFF.h"
98#include "llvm/MC/MCStreamer.h"
99#include "llvm/MC/MCSubtargetInfo.h"
100#include "llvm/MC/MCSymbol.h"
101#include "llvm/MC/MCSymbolELF.h"
102#include "llvm/MC/MCSymbolXCOFF.h"
103#include "llvm/MC/MCTargetOptions.h"
104#include "llvm/MC/MCValue.h"
105#include "llvm/MC/SectionKind.h"
106#include "llvm/Pass.h"
107#include "llvm/Remarks/Remark.h"
108#include "llvm/Remarks/RemarkFormat.h"
109#include "llvm/Remarks/RemarkStringTable.h"
110#include "llvm/Support/Casting.h"
111#include "llvm/Support/CommandLine.h"
112#include "llvm/Support/Compiler.h"
113#include "llvm/Support/ErrorHandling.h"
114#include "llvm/Support/Format.h"
115#include "llvm/Support/MathExtras.h"
116#include "llvm/Support/Path.h"
117#include "llvm/Support/TargetRegistry.h"
118#include "llvm/Support/Timer.h"
119#include "llvm/Support/raw_ostream.h"
120#include "llvm/Target/TargetLoweringObjectFile.h"
121#include "llvm/Target/TargetMachine.h"
122#include "llvm/Target/TargetOptions.h"
123#include <algorithm>
124#include <cassert>
125#include <cinttypes>
126#include <cstdint>
127#include <iterator>
128#include <limits>
129#include <memory>
130#include <string>
131#include <utility>
132#include <vector>
133
134using namespace llvm;
135
136#define DEBUG_TYPE "asm-printer"
137
138static const char *const DWARFGroupName = "dwarf";
139static const char *const DWARFGroupDescription = "DWARF Emission";
140static const char *const DbgTimerName = "emit";
141static const char *const DbgTimerDescription = "Debug Info Emission";
142static const char *const EHTimerName = "write_exception";
143static const char *const EHTimerDescription = "DWARF Exception Writer";
144static const char *const CFGuardName = "Control Flow Guard";
145static const char *const CFGuardDescription = "Control Flow Guard";
146static const char *const CodeViewLineTablesGroupName = "linetables";
147static const char *const CodeViewLineTablesGroupDescription =
148  "CodeView Line Tables";
149
150STATISTIC(EmittedInsts, "Number of machine instrs printed");
151
152char AsmPrinter::ID = 0;
153
154using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
155
156static gcp_map_type &getGCMap(void *&P) {
157  if (!P)
158    P = new gcp_map_type();
159  return *(gcp_map_type*)P;
160}
161
162/// getGVAlignment - Return the alignment to use for the specified global
163/// value.  This rounds up to the preferred alignment if possible and legal.
164Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL,
165                                 Align InAlign) {
166  Align Alignment;
167  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
168    Alignment = Align(DL.getPreferredAlignment(GVar));
169
170  // If InAlign is specified, round it to it.
171  if (InAlign > Alignment)
172    Alignment = InAlign;
173
174  // If the GV has a specified alignment, take it into account.
175  const MaybeAlign GVAlign(GV->getAlignment());
176  if (!GVAlign)
177    return Alignment;
178
179  assert(GVAlign && "GVAlign must be set");
180
181  // If the GVAlign is larger than NumBits, or if we are required to obey
182  // NumBits because the GV has an assigned section, obey it.
183  if (*GVAlign > Alignment || GV->hasSection())
184    Alignment = *GVAlign;
185  return Alignment;
186}
187
188AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
189    : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
190      OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
191  VerboseAsm = OutStreamer->isVerboseAsm();
192}
193
194AsmPrinter::~AsmPrinter() {
195  assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
196
197  if (GCMetadataPrinters) {
198    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
199
200    delete &GCMap;
201    GCMetadataPrinters = nullptr;
202  }
203}
204
205bool AsmPrinter::isPositionIndependent() const {
206  return TM.isPositionIndependent();
207}
208
209/// getFunctionNumber - Return a unique ID for the current function.
210unsigned AsmPrinter::getFunctionNumber() const {
211  return MF->getFunctionNumber();
212}
213
214const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
215  return *TM.getObjFileLowering();
216}
217
218const DataLayout &AsmPrinter::getDataLayout() const {
219  return MMI->getModule()->getDataLayout();
220}
221
222// Do not use the cached DataLayout because some client use it without a Module
223// (dsymutil, llvm-dwarfdump).
224unsigned AsmPrinter::getPointerSize() const {
225  return TM.getPointerSize(0); // FIXME: Default address space
226}
227
228const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
229  assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
230  return MF->getSubtarget<MCSubtargetInfo>();
231}
232
233void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
234  S.EmitInstruction(Inst, getSubtargetInfo());
235}
236
237void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
238  assert(DD && "Dwarf debug file is not defined.");
239  assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
240  (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
241}
242
243/// getCurrentSection() - Return the current section we are emitting to.
244const MCSection *AsmPrinter::getCurrentSection() const {
245  return OutStreamer->getCurrentSectionOnly();
246}
247
248void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
249  AU.setPreservesAll();
250  MachineFunctionPass::getAnalysisUsage(AU);
251  AU.addRequired<MachineModuleInfoWrapperPass>();
252  AU.addRequired<MachineOptimizationRemarkEmitterPass>();
253  AU.addRequired<GCModuleInfo>();
254  AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
255  AU.addRequired<ProfileSummaryInfoWrapperPass>();
256}
257
258bool AsmPrinter::doInitialization(Module &M) {
259  auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
260  MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
261
262  // Initialize TargetLoweringObjectFile.
263  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
264    .Initialize(OutContext, TM);
265
266  const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
267      .getModuleMetadata(M);
268
269  OutStreamer->InitSections(false);
270
271  // Emit the version-min deployment target directive if needed.
272  //
273  // FIXME: If we end up with a collection of these sorts of Darwin-specific
274  // or ELF-specific things, it may make sense to have a platform helper class
275  // that will work with the target helper class. For now keep it here, as the
276  // alternative is duplicated code in each of the target asm printers that
277  // use the directive, where it would need the same conditionalization
278  // anyway.
279  const Triple &Target = TM.getTargetTriple();
280  OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
281
282  // Allow the target to emit any magic that it wants at the start of the file.
283  EmitStartOfAsmFile(M);
284
285  // Very minimal debug info. It is ignored if we emit actual debug info. If we
286  // don't, this at least helps the user find where a global came from.
287  if (MAI->hasSingleParameterDotFile()) {
288    // .file "foo.c"
289    OutStreamer->EmitFileDirective(
290        llvm::sys::path::filename(M.getSourceFileName()));
291  }
292
293  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
294  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
295  for (auto &I : *MI)
296    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
297      MP->beginAssembly(M, *MI, *this);
298
299  // Emit module-level inline asm if it exists.
300  if (!M.getModuleInlineAsm().empty()) {
301    // We're at the module level. Construct MCSubtarget from the default CPU
302    // and target triple.
303    std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
304        TM.getTargetTriple().str(), TM.getTargetCPU(),
305        TM.getTargetFeatureString()));
306    OutStreamer->AddComment("Start of file scope inline assembly");
307    OutStreamer->AddBlankLine();
308    EmitInlineAsm(M.getModuleInlineAsm()+"\n",
309                  OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
310    OutStreamer->AddComment("End of file scope inline assembly");
311    OutStreamer->AddBlankLine();
312  }
313
314  if (MAI->doesSupportDebugInformation()) {
315    bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
316    if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
317      Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
318                            DbgTimerName, DbgTimerDescription,
319                            CodeViewLineTablesGroupName,
320                            CodeViewLineTablesGroupDescription);
321    }
322    if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
323      DD = new DwarfDebug(this, &M);
324      DD->beginModule();
325      Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
326                            DbgTimerDescription, DWARFGroupName,
327                            DWARFGroupDescription);
328    }
329  }
330
331  switch (MAI->getExceptionHandlingType()) {
332  case ExceptionHandling::SjLj:
333  case ExceptionHandling::DwarfCFI:
334  case ExceptionHandling::ARM:
335    isCFIMoveForDebugging = true;
336    if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
337      break;
338    for (auto &F: M.getFunctionList()) {
339      // If the module contains any function with unwind data,
340      // .eh_frame has to be emitted.
341      // Ignore functions that won't get emitted.
342      if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
343        isCFIMoveForDebugging = false;
344        break;
345      }
346    }
347    break;
348  default:
349    isCFIMoveForDebugging = false;
350    break;
351  }
352
353  EHStreamer *ES = nullptr;
354  switch (MAI->getExceptionHandlingType()) {
355  case ExceptionHandling::None:
356    break;
357  case ExceptionHandling::SjLj:
358  case ExceptionHandling::DwarfCFI:
359    ES = new DwarfCFIException(this);
360    break;
361  case ExceptionHandling::ARM:
362    ES = new ARMException(this);
363    break;
364  case ExceptionHandling::WinEH:
365    switch (MAI->getWinEHEncodingType()) {
366    default: llvm_unreachable("unsupported unwinding information encoding");
367    case WinEH::EncodingType::Invalid:
368      break;
369    case WinEH::EncodingType::X86:
370    case WinEH::EncodingType::Itanium:
371      ES = new WinException(this);
372      break;
373    }
374    break;
375  case ExceptionHandling::Wasm:
376    ES = new WasmException(this);
377    break;
378  }
379  if (ES)
380    Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
381                          EHTimerDescription, DWARFGroupName,
382                          DWARFGroupDescription);
383
384  // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
385  if (mdconst::extract_or_null<ConstantInt>(
386          MMI->getModule()->getModuleFlag("cfguard")))
387    Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
388                          CFGuardDescription, DWARFGroupName,
389                          DWARFGroupDescription);
390  return false;
391}
392
393static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
394  if (!MAI.hasWeakDefCanBeHiddenDirective())
395    return false;
396
397  return GV->canBeOmittedFromSymbolTable();
398}
399
400void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
401  GlobalValue::LinkageTypes Linkage = GV->getLinkage();
402  switch (Linkage) {
403  case GlobalValue::CommonLinkage:
404  case GlobalValue::LinkOnceAnyLinkage:
405  case GlobalValue::LinkOnceODRLinkage:
406  case GlobalValue::WeakAnyLinkage:
407  case GlobalValue::WeakODRLinkage:
408    if (MAI->hasWeakDefDirective()) {
409      // .globl _foo
410      OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
411
412      if (!canBeHidden(GV, *MAI))
413        // .weak_definition _foo
414        OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
415      else
416        OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
417    } else if (MAI->hasLinkOnceDirective()) {
418      // .globl _foo
419      OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
420      //NOTE: linkonce is handled by the section the symbol was assigned to.
421    } else {
422      // .weak _foo
423      OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
424    }
425    return;
426  case GlobalValue::ExternalLinkage:
427    // If external, declare as a global symbol: .globl _foo
428    OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
429    return;
430  case GlobalValue::PrivateLinkage:
431    return;
432  case GlobalValue::InternalLinkage:
433    if (MAI->hasDotLGloblDirective())
434      OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal);
435    return;
436  case GlobalValue::AppendingLinkage:
437  case GlobalValue::AvailableExternallyLinkage:
438  case GlobalValue::ExternalWeakLinkage:
439    llvm_unreachable("Should never emit this");
440  }
441  llvm_unreachable("Unknown linkage type!");
442}
443
444void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
445                                   const GlobalValue *GV) const {
446  TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
447}
448
449MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
450  return TM.getSymbol(GV);
451}
452
453/// EmitGlobalVariable - Emit the specified global variable to the .s file.
454void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
455  bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
456  assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
457         "No emulated TLS variables in the common section");
458
459  // Never emit TLS variable xyz in emulated TLS model.
460  // The initialization value is in __emutls_t.xyz instead of xyz.
461  if (IsEmuTLSVar)
462    return;
463
464  if (GV->hasInitializer()) {
465    // Check to see if this is a special global used by LLVM, if so, emit it.
466    if (EmitSpecialLLVMGlobal(GV))
467      return;
468
469    // Skip the emission of global equivalents. The symbol can be emitted later
470    // on by emitGlobalGOTEquivs in case it turns out to be needed.
471    if (GlobalGOTEquivs.count(getSymbol(GV)))
472      return;
473
474    if (isVerbose()) {
475      // When printing the control variable __emutls_v.*,
476      // we don't need to print the original TLS variable name.
477      GV->printAsOperand(OutStreamer->GetCommentOS(),
478                     /*PrintType=*/false, GV->getParent());
479      OutStreamer->GetCommentOS() << '\n';
480    }
481  }
482
483  MCSymbol *GVSym = getSymbol(GV);
484  MCSymbol *EmittedSym = GVSym;
485
486  // getOrCreateEmuTLSControlSym only creates the symbol with name and default
487  // attributes.
488  // GV's or GVSym's attributes will be used for the EmittedSym.
489  EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
490
491  if (!GV->hasInitializer())   // External globals require no extra code.
492    return;
493
494  GVSym->redefineIfPossible();
495  if (GVSym->isDefined() || GVSym->isVariable())
496    report_fatal_error("symbol '" + Twine(GVSym->getName()) +
497                       "' is already defined");
498
499  if (MAI->hasDotTypeDotSizeDirective())
500    OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
501
502  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
503
504  const DataLayout &DL = GV->getParent()->getDataLayout();
505  uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
506
507  // If the alignment is specified, we *must* obey it.  Overaligning a global
508  // with a specified alignment is a prompt way to break globals emitted to
509  // sections and expected to be contiguous (e.g. ObjC metadata).
510  const Align Alignment = getGVAlignment(GV, DL);
511
512  for (const HandlerInfo &HI : Handlers) {
513    NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
514                       HI.TimerGroupName, HI.TimerGroupDescription,
515                       TimePassesIsEnabled);
516    HI.Handler->setSymbolSize(GVSym, Size);
517  }
518
519  // Handle common symbols
520  if (GVKind.isCommon()) {
521    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
522    // .comm _foo, 42, 4
523    const bool SupportsAlignment =
524        getObjFileLowering().getCommDirectiveSupportsAlignment();
525    OutStreamer->EmitCommonSymbol(GVSym, Size,
526                                  SupportsAlignment ? Alignment.value() : 0);
527    return;
528  }
529
530  // Determine to which section this global should be emitted.
531  MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
532
533  // If we have a bss global going to a section that supports the
534  // zerofill directive, do so here.
535  if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
536      TheSection->isVirtualSection()) {
537    if (Size == 0)
538      Size = 1; // zerofill of 0 bytes is undefined.
539    EmitLinkage(GV, GVSym);
540    // .zerofill __DATA, __bss, _foo, 400, 5
541    OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value());
542    return;
543  }
544
545  // If this is a BSS local symbol and we are emitting in the BSS
546  // section use .lcomm/.comm directive.
547  if (GVKind.isBSSLocal() &&
548      getObjFileLowering().getBSSSection() == TheSection) {
549    if (Size == 0)
550      Size = 1; // .comm Foo, 0 is undefined, avoid it.
551
552    // Use .lcomm only if it supports user-specified alignment.
553    // Otherwise, while it would still be correct to use .lcomm in some
554    // cases (e.g. when Align == 1), the external assembler might enfore
555    // some -unknown- default alignment behavior, which could cause
556    // spurious differences between external and integrated assembler.
557    // Prefer to simply fall back to .local / .comm in this case.
558    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
559      // .lcomm _foo, 42
560      OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value());
561      return;
562    }
563
564    // .local _foo
565    OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
566    // .comm _foo, 42, 4
567    const bool SupportsAlignment =
568        getObjFileLowering().getCommDirectiveSupportsAlignment();
569    OutStreamer->EmitCommonSymbol(GVSym, Size,
570                                  SupportsAlignment ? Alignment.value() : 0);
571    return;
572  }
573
574  // Handle thread local data for mach-o which requires us to output an
575  // additional structure of data and mangle the original symbol so that we
576  // can reference it later.
577  //
578  // TODO: This should become an "emit thread local global" method on TLOF.
579  // All of this macho specific stuff should be sunk down into TLOFMachO and
580  // stuff like "TLSExtraDataSection" should no longer be part of the parent
581  // TLOF class.  This will also make it more obvious that stuff like
582  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
583  // specific code.
584  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
585    // Emit the .tbss symbol
586    MCSymbol *MangSym =
587        OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
588
589    if (GVKind.isThreadBSS()) {
590      TheSection = getObjFileLowering().getTLSBSSSection();
591      OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
592    } else if (GVKind.isThreadData()) {
593      OutStreamer->SwitchSection(TheSection);
594
595      EmitAlignment(Alignment, GV);
596      OutStreamer->EmitLabel(MangSym);
597
598      EmitGlobalConstant(GV->getParent()->getDataLayout(),
599                         GV->getInitializer());
600    }
601
602    OutStreamer->AddBlankLine();
603
604    // Emit the variable struct for the runtime.
605    MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
606
607    OutStreamer->SwitchSection(TLVSect);
608    // Emit the linkage here.
609    EmitLinkage(GV, GVSym);
610    OutStreamer->EmitLabel(GVSym);
611
612    // Three pointers in size:
613    //   - __tlv_bootstrap - used to make sure support exists
614    //   - spare pointer, used when mapped by the runtime
615    //   - pointer to mangled symbol above with initializer
616    unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
617    OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
618                                PtrSize);
619    OutStreamer->EmitIntValue(0, PtrSize);
620    OutStreamer->EmitSymbolValue(MangSym, PtrSize);
621
622    OutStreamer->AddBlankLine();
623    return;
624  }
625
626  MCSymbol *EmittedInitSym = GVSym;
627
628  OutStreamer->SwitchSection(TheSection);
629
630  EmitLinkage(GV, EmittedInitSym);
631  EmitAlignment(Alignment, GV);
632
633  OutStreamer->EmitLabel(EmittedInitSym);
634
635  EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
636
637  if (MAI->hasDotTypeDotSizeDirective())
638    // .size foo, 42
639    OutStreamer->emitELFSize(EmittedInitSym,
640                             MCConstantExpr::create(Size, OutContext));
641
642  OutStreamer->AddBlankLine();
643}
644
645/// Emit the directive and value for debug thread local expression
646///
647/// \p Value - The value to emit.
648/// \p Size - The size of the integer (in bytes) to emit.
649void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
650  OutStreamer->EmitValue(Value, Size);
651}
652
653/// EmitFunctionHeader - This method emits the header for the current
654/// function.
655void AsmPrinter::EmitFunctionHeader() {
656  const Function &F = MF->getFunction();
657
658  if (isVerbose())
659    OutStreamer->GetCommentOS()
660        << "-- Begin function "
661        << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
662
663  // Print out constants referenced by the function
664  EmitConstantPool();
665
666  // Print the 'header' of function.
667  OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
668  EmitVisibility(CurrentFnSym, F.getVisibility());
669
670  if (MAI->needsFunctionDescriptors() &&
671      F.getLinkage() != GlobalValue::InternalLinkage)
672    EmitLinkage(&F, CurrentFnDescSym);
673
674  EmitLinkage(&F, CurrentFnSym);
675  if (MAI->hasFunctionAlignment())
676    EmitAlignment(MF->getAlignment(), &F);
677
678  if (MAI->hasDotTypeDotSizeDirective())
679    OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
680
681  if (F.hasFnAttribute(Attribute::Cold))
682    OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
683
684  if (isVerbose()) {
685    F.printAsOperand(OutStreamer->GetCommentOS(),
686                   /*PrintType=*/false, F.getParent());
687    OutStreamer->GetCommentOS() << '\n';
688  }
689
690  // Emit the prefix data.
691  if (F.hasPrefixData()) {
692    if (MAI->hasSubsectionsViaSymbols()) {
693      // Preserving prefix data on platforms which use subsections-via-symbols
694      // is a bit tricky. Here we introduce a symbol for the prefix data
695      // and use the .alt_entry attribute to mark the function's real entry point
696      // as an alternative entry point to the prefix-data symbol.
697      MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
698      OutStreamer->EmitLabel(PrefixSym);
699
700      EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
701
702      // Emit an .alt_entry directive for the actual function symbol.
703      OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
704    } else {
705      EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
706    }
707  }
708
709  // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
710  // place prefix data before NOPs.
711  unsigned PatchableFunctionPrefix = 0;
712  unsigned PatchableFunctionEntry = 0;
713  (void)F.getFnAttribute("patchable-function-prefix")
714      .getValueAsString()
715      .getAsInteger(10, PatchableFunctionPrefix);
716  (void)F.getFnAttribute("patchable-function-entry")
717      .getValueAsString()
718      .getAsInteger(10, PatchableFunctionEntry);
719  if (PatchableFunctionPrefix) {
720    CurrentPatchableFunctionEntrySym =
721        OutContext.createLinkerPrivateTempSymbol();
722    OutStreamer->EmitLabel(CurrentPatchableFunctionEntrySym);
723    emitNops(PatchableFunctionPrefix);
724  } else if (PatchableFunctionEntry) {
725    // May be reassigned when emitting the body, to reference the label after
726    // the initial BTI (AArch64) or endbr32/endbr64 (x86).
727    CurrentPatchableFunctionEntrySym = CurrentFnBegin;
728  }
729
730  // Emit the function descriptor. This is a virtual function to allow targets
731  // to emit their specific function descriptor.
732  if (MAI->needsFunctionDescriptors())
733    EmitFunctionDescriptor();
734
735  // Emit the CurrentFnSym. This is a virtual function to allow targets to do
736  // their wild and crazy things as required.
737  EmitFunctionEntryLabel();
738
739  // If the function had address-taken blocks that got deleted, then we have
740  // references to the dangling symbols.  Emit them at the start of the function
741  // so that we don't get references to undefined symbols.
742  std::vector<MCSymbol*> DeadBlockSyms;
743  MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
744  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
745    OutStreamer->AddComment("Address taken block that was later removed");
746    OutStreamer->EmitLabel(DeadBlockSyms[i]);
747  }
748
749  if (CurrentFnBegin) {
750    if (MAI->useAssignmentForEHBegin()) {
751      MCSymbol *CurPos = OutContext.createTempSymbol();
752      OutStreamer->EmitLabel(CurPos);
753      OutStreamer->EmitAssignment(CurrentFnBegin,
754                                 MCSymbolRefExpr::create(CurPos, OutContext));
755    } else {
756      OutStreamer->EmitLabel(CurrentFnBegin);
757    }
758  }
759
760  // Emit pre-function debug and/or EH information.
761  for (const HandlerInfo &HI : Handlers) {
762    NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
763                       HI.TimerGroupDescription, TimePassesIsEnabled);
764    HI.Handler->beginFunction(MF);
765  }
766
767  // Emit the prologue data.
768  if (F.hasPrologueData())
769    EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
770}
771
772/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
773/// function.  This can be overridden by targets as required to do custom stuff.
774void AsmPrinter::EmitFunctionEntryLabel() {
775  CurrentFnSym->redefineIfPossible();
776
777  // The function label could have already been emitted if two symbols end up
778  // conflicting due to asm renaming.  Detect this and emit an error.
779  if (CurrentFnSym->isVariable())
780    report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
781                       "' is a protected alias");
782  if (CurrentFnSym->isDefined())
783    report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
784                       "' label emitted multiple times to assembly file");
785
786  return OutStreamer->EmitLabel(CurrentFnSym);
787}
788
789/// emitComments - Pretty-print comments for instructions.
790static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
791  const MachineFunction *MF = MI.getMF();
792  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
793
794  // Check for spills and reloads
795
796  // We assume a single instruction only has a spill or reload, not
797  // both.
798  Optional<unsigned> Size;
799  if ((Size = MI.getRestoreSize(TII))) {
800    CommentOS << *Size << "-byte Reload\n";
801  } else if ((Size = MI.getFoldedRestoreSize(TII))) {
802    if (*Size)
803      CommentOS << *Size << "-byte Folded Reload\n";
804  } else if ((Size = MI.getSpillSize(TII))) {
805    CommentOS << *Size << "-byte Spill\n";
806  } else if ((Size = MI.getFoldedSpillSize(TII))) {
807    if (*Size)
808      CommentOS << *Size << "-byte Folded Spill\n";
809  }
810
811  // Check for spill-induced copies
812  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
813    CommentOS << " Reload Reuse\n";
814}
815
816/// emitImplicitDef - This method emits the specified machine instruction
817/// that is an implicit def.
818void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
819  Register RegNo = MI->getOperand(0).getReg();
820
821  SmallString<128> Str;
822  raw_svector_ostream OS(Str);
823  OS << "implicit-def: "
824     << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
825
826  OutStreamer->AddComment(OS.str());
827  OutStreamer->AddBlankLine();
828}
829
830static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
831  std::string Str;
832  raw_string_ostream OS(Str);
833  OS << "kill:";
834  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
835    const MachineOperand &Op = MI->getOperand(i);
836    assert(Op.isReg() && "KILL instruction must have only register operands");
837    OS << ' ' << (Op.isDef() ? "def " : "killed ")
838       << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
839  }
840  AP.OutStreamer->AddComment(OS.str());
841  AP.OutStreamer->AddBlankLine();
842}
843
844/// emitDebugValueComment - This method handles the target-independent form
845/// of DBG_VALUE, returning true if it was able to do so.  A false return
846/// means the target will need to handle MI in EmitInstruction.
847static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
848  // This code handles only the 4-operand target-independent form.
849  if (MI->getNumOperands() != 4)
850    return false;
851
852  SmallString<128> Str;
853  raw_svector_ostream OS(Str);
854  OS << "DEBUG_VALUE: ";
855
856  const DILocalVariable *V = MI->getDebugVariable();
857  if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
858    StringRef Name = SP->getName();
859    if (!Name.empty())
860      OS << Name << ":";
861  }
862  OS << V->getName();
863  OS << " <- ";
864
865  // The second operand is only an offset if it's an immediate.
866  bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
867  int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
868  const DIExpression *Expr = MI->getDebugExpression();
869  if (Expr->getNumElements()) {
870    OS << '[';
871    bool NeedSep = false;
872    for (auto Op : Expr->expr_ops()) {
873      if (NeedSep)
874        OS << ", ";
875      else
876        NeedSep = true;
877      OS << dwarf::OperationEncodingString(Op.getOp());
878      for (unsigned I = 0; I < Op.getNumArgs(); ++I)
879        OS << ' ' << Op.getArg(I);
880    }
881    OS << "] ";
882  }
883
884  // Register or immediate value. Register 0 means undef.
885  if (MI->getOperand(0).isFPImm()) {
886    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
887    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
888      OS << (double)APF.convertToFloat();
889    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
890      OS << APF.convertToDouble();
891    } else {
892      // There is no good way to print long double.  Convert a copy to
893      // double.  Ah well, it's only a comment.
894      bool ignored;
895      APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
896                  &ignored);
897      OS << "(long double) " << APF.convertToDouble();
898    }
899  } else if (MI->getOperand(0).isImm()) {
900    OS << MI->getOperand(0).getImm();
901  } else if (MI->getOperand(0).isCImm()) {
902    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
903  } else if (MI->getOperand(0).isTargetIndex()) {
904    auto Op = MI->getOperand(0);
905    OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
906    return true;
907  } else {
908    unsigned Reg;
909    if (MI->getOperand(0).isReg()) {
910      Reg = MI->getOperand(0).getReg();
911    } else {
912      assert(MI->getOperand(0).isFI() && "Unknown operand type");
913      const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
914      Offset += TFI->getFrameIndexReference(*AP.MF,
915                                            MI->getOperand(0).getIndex(), Reg);
916      MemLoc = true;
917    }
918    if (Reg == 0) {
919      // Suppress offset, it is not meaningful here.
920      OS << "undef";
921      // NOTE: Want this comment at start of line, don't emit with AddComment.
922      AP.OutStreamer->emitRawComment(OS.str());
923      return true;
924    }
925    if (MemLoc)
926      OS << '[';
927    OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
928  }
929
930  if (MemLoc)
931    OS << '+' << Offset << ']';
932
933  // NOTE: Want this comment at start of line, don't emit with AddComment.
934  AP.OutStreamer->emitRawComment(OS.str());
935  return true;
936}
937
938/// This method handles the target-independent form of DBG_LABEL, returning
939/// true if it was able to do so.  A false return means the target will need
940/// to handle MI in EmitInstruction.
941static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
942  if (MI->getNumOperands() != 1)
943    return false;
944
945  SmallString<128> Str;
946  raw_svector_ostream OS(Str);
947  OS << "DEBUG_LABEL: ";
948
949  const DILabel *V = MI->getDebugLabel();
950  if (auto *SP = dyn_cast<DISubprogram>(
951          V->getScope()->getNonLexicalBlockFileScope())) {
952    StringRef Name = SP->getName();
953    if (!Name.empty())
954      OS << Name << ":";
955  }
956  OS << V->getName();
957
958  // NOTE: Want this comment at start of line, don't emit with AddComment.
959  AP.OutStreamer->emitRawComment(OS.str());
960  return true;
961}
962
963AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
964  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
965      MF->getFunction().needsUnwindTableEntry())
966    return CFI_M_EH;
967
968  if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
969    return CFI_M_Debug;
970
971  return CFI_M_None;
972}
973
974bool AsmPrinter::needsSEHMoves() {
975  return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
976}
977
978void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
979  ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
980  if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
981      ExceptionHandlingType != ExceptionHandling::ARM)
982    return;
983
984  if (needsCFIMoves() == CFI_M_None)
985    return;
986
987  // If there is no "real" instruction following this CFI instruction, skip
988  // emitting it; it would be beyond the end of the function's FDE range.
989  auto *MBB = MI.getParent();
990  auto I = std::next(MI.getIterator());
991  while (I != MBB->end() && I->isTransient())
992    ++I;
993  if (I == MBB->instr_end() &&
994      MBB->getReverseIterator() == MBB->getParent()->rbegin())
995    return;
996
997  const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
998  unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
999  const MCCFIInstruction &CFI = Instrs[CFIIndex];
1000  emitCFIInstruction(CFI);
1001}
1002
1003void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1004  // The operands are the MCSymbol and the frame offset of the allocation.
1005  MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1006  int FrameOffset = MI.getOperand(1).getImm();
1007
1008  // Emit a symbol assignment.
1009  OutStreamer->EmitAssignment(FrameAllocSym,
1010                             MCConstantExpr::create(FrameOffset, OutContext));
1011}
1012
1013void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1014  if (!MF.getTarget().Options.EmitStackSizeSection)
1015    return;
1016
1017  MCSection *StackSizeSection =
1018      getObjFileLowering().getStackSizesSection(*getCurrentSection());
1019  if (!StackSizeSection)
1020    return;
1021
1022  const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1023  // Don't emit functions with dynamic stack allocations.
1024  if (FrameInfo.hasVarSizedObjects())
1025    return;
1026
1027  OutStreamer->PushSection();
1028  OutStreamer->SwitchSection(StackSizeSection);
1029
1030  const MCSymbol *FunctionSymbol = getFunctionBegin();
1031  uint64_t StackSize = FrameInfo.getStackSize();
1032  OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1033  OutStreamer->EmitULEB128IntValue(StackSize);
1034
1035  OutStreamer->PopSection();
1036}
1037
1038static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1039                                           MachineModuleInfo *MMI) {
1040  if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1041    return true;
1042
1043  // We might emit an EH table that uses function begin and end labels even if
1044  // we don't have any landingpads.
1045  if (!MF.getFunction().hasPersonalityFn())
1046    return false;
1047  return !isNoOpWithoutInvoke(
1048      classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1049}
1050
1051/// EmitFunctionBody - This method emits the body and trailer for a
1052/// function.
1053void AsmPrinter::EmitFunctionBody() {
1054  EmitFunctionHeader();
1055
1056  // Emit target-specific gunk before the function body.
1057  EmitFunctionBodyStart();
1058
1059  bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1060
1061  if (isVerbose()) {
1062    // Get MachineDominatorTree or compute it on the fly if it's unavailable
1063    MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1064    if (!MDT) {
1065      OwnedMDT = std::make_unique<MachineDominatorTree>();
1066      OwnedMDT->getBase().recalculate(*MF);
1067      MDT = OwnedMDT.get();
1068    }
1069
1070    // Get MachineLoopInfo or compute it on the fly if it's unavailable
1071    MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1072    if (!MLI) {
1073      OwnedMLI = std::make_unique<MachineLoopInfo>();
1074      OwnedMLI->getBase().analyze(MDT->getBase());
1075      MLI = OwnedMLI.get();
1076    }
1077  }
1078
1079  // Print out code for the function.
1080  bool HasAnyRealCode = false;
1081  int NumInstsInFunction = 0;
1082  for (auto &MBB : *MF) {
1083    // Print a label for the basic block.
1084    EmitBasicBlockStart(MBB);
1085    for (auto &MI : MBB) {
1086      // Print the assembly for the instruction.
1087      if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1088          !MI.isDebugInstr()) {
1089        HasAnyRealCode = true;
1090        ++NumInstsInFunction;
1091      }
1092
1093      // If there is a pre-instruction symbol, emit a label for it here.
1094      if (MCSymbol *S = MI.getPreInstrSymbol())
1095        OutStreamer->EmitLabel(S);
1096
1097      if (ShouldPrintDebugScopes) {
1098        for (const HandlerInfo &HI : Handlers) {
1099          NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1100                             HI.TimerGroupName, HI.TimerGroupDescription,
1101                             TimePassesIsEnabled);
1102          HI.Handler->beginInstruction(&MI);
1103        }
1104      }
1105
1106      if (isVerbose())
1107        emitComments(MI, OutStreamer->GetCommentOS());
1108
1109      switch (MI.getOpcode()) {
1110      case TargetOpcode::CFI_INSTRUCTION:
1111        emitCFIInstruction(MI);
1112        break;
1113      case TargetOpcode::LOCAL_ESCAPE:
1114        emitFrameAlloc(MI);
1115        break;
1116      case TargetOpcode::ANNOTATION_LABEL:
1117      case TargetOpcode::EH_LABEL:
1118      case TargetOpcode::GC_LABEL:
1119        OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1120        break;
1121      case TargetOpcode::INLINEASM:
1122      case TargetOpcode::INLINEASM_BR:
1123        EmitInlineAsm(&MI);
1124        break;
1125      case TargetOpcode::DBG_VALUE:
1126        if (isVerbose()) {
1127          if (!emitDebugValueComment(&MI, *this))
1128            EmitInstruction(&MI);
1129        }
1130        break;
1131      case TargetOpcode::DBG_LABEL:
1132        if (isVerbose()) {
1133          if (!emitDebugLabelComment(&MI, *this))
1134            EmitInstruction(&MI);
1135        }
1136        break;
1137      case TargetOpcode::IMPLICIT_DEF:
1138        if (isVerbose()) emitImplicitDef(&MI);
1139        break;
1140      case TargetOpcode::KILL:
1141        if (isVerbose()) emitKill(&MI, *this);
1142        break;
1143      default:
1144        EmitInstruction(&MI);
1145        break;
1146      }
1147
1148      // If there is a post-instruction symbol, emit a label for it here.
1149      if (MCSymbol *S = MI.getPostInstrSymbol())
1150        OutStreamer->EmitLabel(S);
1151
1152      if (ShouldPrintDebugScopes) {
1153        for (const HandlerInfo &HI : Handlers) {
1154          NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1155                             HI.TimerGroupName, HI.TimerGroupDescription,
1156                             TimePassesIsEnabled);
1157          HI.Handler->endInstruction();
1158        }
1159      }
1160    }
1161
1162    EmitBasicBlockEnd(MBB);
1163  }
1164
1165  EmittedInsts += NumInstsInFunction;
1166  MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1167                                      MF->getFunction().getSubprogram(),
1168                                      &MF->front());
1169  R << ore::NV("NumInstructions", NumInstsInFunction)
1170    << " instructions in function";
1171  ORE->emit(R);
1172
1173  // If the function is empty and the object file uses .subsections_via_symbols,
1174  // then we need to emit *something* to the function body to prevent the
1175  // labels from collapsing together.  Just emit a noop.
1176  // Similarly, don't emit empty functions on Windows either. It can lead to
1177  // duplicate entries (two functions with the same RVA) in the Guard CF Table
1178  // after linking, causing the kernel not to load the binary:
1179  // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1180  // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1181  const Triple &TT = TM.getTargetTriple();
1182  if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1183                          (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1184    MCInst Noop;
1185    MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1186
1187    // Targets can opt-out of emitting the noop here by leaving the opcode
1188    // unspecified.
1189    if (Noop.getOpcode()) {
1190      OutStreamer->AddComment("avoids zero-length function");
1191      emitNops(1);
1192    }
1193  }
1194
1195  const Function &F = MF->getFunction();
1196  for (const auto &BB : F) {
1197    if (!BB.hasAddressTaken())
1198      continue;
1199    MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1200    if (Sym->isDefined())
1201      continue;
1202    OutStreamer->AddComment("Address of block that was removed by CodeGen");
1203    OutStreamer->EmitLabel(Sym);
1204  }
1205
1206  // Emit target-specific gunk after the function body.
1207  EmitFunctionBodyEnd();
1208
1209  if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1210      MAI->hasDotTypeDotSizeDirective()) {
1211    // Create a symbol for the end of function.
1212    CurrentFnEnd = createTempSymbol("func_end");
1213    OutStreamer->EmitLabel(CurrentFnEnd);
1214  }
1215
1216  // If the target wants a .size directive for the size of the function, emit
1217  // it.
1218  if (MAI->hasDotTypeDotSizeDirective()) {
1219    // We can get the size as difference between the function label and the
1220    // temp label.
1221    const MCExpr *SizeExp = MCBinaryExpr::createSub(
1222        MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1223        MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1224    OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1225  }
1226
1227  for (const HandlerInfo &HI : Handlers) {
1228    NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1229                       HI.TimerGroupDescription, TimePassesIsEnabled);
1230    HI.Handler->markFunctionEnd();
1231  }
1232
1233  // Print out jump tables referenced by the function.
1234  EmitJumpTableInfo();
1235
1236  // Emit post-function debug and/or EH information.
1237  for (const HandlerInfo &HI : Handlers) {
1238    NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1239                       HI.TimerGroupDescription, TimePassesIsEnabled);
1240    HI.Handler->endFunction(MF);
1241  }
1242
1243  // Emit section containing stack size metadata.
1244  emitStackSizeSection(*MF);
1245
1246  emitPatchableFunctionEntries();
1247
1248  if (isVerbose())
1249    OutStreamer->GetCommentOS() << "-- End function\n";
1250
1251  OutStreamer->AddBlankLine();
1252}
1253
1254/// Compute the number of Global Variables that uses a Constant.
1255static unsigned getNumGlobalVariableUses(const Constant *C) {
1256  if (!C)
1257    return 0;
1258
1259  if (isa<GlobalVariable>(C))
1260    return 1;
1261
1262  unsigned NumUses = 0;
1263  for (auto *CU : C->users())
1264    NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1265
1266  return NumUses;
1267}
1268
1269/// Only consider global GOT equivalents if at least one user is a
1270/// cstexpr inside an initializer of another global variables. Also, don't
1271/// handle cstexpr inside instructions. During global variable emission,
1272/// candidates are skipped and are emitted later in case at least one cstexpr
1273/// isn't replaced by a PC relative GOT entry access.
1274static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1275                                     unsigned &NumGOTEquivUsers) {
1276  // Global GOT equivalents are unnamed private globals with a constant
1277  // pointer initializer to another global symbol. They must point to a
1278  // GlobalVariable or Function, i.e., as GlobalValue.
1279  if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1280      !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1281      !isa<GlobalValue>(GV->getOperand(0)))
1282    return false;
1283
1284  // To be a got equivalent, at least one of its users need to be a constant
1285  // expression used by another global variable.
1286  for (auto *U : GV->users())
1287    NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1288
1289  return NumGOTEquivUsers > 0;
1290}
1291
1292/// Unnamed constant global variables solely contaning a pointer to
1293/// another globals variable is equivalent to a GOT table entry; it contains the
1294/// the address of another symbol. Optimize it and replace accesses to these
1295/// "GOT equivalents" by using the GOT entry for the final global instead.
1296/// Compute GOT equivalent candidates among all global variables to avoid
1297/// emitting them if possible later on, after it use is replaced by a GOT entry
1298/// access.
1299void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1300  if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1301    return;
1302
1303  for (const auto &G : M.globals()) {
1304    unsigned NumGOTEquivUsers = 0;
1305    if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1306      continue;
1307
1308    const MCSymbol *GOTEquivSym = getSymbol(&G);
1309    GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1310  }
1311}
1312
1313/// Constant expressions using GOT equivalent globals may not be eligible
1314/// for PC relative GOT entry conversion, in such cases we need to emit such
1315/// globals we previously omitted in EmitGlobalVariable.
1316void AsmPrinter::emitGlobalGOTEquivs() {
1317  if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1318    return;
1319
1320  SmallVector<const GlobalVariable *, 8> FailedCandidates;
1321  for (auto &I : GlobalGOTEquivs) {
1322    const GlobalVariable *GV = I.second.first;
1323    unsigned Cnt = I.second.second;
1324    if (Cnt)
1325      FailedCandidates.push_back(GV);
1326  }
1327  GlobalGOTEquivs.clear();
1328
1329  for (auto *GV : FailedCandidates)
1330    EmitGlobalVariable(GV);
1331}
1332
1333void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1334                                          const GlobalIndirectSymbol& GIS) {
1335  MCSymbol *Name = getSymbol(&GIS);
1336
1337  if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1338    OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1339  else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1340    OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1341  else
1342    assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1343
1344  bool IsFunction = GIS.getValueType()->isFunctionTy();
1345
1346  // Treat bitcasts of functions as functions also. This is important at least
1347  // on WebAssembly where object and function addresses can't alias each other.
1348  if (!IsFunction)
1349    if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1350      if (CE->getOpcode() == Instruction::BitCast)
1351        IsFunction =
1352          CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1353
1354  // Set the symbol type to function if the alias has a function type.
1355  // This affects codegen when the aliasee is not a function.
1356  if (IsFunction)
1357    OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1358                                               ? MCSA_ELF_TypeIndFunction
1359                                               : MCSA_ELF_TypeFunction);
1360
1361  EmitVisibility(Name, GIS.getVisibility());
1362
1363  const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1364
1365  if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1366    OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1367
1368  // Emit the directives as assignments aka .set:
1369  OutStreamer->EmitAssignment(Name, Expr);
1370
1371  if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1372    // If the aliasee does not correspond to a symbol in the output, i.e. the
1373    // alias is not of an object or the aliased object is private, then set the
1374    // size of the alias symbol from the type of the alias. We don't do this in
1375    // other situations as the alias and aliasee having differing types but same
1376    // size may be intentional.
1377    const GlobalObject *BaseObject = GA->getBaseObject();
1378    if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1379        (!BaseObject || BaseObject->hasPrivateLinkage())) {
1380      const DataLayout &DL = M.getDataLayout();
1381      uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1382      OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1383    }
1384  }
1385}
1386
1387void AsmPrinter::emitRemarksSection(RemarkStreamer &RS) {
1388  if (!RS.needsSection())
1389    return;
1390
1391  remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1392
1393  Optional<SmallString<128>> Filename;
1394  if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1395    Filename = *FilenameRef;
1396    sys::fs::make_absolute(*Filename);
1397    assert(!Filename->empty() && "The filename can't be empty.");
1398  }
1399
1400  std::string Buf;
1401  raw_string_ostream OS(Buf);
1402  std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1403      Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1404               : RemarkSerializer.metaSerializer(OS);
1405  MetaSerializer->emit();
1406
1407  // Switch to the remarks section.
1408  MCSection *RemarksSection =
1409      OutContext.getObjectFileInfo()->getRemarksSection();
1410  OutStreamer->SwitchSection(RemarksSection);
1411
1412  OutStreamer->EmitBinaryData(OS.str());
1413}
1414
1415bool AsmPrinter::doFinalization(Module &M) {
1416  // Set the MachineFunction to nullptr so that we can catch attempted
1417  // accesses to MF specific features at the module level and so that
1418  // we can conditionalize accesses based on whether or not it is nullptr.
1419  MF = nullptr;
1420
1421  // Gather all GOT equivalent globals in the module. We really need two
1422  // passes over the globals: one to compute and another to avoid its emission
1423  // in EmitGlobalVariable, otherwise we would not be able to handle cases
1424  // where the got equivalent shows up before its use.
1425  computeGlobalGOTEquivs(M);
1426
1427  // Emit global variables.
1428  for (const auto &G : M.globals())
1429    EmitGlobalVariable(&G);
1430
1431  // Emit remaining GOT equivalent globals.
1432  emitGlobalGOTEquivs();
1433
1434  // Emit visibility info for declarations
1435  for (const Function &F : M) {
1436    if (!F.isDeclarationForLinker())
1437      continue;
1438    GlobalValue::VisibilityTypes V = F.getVisibility();
1439    if (V == GlobalValue::DefaultVisibility)
1440      continue;
1441
1442    MCSymbol *Name = getSymbol(&F);
1443    EmitVisibility(Name, V, false);
1444  }
1445
1446  // Emit the remarks section contents.
1447  // FIXME: Figure out when is the safest time to emit this section. It should
1448  // not come after debug info.
1449  if (RemarkStreamer *RS = M.getContext().getRemarkStreamer())
1450    emitRemarksSection(*RS);
1451
1452  const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1453
1454  TLOF.emitModuleMetadata(*OutStreamer, M);
1455
1456  if (TM.getTargetTriple().isOSBinFormatELF()) {
1457    MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1458
1459    // Output stubs for external and common global variables.
1460    MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1461    if (!Stubs.empty()) {
1462      OutStreamer->SwitchSection(TLOF.getDataSection());
1463      const DataLayout &DL = M.getDataLayout();
1464
1465      EmitAlignment(Align(DL.getPointerSize()));
1466      for (const auto &Stub : Stubs) {
1467        OutStreamer->EmitLabel(Stub.first);
1468        OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1469                                     DL.getPointerSize());
1470      }
1471    }
1472  }
1473
1474  if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1475    MachineModuleInfoCOFF &MMICOFF =
1476        MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1477
1478    // Output stubs for external and common global variables.
1479    MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1480    if (!Stubs.empty()) {
1481      const DataLayout &DL = M.getDataLayout();
1482
1483      for (const auto &Stub : Stubs) {
1484        SmallString<256> SectionName = StringRef(".rdata$");
1485        SectionName += Stub.first->getName();
1486        OutStreamer->SwitchSection(OutContext.getCOFFSection(
1487            SectionName,
1488            COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1489                COFF::IMAGE_SCN_LNK_COMDAT,
1490            SectionKind::getReadOnly(), Stub.first->getName(),
1491            COFF::IMAGE_COMDAT_SELECT_ANY));
1492        EmitAlignment(Align(DL.getPointerSize()));
1493        OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1494        OutStreamer->EmitLabel(Stub.first);
1495        OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1496                                     DL.getPointerSize());
1497      }
1498    }
1499  }
1500
1501  // Finalize debug and EH information.
1502  for (const HandlerInfo &HI : Handlers) {
1503    NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1504                       HI.TimerGroupDescription, TimePassesIsEnabled);
1505    HI.Handler->endModule();
1506  }
1507  Handlers.clear();
1508  DD = nullptr;
1509
1510  // If the target wants to know about weak references, print them all.
1511  if (MAI->getWeakRefDirective()) {
1512    // FIXME: This is not lazy, it would be nice to only print weak references
1513    // to stuff that is actually used.  Note that doing so would require targets
1514    // to notice uses in operands (due to constant exprs etc).  This should
1515    // happen with the MC stuff eventually.
1516
1517    // Print out module-level global objects here.
1518    for (const auto &GO : M.global_objects()) {
1519      if (!GO.hasExternalWeakLinkage())
1520        continue;
1521      OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1522    }
1523  }
1524
1525  // Print aliases in topological order, that is, for each alias a = b,
1526  // b must be printed before a.
1527  // This is because on some targets (e.g. PowerPC) linker expects aliases in
1528  // such an order to generate correct TOC information.
1529  SmallVector<const GlobalAlias *, 16> AliasStack;
1530  SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1531  for (const auto &Alias : M.aliases()) {
1532    for (const GlobalAlias *Cur = &Alias; Cur;
1533         Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1534      if (!AliasVisited.insert(Cur).second)
1535        break;
1536      AliasStack.push_back(Cur);
1537    }
1538    for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1539      emitGlobalIndirectSymbol(M, *AncestorAlias);
1540    AliasStack.clear();
1541  }
1542  for (const auto &IFunc : M.ifuncs())
1543    emitGlobalIndirectSymbol(M, IFunc);
1544
1545  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1546  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1547  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1548    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1549      MP->finishAssembly(M, *MI, *this);
1550
1551  // Emit llvm.ident metadata in an '.ident' directive.
1552  EmitModuleIdents(M);
1553
1554  // Emit bytes for llvm.commandline metadata.
1555  EmitModuleCommandLines(M);
1556
1557  // Emit __morestack address if needed for indirect calls.
1558  if (MMI->usesMorestackAddr()) {
1559    unsigned Align = 1;
1560    MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1561        getDataLayout(), SectionKind::getReadOnly(),
1562        /*C=*/nullptr, Align);
1563    OutStreamer->SwitchSection(ReadOnlySection);
1564
1565    MCSymbol *AddrSymbol =
1566        OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1567    OutStreamer->EmitLabel(AddrSymbol);
1568
1569    unsigned PtrSize = MAI->getCodePointerSize();
1570    OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1571                                 PtrSize);
1572  }
1573
1574  // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1575  // split-stack is used.
1576  if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1577    OutStreamer->SwitchSection(
1578        OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1579    if (MMI->hasNosplitStack())
1580      OutStreamer->SwitchSection(
1581          OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1582  }
1583
1584  // If we don't have any trampolines, then we don't require stack memory
1585  // to be executable. Some targets have a directive to declare this.
1586  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1587  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1588    if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1589      OutStreamer->SwitchSection(S);
1590
1591  if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1592    // Emit /EXPORT: flags for each exported global as necessary.
1593    const auto &TLOF = getObjFileLowering();
1594    std::string Flags;
1595
1596    for (const GlobalValue &GV : M.global_values()) {
1597      raw_string_ostream OS(Flags);
1598      TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1599      OS.flush();
1600      if (!Flags.empty()) {
1601        OutStreamer->SwitchSection(TLOF.getDrectveSection());
1602        OutStreamer->EmitBytes(Flags);
1603      }
1604      Flags.clear();
1605    }
1606
1607    // Emit /INCLUDE: flags for each used global as necessary.
1608    if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1609      assert(LU->hasInitializer() &&
1610             "expected llvm.used to have an initializer");
1611      assert(isa<ArrayType>(LU->getValueType()) &&
1612             "expected llvm.used to be an array type");
1613      if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1614        for (const Value *Op : A->operands()) {
1615          const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1616          // Global symbols with internal or private linkage are not visible to
1617          // the linker, and thus would cause an error when the linker tried to
1618          // preserve the symbol due to the `/include:` directive.
1619          if (GV->hasLocalLinkage())
1620            continue;
1621
1622          raw_string_ostream OS(Flags);
1623          TLOF.emitLinkerFlagsForUsed(OS, GV);
1624          OS.flush();
1625
1626          if (!Flags.empty()) {
1627            OutStreamer->SwitchSection(TLOF.getDrectveSection());
1628            OutStreamer->EmitBytes(Flags);
1629          }
1630          Flags.clear();
1631        }
1632      }
1633    }
1634  }
1635
1636  if (TM.Options.EmitAddrsig) {
1637    // Emit address-significance attributes for all globals.
1638    OutStreamer->EmitAddrsig();
1639    for (const GlobalValue &GV : M.global_values())
1640      if (!GV.use_empty() && !GV.isThreadLocal() &&
1641          !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1642          !GV.hasAtLeastLocalUnnamedAddr())
1643        OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1644  }
1645
1646  // Emit symbol partition specifications (ELF only).
1647  if (TM.getTargetTriple().isOSBinFormatELF()) {
1648    unsigned UniqueID = 0;
1649    for (const GlobalValue &GV : M.global_values()) {
1650      if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1651          GV.getVisibility() != GlobalValue::DefaultVisibility)
1652        continue;
1653
1654      OutStreamer->SwitchSection(OutContext.getELFSection(
1655          ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID));
1656      OutStreamer->EmitBytes(GV.getPartition());
1657      OutStreamer->EmitZeros(1);
1658      OutStreamer->EmitValue(
1659          MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1660          MAI->getCodePointerSize());
1661    }
1662  }
1663
1664  // Allow the target to emit any magic that it wants at the end of the file,
1665  // after everything else has gone out.
1666  EmitEndOfAsmFile(M);
1667
1668  MMI = nullptr;
1669
1670  OutStreamer->Finish();
1671  OutStreamer->reset();
1672  OwnedMLI.reset();
1673  OwnedMDT.reset();
1674
1675  return false;
1676}
1677
1678MCSymbol *AsmPrinter::getCurExceptionSym() {
1679  if (!CurExceptionSym)
1680    CurExceptionSym = createTempSymbol("exception");
1681  return CurExceptionSym;
1682}
1683
1684void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1685  this->MF = &MF;
1686  const Function &F = MF.getFunction();
1687
1688  // Get the function symbol.
1689  if (MAI->needsFunctionDescriptors()) {
1690    assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only"
1691                                             " supported on AIX.");
1692    assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1693		                           " initalized first.");
1694
1695    // Get the function entry point symbol.
1696    CurrentFnSym =
1697        OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName());
1698
1699    MCSectionXCOFF *FnEntryPointSec =
1700        cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM));
1701    // Set the containing csect.
1702    cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec);
1703  } else {
1704    CurrentFnSym = getSymbol(&MF.getFunction());
1705  }
1706
1707  CurrentFnSymForSize = CurrentFnSym;
1708  CurrentFnBegin = nullptr;
1709  CurExceptionSym = nullptr;
1710  bool NeedsLocalForSize = MAI->needsLocalForSize();
1711  if (F.hasFnAttribute("patchable-function-entry") ||
1712      needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1713      MF.getTarget().Options.EmitStackSizeSection) {
1714    CurrentFnBegin = createTempSymbol("func_begin");
1715    if (NeedsLocalForSize)
1716      CurrentFnSymForSize = CurrentFnBegin;
1717  }
1718
1719  ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1720  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1721  MBFI = (PSI && PSI->hasProfileSummary()) ?
1722         // ORE conditionally computes MBFI. If available, use it, otherwise
1723         // request it.
1724         (ORE->getBFI() ? ORE->getBFI() :
1725          &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()) :
1726         nullptr;
1727}
1728
1729namespace {
1730
1731// Keep track the alignment, constpool entries per Section.
1732  struct SectionCPs {
1733    MCSection *S;
1734    unsigned Alignment;
1735    SmallVector<unsigned, 4> CPEs;
1736
1737    SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1738  };
1739
1740} // end anonymous namespace
1741
1742/// EmitConstantPool - Print to the current output stream assembly
1743/// representations of the constants in the constant pool MCP. This is
1744/// used to print out constants which have been "spilled to memory" by
1745/// the code generator.
1746void AsmPrinter::EmitConstantPool() {
1747  const MachineConstantPool *MCP = MF->getConstantPool();
1748  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1749  if (CP.empty()) return;
1750
1751  // Calculate sections for constant pool entries. We collect entries to go into
1752  // the same section together to reduce amount of section switch statements.
1753  SmallVector<SectionCPs, 4> CPSections;
1754  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1755    const MachineConstantPoolEntry &CPE = CP[i];
1756    unsigned Align = CPE.getAlignment();
1757
1758    SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1759
1760    const Constant *C = nullptr;
1761    if (!CPE.isMachineConstantPoolEntry())
1762      C = CPE.Val.ConstVal;
1763
1764    MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1765                                                              Kind, C, Align);
1766
1767    // The number of sections are small, just do a linear search from the
1768    // last section to the first.
1769    bool Found = false;
1770    unsigned SecIdx = CPSections.size();
1771    while (SecIdx != 0) {
1772      if (CPSections[--SecIdx].S == S) {
1773        Found = true;
1774        break;
1775      }
1776    }
1777    if (!Found) {
1778      SecIdx = CPSections.size();
1779      CPSections.push_back(SectionCPs(S, Align));
1780    }
1781
1782    if (Align > CPSections[SecIdx].Alignment)
1783      CPSections[SecIdx].Alignment = Align;
1784    CPSections[SecIdx].CPEs.push_back(i);
1785  }
1786
1787  // Now print stuff into the calculated sections.
1788  const MCSection *CurSection = nullptr;
1789  unsigned Offset = 0;
1790  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1791    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1792      unsigned CPI = CPSections[i].CPEs[j];
1793      MCSymbol *Sym = GetCPISymbol(CPI);
1794      if (!Sym->isUndefined())
1795        continue;
1796
1797      if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1798        cast<MCSymbolXCOFF>(Sym)->setContainingCsect(
1799            cast<MCSectionXCOFF>(CPSections[i].S));
1800      }
1801
1802      if (CurSection != CPSections[i].S) {
1803        OutStreamer->SwitchSection(CPSections[i].S);
1804        EmitAlignment(Align(CPSections[i].Alignment));
1805        CurSection = CPSections[i].S;
1806        Offset = 0;
1807      }
1808
1809      MachineConstantPoolEntry CPE = CP[CPI];
1810
1811      // Emit inter-object padding for alignment.
1812      unsigned AlignMask = CPE.getAlignment() - 1;
1813      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1814      OutStreamer->EmitZeros(NewOffset - Offset);
1815
1816      Type *Ty = CPE.getType();
1817      Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1818
1819      OutStreamer->EmitLabel(Sym);
1820      if (CPE.isMachineConstantPoolEntry())
1821        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1822      else
1823        EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1824    }
1825  }
1826}
1827
1828/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1829/// by the current function to the current output stream.
1830void AsmPrinter::EmitJumpTableInfo() {
1831  const DataLayout &DL = MF->getDataLayout();
1832  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1833  if (!MJTI) return;
1834  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1835  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1836  if (JT.empty()) return;
1837
1838  // Pick the directive to use to print the jump table entries, and switch to
1839  // the appropriate section.
1840  const Function &F = MF->getFunction();
1841  const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1842  bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1843      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1844      F);
1845  if (JTInDiffSection) {
1846    // Drop it in the readonly section.
1847    MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1848    OutStreamer->SwitchSection(ReadOnlySection);
1849  }
1850
1851  EmitAlignment(Align(MJTI->getEntryAlignment(DL)));
1852
1853  // Jump tables in code sections are marked with a data_region directive
1854  // where that's supported.
1855  if (!JTInDiffSection)
1856    OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1857
1858  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1859    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1860
1861    // If this jump table was deleted, ignore it.
1862    if (JTBBs.empty()) continue;
1863
1864    // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1865    /// emit a .set directive for each unique entry.
1866    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1867        MAI->doesSetDirectiveSuppressReloc()) {
1868      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1869      const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1870      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1871      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1872        const MachineBasicBlock *MBB = JTBBs[ii];
1873        if (!EmittedSets.insert(MBB).second)
1874          continue;
1875
1876        // .set LJTSet, LBB32-base
1877        const MCExpr *LHS =
1878          MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1879        OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1880                                    MCBinaryExpr::createSub(LHS, Base,
1881                                                            OutContext));
1882      }
1883    }
1884
1885    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1886    // before each jump table.  The first label is never referenced, but tells
1887    // the assembler and linker the extents of the jump table object.  The
1888    // second label is actually referenced by the code.
1889    if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1890      // FIXME: This doesn't have to have any specific name, just any randomly
1891      // named and numbered local label started with 'l' would work.  Simplify
1892      // GetJTISymbol.
1893      OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1894
1895    MCSymbol* JTISymbol = GetJTISymbol(JTI);
1896    if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1897      cast<MCSymbolXCOFF>(JTISymbol)->setContainingCsect(
1898          cast<MCSectionXCOFF>(TLOF.getSectionForJumpTable(F, TM)));
1899    }
1900    OutStreamer->EmitLabel(JTISymbol);
1901
1902    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1903      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1904  }
1905  if (!JTInDiffSection)
1906    OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1907}
1908
1909/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1910/// current stream.
1911void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1912                                    const MachineBasicBlock *MBB,
1913                                    unsigned UID) const {
1914  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1915  const MCExpr *Value = nullptr;
1916  switch (MJTI->getEntryKind()) {
1917  case MachineJumpTableInfo::EK_Inline:
1918    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1919  case MachineJumpTableInfo::EK_Custom32:
1920    Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1921        MJTI, MBB, UID, OutContext);
1922    break;
1923  case MachineJumpTableInfo::EK_BlockAddress:
1924    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1925    //     .word LBB123
1926    Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1927    break;
1928  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1929    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1930    // with a relocation as gp-relative, e.g.:
1931    //     .gprel32 LBB123
1932    MCSymbol *MBBSym = MBB->getSymbol();
1933    OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1934    return;
1935  }
1936
1937  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1938    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1939    // with a relocation as gp-relative, e.g.:
1940    //     .gpdword LBB123
1941    MCSymbol *MBBSym = MBB->getSymbol();
1942    OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1943    return;
1944  }
1945
1946  case MachineJumpTableInfo::EK_LabelDifference32: {
1947    // Each entry is the address of the block minus the address of the jump
1948    // table. This is used for PIC jump tables where gprel32 is not supported.
1949    // e.g.:
1950    //      .word LBB123 - LJTI1_2
1951    // If the .set directive avoids relocations, this is emitted as:
1952    //      .set L4_5_set_123, LBB123 - LJTI1_2
1953    //      .word L4_5_set_123
1954    if (MAI->doesSetDirectiveSuppressReloc()) {
1955      Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1956                                      OutContext);
1957      break;
1958    }
1959    Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1960    const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1961    const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1962    Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1963    break;
1964  }
1965  }
1966
1967  assert(Value && "Unknown entry kind!");
1968
1969  unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1970  OutStreamer->EmitValue(Value, EntrySize);
1971}
1972
1973/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1974/// special global used by LLVM.  If so, emit it and return true, otherwise
1975/// do nothing and return false.
1976bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1977  if (GV->getName() == "llvm.used") {
1978    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1979      EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1980    return true;
1981  }
1982
1983  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1984  if (GV->getSection() == "llvm.metadata" ||
1985      GV->hasAvailableExternallyLinkage())
1986    return true;
1987
1988  if (!GV->hasAppendingLinkage()) return false;
1989
1990  assert(GV->hasInitializer() && "Not a special LLVM global!");
1991
1992  if (GV->getName() == "llvm.global_ctors") {
1993    EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1994                       /* isCtor */ true);
1995
1996    return true;
1997  }
1998
1999  if (GV->getName() == "llvm.global_dtors") {
2000    EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2001                       /* isCtor */ false);
2002
2003    return true;
2004  }
2005
2006  report_fatal_error("unknown special variable");
2007}
2008
2009/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2010/// global in the specified llvm.used list.
2011void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
2012  // Should be an array of 'i8*'.
2013  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2014    const GlobalValue *GV =
2015      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2016    if (GV)
2017      OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2018  }
2019}
2020
2021namespace {
2022
2023struct Structor {
2024  int Priority = 0;
2025  Constant *Func = nullptr;
2026  GlobalValue *ComdatKey = nullptr;
2027
2028  Structor() = default;
2029};
2030
2031} // end anonymous namespace
2032
2033/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2034/// priority.
2035void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
2036                                    bool isCtor) {
2037  // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is the
2038  // init priority.
2039  if (!isa<ConstantArray>(List)) return;
2040
2041  // Sanity check the structors list.
2042  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
2043  if (!InitList) return; // Not an array!
2044  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
2045  if (!ETy || ETy->getNumElements() != 3 ||
2046      !isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
2047      !isa<PointerType>(ETy->getTypeAtIndex(1U)) ||
2048      !isa<PointerType>(ETy->getTypeAtIndex(2U)))
2049    return; // Not (int, ptr, ptr).
2050
2051  // Gather the structors in a form that's convenient for sorting by priority.
2052  SmallVector<Structor, 8> Structors;
2053  for (Value *O : InitList->operands()) {
2054    ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
2055    if (!CS) continue; // Malformed.
2056    if (CS->getOperand(1)->isNullValue())
2057      break;  // Found a null terminator, skip the rest.
2058    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2059    if (!Priority) continue; // Malformed.
2060    Structors.push_back(Structor());
2061    Structor &S = Structors.back();
2062    S.Priority = Priority->getLimitedValue(65535);
2063    S.Func = CS->getOperand(1);
2064    if (!CS->getOperand(2)->isNullValue())
2065      S.ComdatKey =
2066          dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2067  }
2068
2069  // Emit the function pointers in the target-specific order
2070  llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2071    return L.Priority < R.Priority;
2072  });
2073  const Align Align = DL.getPointerPrefAlignment();
2074  for (Structor &S : Structors) {
2075    const TargetLoweringObjectFile &Obj = getObjFileLowering();
2076    const MCSymbol *KeySym = nullptr;
2077    if (GlobalValue *GV = S.ComdatKey) {
2078      if (GV->isDeclarationForLinker())
2079        // If the associated variable is not defined in this module
2080        // (it might be available_externally, or have been an
2081        // available_externally definition that was dropped by the
2082        // EliminateAvailableExternally pass), some other TU
2083        // will provide its dynamic initializer.
2084        continue;
2085
2086      KeySym = getSymbol(GV);
2087    }
2088    MCSection *OutputSection =
2089        (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2090                : Obj.getStaticDtorSection(S.Priority, KeySym));
2091    OutStreamer->SwitchSection(OutputSection);
2092    if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2093      EmitAlignment(Align);
2094    EmitXXStructor(DL, S.Func);
2095  }
2096}
2097
2098void AsmPrinter::EmitModuleIdents(Module &M) {
2099  if (!MAI->hasIdentDirective())
2100    return;
2101
2102  if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2103    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2104      const MDNode *N = NMD->getOperand(i);
2105      assert(N->getNumOperands() == 1 &&
2106             "llvm.ident metadata entry can have only one operand");
2107      const MDString *S = cast<MDString>(N->getOperand(0));
2108      OutStreamer->EmitIdent(S->getString());
2109    }
2110  }
2111}
2112
2113void AsmPrinter::EmitModuleCommandLines(Module &M) {
2114  MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2115  if (!CommandLine)
2116    return;
2117
2118  const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2119  if (!NMD || !NMD->getNumOperands())
2120    return;
2121
2122  OutStreamer->PushSection();
2123  OutStreamer->SwitchSection(CommandLine);
2124  OutStreamer->EmitZeros(1);
2125  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2126    const MDNode *N = NMD->getOperand(i);
2127    assert(N->getNumOperands() == 1 &&
2128           "llvm.commandline metadata entry can have only one operand");
2129    const MDString *S = cast<MDString>(N->getOperand(0));
2130    OutStreamer->EmitBytes(S->getString());
2131    OutStreamer->EmitZeros(1);
2132  }
2133  OutStreamer->PopSection();
2134}
2135
2136//===--------------------------------------------------------------------===//
2137// Emission and print routines
2138//
2139
2140/// Emit a byte directive and value.
2141///
2142void AsmPrinter::emitInt8(int Value) const {
2143  OutStreamer->EmitIntValue(Value, 1);
2144}
2145
2146/// Emit a short directive and value.
2147void AsmPrinter::emitInt16(int Value) const {
2148  OutStreamer->EmitIntValue(Value, 2);
2149}
2150
2151/// Emit a long directive and value.
2152void AsmPrinter::emitInt32(int Value) const {
2153  OutStreamer->EmitIntValue(Value, 4);
2154}
2155
2156/// Emit a long long directive and value.
2157void AsmPrinter::emitInt64(uint64_t Value) const {
2158  OutStreamer->EmitIntValue(Value, 8);
2159}
2160
2161/// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2162/// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2163/// .set if it avoids relocations.
2164void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2165                                     unsigned Size) const {
2166  OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2167}
2168
2169/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2170/// where the size in bytes of the directive is specified by Size and Label
2171/// specifies the label.  This implicitly uses .set if it is available.
2172void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2173                                     unsigned Size,
2174                                     bool IsSectionRelative) const {
2175  if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2176    OutStreamer->EmitCOFFSecRel32(Label, Offset);
2177    if (Size > 4)
2178      OutStreamer->EmitZeros(Size - 4);
2179    return;
2180  }
2181
2182  // Emit Label+Offset (or just Label if Offset is zero)
2183  const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2184  if (Offset)
2185    Expr = MCBinaryExpr::createAdd(
2186        Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2187
2188  OutStreamer->EmitValue(Expr, Size);
2189}
2190
2191//===----------------------------------------------------------------------===//
2192
2193// EmitAlignment - Emit an alignment directive to the specified power of
2194// two boundary.  If a global value is specified, and if that global has
2195// an explicit alignment requested, it will override the alignment request
2196// if required for correctness.
2197void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const {
2198  if (GV)
2199    Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2200
2201  if (Alignment == Align::None())
2202    return; // 1-byte aligned: no need to emit alignment.
2203
2204  if (getCurrentSection()->getKind().isText())
2205    OutStreamer->EmitCodeAlignment(Alignment.value());
2206  else
2207    OutStreamer->EmitValueToAlignment(Alignment.value());
2208}
2209
2210//===----------------------------------------------------------------------===//
2211// Constant emission.
2212//===----------------------------------------------------------------------===//
2213
2214const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2215  MCContext &Ctx = OutContext;
2216
2217  if (CV->isNullValue() || isa<UndefValue>(CV))
2218    return MCConstantExpr::create(0, Ctx);
2219
2220  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2221    return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2222
2223  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2224    return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2225
2226  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2227    return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2228
2229  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2230  if (!CE) {
2231    llvm_unreachable("Unknown constant value to lower!");
2232  }
2233
2234  switch (CE->getOpcode()) {
2235  default:
2236    // If the code isn't optimized, there may be outstanding folding
2237    // opportunities. Attempt to fold the expression using DataLayout as a
2238    // last resort before giving up.
2239    if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2240      if (C != CE)
2241        return lowerConstant(C);
2242
2243    // Otherwise report the problem to the user.
2244    {
2245      std::string S;
2246      raw_string_ostream OS(S);
2247      OS << "Unsupported expression in static initializer: ";
2248      CE->printAsOperand(OS, /*PrintType=*/false,
2249                     !MF ? nullptr : MF->getFunction().getParent());
2250      report_fatal_error(OS.str());
2251    }
2252  case Instruction::GetElementPtr: {
2253    // Generate a symbolic expression for the byte address
2254    APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2255    cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2256
2257    const MCExpr *Base = lowerConstant(CE->getOperand(0));
2258    if (!OffsetAI)
2259      return Base;
2260
2261    int64_t Offset = OffsetAI.getSExtValue();
2262    return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2263                                   Ctx);
2264  }
2265
2266  case Instruction::Trunc:
2267    // We emit the value and depend on the assembler to truncate the generated
2268    // expression properly.  This is important for differences between
2269    // blockaddress labels.  Since the two labels are in the same function, it
2270    // is reasonable to treat their delta as a 32-bit value.
2271    LLVM_FALLTHROUGH;
2272  case Instruction::BitCast:
2273    return lowerConstant(CE->getOperand(0));
2274
2275  case Instruction::IntToPtr: {
2276    const DataLayout &DL = getDataLayout();
2277
2278    // Handle casts to pointers by changing them into casts to the appropriate
2279    // integer type.  This promotes constant folding and simplifies this code.
2280    Constant *Op = CE->getOperand(0);
2281    Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2282                                      false/*ZExt*/);
2283    return lowerConstant(Op);
2284  }
2285
2286  case Instruction::PtrToInt: {
2287    const DataLayout &DL = getDataLayout();
2288
2289    // Support only foldable casts to/from pointers that can be eliminated by
2290    // changing the pointer to the appropriately sized integer type.
2291    Constant *Op = CE->getOperand(0);
2292    Type *Ty = CE->getType();
2293
2294    const MCExpr *OpExpr = lowerConstant(Op);
2295
2296    // We can emit the pointer value into this slot if the slot is an
2297    // integer slot equal to the size of the pointer.
2298    //
2299    // If the pointer is larger than the resultant integer, then
2300    // as with Trunc just depend on the assembler to truncate it.
2301    if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2302      return OpExpr;
2303
2304    // Otherwise the pointer is smaller than the resultant integer, mask off
2305    // the high bits so we are sure to get a proper truncation if the input is
2306    // a constant expr.
2307    unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2308    const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2309    return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2310  }
2311
2312  case Instruction::Sub: {
2313    GlobalValue *LHSGV;
2314    APInt LHSOffset;
2315    if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2316                                   getDataLayout())) {
2317      GlobalValue *RHSGV;
2318      APInt RHSOffset;
2319      if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2320                                     getDataLayout())) {
2321        const MCExpr *RelocExpr =
2322            getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2323        if (!RelocExpr)
2324          RelocExpr = MCBinaryExpr::createSub(
2325              MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2326              MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2327        int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2328        if (Addend != 0)
2329          RelocExpr = MCBinaryExpr::createAdd(
2330              RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2331        return RelocExpr;
2332      }
2333    }
2334  }
2335  // else fallthrough
2336  LLVM_FALLTHROUGH;
2337
2338  // The MC library also has a right-shift operator, but it isn't consistently
2339  // signed or unsigned between different targets.
2340  case Instruction::Add:
2341  case Instruction::Mul:
2342  case Instruction::SDiv:
2343  case Instruction::SRem:
2344  case Instruction::Shl:
2345  case Instruction::And:
2346  case Instruction::Or:
2347  case Instruction::Xor: {
2348    const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2349    const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2350    switch (CE->getOpcode()) {
2351    default: llvm_unreachable("Unknown binary operator constant cast expr");
2352    case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2353    case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2354    case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2355    case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2356    case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2357    case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2358    case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2359    case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2360    case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2361    }
2362  }
2363  }
2364}
2365
2366static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2367                                   AsmPrinter &AP,
2368                                   const Constant *BaseCV = nullptr,
2369                                   uint64_t Offset = 0);
2370
2371static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2372static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2373
2374/// isRepeatedByteSequence - Determine whether the given value is
2375/// composed of a repeated sequence of identical bytes and return the
2376/// byte value.  If it is not a repeated sequence, return -1.
2377static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2378  StringRef Data = V->getRawDataValues();
2379  assert(!Data.empty() && "Empty aggregates should be CAZ node");
2380  char C = Data[0];
2381  for (unsigned i = 1, e = Data.size(); i != e; ++i)
2382    if (Data[i] != C) return -1;
2383  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2384}
2385
2386/// isRepeatedByteSequence - Determine whether the given value is
2387/// composed of a repeated sequence of identical bytes and return the
2388/// byte value.  If it is not a repeated sequence, return -1.
2389static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2390  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2391    uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2392    assert(Size % 8 == 0);
2393
2394    // Extend the element to take zero padding into account.
2395    APInt Value = CI->getValue().zextOrSelf(Size);
2396    if (!Value.isSplat(8))
2397      return -1;
2398
2399    return Value.zextOrTrunc(8).getZExtValue();
2400  }
2401  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2402    // Make sure all array elements are sequences of the same repeated
2403    // byte.
2404    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2405    Constant *Op0 = CA->getOperand(0);
2406    int Byte = isRepeatedByteSequence(Op0, DL);
2407    if (Byte == -1)
2408      return -1;
2409
2410    // All array elements must be equal.
2411    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2412      if (CA->getOperand(i) != Op0)
2413        return -1;
2414    return Byte;
2415  }
2416
2417  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2418    return isRepeatedByteSequence(CDS);
2419
2420  return -1;
2421}
2422
2423static void emitGlobalConstantDataSequential(const DataLayout &DL,
2424                                             const ConstantDataSequential *CDS,
2425                                             AsmPrinter &AP) {
2426  // See if we can aggregate this into a .fill, if so, emit it as such.
2427  int Value = isRepeatedByteSequence(CDS, DL);
2428  if (Value != -1) {
2429    uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2430    // Don't emit a 1-byte object as a .fill.
2431    if (Bytes > 1)
2432      return AP.OutStreamer->emitFill(Bytes, Value);
2433  }
2434
2435  // If this can be emitted with .ascii/.asciz, emit it as such.
2436  if (CDS->isString())
2437    return AP.OutStreamer->EmitBytes(CDS->getAsString());
2438
2439  // Otherwise, emit the values in successive locations.
2440  unsigned ElementByteSize = CDS->getElementByteSize();
2441  if (isa<IntegerType>(CDS->getElementType())) {
2442    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2443      if (AP.isVerbose())
2444        AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2445                                                 CDS->getElementAsInteger(i));
2446      AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2447                                   ElementByteSize);
2448    }
2449  } else {
2450    Type *ET = CDS->getElementType();
2451    for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2452      emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2453  }
2454
2455  unsigned Size = DL.getTypeAllocSize(CDS->getType());
2456  unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2457                        CDS->getNumElements();
2458  assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2459  if (unsigned Padding = Size - EmittedSize)
2460    AP.OutStreamer->EmitZeros(Padding);
2461}
2462
2463static void emitGlobalConstantArray(const DataLayout &DL,
2464                                    const ConstantArray *CA, AsmPrinter &AP,
2465                                    const Constant *BaseCV, uint64_t Offset) {
2466  // See if we can aggregate some values.  Make sure it can be
2467  // represented as a series of bytes of the constant value.
2468  int Value = isRepeatedByteSequence(CA, DL);
2469
2470  if (Value != -1) {
2471    uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2472    AP.OutStreamer->emitFill(Bytes, Value);
2473  }
2474  else {
2475    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2476      emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2477      Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2478    }
2479  }
2480}
2481
2482static void emitGlobalConstantVector(const DataLayout &DL,
2483                                     const ConstantVector *CV, AsmPrinter &AP) {
2484  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2485    emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2486
2487  unsigned Size = DL.getTypeAllocSize(CV->getType());
2488  unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2489                         CV->getType()->getNumElements();
2490  if (unsigned Padding = Size - EmittedSize)
2491    AP.OutStreamer->EmitZeros(Padding);
2492}
2493
2494static void emitGlobalConstantStruct(const DataLayout &DL,
2495                                     const ConstantStruct *CS, AsmPrinter &AP,
2496                                     const Constant *BaseCV, uint64_t Offset) {
2497  // Print the fields in successive locations. Pad to align if needed!
2498  unsigned Size = DL.getTypeAllocSize(CS->getType());
2499  const StructLayout *Layout = DL.getStructLayout(CS->getType());
2500  uint64_t SizeSoFar = 0;
2501  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2502    const Constant *Field = CS->getOperand(i);
2503
2504    // Print the actual field value.
2505    emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2506
2507    // Check if padding is needed and insert one or more 0s.
2508    uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2509    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2510                        - Layout->getElementOffset(i)) - FieldSize;
2511    SizeSoFar += FieldSize + PadSize;
2512
2513    // Insert padding - this may include padding to increase the size of the
2514    // current field up to the ABI size (if the struct is not packed) as well
2515    // as padding to ensure that the next field starts at the right offset.
2516    AP.OutStreamer->EmitZeros(PadSize);
2517  }
2518  assert(SizeSoFar == Layout->getSizeInBytes() &&
2519         "Layout of constant struct may be incorrect!");
2520}
2521
2522static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2523  assert(ET && "Unknown float type");
2524  APInt API = APF.bitcastToAPInt();
2525
2526  // First print a comment with what we think the original floating-point value
2527  // should have been.
2528  if (AP.isVerbose()) {
2529    SmallString<8> StrVal;
2530    APF.toString(StrVal);
2531    ET->print(AP.OutStreamer->GetCommentOS());
2532    AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2533  }
2534
2535  // Now iterate through the APInt chunks, emitting them in endian-correct
2536  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2537  // floats).
2538  unsigned NumBytes = API.getBitWidth() / 8;
2539  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2540  const uint64_t *p = API.getRawData();
2541
2542  // PPC's long double has odd notions of endianness compared to how LLVM
2543  // handles it: p[0] goes first for *big* endian on PPC.
2544  if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2545    int Chunk = API.getNumWords() - 1;
2546
2547    if (TrailingBytes)
2548      AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2549
2550    for (; Chunk >= 0; --Chunk)
2551      AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2552  } else {
2553    unsigned Chunk;
2554    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2555      AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2556
2557    if (TrailingBytes)
2558      AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2559  }
2560
2561  // Emit the tail padding for the long double.
2562  const DataLayout &DL = AP.getDataLayout();
2563  AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2564}
2565
2566static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2567  emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2568}
2569
2570static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2571  const DataLayout &DL = AP.getDataLayout();
2572  unsigned BitWidth = CI->getBitWidth();
2573
2574  // Copy the value as we may massage the layout for constants whose bit width
2575  // is not a multiple of 64-bits.
2576  APInt Realigned(CI->getValue());
2577  uint64_t ExtraBits = 0;
2578  unsigned ExtraBitsSize = BitWidth & 63;
2579
2580  if (ExtraBitsSize) {
2581    // The bit width of the data is not a multiple of 64-bits.
2582    // The extra bits are expected to be at the end of the chunk of the memory.
2583    // Little endian:
2584    // * Nothing to be done, just record the extra bits to emit.
2585    // Big endian:
2586    // * Record the extra bits to emit.
2587    // * Realign the raw data to emit the chunks of 64-bits.
2588    if (DL.isBigEndian()) {
2589      // Basically the structure of the raw data is a chunk of 64-bits cells:
2590      //    0        1         BitWidth / 64
2591      // [chunk1][chunk2] ... [chunkN].
2592      // The most significant chunk is chunkN and it should be emitted first.
2593      // However, due to the alignment issue chunkN contains useless bits.
2594      // Realign the chunks so that they contain only useless information:
2595      // ExtraBits     0       1       (BitWidth / 64) - 1
2596      //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2597      ExtraBits = Realigned.getRawData()[0] &
2598        (((uint64_t)-1) >> (64 - ExtraBitsSize));
2599      Realigned.lshrInPlace(ExtraBitsSize);
2600    } else
2601      ExtraBits = Realigned.getRawData()[BitWidth / 64];
2602  }
2603
2604  // We don't expect assemblers to support integer data directives
2605  // for more than 64 bits, so we emit the data in at most 64-bit
2606  // quantities at a time.
2607  const uint64_t *RawData = Realigned.getRawData();
2608  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2609    uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2610    AP.OutStreamer->EmitIntValue(Val, 8);
2611  }
2612
2613  if (ExtraBitsSize) {
2614    // Emit the extra bits after the 64-bits chunks.
2615
2616    // Emit a directive that fills the expected size.
2617    uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2618    Size -= (BitWidth / 64) * 8;
2619    assert(Size && Size * 8 >= ExtraBitsSize &&
2620           (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2621           == ExtraBits && "Directive too small for extra bits.");
2622    AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2623  }
2624}
2625
2626/// Transform a not absolute MCExpr containing a reference to a GOT
2627/// equivalent global, by a target specific GOT pc relative access to the
2628/// final symbol.
2629static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2630                                         const Constant *BaseCst,
2631                                         uint64_t Offset) {
2632  // The global @foo below illustrates a global that uses a got equivalent.
2633  //
2634  //  @bar = global i32 42
2635  //  @gotequiv = private unnamed_addr constant i32* @bar
2636  //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2637  //                             i64 ptrtoint (i32* @foo to i64))
2638  //                        to i32)
2639  //
2640  // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2641  // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2642  // form:
2643  //
2644  //  foo = cstexpr, where
2645  //    cstexpr := <gotequiv> - "." + <cst>
2646  //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2647  //
2648  // After canonicalization by evaluateAsRelocatable `ME` turns into:
2649  //
2650  //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2651  //    gotpcrelcst := <offset from @foo base> + <cst>
2652  MCValue MV;
2653  if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2654    return;
2655  const MCSymbolRefExpr *SymA = MV.getSymA();
2656  if (!SymA)
2657    return;
2658
2659  // Check that GOT equivalent symbol is cached.
2660  const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2661  if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2662    return;
2663
2664  const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2665  if (!BaseGV)
2666    return;
2667
2668  // Check for a valid base symbol
2669  const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2670  const MCSymbolRefExpr *SymB = MV.getSymB();
2671
2672  if (!SymB || BaseSym != &SymB->getSymbol())
2673    return;
2674
2675  // Make sure to match:
2676  //
2677  //    gotpcrelcst := <offset from @foo base> + <cst>
2678  //
2679  // If gotpcrelcst is positive it means that we can safely fold the pc rel
2680  // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2681  // if the target knows how to encode it.
2682  int64_t GOTPCRelCst = Offset + MV.getConstant();
2683  if (GOTPCRelCst < 0)
2684    return;
2685  if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2686    return;
2687
2688  // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2689  //
2690  //  bar:
2691  //    .long 42
2692  //  gotequiv:
2693  //    .quad bar
2694  //  foo:
2695  //    .long gotequiv - "." + <cst>
2696  //
2697  // is replaced by the target specific equivalent to:
2698  //
2699  //  bar:
2700  //    .long 42
2701  //  foo:
2702  //    .long bar@GOTPCREL+<gotpcrelcst>
2703  AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2704  const GlobalVariable *GV = Result.first;
2705  int NumUses = (int)Result.second;
2706  const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2707  const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2708  *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2709      FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2710
2711  // Update GOT equivalent usage information
2712  --NumUses;
2713  if (NumUses >= 0)
2714    AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2715}
2716
2717static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2718                                   AsmPrinter &AP, const Constant *BaseCV,
2719                                   uint64_t Offset) {
2720  uint64_t Size = DL.getTypeAllocSize(CV->getType());
2721
2722  // Globals with sub-elements such as combinations of arrays and structs
2723  // are handled recursively by emitGlobalConstantImpl. Keep track of the
2724  // constant symbol base and the current position with BaseCV and Offset.
2725  if (!BaseCV && CV->hasOneUse())
2726    BaseCV = dyn_cast<Constant>(CV->user_back());
2727
2728  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2729    return AP.OutStreamer->EmitZeros(Size);
2730
2731  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2732    switch (Size) {
2733    case 1:
2734    case 2:
2735    case 4:
2736    case 8:
2737      if (AP.isVerbose())
2738        AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2739                                                 CI->getZExtValue());
2740      AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2741      return;
2742    default:
2743      emitGlobalConstantLargeInt(CI, AP);
2744      return;
2745    }
2746  }
2747
2748  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2749    return emitGlobalConstantFP(CFP, AP);
2750
2751  if (isa<ConstantPointerNull>(CV)) {
2752    AP.OutStreamer->EmitIntValue(0, Size);
2753    return;
2754  }
2755
2756  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2757    return emitGlobalConstantDataSequential(DL, CDS, AP);
2758
2759  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2760    return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2761
2762  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2763    return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2764
2765  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2766    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2767    // vectors).
2768    if (CE->getOpcode() == Instruction::BitCast)
2769      return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2770
2771    if (Size > 8) {
2772      // If the constant expression's size is greater than 64-bits, then we have
2773      // to emit the value in chunks. Try to constant fold the value and emit it
2774      // that way.
2775      Constant *New = ConstantFoldConstant(CE, DL);
2776      if (New && New != CE)
2777        return emitGlobalConstantImpl(DL, New, AP);
2778    }
2779  }
2780
2781  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2782    return emitGlobalConstantVector(DL, V, AP);
2783
2784  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2785  // thread the streamer with EmitValue.
2786  const MCExpr *ME = AP.lowerConstant(CV);
2787
2788  // Since lowerConstant already folded and got rid of all IR pointer and
2789  // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2790  // directly.
2791  if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2792    handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2793
2794  AP.OutStreamer->EmitValue(ME, Size);
2795}
2796
2797/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2798void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2799  uint64_t Size = DL.getTypeAllocSize(CV->getType());
2800  if (Size)
2801    emitGlobalConstantImpl(DL, CV, *this);
2802  else if (MAI->hasSubsectionsViaSymbols()) {
2803    // If the global has zero size, emit a single byte so that two labels don't
2804    // look like they are at the same location.
2805    OutStreamer->EmitIntValue(0, 1);
2806  }
2807}
2808
2809void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2810  // Target doesn't support this yet!
2811  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2812}
2813
2814void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2815  if (Offset > 0)
2816    OS << '+' << Offset;
2817  else if (Offset < 0)
2818    OS << Offset;
2819}
2820
2821void AsmPrinter::emitNops(unsigned N) {
2822  MCInst Nop;
2823  MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2824  for (; N; --N)
2825    EmitToStreamer(*OutStreamer, Nop);
2826}
2827
2828//===----------------------------------------------------------------------===//
2829// Symbol Lowering Routines.
2830//===----------------------------------------------------------------------===//
2831
2832MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2833  return OutContext.createTempSymbol(Name, true);
2834}
2835
2836MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2837  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2838}
2839
2840MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2841  return MMI->getAddrLabelSymbol(BB);
2842}
2843
2844/// GetCPISymbol - Return the symbol for the specified constant pool entry.
2845MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2846  if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2847    const MachineConstantPoolEntry &CPE =
2848        MF->getConstantPool()->getConstants()[CPID];
2849    if (!CPE.isMachineConstantPoolEntry()) {
2850      const DataLayout &DL = MF->getDataLayout();
2851      SectionKind Kind = CPE.getSectionKind(&DL);
2852      const Constant *C = CPE.Val.ConstVal;
2853      unsigned Align = CPE.Alignment;
2854      if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2855              getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2856        if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2857          if (Sym->isUndefined())
2858            OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2859          return Sym;
2860        }
2861      }
2862    }
2863  }
2864
2865  const DataLayout &DL = getDataLayout();
2866  return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2867                                      "CPI" + Twine(getFunctionNumber()) + "_" +
2868                                      Twine(CPID));
2869}
2870
2871/// GetJTISymbol - Return the symbol for the specified jump table entry.
2872MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2873  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2874}
2875
2876/// GetJTSetSymbol - Return the symbol for the specified jump table .set
2877/// FIXME: privatize to AsmPrinter.
2878MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2879  const DataLayout &DL = getDataLayout();
2880  return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2881                                      Twine(getFunctionNumber()) + "_" +
2882                                      Twine(UID) + "_set_" + Twine(MBBID));
2883}
2884
2885MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2886                                                   StringRef Suffix) const {
2887  return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2888}
2889
2890/// Return the MCSymbol for the specified ExternalSymbol.
2891MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2892  SmallString<60> NameStr;
2893  Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2894  return OutContext.getOrCreateSymbol(NameStr);
2895}
2896
2897/// PrintParentLoopComment - Print comments about parent loops of this one.
2898static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2899                                   unsigned FunctionNumber) {
2900  if (!Loop) return;
2901  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2902  OS.indent(Loop->getLoopDepth()*2)
2903    << "Parent Loop BB" << FunctionNumber << "_"
2904    << Loop->getHeader()->getNumber()
2905    << " Depth=" << Loop->getLoopDepth() << '\n';
2906}
2907
2908/// PrintChildLoopComment - Print comments about child loops within
2909/// the loop for this basic block, with nesting.
2910static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2911                                  unsigned FunctionNumber) {
2912  // Add child loop information
2913  for (const MachineLoop *CL : *Loop) {
2914    OS.indent(CL->getLoopDepth()*2)
2915      << "Child Loop BB" << FunctionNumber << "_"
2916      << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2917      << '\n';
2918    PrintChildLoopComment(OS, CL, FunctionNumber);
2919  }
2920}
2921
2922/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2923static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2924                                       const MachineLoopInfo *LI,
2925                                       const AsmPrinter &AP) {
2926  // Add loop depth information
2927  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2928  if (!Loop) return;
2929
2930  MachineBasicBlock *Header = Loop->getHeader();
2931  assert(Header && "No header for loop");
2932
2933  // If this block is not a loop header, just print out what is the loop header
2934  // and return.
2935  if (Header != &MBB) {
2936    AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2937                               Twine(AP.getFunctionNumber())+"_" +
2938                               Twine(Loop->getHeader()->getNumber())+
2939                               " Depth="+Twine(Loop->getLoopDepth()));
2940    return;
2941  }
2942
2943  // Otherwise, it is a loop header.  Print out information about child and
2944  // parent loops.
2945  raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2946
2947  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2948
2949  OS << "=>";
2950  OS.indent(Loop->getLoopDepth()*2-2);
2951
2952  OS << "This ";
2953  if (Loop->empty())
2954    OS << "Inner ";
2955  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2956
2957  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2958}
2959
2960/// EmitBasicBlockStart - This method prints the label for the specified
2961/// MachineBasicBlock, an alignment (if present) and a comment describing
2962/// it if appropriate.
2963void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) {
2964  // End the previous funclet and start a new one.
2965  if (MBB.isEHFuncletEntry()) {
2966    for (const HandlerInfo &HI : Handlers) {
2967      HI.Handler->endFunclet();
2968      HI.Handler->beginFunclet(MBB);
2969    }
2970  }
2971
2972  // Emit an alignment directive for this block, if needed.
2973  const Align Alignment = MBB.getAlignment();
2974  if (Alignment != Align::None())
2975    EmitAlignment(Alignment);
2976
2977  // If the block has its address taken, emit any labels that were used to
2978  // reference the block.  It is possible that there is more than one label
2979  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2980  // the references were generated.
2981  if (MBB.hasAddressTaken()) {
2982    const BasicBlock *BB = MBB.getBasicBlock();
2983    if (isVerbose())
2984      OutStreamer->AddComment("Block address taken");
2985
2986    // MBBs can have their address taken as part of CodeGen without having
2987    // their corresponding BB's address taken in IR
2988    if (BB->hasAddressTaken())
2989      for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2990        OutStreamer->EmitLabel(Sym);
2991  }
2992
2993  // Print some verbose block comments.
2994  if (isVerbose()) {
2995    if (const BasicBlock *BB = MBB.getBasicBlock()) {
2996      if (BB->hasName()) {
2997        BB->printAsOperand(OutStreamer->GetCommentOS(),
2998                           /*PrintType=*/false, BB->getModule());
2999        OutStreamer->GetCommentOS() << '\n';
3000      }
3001    }
3002
3003    assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3004    emitBasicBlockLoopComments(MBB, MLI, *this);
3005  }
3006
3007  // Print the main label for the block.
3008  if (MBB.pred_empty() ||
3009      (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
3010       !MBB.hasLabelMustBeEmitted())) {
3011    if (isVerbose()) {
3012      // NOTE: Want this comment at start of line, don't emit with AddComment.
3013      OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3014                                  false);
3015    }
3016  } else {
3017    if (isVerbose() && MBB.hasLabelMustBeEmitted())
3018      OutStreamer->AddComment("Label of block must be emitted");
3019    OutStreamer->EmitLabel(MBB.getSymbol());
3020  }
3021}
3022
3023void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {}
3024
3025void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
3026                                bool IsDefinition) const {
3027  MCSymbolAttr Attr = MCSA_Invalid;
3028
3029  switch (Visibility) {
3030  default: break;
3031  case GlobalValue::HiddenVisibility:
3032    if (IsDefinition)
3033      Attr = MAI->getHiddenVisibilityAttr();
3034    else
3035      Attr = MAI->getHiddenDeclarationVisibilityAttr();
3036    break;
3037  case GlobalValue::ProtectedVisibility:
3038    Attr = MAI->getProtectedVisibilityAttr();
3039    break;
3040  }
3041
3042  if (Attr != MCSA_Invalid)
3043    OutStreamer->EmitSymbolAttribute(Sym, Attr);
3044}
3045
3046/// isBlockOnlyReachableByFallthough - Return true if the basic block has
3047/// exactly one predecessor and the control transfer mechanism between
3048/// the predecessor and this block is a fall-through.
3049bool AsmPrinter::
3050isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3051  // If this is a landing pad, it isn't a fall through.  If it has no preds,
3052  // then nothing falls through to it.
3053  if (MBB->isEHPad() || MBB->pred_empty())
3054    return false;
3055
3056  // If there isn't exactly one predecessor, it can't be a fall through.
3057  if (MBB->pred_size() > 1)
3058    return false;
3059
3060  // The predecessor has to be immediately before this block.
3061  MachineBasicBlock *Pred = *MBB->pred_begin();
3062  if (!Pred->isLayoutSuccessor(MBB))
3063    return false;
3064
3065  // If the block is completely empty, then it definitely does fall through.
3066  if (Pred->empty())
3067    return true;
3068
3069  // Check the terminators in the previous blocks
3070  for (const auto &MI : Pred->terminators()) {
3071    // If it is not a simple branch, we are in a table somewhere.
3072    if (!MI.isBranch() || MI.isIndirectBranch())
3073      return false;
3074
3075    // If we are the operands of one of the branches, this is not a fall
3076    // through. Note that targets with delay slots will usually bundle
3077    // terminators with the delay slot instruction.
3078    for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3079      if (OP->isJTI())
3080        return false;
3081      if (OP->isMBB() && OP->getMBB() == MBB)
3082        return false;
3083    }
3084  }
3085
3086  return true;
3087}
3088
3089GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3090  if (!S.usesMetadata())
3091    return nullptr;
3092
3093  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3094  gcp_map_type::iterator GCPI = GCMap.find(&S);
3095  if (GCPI != GCMap.end())
3096    return GCPI->second.get();
3097
3098  auto Name = S.getName();
3099
3100  for (GCMetadataPrinterRegistry::iterator
3101         I = GCMetadataPrinterRegistry::begin(),
3102         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3103    if (Name == I->getName()) {
3104      std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3105      GMP->S = &S;
3106      auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3107      return IterBool.first->second.get();
3108    }
3109
3110  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3111}
3112
3113void AsmPrinter::emitStackMaps(StackMaps &SM) {
3114  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3115  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3116  bool NeedsDefault = false;
3117  if (MI->begin() == MI->end())
3118    // No GC strategy, use the default format.
3119    NeedsDefault = true;
3120  else
3121    for (auto &I : *MI) {
3122      if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3123        if (MP->emitStackMaps(SM, *this))
3124          continue;
3125      // The strategy doesn't have printer or doesn't emit custom stack maps.
3126      // Use the default format.
3127      NeedsDefault = true;
3128    }
3129
3130  if (NeedsDefault)
3131    SM.serializeToStackMapSection();
3132}
3133
3134/// Pin vtable to this file.
3135AsmPrinterHandler::~AsmPrinterHandler() = default;
3136
3137void AsmPrinterHandler::markFunctionEnd() {}
3138
3139// In the binary's "xray_instr_map" section, an array of these function entries
3140// describes each instrumentation point.  When XRay patches your code, the index
3141// into this table will be given to your handler as a patch point identifier.
3142void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3143                                         const MCSymbol *CurrentFnSym) const {
3144  Out->EmitSymbolValue(Sled, Bytes);
3145  Out->EmitSymbolValue(CurrentFnSym, Bytes);
3146  auto Kind8 = static_cast<uint8_t>(Kind);
3147  Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3148  Out->EmitBinaryData(
3149      StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3150  Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3151  auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3152  assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3153  Out->EmitZeros(Padding);
3154}
3155
3156void AsmPrinter::emitXRayTable() {
3157  if (Sleds.empty())
3158    return;
3159
3160  auto PrevSection = OutStreamer->getCurrentSectionOnly();
3161  const Function &F = MF->getFunction();
3162  MCSection *InstMap = nullptr;
3163  MCSection *FnSledIndex = nullptr;
3164  if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3165    auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3166    assert(Associated != nullptr);
3167    auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3168    std::string GroupName;
3169    if (F.hasComdat()) {
3170      Flags |= ELF::SHF_GROUP;
3171      GroupName = F.getComdat()->getName();
3172    }
3173
3174    auto UniqueID = ++XRayFnUniqueID;
3175    InstMap =
3176        OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3177                                 GroupName, UniqueID, Associated);
3178    FnSledIndex =
3179        OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3180                                 GroupName, UniqueID, Associated);
3181  } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3182    InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3183                                         SectionKind::getReadOnlyWithRel());
3184    FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3185                                             SectionKind::getReadOnlyWithRel());
3186  } else {
3187    llvm_unreachable("Unsupported target");
3188  }
3189
3190  auto WordSizeBytes = MAI->getCodePointerSize();
3191
3192  // Now we switch to the instrumentation map section. Because this is done
3193  // per-function, we are able to create an index entry that will represent the
3194  // range of sleds associated with a function.
3195  MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3196  OutStreamer->SwitchSection(InstMap);
3197  OutStreamer->EmitLabel(SledsStart);
3198  for (const auto &Sled : Sleds)
3199    Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3200  MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3201  OutStreamer->EmitLabel(SledsEnd);
3202
3203  // We then emit a single entry in the index per function. We use the symbols
3204  // that bound the instrumentation map as the range for a specific function.
3205  // Each entry here will be 2 * word size aligned, as we're writing down two
3206  // pointers. This should work for both 32-bit and 64-bit platforms.
3207  OutStreamer->SwitchSection(FnSledIndex);
3208  OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3209  OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3210  OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3211  OutStreamer->SwitchSection(PrevSection);
3212  Sleds.clear();
3213}
3214
3215void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3216                            SledKind Kind, uint8_t Version) {
3217  const Function &F = MI.getMF()->getFunction();
3218  auto Attr = F.getFnAttribute("function-instrument");
3219  bool LogArgs = F.hasFnAttribute("xray-log-args");
3220  bool AlwaysInstrument =
3221    Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3222  if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3223    Kind = SledKind::LOG_ARGS_ENTER;
3224  Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3225                                       AlwaysInstrument, &F, Version});
3226}
3227
3228void AsmPrinter::emitPatchableFunctionEntries() {
3229  const Function &F = MF->getFunction();
3230  unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3231  (void)F.getFnAttribute("patchable-function-prefix")
3232      .getValueAsString()
3233      .getAsInteger(10, PatchableFunctionPrefix);
3234  (void)F.getFnAttribute("patchable-function-entry")
3235      .getValueAsString()
3236      .getAsInteger(10, PatchableFunctionEntry);
3237  if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3238    return;
3239  const unsigned PointerSize = getPointerSize();
3240  if (TM.getTargetTriple().isOSBinFormatELF()) {
3241    auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3242
3243    // As of binutils 2.33, GNU as does not support section flag "o" or linkage
3244    // field "unique". Use SHF_LINK_ORDER if we are using the integrated
3245    // assembler.
3246    if (MAI->useIntegratedAssembler()) {
3247      Flags |= ELF::SHF_LINK_ORDER;
3248      std::string GroupName;
3249      if (F.hasComdat()) {
3250        Flags |= ELF::SHF_GROUP;
3251        GroupName = F.getComdat()->getName();
3252      }
3253      MCSection *Section = getObjFileLowering().SectionForGlobal(&F, TM);
3254      unsigned UniqueID =
3255          PatchableFunctionEntryID
3256              .try_emplace(Section, PatchableFunctionEntryID.size())
3257              .first->second;
3258      OutStreamer->SwitchSection(OutContext.getELFSection(
3259          "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0,
3260          GroupName, UniqueID, cast<MCSymbolELF>(CurrentFnSym)));
3261    } else {
3262      OutStreamer->SwitchSection(OutContext.getELFSection(
3263          "__patchable_function_entries", ELF::SHT_PROGBITS, Flags));
3264    }
3265    EmitAlignment(Align(PointerSize));
3266    OutStreamer->EmitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3267  }
3268}
3269
3270uint16_t AsmPrinter::getDwarfVersion() const {
3271  return OutStreamer->getContext().getDwarfVersion();
3272}
3273
3274void AsmPrinter::setDwarfVersion(uint16_t Version) {
3275  OutStreamer->getContext().setDwarfVersion(Version);
3276}
3277