1//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines several CodeGen-specific LLVM IR analysis utilities.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/Analysis.h"
14#include "llvm/Analysis/ValueTracking.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/TargetInstrInfo.h"
17#include "llvm/CodeGen/TargetLowering.h"
18#include "llvm/CodeGen/TargetSubtargetInfo.h"
19#include "llvm/IR/DataLayout.h"
20#include "llvm/IR/DerivedTypes.h"
21#include "llvm/IR/Function.h"
22#include "llvm/IR/Instructions.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/LLVMContext.h"
25#include "llvm/IR/Module.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Transforms/Utils/GlobalStatus.h"
29
30using namespace llvm;
31
32/// Compute the linearized index of a member in a nested aggregate/struct/array
33/// by recursing and accumulating CurIndex as long as there are indices in the
34/// index list.
35unsigned llvm::ComputeLinearIndex(Type *Ty,
36                                  const unsigned *Indices,
37                                  const unsigned *IndicesEnd,
38                                  unsigned CurIndex) {
39  // Base case: We're done.
40  if (Indices && Indices == IndicesEnd)
41    return CurIndex;
42
43  // Given a struct type, recursively traverse the elements.
44  if (StructType *STy = dyn_cast<StructType>(Ty)) {
45    for (StructType::element_iterator EB = STy->element_begin(),
46                                      EI = EB,
47                                      EE = STy->element_end();
48        EI != EE; ++EI) {
49      if (Indices && *Indices == unsigned(EI - EB))
50        return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
51      CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
52    }
53    assert(!Indices && "Unexpected out of bound");
54    return CurIndex;
55  }
56  // Given an array type, recursively traverse the elements.
57  else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
58    Type *EltTy = ATy->getElementType();
59    unsigned NumElts = ATy->getNumElements();
60    // Compute the Linear offset when jumping one element of the array
61    unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
62    if (Indices) {
63      assert(*Indices < NumElts && "Unexpected out of bound");
64      // If the indice is inside the array, compute the index to the requested
65      // elt and recurse inside the element with the end of the indices list
66      CurIndex += EltLinearOffset* *Indices;
67      return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
68    }
69    CurIndex += EltLinearOffset*NumElts;
70    return CurIndex;
71  }
72  // We haven't found the type we're looking for, so keep searching.
73  return CurIndex + 1;
74}
75
76/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
77/// EVTs that represent all the individual underlying
78/// non-aggregate types that comprise it.
79///
80/// If Offsets is non-null, it points to a vector to be filled in
81/// with the in-memory offsets of each of the individual values.
82///
83void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
84                           Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
85                           SmallVectorImpl<EVT> *MemVTs,
86                           SmallVectorImpl<uint64_t> *Offsets,
87                           uint64_t StartingOffset) {
88  // Given a struct type, recursively traverse the elements.
89  if (StructType *STy = dyn_cast<StructType>(Ty)) {
90    const StructLayout *SL = DL.getStructLayout(STy);
91    for (StructType::element_iterator EB = STy->element_begin(),
92                                      EI = EB,
93                                      EE = STy->element_end();
94         EI != EE; ++EI)
95      ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets,
96                      StartingOffset + SL->getElementOffset(EI - EB));
97    return;
98  }
99  // Given an array type, recursively traverse the elements.
100  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
101    Type *EltTy = ATy->getElementType();
102    uint64_t EltSize = DL.getTypeAllocSize(EltTy);
103    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
104      ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets,
105                      StartingOffset + i * EltSize);
106    return;
107  }
108  // Interpret void as zero return values.
109  if (Ty->isVoidTy())
110    return;
111  // Base case: we can get an EVT for this LLVM IR type.
112  ValueVTs.push_back(TLI.getValueType(DL, Ty));
113  if (MemVTs)
114    MemVTs->push_back(TLI.getMemValueType(DL, Ty));
115  if (Offsets)
116    Offsets->push_back(StartingOffset);
117}
118
119void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
120                           Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
121                           SmallVectorImpl<uint64_t> *Offsets,
122                           uint64_t StartingOffset) {
123  return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets,
124                         StartingOffset);
125}
126
127void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
128                            SmallVectorImpl<LLT> &ValueTys,
129                            SmallVectorImpl<uint64_t> *Offsets,
130                            uint64_t StartingOffset) {
131  // Given a struct type, recursively traverse the elements.
132  if (StructType *STy = dyn_cast<StructType>(&Ty)) {
133    const StructLayout *SL = DL.getStructLayout(STy);
134    for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
135      computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
136                       StartingOffset + SL->getElementOffset(I));
137    return;
138  }
139  // Given an array type, recursively traverse the elements.
140  if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
141    Type *EltTy = ATy->getElementType();
142    uint64_t EltSize = DL.getTypeAllocSize(EltTy);
143    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
144      computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
145                       StartingOffset + i * EltSize);
146    return;
147  }
148  // Interpret void as zero return values.
149  if (Ty.isVoidTy())
150    return;
151  // Base case: we can get an LLT for this LLVM IR type.
152  ValueTys.push_back(getLLTForType(Ty, DL));
153  if (Offsets != nullptr)
154    Offsets->push_back(StartingOffset * 8);
155}
156
157/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
158GlobalValue *llvm::ExtractTypeInfo(Value *V) {
159  V = V->stripPointerCasts();
160  GlobalValue *GV = dyn_cast<GlobalValue>(V);
161  GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
162
163  if (Var && Var->getName() == "llvm.eh.catch.all.value") {
164    assert(Var->hasInitializer() &&
165           "The EH catch-all value must have an initializer");
166    Value *Init = Var->getInitializer();
167    GV = dyn_cast<GlobalValue>(Init);
168    if (!GV) V = cast<ConstantPointerNull>(Init);
169  }
170
171  assert((GV || isa<ConstantPointerNull>(V)) &&
172         "TypeInfo must be a global variable or NULL");
173  return GV;
174}
175
176/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
177/// processed uses a memory 'm' constraint.
178bool
179llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
180                                const TargetLowering &TLI) {
181  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
182    InlineAsm::ConstraintInfo &CI = CInfos[i];
183    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
184      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
185      if (CType == TargetLowering::C_Memory)
186        return true;
187    }
188
189    // Indirect operand accesses access memory.
190    if (CI.isIndirect)
191      return true;
192  }
193
194  return false;
195}
196
197/// getFCmpCondCode - Return the ISD condition code corresponding to
198/// the given LLVM IR floating-point condition code.  This includes
199/// consideration of global floating-point math flags.
200///
201ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
202  switch (Pred) {
203  case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
204  case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
205  case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
206  case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
207  case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
208  case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
209  case FCmpInst::FCMP_ONE:   return ISD::SETONE;
210  case FCmpInst::FCMP_ORD:   return ISD::SETO;
211  case FCmpInst::FCMP_UNO:   return ISD::SETUO;
212  case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
213  case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
214  case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
215  case FCmpInst::FCMP_ULT:   return ISD::SETULT;
216  case FCmpInst::FCMP_ULE:   return ISD::SETULE;
217  case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
218  case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
219  default: llvm_unreachable("Invalid FCmp predicate opcode!");
220  }
221}
222
223ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
224  switch (CC) {
225    case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
226    case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
227    case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
228    case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
229    case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
230    case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
231    default: return CC;
232  }
233}
234
235/// getICmpCondCode - Return the ISD condition code corresponding to
236/// the given LLVM IR integer condition code.
237///
238ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
239  switch (Pred) {
240  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
241  case ICmpInst::ICMP_NE:  return ISD::SETNE;
242  case ICmpInst::ICMP_SLE: return ISD::SETLE;
243  case ICmpInst::ICMP_ULE: return ISD::SETULE;
244  case ICmpInst::ICMP_SGE: return ISD::SETGE;
245  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
246  case ICmpInst::ICMP_SLT: return ISD::SETLT;
247  case ICmpInst::ICMP_ULT: return ISD::SETULT;
248  case ICmpInst::ICMP_SGT: return ISD::SETGT;
249  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
250  default:
251    llvm_unreachable("Invalid ICmp predicate opcode!");
252  }
253}
254
255static bool isNoopBitcast(Type *T1, Type *T2,
256                          const TargetLoweringBase& TLI) {
257  return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
258         (isa<VectorType>(T1) && isa<VectorType>(T2) &&
259          TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
260}
261
262/// Look through operations that will be free to find the earliest source of
263/// this value.
264///
265/// @param ValLoc If V has aggregate type, we will be interested in a particular
266/// scalar component. This records its address; the reverse of this list gives a
267/// sequence of indices appropriate for an extractvalue to locate the important
268/// value. This value is updated during the function and on exit will indicate
269/// similar information for the Value returned.
270///
271/// @param DataBits If this function looks through truncate instructions, this
272/// will record the smallest size attained.
273static const Value *getNoopInput(const Value *V,
274                                 SmallVectorImpl<unsigned> &ValLoc,
275                                 unsigned &DataBits,
276                                 const TargetLoweringBase &TLI,
277                                 const DataLayout &DL) {
278  while (true) {
279    // Try to look through V1; if V1 is not an instruction, it can't be looked
280    // through.
281    const Instruction *I = dyn_cast<Instruction>(V);
282    if (!I || I->getNumOperands() == 0) return V;
283    const Value *NoopInput = nullptr;
284
285    Value *Op = I->getOperand(0);
286    if (isa<BitCastInst>(I)) {
287      // Look through truly no-op bitcasts.
288      if (isNoopBitcast(Op->getType(), I->getType(), TLI))
289        NoopInput = Op;
290    } else if (isa<GetElementPtrInst>(I)) {
291      // Look through getelementptr
292      if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
293        NoopInput = Op;
294    } else if (isa<IntToPtrInst>(I)) {
295      // Look through inttoptr.
296      // Make sure this isn't a truncating or extending cast.  We could
297      // support this eventually, but don't bother for now.
298      if (!isa<VectorType>(I->getType()) &&
299          DL.getPointerSizeInBits() ==
300              cast<IntegerType>(Op->getType())->getBitWidth())
301        NoopInput = Op;
302    } else if (isa<PtrToIntInst>(I)) {
303      // Look through ptrtoint.
304      // Make sure this isn't a truncating or extending cast.  We could
305      // support this eventually, but don't bother for now.
306      if (!isa<VectorType>(I->getType()) &&
307          DL.getPointerSizeInBits() ==
308              cast<IntegerType>(I->getType())->getBitWidth())
309        NoopInput = Op;
310    } else if (isa<TruncInst>(I) &&
311               TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
312      DataBits = std::min((uint64_t)DataBits,
313                         I->getType()->getPrimitiveSizeInBits().getFixedSize());
314      NoopInput = Op;
315    } else if (auto CS = ImmutableCallSite(I)) {
316      const Value *ReturnedOp = CS.getReturnedArgOperand();
317      if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
318        NoopInput = ReturnedOp;
319    } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
320      // Value may come from either the aggregate or the scalar
321      ArrayRef<unsigned> InsertLoc = IVI->getIndices();
322      if (ValLoc.size() >= InsertLoc.size() &&
323          std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
324        // The type being inserted is a nested sub-type of the aggregate; we
325        // have to remove those initial indices to get the location we're
326        // interested in for the operand.
327        ValLoc.resize(ValLoc.size() - InsertLoc.size());
328        NoopInput = IVI->getInsertedValueOperand();
329      } else {
330        // The struct we're inserting into has the value we're interested in, no
331        // change of address.
332        NoopInput = Op;
333      }
334    } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
335      // The part we're interested in will inevitably be some sub-section of the
336      // previous aggregate. Combine the two paths to obtain the true address of
337      // our element.
338      ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
339      ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
340      NoopInput = Op;
341    }
342    // Terminate if we couldn't find anything to look through.
343    if (!NoopInput)
344      return V;
345
346    V = NoopInput;
347  }
348}
349
350/// Return true if this scalar return value only has bits discarded on its path
351/// from the "tail call" to the "ret". This includes the obvious noop
352/// instructions handled by getNoopInput above as well as free truncations (or
353/// extensions prior to the call).
354static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
355                                 SmallVectorImpl<unsigned> &RetIndices,
356                                 SmallVectorImpl<unsigned> &CallIndices,
357                                 bool AllowDifferingSizes,
358                                 const TargetLoweringBase &TLI,
359                                 const DataLayout &DL) {
360
361  // Trace the sub-value needed by the return value as far back up the graph as
362  // possible, in the hope that it will intersect with the value produced by the
363  // call. In the simple case with no "returned" attribute, the hope is actually
364  // that we end up back at the tail call instruction itself.
365  unsigned BitsRequired = UINT_MAX;
366  RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
367
368  // If this slot in the value returned is undef, it doesn't matter what the
369  // call puts there, it'll be fine.
370  if (isa<UndefValue>(RetVal))
371    return true;
372
373  // Now do a similar search up through the graph to find where the value
374  // actually returned by the "tail call" comes from. In the simple case without
375  // a "returned" attribute, the search will be blocked immediately and the loop
376  // a Noop.
377  unsigned BitsProvided = UINT_MAX;
378  CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
379
380  // There's no hope if we can't actually trace them to (the same part of!) the
381  // same value.
382  if (CallVal != RetVal || CallIndices != RetIndices)
383    return false;
384
385  // However, intervening truncates may have made the call non-tail. Make sure
386  // all the bits that are needed by the "ret" have been provided by the "tail
387  // call". FIXME: with sufficiently cunning bit-tracking, we could look through
388  // extensions too.
389  if (BitsProvided < BitsRequired ||
390      (!AllowDifferingSizes && BitsProvided != BitsRequired))
391    return false;
392
393  return true;
394}
395
396/// For an aggregate type, determine whether a given index is within bounds or
397/// not.
398static bool indexReallyValid(CompositeType *T, unsigned Idx) {
399  if (ArrayType *AT = dyn_cast<ArrayType>(T))
400    return Idx < AT->getNumElements();
401
402  return Idx < cast<StructType>(T)->getNumElements();
403}
404
405/// Move the given iterators to the next leaf type in depth first traversal.
406///
407/// Performs a depth-first traversal of the type as specified by its arguments,
408/// stopping at the next leaf node (which may be a legitimate scalar type or an
409/// empty struct or array).
410///
411/// @param SubTypes List of the partial components making up the type from
412/// outermost to innermost non-empty aggregate. The element currently
413/// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
414///
415/// @param Path Set of extractvalue indices leading from the outermost type
416/// (SubTypes[0]) to the leaf node currently represented.
417///
418/// @returns true if a new type was found, false otherwise. Calling this
419/// function again on a finished iterator will repeatedly return
420/// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
421/// aggregate or a non-aggregate
422static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
423                                  SmallVectorImpl<unsigned> &Path) {
424  // First march back up the tree until we can successfully increment one of the
425  // coordinates in Path.
426  while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
427    Path.pop_back();
428    SubTypes.pop_back();
429  }
430
431  // If we reached the top, then the iterator is done.
432  if (Path.empty())
433    return false;
434
435  // We know there's *some* valid leaf now, so march back down the tree picking
436  // out the left-most element at each node.
437  ++Path.back();
438  Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
439  while (DeeperType->isAggregateType()) {
440    CompositeType *CT = cast<CompositeType>(DeeperType);
441    if (!indexReallyValid(CT, 0))
442      return true;
443
444    SubTypes.push_back(CT);
445    Path.push_back(0);
446
447    DeeperType = CT->getTypeAtIndex(0U);
448  }
449
450  return true;
451}
452
453/// Find the first non-empty, scalar-like type in Next and setup the iterator
454/// components.
455///
456/// Assuming Next is an aggregate of some kind, this function will traverse the
457/// tree from left to right (i.e. depth-first) looking for the first
458/// non-aggregate type which will play a role in function return.
459///
460/// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
461/// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
462/// i32 in that type.
463static bool firstRealType(Type *Next,
464                          SmallVectorImpl<CompositeType *> &SubTypes,
465                          SmallVectorImpl<unsigned> &Path) {
466  // First initialise the iterator components to the first "leaf" node
467  // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
468  // despite nominally being an aggregate).
469  while (Next->isAggregateType() &&
470         indexReallyValid(cast<CompositeType>(Next), 0)) {
471    SubTypes.push_back(cast<CompositeType>(Next));
472    Path.push_back(0);
473    Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
474  }
475
476  // If there's no Path now, Next was originally scalar already (or empty
477  // leaf). We're done.
478  if (Path.empty())
479    return true;
480
481  // Otherwise, use normal iteration to keep looking through the tree until we
482  // find a non-aggregate type.
483  while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
484    if (!advanceToNextLeafType(SubTypes, Path))
485      return false;
486  }
487
488  return true;
489}
490
491/// Set the iterator data-structures to the next non-empty, non-aggregate
492/// subtype.
493static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
494                         SmallVectorImpl<unsigned> &Path) {
495  do {
496    if (!advanceToNextLeafType(SubTypes, Path))
497      return false;
498
499    assert(!Path.empty() && "found a leaf but didn't set the path?");
500  } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
501
502  return true;
503}
504
505
506/// Test if the given instruction is in a position to be optimized
507/// with a tail-call. This roughly means that it's in a block with
508/// a return and there's nothing that needs to be scheduled
509/// between it and the return.
510///
511/// This function only tests target-independent requirements.
512bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
513  const Instruction *I = CS.getInstruction();
514  const BasicBlock *ExitBB = I->getParent();
515  const Instruction *Term = ExitBB->getTerminator();
516  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
517
518  // The block must end in a return statement or unreachable.
519  //
520  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
521  // an unreachable, for now. The way tailcall optimization is currently
522  // implemented means it will add an epilogue followed by a jump. That is
523  // not profitable. Also, if the callee is a special function (e.g.
524  // longjmp on x86), it can end up causing miscompilation that has not
525  // been fully understood.
526  if (!Ret &&
527      ((!TM.Options.GuaranteedTailCallOpt &&
528        CS.getCallingConv() != CallingConv::Tail) || !isa<UnreachableInst>(Term)))
529    return false;
530
531  // If I will have a chain, make sure no other instruction that will have a
532  // chain interposes between I and the return.
533  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
534      !isSafeToSpeculativelyExecute(I))
535    for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
536      if (&*BBI == I)
537        break;
538      // Debug info intrinsics do not get in the way of tail call optimization.
539      if (isa<DbgInfoIntrinsic>(BBI))
540        continue;
541      // A lifetime end or assume intrinsic should not stop tail call
542      // optimization.
543      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
544        if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
545            II->getIntrinsicID() == Intrinsic::assume)
546          continue;
547      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
548          !isSafeToSpeculativelyExecute(&*BBI))
549        return false;
550    }
551
552  const Function *F = ExitBB->getParent();
553  return returnTypeIsEligibleForTailCall(
554      F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
555}
556
557bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
558                                    const ReturnInst *Ret,
559                                    const TargetLoweringBase &TLI,
560                                    bool *AllowDifferingSizes) {
561  // ADS may be null, so don't write to it directly.
562  bool DummyADS;
563  bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
564  ADS = true;
565
566  AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex);
567  AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
568                          AttributeList::ReturnIndex);
569
570  // Following attributes are completely benign as far as calling convention
571  // goes, they shouldn't affect whether the call is a tail call.
572  CallerAttrs.removeAttribute(Attribute::NoAlias);
573  CalleeAttrs.removeAttribute(Attribute::NoAlias);
574  CallerAttrs.removeAttribute(Attribute::NonNull);
575  CalleeAttrs.removeAttribute(Attribute::NonNull);
576  CallerAttrs.removeAttribute(Attribute::Dereferenceable);
577  CalleeAttrs.removeAttribute(Attribute::Dereferenceable);
578  CallerAttrs.removeAttribute(Attribute::DereferenceableOrNull);
579  CalleeAttrs.removeAttribute(Attribute::DereferenceableOrNull);
580
581  if (CallerAttrs.contains(Attribute::ZExt)) {
582    if (!CalleeAttrs.contains(Attribute::ZExt))
583      return false;
584
585    ADS = false;
586    CallerAttrs.removeAttribute(Attribute::ZExt);
587    CalleeAttrs.removeAttribute(Attribute::ZExt);
588  } else if (CallerAttrs.contains(Attribute::SExt)) {
589    if (!CalleeAttrs.contains(Attribute::SExt))
590      return false;
591
592    ADS = false;
593    CallerAttrs.removeAttribute(Attribute::SExt);
594    CalleeAttrs.removeAttribute(Attribute::SExt);
595  }
596
597  // Drop sext and zext return attributes if the result is not used.
598  // This enables tail calls for code like:
599  //
600  // define void @caller() {
601  // entry:
602  //   %unused_result = tail call zeroext i1 @callee()
603  //   br label %retlabel
604  // retlabel:
605  //   ret void
606  // }
607  if (I->use_empty()) {
608    CalleeAttrs.removeAttribute(Attribute::SExt);
609    CalleeAttrs.removeAttribute(Attribute::ZExt);
610  }
611
612  // If they're still different, there's some facet we don't understand
613  // (currently only "inreg", but in future who knows). It may be OK but the
614  // only safe option is to reject the tail call.
615  return CallerAttrs == CalleeAttrs;
616}
617
618/// Check whether B is a bitcast of a pointer type to another pointer type,
619/// which is equal to A.
620static bool isPointerBitcastEqualTo(const Value *A, const Value *B) {
621  assert(A && B && "Expected non-null inputs!");
622
623  auto *BitCastIn = dyn_cast<BitCastInst>(B);
624
625  if (!BitCastIn)
626    return false;
627
628  if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy())
629    return false;
630
631  return A == BitCastIn->getOperand(0);
632}
633
634bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
635                                           const Instruction *I,
636                                           const ReturnInst *Ret,
637                                           const TargetLoweringBase &TLI) {
638  // If the block ends with a void return or unreachable, it doesn't matter
639  // what the call's return type is.
640  if (!Ret || Ret->getNumOperands() == 0) return true;
641
642  // If the return value is undef, it doesn't matter what the call's
643  // return type is.
644  if (isa<UndefValue>(Ret->getOperand(0))) return true;
645
646  // Make sure the attributes attached to each return are compatible.
647  bool AllowDifferingSizes;
648  if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
649    return false;
650
651  const Value *RetVal = Ret->getOperand(0), *CallVal = I;
652  // Intrinsic like llvm.memcpy has no return value, but the expanded
653  // libcall may or may not have return value. On most platforms, it
654  // will be expanded as memcpy in libc, which returns the first
655  // argument. On other platforms like arm-none-eabi, memcpy may be
656  // expanded as library call without return value, like __aeabi_memcpy.
657  const CallInst *Call = cast<CallInst>(I);
658  if (Function *F = Call->getCalledFunction()) {
659    Intrinsic::ID IID = F->getIntrinsicID();
660    if (((IID == Intrinsic::memcpy &&
661          TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
662         (IID == Intrinsic::memmove &&
663          TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
664         (IID == Intrinsic::memset &&
665          TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
666        (RetVal == Call->getArgOperand(0) ||
667         isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0))))
668      return true;
669  }
670
671  SmallVector<unsigned, 4> RetPath, CallPath;
672  SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
673
674  bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
675  bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
676
677  // Nothing's actually returned, it doesn't matter what the callee put there
678  // it's a valid tail call.
679  if (RetEmpty)
680    return true;
681
682  // Iterate pairwise through each of the value types making up the tail call
683  // and the corresponding return. For each one we want to know whether it's
684  // essentially going directly from the tail call to the ret, via operations
685  // that end up not generating any code.
686  //
687  // We allow a certain amount of covariance here. For example it's permitted
688  // for the tail call to define more bits than the ret actually cares about
689  // (e.g. via a truncate).
690  do {
691    if (CallEmpty) {
692      // We've exhausted the values produced by the tail call instruction, the
693      // rest are essentially undef. The type doesn't really matter, but we need
694      // *something*.
695      Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
696      CallVal = UndefValue::get(SlotType);
697    }
698
699    // The manipulations performed when we're looking through an insertvalue or
700    // an extractvalue would happen at the front of the RetPath list, so since
701    // we have to copy it anyway it's more efficient to create a reversed copy.
702    SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
703    SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
704
705    // Finally, we can check whether the value produced by the tail call at this
706    // index is compatible with the value we return.
707    if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
708                              AllowDifferingSizes, TLI,
709                              F->getParent()->getDataLayout()))
710      return false;
711
712    CallEmpty  = !nextRealType(CallSubTypes, CallPath);
713  } while(nextRealType(RetSubTypes, RetPath));
714
715  return true;
716}
717
718static void collectEHScopeMembers(
719    DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
720    const MachineBasicBlock *MBB) {
721  SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
722  while (!Worklist.empty()) {
723    const MachineBasicBlock *Visiting = Worklist.pop_back_val();
724    // Don't follow blocks which start new scopes.
725    if (Visiting->isEHPad() && Visiting != MBB)
726      continue;
727
728    // Add this MBB to our scope.
729    auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
730
731    // Don't revisit blocks.
732    if (!P.second) {
733      assert(P.first->second == EHScope && "MBB is part of two scopes!");
734      continue;
735    }
736
737    // Returns are boundaries where scope transfer can occur, don't follow
738    // successors.
739    if (Visiting->isEHScopeReturnBlock())
740      continue;
741
742    for (const MachineBasicBlock *Succ : Visiting->successors())
743      Worklist.push_back(Succ);
744  }
745}
746
747DenseMap<const MachineBasicBlock *, int>
748llvm::getEHScopeMembership(const MachineFunction &MF) {
749  DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
750
751  // We don't have anything to do if there aren't any EH pads.
752  if (!MF.hasEHScopes())
753    return EHScopeMembership;
754
755  int EntryBBNumber = MF.front().getNumber();
756  bool IsSEH = isAsynchronousEHPersonality(
757      classifyEHPersonality(MF.getFunction().getPersonalityFn()));
758
759  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
760  SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
761  SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
762  SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
763  SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
764  for (const MachineBasicBlock &MBB : MF) {
765    if (MBB.isEHScopeEntry()) {
766      EHScopeBlocks.push_back(&MBB);
767    } else if (IsSEH && MBB.isEHPad()) {
768      SEHCatchPads.push_back(&MBB);
769    } else if (MBB.pred_empty()) {
770      UnreachableBlocks.push_back(&MBB);
771    }
772
773    MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
774
775    // CatchPads are not scopes for SEH so do not consider CatchRet to
776    // transfer control to another scope.
777    if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
778      continue;
779
780    // FIXME: SEH CatchPads are not necessarily in the parent function:
781    // they could be inside a finally block.
782    const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
783    const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
784    CatchRetSuccessors.push_back(
785        {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
786  }
787
788  // We don't have anything to do if there aren't any EH pads.
789  if (EHScopeBlocks.empty())
790    return EHScopeMembership;
791
792  // Identify all the basic blocks reachable from the function entry.
793  collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
794  // All blocks not part of a scope are in the parent function.
795  for (const MachineBasicBlock *MBB : UnreachableBlocks)
796    collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
797  // Next, identify all the blocks inside the scopes.
798  for (const MachineBasicBlock *MBB : EHScopeBlocks)
799    collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
800  // SEH CatchPads aren't really scopes, handle them separately.
801  for (const MachineBasicBlock *MBB : SEHCatchPads)
802    collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
803  // Finally, identify all the targets of a catchret.
804  for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
805       CatchRetSuccessors)
806    collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
807                          CatchRetPair.first);
808  return EHScopeMembership;
809}
810