1//===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Bitcode writer implementation.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Bitcode/BitcodeWriter.h"
14#include "ValueEnumerator.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringMap.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/Triple.h"
27#include "llvm/Bitcode/BitcodeReader.h"
28#include "llvm/Bitcode/LLVMBitCodes.h"
29#include "llvm/Bitstream/BitCodes.h"
30#include "llvm/Bitstream/BitstreamWriter.h"
31#include "llvm/Config/llvm-config.h"
32#include "llvm/IR/Attributes.h"
33#include "llvm/IR/BasicBlock.h"
34#include "llvm/IR/CallSite.h"
35#include "llvm/IR/Comdat.h"
36#include "llvm/IR/Constant.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DebugInfoMetadata.h"
39#include "llvm/IR/DebugLoc.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/GlobalAlias.h"
43#include "llvm/IR/GlobalIFunc.h"
44#include "llvm/IR/GlobalObject.h"
45#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/GlobalVariable.h"
47#include "llvm/IR/InlineAsm.h"
48#include "llvm/IR/InstrTypes.h"
49#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Instructions.h"
51#include "llvm/IR/LLVMContext.h"
52#include "llvm/IR/Metadata.h"
53#include "llvm/IR/Module.h"
54#include "llvm/IR/ModuleSummaryIndex.h"
55#include "llvm/IR/Operator.h"
56#include "llvm/IR/Type.h"
57#include "llvm/IR/UseListOrder.h"
58#include "llvm/IR/Value.h"
59#include "llvm/IR/ValueSymbolTable.h"
60#include "llvm/MC/StringTableBuilder.h"
61#include "llvm/Object/IRSymtab.h"
62#include "llvm/Support/AtomicOrdering.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Endian.h"
66#include "llvm/Support/Error.h"
67#include "llvm/Support/ErrorHandling.h"
68#include "llvm/Support/MathExtras.h"
69#include "llvm/Support/SHA1.h"
70#include "llvm/Support/TargetRegistry.h"
71#include "llvm/Support/raw_ostream.h"
72#include <algorithm>
73#include <cassert>
74#include <cstddef>
75#include <cstdint>
76#include <iterator>
77#include <map>
78#include <memory>
79#include <string>
80#include <utility>
81#include <vector>
82
83using namespace llvm;
84
85static cl::opt<unsigned>
86    IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
87                   cl::desc("Number of metadatas above which we emit an index "
88                            "to enable lazy-loading"));
89
90static cl::opt<bool> WriteRelBFToSummary(
91    "write-relbf-to-summary", cl::Hidden, cl::init(false),
92    cl::desc("Write relative block frequency to function summary "));
93
94extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
95
96namespace {
97
98/// These are manifest constants used by the bitcode writer. They do not need to
99/// be kept in sync with the reader, but need to be consistent within this file.
100enum {
101  // VALUE_SYMTAB_BLOCK abbrev id's.
102  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
103  VST_ENTRY_7_ABBREV,
104  VST_ENTRY_6_ABBREV,
105  VST_BBENTRY_6_ABBREV,
106
107  // CONSTANTS_BLOCK abbrev id's.
108  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
109  CONSTANTS_INTEGER_ABBREV,
110  CONSTANTS_CE_CAST_Abbrev,
111  CONSTANTS_NULL_Abbrev,
112
113  // FUNCTION_BLOCK abbrev id's.
114  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
115  FUNCTION_INST_UNOP_ABBREV,
116  FUNCTION_INST_UNOP_FLAGS_ABBREV,
117  FUNCTION_INST_BINOP_ABBREV,
118  FUNCTION_INST_BINOP_FLAGS_ABBREV,
119  FUNCTION_INST_CAST_ABBREV,
120  FUNCTION_INST_RET_VOID_ABBREV,
121  FUNCTION_INST_RET_VAL_ABBREV,
122  FUNCTION_INST_UNREACHABLE_ABBREV,
123  FUNCTION_INST_GEP_ABBREV,
124};
125
126/// Abstract class to manage the bitcode writing, subclassed for each bitcode
127/// file type.
128class BitcodeWriterBase {
129protected:
130  /// The stream created and owned by the client.
131  BitstreamWriter &Stream;
132
133  StringTableBuilder &StrtabBuilder;
134
135public:
136  /// Constructs a BitcodeWriterBase object that writes to the provided
137  /// \p Stream.
138  BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
139      : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
140
141protected:
142  void writeBitcodeHeader();
143  void writeModuleVersion();
144};
145
146void BitcodeWriterBase::writeModuleVersion() {
147  // VERSION: [version#]
148  Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
149}
150
151/// Base class to manage the module bitcode writing, currently subclassed for
152/// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
153class ModuleBitcodeWriterBase : public BitcodeWriterBase {
154protected:
155  /// The Module to write to bitcode.
156  const Module &M;
157
158  /// Enumerates ids for all values in the module.
159  ValueEnumerator VE;
160
161  /// Optional per-module index to write for ThinLTO.
162  const ModuleSummaryIndex *Index;
163
164  /// Map that holds the correspondence between GUIDs in the summary index,
165  /// that came from indirect call profiles, and a value id generated by this
166  /// class to use in the VST and summary block records.
167  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
168
169  /// Tracks the last value id recorded in the GUIDToValueMap.
170  unsigned GlobalValueId;
171
172  /// Saves the offset of the VSTOffset record that must eventually be
173  /// backpatched with the offset of the actual VST.
174  uint64_t VSTOffsetPlaceholder = 0;
175
176public:
177  /// Constructs a ModuleBitcodeWriterBase object for the given Module,
178  /// writing to the provided \p Buffer.
179  ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
180                          BitstreamWriter &Stream,
181                          bool ShouldPreserveUseListOrder,
182                          const ModuleSummaryIndex *Index)
183      : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
184        VE(M, ShouldPreserveUseListOrder), Index(Index) {
185    // Assign ValueIds to any callee values in the index that came from
186    // indirect call profiles and were recorded as a GUID not a Value*
187    // (which would have been assigned an ID by the ValueEnumerator).
188    // The starting ValueId is just after the number of values in the
189    // ValueEnumerator, so that they can be emitted in the VST.
190    GlobalValueId = VE.getValues().size();
191    if (!Index)
192      return;
193    for (const auto &GUIDSummaryLists : *Index)
194      // Examine all summaries for this GUID.
195      for (auto &Summary : GUIDSummaryLists.second.SummaryList)
196        if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
197          // For each call in the function summary, see if the call
198          // is to a GUID (which means it is for an indirect call,
199          // otherwise we would have a Value for it). If so, synthesize
200          // a value id.
201          for (auto &CallEdge : FS->calls())
202            if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
203              assignValueId(CallEdge.first.getGUID());
204  }
205
206protected:
207  void writePerModuleGlobalValueSummary();
208
209private:
210  void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
211                                           GlobalValueSummary *Summary,
212                                           unsigned ValueID,
213                                           unsigned FSCallsAbbrev,
214                                           unsigned FSCallsProfileAbbrev,
215                                           const Function &F);
216  void writeModuleLevelReferences(const GlobalVariable &V,
217                                  SmallVector<uint64_t, 64> &NameVals,
218                                  unsigned FSModRefsAbbrev,
219                                  unsigned FSModVTableRefsAbbrev);
220
221  void assignValueId(GlobalValue::GUID ValGUID) {
222    GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
223  }
224
225  unsigned getValueId(GlobalValue::GUID ValGUID) {
226    const auto &VMI = GUIDToValueIdMap.find(ValGUID);
227    // Expect that any GUID value had a value Id assigned by an
228    // earlier call to assignValueId.
229    assert(VMI != GUIDToValueIdMap.end() &&
230           "GUID does not have assigned value Id");
231    return VMI->second;
232  }
233
234  // Helper to get the valueId for the type of value recorded in VI.
235  unsigned getValueId(ValueInfo VI) {
236    if (!VI.haveGVs() || !VI.getValue())
237      return getValueId(VI.getGUID());
238    return VE.getValueID(VI.getValue());
239  }
240
241  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
242};
243
244/// Class to manage the bitcode writing for a module.
245class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
246  /// Pointer to the buffer allocated by caller for bitcode writing.
247  const SmallVectorImpl<char> &Buffer;
248
249  /// True if a module hash record should be written.
250  bool GenerateHash;
251
252  /// If non-null, when GenerateHash is true, the resulting hash is written
253  /// into ModHash.
254  ModuleHash *ModHash;
255
256  SHA1 Hasher;
257
258  /// The start bit of the identification block.
259  uint64_t BitcodeStartBit;
260
261public:
262  /// Constructs a ModuleBitcodeWriter object for the given Module,
263  /// writing to the provided \p Buffer.
264  ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
265                      StringTableBuilder &StrtabBuilder,
266                      BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
267                      const ModuleSummaryIndex *Index, bool GenerateHash,
268                      ModuleHash *ModHash = nullptr)
269      : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
270                                ShouldPreserveUseListOrder, Index),
271        Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
272        BitcodeStartBit(Stream.GetCurrentBitNo()) {}
273
274  /// Emit the current module to the bitstream.
275  void write();
276
277private:
278  uint64_t bitcodeStartBit() { return BitcodeStartBit; }
279
280  size_t addToStrtab(StringRef Str);
281
282  void writeAttributeGroupTable();
283  void writeAttributeTable();
284  void writeTypeTable();
285  void writeComdats();
286  void writeValueSymbolTableForwardDecl();
287  void writeModuleInfo();
288  void writeValueAsMetadata(const ValueAsMetadata *MD,
289                            SmallVectorImpl<uint64_t> &Record);
290  void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
291                    unsigned Abbrev);
292  unsigned createDILocationAbbrev();
293  void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
294                       unsigned &Abbrev);
295  unsigned createGenericDINodeAbbrev();
296  void writeGenericDINode(const GenericDINode *N,
297                          SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
298  void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
299                       unsigned Abbrev);
300  void writeDIEnumerator(const DIEnumerator *N,
301                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
302  void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
303                        unsigned Abbrev);
304  void writeDIDerivedType(const DIDerivedType *N,
305                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
306  void writeDICompositeType(const DICompositeType *N,
307                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
308  void writeDISubroutineType(const DISubroutineType *N,
309                             SmallVectorImpl<uint64_t> &Record,
310                             unsigned Abbrev);
311  void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
312                   unsigned Abbrev);
313  void writeDICompileUnit(const DICompileUnit *N,
314                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
315  void writeDISubprogram(const DISubprogram *N,
316                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
317  void writeDILexicalBlock(const DILexicalBlock *N,
318                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
319  void writeDILexicalBlockFile(const DILexicalBlockFile *N,
320                               SmallVectorImpl<uint64_t> &Record,
321                               unsigned Abbrev);
322  void writeDICommonBlock(const DICommonBlock *N,
323                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
324  void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
325                        unsigned Abbrev);
326  void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
327                    unsigned Abbrev);
328  void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
329                        unsigned Abbrev);
330  void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
331                     unsigned Abbrev);
332  void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
333                                    SmallVectorImpl<uint64_t> &Record,
334                                    unsigned Abbrev);
335  void writeDITemplateValueParameter(const DITemplateValueParameter *N,
336                                     SmallVectorImpl<uint64_t> &Record,
337                                     unsigned Abbrev);
338  void writeDIGlobalVariable(const DIGlobalVariable *N,
339                             SmallVectorImpl<uint64_t> &Record,
340                             unsigned Abbrev);
341  void writeDILocalVariable(const DILocalVariable *N,
342                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
343  void writeDILabel(const DILabel *N,
344                    SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
345  void writeDIExpression(const DIExpression *N,
346                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
347  void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
348                                       SmallVectorImpl<uint64_t> &Record,
349                                       unsigned Abbrev);
350  void writeDIObjCProperty(const DIObjCProperty *N,
351                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
352  void writeDIImportedEntity(const DIImportedEntity *N,
353                             SmallVectorImpl<uint64_t> &Record,
354                             unsigned Abbrev);
355  unsigned createNamedMetadataAbbrev();
356  void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
357  unsigned createMetadataStringsAbbrev();
358  void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
359                            SmallVectorImpl<uint64_t> &Record);
360  void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
361                            SmallVectorImpl<uint64_t> &Record,
362                            std::vector<unsigned> *MDAbbrevs = nullptr,
363                            std::vector<uint64_t> *IndexPos = nullptr);
364  void writeModuleMetadata();
365  void writeFunctionMetadata(const Function &F);
366  void writeFunctionMetadataAttachment(const Function &F);
367  void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
368  void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
369                                    const GlobalObject &GO);
370  void writeModuleMetadataKinds();
371  void writeOperandBundleTags();
372  void writeSyncScopeNames();
373  void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
374  void writeModuleConstants();
375  bool pushValueAndType(const Value *V, unsigned InstID,
376                        SmallVectorImpl<unsigned> &Vals);
377  void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
378  void pushValue(const Value *V, unsigned InstID,
379                 SmallVectorImpl<unsigned> &Vals);
380  void pushValueSigned(const Value *V, unsigned InstID,
381                       SmallVectorImpl<uint64_t> &Vals);
382  void writeInstruction(const Instruction &I, unsigned InstID,
383                        SmallVectorImpl<unsigned> &Vals);
384  void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
385  void writeGlobalValueSymbolTable(
386      DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
387  void writeUseList(UseListOrder &&Order);
388  void writeUseListBlock(const Function *F);
389  void
390  writeFunction(const Function &F,
391                DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
392  void writeBlockInfo();
393  void writeModuleHash(size_t BlockStartPos);
394
395  unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
396    return unsigned(SSID);
397  }
398};
399
400/// Class to manage the bitcode writing for a combined index.
401class IndexBitcodeWriter : public BitcodeWriterBase {
402  /// The combined index to write to bitcode.
403  const ModuleSummaryIndex &Index;
404
405  /// When writing a subset of the index for distributed backends, client
406  /// provides a map of modules to the corresponding GUIDs/summaries to write.
407  const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
408
409  /// Map that holds the correspondence between the GUID used in the combined
410  /// index and a value id generated by this class to use in references.
411  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
412
413  /// Tracks the last value id recorded in the GUIDToValueMap.
414  unsigned GlobalValueId = 0;
415
416public:
417  /// Constructs a IndexBitcodeWriter object for the given combined index,
418  /// writing to the provided \p Buffer. When writing a subset of the index
419  /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
420  IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
421                     const ModuleSummaryIndex &Index,
422                     const std::map<std::string, GVSummaryMapTy>
423                         *ModuleToSummariesForIndex = nullptr)
424      : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
425        ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
426    // Assign unique value ids to all summaries to be written, for use
427    // in writing out the call graph edges. Save the mapping from GUID
428    // to the new global value id to use when writing those edges, which
429    // are currently saved in the index in terms of GUID.
430    forEachSummary([&](GVInfo I, bool) {
431      GUIDToValueIdMap[I.first] = ++GlobalValueId;
432    });
433  }
434
435  /// The below iterator returns the GUID and associated summary.
436  using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
437
438  /// Calls the callback for each value GUID and summary to be written to
439  /// bitcode. This hides the details of whether they are being pulled from the
440  /// entire index or just those in a provided ModuleToSummariesForIndex map.
441  template<typename Functor>
442  void forEachSummary(Functor Callback) {
443    if (ModuleToSummariesForIndex) {
444      for (auto &M : *ModuleToSummariesForIndex)
445        for (auto &Summary : M.second) {
446          Callback(Summary, false);
447          // Ensure aliasee is handled, e.g. for assigning a valueId,
448          // even if we are not importing the aliasee directly (the
449          // imported alias will contain a copy of aliasee).
450          if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
451            Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
452        }
453    } else {
454      for (auto &Summaries : Index)
455        for (auto &Summary : Summaries.second.SummaryList)
456          Callback({Summaries.first, Summary.get()}, false);
457    }
458  }
459
460  /// Calls the callback for each entry in the modulePaths StringMap that
461  /// should be written to the module path string table. This hides the details
462  /// of whether they are being pulled from the entire index or just those in a
463  /// provided ModuleToSummariesForIndex map.
464  template <typename Functor> void forEachModule(Functor Callback) {
465    if (ModuleToSummariesForIndex) {
466      for (const auto &M : *ModuleToSummariesForIndex) {
467        const auto &MPI = Index.modulePaths().find(M.first);
468        if (MPI == Index.modulePaths().end()) {
469          // This should only happen if the bitcode file was empty, in which
470          // case we shouldn't be importing (the ModuleToSummariesForIndex
471          // would only include the module we are writing and index for).
472          assert(ModuleToSummariesForIndex->size() == 1);
473          continue;
474        }
475        Callback(*MPI);
476      }
477    } else {
478      for (const auto &MPSE : Index.modulePaths())
479        Callback(MPSE);
480    }
481  }
482
483  /// Main entry point for writing a combined index to bitcode.
484  void write();
485
486private:
487  void writeModStrings();
488  void writeCombinedGlobalValueSummary();
489
490  Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
491    auto VMI = GUIDToValueIdMap.find(ValGUID);
492    if (VMI == GUIDToValueIdMap.end())
493      return None;
494    return VMI->second;
495  }
496
497  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
498};
499
500} // end anonymous namespace
501
502static unsigned getEncodedCastOpcode(unsigned Opcode) {
503  switch (Opcode) {
504  default: llvm_unreachable("Unknown cast instruction!");
505  case Instruction::Trunc   : return bitc::CAST_TRUNC;
506  case Instruction::ZExt    : return bitc::CAST_ZEXT;
507  case Instruction::SExt    : return bitc::CAST_SEXT;
508  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
509  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
510  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
511  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
512  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
513  case Instruction::FPExt   : return bitc::CAST_FPEXT;
514  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
515  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
516  case Instruction::BitCast : return bitc::CAST_BITCAST;
517  case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
518  }
519}
520
521static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
522  switch (Opcode) {
523  default: llvm_unreachable("Unknown binary instruction!");
524  case Instruction::FNeg: return bitc::UNOP_FNEG;
525  }
526}
527
528static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
529  switch (Opcode) {
530  default: llvm_unreachable("Unknown binary instruction!");
531  case Instruction::Add:
532  case Instruction::FAdd: return bitc::BINOP_ADD;
533  case Instruction::Sub:
534  case Instruction::FSub: return bitc::BINOP_SUB;
535  case Instruction::Mul:
536  case Instruction::FMul: return bitc::BINOP_MUL;
537  case Instruction::UDiv: return bitc::BINOP_UDIV;
538  case Instruction::FDiv:
539  case Instruction::SDiv: return bitc::BINOP_SDIV;
540  case Instruction::URem: return bitc::BINOP_UREM;
541  case Instruction::FRem:
542  case Instruction::SRem: return bitc::BINOP_SREM;
543  case Instruction::Shl:  return bitc::BINOP_SHL;
544  case Instruction::LShr: return bitc::BINOP_LSHR;
545  case Instruction::AShr: return bitc::BINOP_ASHR;
546  case Instruction::And:  return bitc::BINOP_AND;
547  case Instruction::Or:   return bitc::BINOP_OR;
548  case Instruction::Xor:  return bitc::BINOP_XOR;
549  }
550}
551
552static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
553  switch (Op) {
554  default: llvm_unreachable("Unknown RMW operation!");
555  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
556  case AtomicRMWInst::Add: return bitc::RMW_ADD;
557  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
558  case AtomicRMWInst::And: return bitc::RMW_AND;
559  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
560  case AtomicRMWInst::Or: return bitc::RMW_OR;
561  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
562  case AtomicRMWInst::Max: return bitc::RMW_MAX;
563  case AtomicRMWInst::Min: return bitc::RMW_MIN;
564  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
565  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
566  case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
567  case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
568  }
569}
570
571static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
572  switch (Ordering) {
573  case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
574  case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
575  case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
576  case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
577  case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
578  case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
579  case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
580  }
581  llvm_unreachable("Invalid ordering");
582}
583
584static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
585                              StringRef Str, unsigned AbbrevToUse) {
586  SmallVector<unsigned, 64> Vals;
587
588  // Code: [strchar x N]
589  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
590    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
591      AbbrevToUse = 0;
592    Vals.push_back(Str[i]);
593  }
594
595  // Emit the finished record.
596  Stream.EmitRecord(Code, Vals, AbbrevToUse);
597}
598
599static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
600  switch (Kind) {
601  case Attribute::Alignment:
602    return bitc::ATTR_KIND_ALIGNMENT;
603  case Attribute::AllocSize:
604    return bitc::ATTR_KIND_ALLOC_SIZE;
605  case Attribute::AlwaysInline:
606    return bitc::ATTR_KIND_ALWAYS_INLINE;
607  case Attribute::ArgMemOnly:
608    return bitc::ATTR_KIND_ARGMEMONLY;
609  case Attribute::Builtin:
610    return bitc::ATTR_KIND_BUILTIN;
611  case Attribute::ByVal:
612    return bitc::ATTR_KIND_BY_VAL;
613  case Attribute::Convergent:
614    return bitc::ATTR_KIND_CONVERGENT;
615  case Attribute::InAlloca:
616    return bitc::ATTR_KIND_IN_ALLOCA;
617  case Attribute::Cold:
618    return bitc::ATTR_KIND_COLD;
619  case Attribute::InaccessibleMemOnly:
620    return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
621  case Attribute::InaccessibleMemOrArgMemOnly:
622    return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
623  case Attribute::InlineHint:
624    return bitc::ATTR_KIND_INLINE_HINT;
625  case Attribute::InReg:
626    return bitc::ATTR_KIND_IN_REG;
627  case Attribute::JumpTable:
628    return bitc::ATTR_KIND_JUMP_TABLE;
629  case Attribute::MinSize:
630    return bitc::ATTR_KIND_MIN_SIZE;
631  case Attribute::Naked:
632    return bitc::ATTR_KIND_NAKED;
633  case Attribute::Nest:
634    return bitc::ATTR_KIND_NEST;
635  case Attribute::NoAlias:
636    return bitc::ATTR_KIND_NO_ALIAS;
637  case Attribute::NoBuiltin:
638    return bitc::ATTR_KIND_NO_BUILTIN;
639  case Attribute::NoCapture:
640    return bitc::ATTR_KIND_NO_CAPTURE;
641  case Attribute::NoDuplicate:
642    return bitc::ATTR_KIND_NO_DUPLICATE;
643  case Attribute::NoFree:
644    return bitc::ATTR_KIND_NOFREE;
645  case Attribute::NoImplicitFloat:
646    return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
647  case Attribute::NoInline:
648    return bitc::ATTR_KIND_NO_INLINE;
649  case Attribute::NoRecurse:
650    return bitc::ATTR_KIND_NO_RECURSE;
651  case Attribute::NonLazyBind:
652    return bitc::ATTR_KIND_NON_LAZY_BIND;
653  case Attribute::NonNull:
654    return bitc::ATTR_KIND_NON_NULL;
655  case Attribute::Dereferenceable:
656    return bitc::ATTR_KIND_DEREFERENCEABLE;
657  case Attribute::DereferenceableOrNull:
658    return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
659  case Attribute::NoRedZone:
660    return bitc::ATTR_KIND_NO_RED_ZONE;
661  case Attribute::NoReturn:
662    return bitc::ATTR_KIND_NO_RETURN;
663  case Attribute::NoSync:
664    return bitc::ATTR_KIND_NOSYNC;
665  case Attribute::NoCfCheck:
666    return bitc::ATTR_KIND_NOCF_CHECK;
667  case Attribute::NoUnwind:
668    return bitc::ATTR_KIND_NO_UNWIND;
669  case Attribute::OptForFuzzing:
670    return bitc::ATTR_KIND_OPT_FOR_FUZZING;
671  case Attribute::OptimizeForSize:
672    return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
673  case Attribute::OptimizeNone:
674    return bitc::ATTR_KIND_OPTIMIZE_NONE;
675  case Attribute::ReadNone:
676    return bitc::ATTR_KIND_READ_NONE;
677  case Attribute::ReadOnly:
678    return bitc::ATTR_KIND_READ_ONLY;
679  case Attribute::Returned:
680    return bitc::ATTR_KIND_RETURNED;
681  case Attribute::ReturnsTwice:
682    return bitc::ATTR_KIND_RETURNS_TWICE;
683  case Attribute::SExt:
684    return bitc::ATTR_KIND_S_EXT;
685  case Attribute::Speculatable:
686    return bitc::ATTR_KIND_SPECULATABLE;
687  case Attribute::StackAlignment:
688    return bitc::ATTR_KIND_STACK_ALIGNMENT;
689  case Attribute::StackProtect:
690    return bitc::ATTR_KIND_STACK_PROTECT;
691  case Attribute::StackProtectReq:
692    return bitc::ATTR_KIND_STACK_PROTECT_REQ;
693  case Attribute::StackProtectStrong:
694    return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
695  case Attribute::SafeStack:
696    return bitc::ATTR_KIND_SAFESTACK;
697  case Attribute::ShadowCallStack:
698    return bitc::ATTR_KIND_SHADOWCALLSTACK;
699  case Attribute::StrictFP:
700    return bitc::ATTR_KIND_STRICT_FP;
701  case Attribute::StructRet:
702    return bitc::ATTR_KIND_STRUCT_RET;
703  case Attribute::SanitizeAddress:
704    return bitc::ATTR_KIND_SANITIZE_ADDRESS;
705  case Attribute::SanitizeHWAddress:
706    return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
707  case Attribute::SanitizeThread:
708    return bitc::ATTR_KIND_SANITIZE_THREAD;
709  case Attribute::SanitizeMemory:
710    return bitc::ATTR_KIND_SANITIZE_MEMORY;
711  case Attribute::SpeculativeLoadHardening:
712    return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
713  case Attribute::SwiftError:
714    return bitc::ATTR_KIND_SWIFT_ERROR;
715  case Attribute::SwiftSelf:
716    return bitc::ATTR_KIND_SWIFT_SELF;
717  case Attribute::UWTable:
718    return bitc::ATTR_KIND_UW_TABLE;
719  case Attribute::WillReturn:
720    return bitc::ATTR_KIND_WILLRETURN;
721  case Attribute::WriteOnly:
722    return bitc::ATTR_KIND_WRITEONLY;
723  case Attribute::ZExt:
724    return bitc::ATTR_KIND_Z_EXT;
725  case Attribute::ImmArg:
726    return bitc::ATTR_KIND_IMMARG;
727  case Attribute::SanitizeMemTag:
728    return bitc::ATTR_KIND_SANITIZE_MEMTAG;
729  case Attribute::EndAttrKinds:
730    llvm_unreachable("Can not encode end-attribute kinds marker.");
731  case Attribute::None:
732    llvm_unreachable("Can not encode none-attribute.");
733  }
734
735  llvm_unreachable("Trying to encode unknown attribute");
736}
737
738void ModuleBitcodeWriter::writeAttributeGroupTable() {
739  const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
740      VE.getAttributeGroups();
741  if (AttrGrps.empty()) return;
742
743  Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
744
745  SmallVector<uint64_t, 64> Record;
746  for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
747    unsigned AttrListIndex = Pair.first;
748    AttributeSet AS = Pair.second;
749    Record.push_back(VE.getAttributeGroupID(Pair));
750    Record.push_back(AttrListIndex);
751
752    for (Attribute Attr : AS) {
753      if (Attr.isEnumAttribute()) {
754        Record.push_back(0);
755        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
756      } else if (Attr.isIntAttribute()) {
757        Record.push_back(1);
758        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
759        Record.push_back(Attr.getValueAsInt());
760      } else if (Attr.isStringAttribute()) {
761        StringRef Kind = Attr.getKindAsString();
762        StringRef Val = Attr.getValueAsString();
763
764        Record.push_back(Val.empty() ? 3 : 4);
765        Record.append(Kind.begin(), Kind.end());
766        Record.push_back(0);
767        if (!Val.empty()) {
768          Record.append(Val.begin(), Val.end());
769          Record.push_back(0);
770        }
771      } else {
772        assert(Attr.isTypeAttribute());
773        Type *Ty = Attr.getValueAsType();
774        Record.push_back(Ty ? 6 : 5);
775        Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
776        if (Ty)
777          Record.push_back(VE.getTypeID(Attr.getValueAsType()));
778      }
779    }
780
781    Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
782    Record.clear();
783  }
784
785  Stream.ExitBlock();
786}
787
788void ModuleBitcodeWriter::writeAttributeTable() {
789  const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
790  if (Attrs.empty()) return;
791
792  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
793
794  SmallVector<uint64_t, 64> Record;
795  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
796    AttributeList AL = Attrs[i];
797    for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
798      AttributeSet AS = AL.getAttributes(i);
799      if (AS.hasAttributes())
800        Record.push_back(VE.getAttributeGroupID({i, AS}));
801    }
802
803    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
804    Record.clear();
805  }
806
807  Stream.ExitBlock();
808}
809
810/// WriteTypeTable - Write out the type table for a module.
811void ModuleBitcodeWriter::writeTypeTable() {
812  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
813
814  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
815  SmallVector<uint64_t, 64> TypeVals;
816
817  uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
818
819  // Abbrev for TYPE_CODE_POINTER.
820  auto Abbv = std::make_shared<BitCodeAbbrev>();
821  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
822  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
823  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
824  unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
825
826  // Abbrev for TYPE_CODE_FUNCTION.
827  Abbv = std::make_shared<BitCodeAbbrev>();
828  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
829  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
830  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
831  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
832  unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
833
834  // Abbrev for TYPE_CODE_STRUCT_ANON.
835  Abbv = std::make_shared<BitCodeAbbrev>();
836  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
837  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
838  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
839  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
840  unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
841
842  // Abbrev for TYPE_CODE_STRUCT_NAME.
843  Abbv = std::make_shared<BitCodeAbbrev>();
844  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
845  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
846  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
847  unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
848
849  // Abbrev for TYPE_CODE_STRUCT_NAMED.
850  Abbv = std::make_shared<BitCodeAbbrev>();
851  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
852  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
853  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
854  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
855  unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
856
857  // Abbrev for TYPE_CODE_ARRAY.
858  Abbv = std::make_shared<BitCodeAbbrev>();
859  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
860  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
861  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
862  unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
863
864  // Emit an entry count so the reader can reserve space.
865  TypeVals.push_back(TypeList.size());
866  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
867  TypeVals.clear();
868
869  // Loop over all of the types, emitting each in turn.
870  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
871    Type *T = TypeList[i];
872    int AbbrevToUse = 0;
873    unsigned Code = 0;
874
875    switch (T->getTypeID()) {
876    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
877    case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
878    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
879    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
880    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
881    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
882    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
883    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
884    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
885    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
886    case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
887    case Type::IntegerTyID:
888      // INTEGER: [width]
889      Code = bitc::TYPE_CODE_INTEGER;
890      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
891      break;
892    case Type::PointerTyID: {
893      PointerType *PTy = cast<PointerType>(T);
894      // POINTER: [pointee type, address space]
895      Code = bitc::TYPE_CODE_POINTER;
896      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
897      unsigned AddressSpace = PTy->getAddressSpace();
898      TypeVals.push_back(AddressSpace);
899      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
900      break;
901    }
902    case Type::FunctionTyID: {
903      FunctionType *FT = cast<FunctionType>(T);
904      // FUNCTION: [isvararg, retty, paramty x N]
905      Code = bitc::TYPE_CODE_FUNCTION;
906      TypeVals.push_back(FT->isVarArg());
907      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
908      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
909        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
910      AbbrevToUse = FunctionAbbrev;
911      break;
912    }
913    case Type::StructTyID: {
914      StructType *ST = cast<StructType>(T);
915      // STRUCT: [ispacked, eltty x N]
916      TypeVals.push_back(ST->isPacked());
917      // Output all of the element types.
918      for (StructType::element_iterator I = ST->element_begin(),
919           E = ST->element_end(); I != E; ++I)
920        TypeVals.push_back(VE.getTypeID(*I));
921
922      if (ST->isLiteral()) {
923        Code = bitc::TYPE_CODE_STRUCT_ANON;
924        AbbrevToUse = StructAnonAbbrev;
925      } else {
926        if (ST->isOpaque()) {
927          Code = bitc::TYPE_CODE_OPAQUE;
928        } else {
929          Code = bitc::TYPE_CODE_STRUCT_NAMED;
930          AbbrevToUse = StructNamedAbbrev;
931        }
932
933        // Emit the name if it is present.
934        if (!ST->getName().empty())
935          writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
936                            StructNameAbbrev);
937      }
938      break;
939    }
940    case Type::ArrayTyID: {
941      ArrayType *AT = cast<ArrayType>(T);
942      // ARRAY: [numelts, eltty]
943      Code = bitc::TYPE_CODE_ARRAY;
944      TypeVals.push_back(AT->getNumElements());
945      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
946      AbbrevToUse = ArrayAbbrev;
947      break;
948    }
949    case Type::VectorTyID: {
950      VectorType *VT = cast<VectorType>(T);
951      // VECTOR [numelts, eltty] or
952      //        [numelts, eltty, scalable]
953      Code = bitc::TYPE_CODE_VECTOR;
954      TypeVals.push_back(VT->getNumElements());
955      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
956      if (VT->isScalable())
957        TypeVals.push_back(VT->isScalable());
958      break;
959    }
960    }
961
962    // Emit the finished record.
963    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
964    TypeVals.clear();
965  }
966
967  Stream.ExitBlock();
968}
969
970static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
971  switch (Linkage) {
972  case GlobalValue::ExternalLinkage:
973    return 0;
974  case GlobalValue::WeakAnyLinkage:
975    return 16;
976  case GlobalValue::AppendingLinkage:
977    return 2;
978  case GlobalValue::InternalLinkage:
979    return 3;
980  case GlobalValue::LinkOnceAnyLinkage:
981    return 18;
982  case GlobalValue::ExternalWeakLinkage:
983    return 7;
984  case GlobalValue::CommonLinkage:
985    return 8;
986  case GlobalValue::PrivateLinkage:
987    return 9;
988  case GlobalValue::WeakODRLinkage:
989    return 17;
990  case GlobalValue::LinkOnceODRLinkage:
991    return 19;
992  case GlobalValue::AvailableExternallyLinkage:
993    return 12;
994  }
995  llvm_unreachable("Invalid linkage");
996}
997
998static unsigned getEncodedLinkage(const GlobalValue &GV) {
999  return getEncodedLinkage(GV.getLinkage());
1000}
1001
1002static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1003  uint64_t RawFlags = 0;
1004  RawFlags |= Flags.ReadNone;
1005  RawFlags |= (Flags.ReadOnly << 1);
1006  RawFlags |= (Flags.NoRecurse << 2);
1007  RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1008  RawFlags |= (Flags.NoInline << 4);
1009  RawFlags |= (Flags.AlwaysInline << 5);
1010  return RawFlags;
1011}
1012
1013// Decode the flags for GlobalValue in the summary
1014static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1015  uint64_t RawFlags = 0;
1016
1017  RawFlags |= Flags.NotEligibleToImport; // bool
1018  RawFlags |= (Flags.Live << 1);
1019  RawFlags |= (Flags.DSOLocal << 2);
1020  RawFlags |= (Flags.CanAutoHide << 3);
1021
1022  // Linkage don't need to be remapped at that time for the summary. Any future
1023  // change to the getEncodedLinkage() function will need to be taken into
1024  // account here as well.
1025  RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1026
1027  return RawFlags;
1028}
1029
1030static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1031  uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1);
1032  return RawFlags;
1033}
1034
1035static unsigned getEncodedVisibility(const GlobalValue &GV) {
1036  switch (GV.getVisibility()) {
1037  case GlobalValue::DefaultVisibility:   return 0;
1038  case GlobalValue::HiddenVisibility:    return 1;
1039  case GlobalValue::ProtectedVisibility: return 2;
1040  }
1041  llvm_unreachable("Invalid visibility");
1042}
1043
1044static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1045  switch (GV.getDLLStorageClass()) {
1046  case GlobalValue::DefaultStorageClass:   return 0;
1047  case GlobalValue::DLLImportStorageClass: return 1;
1048  case GlobalValue::DLLExportStorageClass: return 2;
1049  }
1050  llvm_unreachable("Invalid DLL storage class");
1051}
1052
1053static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1054  switch (GV.getThreadLocalMode()) {
1055    case GlobalVariable::NotThreadLocal:         return 0;
1056    case GlobalVariable::GeneralDynamicTLSModel: return 1;
1057    case GlobalVariable::LocalDynamicTLSModel:   return 2;
1058    case GlobalVariable::InitialExecTLSModel:    return 3;
1059    case GlobalVariable::LocalExecTLSModel:      return 4;
1060  }
1061  llvm_unreachable("Invalid TLS model");
1062}
1063
1064static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1065  switch (C.getSelectionKind()) {
1066  case Comdat::Any:
1067    return bitc::COMDAT_SELECTION_KIND_ANY;
1068  case Comdat::ExactMatch:
1069    return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1070  case Comdat::Largest:
1071    return bitc::COMDAT_SELECTION_KIND_LARGEST;
1072  case Comdat::NoDuplicates:
1073    return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1074  case Comdat::SameSize:
1075    return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1076  }
1077  llvm_unreachable("Invalid selection kind");
1078}
1079
1080static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1081  switch (GV.getUnnamedAddr()) {
1082  case GlobalValue::UnnamedAddr::None:   return 0;
1083  case GlobalValue::UnnamedAddr::Local:  return 2;
1084  case GlobalValue::UnnamedAddr::Global: return 1;
1085  }
1086  llvm_unreachable("Invalid unnamed_addr");
1087}
1088
1089size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1090  if (GenerateHash)
1091    Hasher.update(Str);
1092  return StrtabBuilder.add(Str);
1093}
1094
1095void ModuleBitcodeWriter::writeComdats() {
1096  SmallVector<unsigned, 64> Vals;
1097  for (const Comdat *C : VE.getComdats()) {
1098    // COMDAT: [strtab offset, strtab size, selection_kind]
1099    Vals.push_back(addToStrtab(C->getName()));
1100    Vals.push_back(C->getName().size());
1101    Vals.push_back(getEncodedComdatSelectionKind(*C));
1102    Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1103    Vals.clear();
1104  }
1105}
1106
1107/// Write a record that will eventually hold the word offset of the
1108/// module-level VST. For now the offset is 0, which will be backpatched
1109/// after the real VST is written. Saves the bit offset to backpatch.
1110void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1111  // Write a placeholder value in for the offset of the real VST,
1112  // which is written after the function blocks so that it can include
1113  // the offset of each function. The placeholder offset will be
1114  // updated when the real VST is written.
1115  auto Abbv = std::make_shared<BitCodeAbbrev>();
1116  Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1117  // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1118  // hold the real VST offset. Must use fixed instead of VBR as we don't
1119  // know how many VBR chunks to reserve ahead of time.
1120  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1121  unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1122
1123  // Emit the placeholder
1124  uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1125  Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1126
1127  // Compute and save the bit offset to the placeholder, which will be
1128  // patched when the real VST is written. We can simply subtract the 32-bit
1129  // fixed size from the current bit number to get the location to backpatch.
1130  VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1131}
1132
1133enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1134
1135/// Determine the encoding to use for the given string name and length.
1136static StringEncoding getStringEncoding(StringRef Str) {
1137  bool isChar6 = true;
1138  for (char C : Str) {
1139    if (isChar6)
1140      isChar6 = BitCodeAbbrevOp::isChar6(C);
1141    if ((unsigned char)C & 128)
1142      // don't bother scanning the rest.
1143      return SE_Fixed8;
1144  }
1145  if (isChar6)
1146    return SE_Char6;
1147  return SE_Fixed7;
1148}
1149
1150/// Emit top-level description of module, including target triple, inline asm,
1151/// descriptors for global variables, and function prototype info.
1152/// Returns the bit offset to backpatch with the location of the real VST.
1153void ModuleBitcodeWriter::writeModuleInfo() {
1154  // Emit various pieces of data attached to a module.
1155  if (!M.getTargetTriple().empty())
1156    writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1157                      0 /*TODO*/);
1158  const std::string &DL = M.getDataLayoutStr();
1159  if (!DL.empty())
1160    writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1161  if (!M.getModuleInlineAsm().empty())
1162    writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1163                      0 /*TODO*/);
1164
1165  // Emit information about sections and GC, computing how many there are. Also
1166  // compute the maximum alignment value.
1167  std::map<std::string, unsigned> SectionMap;
1168  std::map<std::string, unsigned> GCMap;
1169  unsigned MaxAlignment = 0;
1170  unsigned MaxGlobalType = 0;
1171  for (const GlobalValue &GV : M.globals()) {
1172    MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1173    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1174    if (GV.hasSection()) {
1175      // Give section names unique ID's.
1176      unsigned &Entry = SectionMap[GV.getSection()];
1177      if (!Entry) {
1178        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1179                          0 /*TODO*/);
1180        Entry = SectionMap.size();
1181      }
1182    }
1183  }
1184  for (const Function &F : M) {
1185    MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1186    if (F.hasSection()) {
1187      // Give section names unique ID's.
1188      unsigned &Entry = SectionMap[F.getSection()];
1189      if (!Entry) {
1190        writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1191                          0 /*TODO*/);
1192        Entry = SectionMap.size();
1193      }
1194    }
1195    if (F.hasGC()) {
1196      // Same for GC names.
1197      unsigned &Entry = GCMap[F.getGC()];
1198      if (!Entry) {
1199        writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1200                          0 /*TODO*/);
1201        Entry = GCMap.size();
1202      }
1203    }
1204  }
1205
1206  // Emit abbrev for globals, now that we know # sections and max alignment.
1207  unsigned SimpleGVarAbbrev = 0;
1208  if (!M.global_empty()) {
1209    // Add an abbrev for common globals with no visibility or thread localness.
1210    auto Abbv = std::make_shared<BitCodeAbbrev>();
1211    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1212    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1213    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1214    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1215                              Log2_32_Ceil(MaxGlobalType+1)));
1216    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1217                                                           //| explicitType << 1
1218                                                           //| constant
1219    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1220    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1221    if (MaxAlignment == 0)                                 // Alignment.
1222      Abbv->Add(BitCodeAbbrevOp(0));
1223    else {
1224      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1225      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1226                               Log2_32_Ceil(MaxEncAlignment+1)));
1227    }
1228    if (SectionMap.empty())                                    // Section.
1229      Abbv->Add(BitCodeAbbrevOp(0));
1230    else
1231      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1232                               Log2_32_Ceil(SectionMap.size()+1)));
1233    // Don't bother emitting vis + thread local.
1234    SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1235  }
1236
1237  SmallVector<unsigned, 64> Vals;
1238  // Emit the module's source file name.
1239  {
1240    StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1241    BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1242    if (Bits == SE_Char6)
1243      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1244    else if (Bits == SE_Fixed7)
1245      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1246
1247    // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1248    auto Abbv = std::make_shared<BitCodeAbbrev>();
1249    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1250    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1251    Abbv->Add(AbbrevOpToUse);
1252    unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1253
1254    for (const auto P : M.getSourceFileName())
1255      Vals.push_back((unsigned char)P);
1256
1257    // Emit the finished record.
1258    Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1259    Vals.clear();
1260  }
1261
1262  // Emit the global variable information.
1263  for (const GlobalVariable &GV : M.globals()) {
1264    unsigned AbbrevToUse = 0;
1265
1266    // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1267    //             linkage, alignment, section, visibility, threadlocal,
1268    //             unnamed_addr, externally_initialized, dllstorageclass,
1269    //             comdat, attributes, DSO_Local]
1270    Vals.push_back(addToStrtab(GV.getName()));
1271    Vals.push_back(GV.getName().size());
1272    Vals.push_back(VE.getTypeID(GV.getValueType()));
1273    Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1274    Vals.push_back(GV.isDeclaration() ? 0 :
1275                   (VE.getValueID(GV.getInitializer()) + 1));
1276    Vals.push_back(getEncodedLinkage(GV));
1277    Vals.push_back(Log2_32(GV.getAlignment())+1);
1278    Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1279    if (GV.isThreadLocal() ||
1280        GV.getVisibility() != GlobalValue::DefaultVisibility ||
1281        GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1282        GV.isExternallyInitialized() ||
1283        GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1284        GV.hasComdat() ||
1285        GV.hasAttributes() ||
1286        GV.isDSOLocal() ||
1287        GV.hasPartition()) {
1288      Vals.push_back(getEncodedVisibility(GV));
1289      Vals.push_back(getEncodedThreadLocalMode(GV));
1290      Vals.push_back(getEncodedUnnamedAddr(GV));
1291      Vals.push_back(GV.isExternallyInitialized());
1292      Vals.push_back(getEncodedDLLStorageClass(GV));
1293      Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1294
1295      auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1296      Vals.push_back(VE.getAttributeListID(AL));
1297
1298      Vals.push_back(GV.isDSOLocal());
1299      Vals.push_back(addToStrtab(GV.getPartition()));
1300      Vals.push_back(GV.getPartition().size());
1301    } else {
1302      AbbrevToUse = SimpleGVarAbbrev;
1303    }
1304
1305    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1306    Vals.clear();
1307  }
1308
1309  // Emit the function proto information.
1310  for (const Function &F : M) {
1311    // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1312    //             linkage, paramattrs, alignment, section, visibility, gc,
1313    //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1314    //             prefixdata, personalityfn, DSO_Local, addrspace]
1315    Vals.push_back(addToStrtab(F.getName()));
1316    Vals.push_back(F.getName().size());
1317    Vals.push_back(VE.getTypeID(F.getFunctionType()));
1318    Vals.push_back(F.getCallingConv());
1319    Vals.push_back(F.isDeclaration());
1320    Vals.push_back(getEncodedLinkage(F));
1321    Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1322    Vals.push_back(Log2_32(F.getAlignment())+1);
1323    Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1324    Vals.push_back(getEncodedVisibility(F));
1325    Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1326    Vals.push_back(getEncodedUnnamedAddr(F));
1327    Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1328                                       : 0);
1329    Vals.push_back(getEncodedDLLStorageClass(F));
1330    Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1331    Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1332                                     : 0);
1333    Vals.push_back(
1334        F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1335
1336    Vals.push_back(F.isDSOLocal());
1337    Vals.push_back(F.getAddressSpace());
1338    Vals.push_back(addToStrtab(F.getPartition()));
1339    Vals.push_back(F.getPartition().size());
1340
1341    unsigned AbbrevToUse = 0;
1342    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1343    Vals.clear();
1344  }
1345
1346  // Emit the alias information.
1347  for (const GlobalAlias &A : M.aliases()) {
1348    // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1349    //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1350    //         DSO_Local]
1351    Vals.push_back(addToStrtab(A.getName()));
1352    Vals.push_back(A.getName().size());
1353    Vals.push_back(VE.getTypeID(A.getValueType()));
1354    Vals.push_back(A.getType()->getAddressSpace());
1355    Vals.push_back(VE.getValueID(A.getAliasee()));
1356    Vals.push_back(getEncodedLinkage(A));
1357    Vals.push_back(getEncodedVisibility(A));
1358    Vals.push_back(getEncodedDLLStorageClass(A));
1359    Vals.push_back(getEncodedThreadLocalMode(A));
1360    Vals.push_back(getEncodedUnnamedAddr(A));
1361    Vals.push_back(A.isDSOLocal());
1362    Vals.push_back(addToStrtab(A.getPartition()));
1363    Vals.push_back(A.getPartition().size());
1364
1365    unsigned AbbrevToUse = 0;
1366    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1367    Vals.clear();
1368  }
1369
1370  // Emit the ifunc information.
1371  for (const GlobalIFunc &I : M.ifuncs()) {
1372    // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1373    //         val#, linkage, visibility, DSO_Local]
1374    Vals.push_back(addToStrtab(I.getName()));
1375    Vals.push_back(I.getName().size());
1376    Vals.push_back(VE.getTypeID(I.getValueType()));
1377    Vals.push_back(I.getType()->getAddressSpace());
1378    Vals.push_back(VE.getValueID(I.getResolver()));
1379    Vals.push_back(getEncodedLinkage(I));
1380    Vals.push_back(getEncodedVisibility(I));
1381    Vals.push_back(I.isDSOLocal());
1382    Vals.push_back(addToStrtab(I.getPartition()));
1383    Vals.push_back(I.getPartition().size());
1384    Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1385    Vals.clear();
1386  }
1387
1388  writeValueSymbolTableForwardDecl();
1389}
1390
1391static uint64_t getOptimizationFlags(const Value *V) {
1392  uint64_t Flags = 0;
1393
1394  if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1395    if (OBO->hasNoSignedWrap())
1396      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1397    if (OBO->hasNoUnsignedWrap())
1398      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1399  } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1400    if (PEO->isExact())
1401      Flags |= 1 << bitc::PEO_EXACT;
1402  } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1403    if (FPMO->hasAllowReassoc())
1404      Flags |= bitc::AllowReassoc;
1405    if (FPMO->hasNoNaNs())
1406      Flags |= bitc::NoNaNs;
1407    if (FPMO->hasNoInfs())
1408      Flags |= bitc::NoInfs;
1409    if (FPMO->hasNoSignedZeros())
1410      Flags |= bitc::NoSignedZeros;
1411    if (FPMO->hasAllowReciprocal())
1412      Flags |= bitc::AllowReciprocal;
1413    if (FPMO->hasAllowContract())
1414      Flags |= bitc::AllowContract;
1415    if (FPMO->hasApproxFunc())
1416      Flags |= bitc::ApproxFunc;
1417  }
1418
1419  return Flags;
1420}
1421
1422void ModuleBitcodeWriter::writeValueAsMetadata(
1423    const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1424  // Mimic an MDNode with a value as one operand.
1425  Value *V = MD->getValue();
1426  Record.push_back(VE.getTypeID(V->getType()));
1427  Record.push_back(VE.getValueID(V));
1428  Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1429  Record.clear();
1430}
1431
1432void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1433                                       SmallVectorImpl<uint64_t> &Record,
1434                                       unsigned Abbrev) {
1435  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1436    Metadata *MD = N->getOperand(i);
1437    assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1438           "Unexpected function-local metadata");
1439    Record.push_back(VE.getMetadataOrNullID(MD));
1440  }
1441  Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1442                                    : bitc::METADATA_NODE,
1443                    Record, Abbrev);
1444  Record.clear();
1445}
1446
1447unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1448  // Assume the column is usually under 128, and always output the inlined-at
1449  // location (it's never more expensive than building an array size 1).
1450  auto Abbv = std::make_shared<BitCodeAbbrev>();
1451  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1452  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1453  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1454  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1455  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1456  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1457  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1458  return Stream.EmitAbbrev(std::move(Abbv));
1459}
1460
1461void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1462                                          SmallVectorImpl<uint64_t> &Record,
1463                                          unsigned &Abbrev) {
1464  if (!Abbrev)
1465    Abbrev = createDILocationAbbrev();
1466
1467  Record.push_back(N->isDistinct());
1468  Record.push_back(N->getLine());
1469  Record.push_back(N->getColumn());
1470  Record.push_back(VE.getMetadataID(N->getScope()));
1471  Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1472  Record.push_back(N->isImplicitCode());
1473
1474  Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1475  Record.clear();
1476}
1477
1478unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1479  // Assume the column is usually under 128, and always output the inlined-at
1480  // location (it's never more expensive than building an array size 1).
1481  auto Abbv = std::make_shared<BitCodeAbbrev>();
1482  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1483  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1484  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1485  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1486  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1487  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1488  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1489  return Stream.EmitAbbrev(std::move(Abbv));
1490}
1491
1492void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1493                                             SmallVectorImpl<uint64_t> &Record,
1494                                             unsigned &Abbrev) {
1495  if (!Abbrev)
1496    Abbrev = createGenericDINodeAbbrev();
1497
1498  Record.push_back(N->isDistinct());
1499  Record.push_back(N->getTag());
1500  Record.push_back(0); // Per-tag version field; unused for now.
1501
1502  for (auto &I : N->operands())
1503    Record.push_back(VE.getMetadataOrNullID(I));
1504
1505  Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1506  Record.clear();
1507}
1508
1509static uint64_t rotateSign(int64_t I) {
1510  uint64_t U = I;
1511  return I < 0 ? ~(U << 1) : U << 1;
1512}
1513
1514void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1515                                          SmallVectorImpl<uint64_t> &Record,
1516                                          unsigned Abbrev) {
1517  const uint64_t Version = 1 << 1;
1518  Record.push_back((uint64_t)N->isDistinct() | Version);
1519  Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1520  Record.push_back(rotateSign(N->getLowerBound()));
1521
1522  Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1523  Record.clear();
1524}
1525
1526void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1527                                            SmallVectorImpl<uint64_t> &Record,
1528                                            unsigned Abbrev) {
1529  Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1530  Record.push_back(rotateSign(N->getValue()));
1531  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1532
1533  Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1534  Record.clear();
1535}
1536
1537void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1538                                           SmallVectorImpl<uint64_t> &Record,
1539                                           unsigned Abbrev) {
1540  Record.push_back(N->isDistinct());
1541  Record.push_back(N->getTag());
1542  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1543  Record.push_back(N->getSizeInBits());
1544  Record.push_back(N->getAlignInBits());
1545  Record.push_back(N->getEncoding());
1546  Record.push_back(N->getFlags());
1547
1548  Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1549  Record.clear();
1550}
1551
1552void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1553                                             SmallVectorImpl<uint64_t> &Record,
1554                                             unsigned Abbrev) {
1555  Record.push_back(N->isDistinct());
1556  Record.push_back(N->getTag());
1557  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1558  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1559  Record.push_back(N->getLine());
1560  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1561  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1562  Record.push_back(N->getSizeInBits());
1563  Record.push_back(N->getAlignInBits());
1564  Record.push_back(N->getOffsetInBits());
1565  Record.push_back(N->getFlags());
1566  Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1567
1568  // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1569  // that there is no DWARF address space associated with DIDerivedType.
1570  if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1571    Record.push_back(*DWARFAddressSpace + 1);
1572  else
1573    Record.push_back(0);
1574
1575  Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1576  Record.clear();
1577}
1578
1579void ModuleBitcodeWriter::writeDICompositeType(
1580    const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1581    unsigned Abbrev) {
1582  const unsigned IsNotUsedInOldTypeRef = 0x2;
1583  Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1584  Record.push_back(N->getTag());
1585  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1586  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1587  Record.push_back(N->getLine());
1588  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1589  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1590  Record.push_back(N->getSizeInBits());
1591  Record.push_back(N->getAlignInBits());
1592  Record.push_back(N->getOffsetInBits());
1593  Record.push_back(N->getFlags());
1594  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1595  Record.push_back(N->getRuntimeLang());
1596  Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1597  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1598  Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1599  Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1600
1601  Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1602  Record.clear();
1603}
1604
1605void ModuleBitcodeWriter::writeDISubroutineType(
1606    const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1607    unsigned Abbrev) {
1608  const unsigned HasNoOldTypeRefs = 0x2;
1609  Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1610  Record.push_back(N->getFlags());
1611  Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1612  Record.push_back(N->getCC());
1613
1614  Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1615  Record.clear();
1616}
1617
1618void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1619                                      SmallVectorImpl<uint64_t> &Record,
1620                                      unsigned Abbrev) {
1621  Record.push_back(N->isDistinct());
1622  Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1623  Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1624  if (N->getRawChecksum()) {
1625    Record.push_back(N->getRawChecksum()->Kind);
1626    Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1627  } else {
1628    // Maintain backwards compatibility with the old internal representation of
1629    // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1630    Record.push_back(0);
1631    Record.push_back(VE.getMetadataOrNullID(nullptr));
1632  }
1633  auto Source = N->getRawSource();
1634  if (Source)
1635    Record.push_back(VE.getMetadataOrNullID(*Source));
1636
1637  Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1638  Record.clear();
1639}
1640
1641void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1642                                             SmallVectorImpl<uint64_t> &Record,
1643                                             unsigned Abbrev) {
1644  assert(N->isDistinct() && "Expected distinct compile units");
1645  Record.push_back(/* IsDistinct */ true);
1646  Record.push_back(N->getSourceLanguage());
1647  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1648  Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1649  Record.push_back(N->isOptimized());
1650  Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1651  Record.push_back(N->getRuntimeVersion());
1652  Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1653  Record.push_back(N->getEmissionKind());
1654  Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1655  Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1656  Record.push_back(/* subprograms */ 0);
1657  Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1658  Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1659  Record.push_back(N->getDWOId());
1660  Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1661  Record.push_back(N->getSplitDebugInlining());
1662  Record.push_back(N->getDebugInfoForProfiling());
1663  Record.push_back((unsigned)N->getNameTableKind());
1664
1665  Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1666  Record.clear();
1667}
1668
1669void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1670                                            SmallVectorImpl<uint64_t> &Record,
1671                                            unsigned Abbrev) {
1672  const uint64_t HasUnitFlag = 1 << 1;
1673  const uint64_t HasSPFlagsFlag = 1 << 2;
1674  Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1675  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1676  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1677  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1678  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1679  Record.push_back(N->getLine());
1680  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1681  Record.push_back(N->getScopeLine());
1682  Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1683  Record.push_back(N->getSPFlags());
1684  Record.push_back(N->getVirtualIndex());
1685  Record.push_back(N->getFlags());
1686  Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1687  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1688  Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1689  Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1690  Record.push_back(N->getThisAdjustment());
1691  Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1692
1693  Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1694  Record.clear();
1695}
1696
1697void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1698                                              SmallVectorImpl<uint64_t> &Record,
1699                                              unsigned Abbrev) {
1700  Record.push_back(N->isDistinct());
1701  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1702  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1703  Record.push_back(N->getLine());
1704  Record.push_back(N->getColumn());
1705
1706  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1707  Record.clear();
1708}
1709
1710void ModuleBitcodeWriter::writeDILexicalBlockFile(
1711    const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1712    unsigned Abbrev) {
1713  Record.push_back(N->isDistinct());
1714  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1715  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1716  Record.push_back(N->getDiscriminator());
1717
1718  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1719  Record.clear();
1720}
1721
1722void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1723                                             SmallVectorImpl<uint64_t> &Record,
1724                                             unsigned Abbrev) {
1725  Record.push_back(N->isDistinct());
1726  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1727  Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1728  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1729  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1730  Record.push_back(N->getLineNo());
1731
1732  Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1733  Record.clear();
1734}
1735
1736void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1737                                           SmallVectorImpl<uint64_t> &Record,
1738                                           unsigned Abbrev) {
1739  Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1740  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1741  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1742
1743  Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1744  Record.clear();
1745}
1746
1747void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1748                                       SmallVectorImpl<uint64_t> &Record,
1749                                       unsigned Abbrev) {
1750  Record.push_back(N->isDistinct());
1751  Record.push_back(N->getMacinfoType());
1752  Record.push_back(N->getLine());
1753  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1754  Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1755
1756  Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1757  Record.clear();
1758}
1759
1760void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1761                                           SmallVectorImpl<uint64_t> &Record,
1762                                           unsigned Abbrev) {
1763  Record.push_back(N->isDistinct());
1764  Record.push_back(N->getMacinfoType());
1765  Record.push_back(N->getLine());
1766  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1767  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1768
1769  Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1770  Record.clear();
1771}
1772
1773void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1774                                        SmallVectorImpl<uint64_t> &Record,
1775                                        unsigned Abbrev) {
1776  Record.push_back(N->isDistinct());
1777  for (auto &I : N->operands())
1778    Record.push_back(VE.getMetadataOrNullID(I));
1779
1780  Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1781  Record.clear();
1782}
1783
1784void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1785    const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1786    unsigned Abbrev) {
1787  Record.push_back(N->isDistinct());
1788  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1789  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1790
1791  Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1792  Record.clear();
1793}
1794
1795void ModuleBitcodeWriter::writeDITemplateValueParameter(
1796    const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1797    unsigned Abbrev) {
1798  Record.push_back(N->isDistinct());
1799  Record.push_back(N->getTag());
1800  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1801  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1802  Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1803
1804  Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1805  Record.clear();
1806}
1807
1808void ModuleBitcodeWriter::writeDIGlobalVariable(
1809    const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1810    unsigned Abbrev) {
1811  const uint64_t Version = 2 << 1;
1812  Record.push_back((uint64_t)N->isDistinct() | Version);
1813  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1814  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1815  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1816  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1817  Record.push_back(N->getLine());
1818  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1819  Record.push_back(N->isLocalToUnit());
1820  Record.push_back(N->isDefinition());
1821  Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1822  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1823  Record.push_back(N->getAlignInBits());
1824
1825  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1826  Record.clear();
1827}
1828
1829void ModuleBitcodeWriter::writeDILocalVariable(
1830    const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1831    unsigned Abbrev) {
1832  // In order to support all possible bitcode formats in BitcodeReader we need
1833  // to distinguish the following cases:
1834  // 1) Record has no artificial tag (Record[1]),
1835  //   has no obsolete inlinedAt field (Record[9]).
1836  //   In this case Record size will be 8, HasAlignment flag is false.
1837  // 2) Record has artificial tag (Record[1]),
1838  //   has no obsolete inlignedAt field (Record[9]).
1839  //   In this case Record size will be 9, HasAlignment flag is false.
1840  // 3) Record has both artificial tag (Record[1]) and
1841  //   obsolete inlignedAt field (Record[9]).
1842  //   In this case Record size will be 10, HasAlignment flag is false.
1843  // 4) Record has neither artificial tag, nor inlignedAt field, but
1844  //   HasAlignment flag is true and Record[8] contains alignment value.
1845  const uint64_t HasAlignmentFlag = 1 << 1;
1846  Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1847  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1848  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1849  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1850  Record.push_back(N->getLine());
1851  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1852  Record.push_back(N->getArg());
1853  Record.push_back(N->getFlags());
1854  Record.push_back(N->getAlignInBits());
1855
1856  Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1857  Record.clear();
1858}
1859
1860void ModuleBitcodeWriter::writeDILabel(
1861    const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1862    unsigned Abbrev) {
1863  Record.push_back((uint64_t)N->isDistinct());
1864  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1865  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1866  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1867  Record.push_back(N->getLine());
1868
1869  Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1870  Record.clear();
1871}
1872
1873void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1874                                            SmallVectorImpl<uint64_t> &Record,
1875                                            unsigned Abbrev) {
1876  Record.reserve(N->getElements().size() + 1);
1877  const uint64_t Version = 3 << 1;
1878  Record.push_back((uint64_t)N->isDistinct() | Version);
1879  Record.append(N->elements_begin(), N->elements_end());
1880
1881  Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1882  Record.clear();
1883}
1884
1885void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1886    const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1887    unsigned Abbrev) {
1888  Record.push_back(N->isDistinct());
1889  Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1890  Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1891
1892  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1893  Record.clear();
1894}
1895
1896void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1897                                              SmallVectorImpl<uint64_t> &Record,
1898                                              unsigned Abbrev) {
1899  Record.push_back(N->isDistinct());
1900  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1901  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1902  Record.push_back(N->getLine());
1903  Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1904  Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1905  Record.push_back(N->getAttributes());
1906  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1907
1908  Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1909  Record.clear();
1910}
1911
1912void ModuleBitcodeWriter::writeDIImportedEntity(
1913    const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1914    unsigned Abbrev) {
1915  Record.push_back(N->isDistinct());
1916  Record.push_back(N->getTag());
1917  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1918  Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1919  Record.push_back(N->getLine());
1920  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1921  Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1922
1923  Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1924  Record.clear();
1925}
1926
1927unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1928  auto Abbv = std::make_shared<BitCodeAbbrev>();
1929  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1930  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1931  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1932  return Stream.EmitAbbrev(std::move(Abbv));
1933}
1934
1935void ModuleBitcodeWriter::writeNamedMetadata(
1936    SmallVectorImpl<uint64_t> &Record) {
1937  if (M.named_metadata_empty())
1938    return;
1939
1940  unsigned Abbrev = createNamedMetadataAbbrev();
1941  for (const NamedMDNode &NMD : M.named_metadata()) {
1942    // Write name.
1943    StringRef Str = NMD.getName();
1944    Record.append(Str.bytes_begin(), Str.bytes_end());
1945    Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1946    Record.clear();
1947
1948    // Write named metadata operands.
1949    for (const MDNode *N : NMD.operands())
1950      Record.push_back(VE.getMetadataID(N));
1951    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1952    Record.clear();
1953  }
1954}
1955
1956unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1957  auto Abbv = std::make_shared<BitCodeAbbrev>();
1958  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1959  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1960  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1961  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1962  return Stream.EmitAbbrev(std::move(Abbv));
1963}
1964
1965/// Write out a record for MDString.
1966///
1967/// All the metadata strings in a metadata block are emitted in a single
1968/// record.  The sizes and strings themselves are shoved into a blob.
1969void ModuleBitcodeWriter::writeMetadataStrings(
1970    ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1971  if (Strings.empty())
1972    return;
1973
1974  // Start the record with the number of strings.
1975  Record.push_back(bitc::METADATA_STRINGS);
1976  Record.push_back(Strings.size());
1977
1978  // Emit the sizes of the strings in the blob.
1979  SmallString<256> Blob;
1980  {
1981    BitstreamWriter W(Blob);
1982    for (const Metadata *MD : Strings)
1983      W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1984    W.FlushToWord();
1985  }
1986
1987  // Add the offset to the strings to the record.
1988  Record.push_back(Blob.size());
1989
1990  // Add the strings to the blob.
1991  for (const Metadata *MD : Strings)
1992    Blob.append(cast<MDString>(MD)->getString());
1993
1994  // Emit the final record.
1995  Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1996  Record.clear();
1997}
1998
1999// Generates an enum to use as an index in the Abbrev array of Metadata record.
2000enum MetadataAbbrev : unsigned {
2001#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2002#include "llvm/IR/Metadata.def"
2003  LastPlusOne
2004};
2005
2006void ModuleBitcodeWriter::writeMetadataRecords(
2007    ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2008    std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2009  if (MDs.empty())
2010    return;
2011
2012  // Initialize MDNode abbreviations.
2013#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2014#include "llvm/IR/Metadata.def"
2015
2016  for (const Metadata *MD : MDs) {
2017    if (IndexPos)
2018      IndexPos->push_back(Stream.GetCurrentBitNo());
2019    if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2020      assert(N->isResolved() && "Expected forward references to be resolved");
2021
2022      switch (N->getMetadataID()) {
2023      default:
2024        llvm_unreachable("Invalid MDNode subclass");
2025#define HANDLE_MDNODE_LEAF(CLASS)                                              \
2026  case Metadata::CLASS##Kind:                                                  \
2027    if (MDAbbrevs)                                                             \
2028      write##CLASS(cast<CLASS>(N), Record,                                     \
2029                   (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2030    else                                                                       \
2031      write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2032    continue;
2033#include "llvm/IR/Metadata.def"
2034      }
2035    }
2036    writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2037  }
2038}
2039
2040void ModuleBitcodeWriter::writeModuleMetadata() {
2041  if (!VE.hasMDs() && M.named_metadata_empty())
2042    return;
2043
2044  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2045  SmallVector<uint64_t, 64> Record;
2046
2047  // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2048  // block and load any metadata.
2049  std::vector<unsigned> MDAbbrevs;
2050
2051  MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2052  MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2053  MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2054      createGenericDINodeAbbrev();
2055
2056  auto Abbv = std::make_shared<BitCodeAbbrev>();
2057  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2058  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2059  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2060  unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2061
2062  Abbv = std::make_shared<BitCodeAbbrev>();
2063  Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2064  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2065  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2066  unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2067
2068  // Emit MDStrings together upfront.
2069  writeMetadataStrings(VE.getMDStrings(), Record);
2070
2071  // We only emit an index for the metadata record if we have more than a given
2072  // (naive) threshold of metadatas, otherwise it is not worth it.
2073  if (VE.getNonMDStrings().size() > IndexThreshold) {
2074    // Write a placeholder value in for the offset of the metadata index,
2075    // which is written after the records, so that it can include
2076    // the offset of each entry. The placeholder offset will be
2077    // updated after all records are emitted.
2078    uint64_t Vals[] = {0, 0};
2079    Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2080  }
2081
2082  // Compute and save the bit offset to the current position, which will be
2083  // patched when we emit the index later. We can simply subtract the 64-bit
2084  // fixed size from the current bit number to get the location to backpatch.
2085  uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2086
2087  // This index will contain the bitpos for each individual record.
2088  std::vector<uint64_t> IndexPos;
2089  IndexPos.reserve(VE.getNonMDStrings().size());
2090
2091  // Write all the records
2092  writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2093
2094  if (VE.getNonMDStrings().size() > IndexThreshold) {
2095    // Now that we have emitted all the records we will emit the index. But
2096    // first
2097    // backpatch the forward reference so that the reader can skip the records
2098    // efficiently.
2099    Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2100                           Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2101
2102    // Delta encode the index.
2103    uint64_t PreviousValue = IndexOffsetRecordBitPos;
2104    for (auto &Elt : IndexPos) {
2105      auto EltDelta = Elt - PreviousValue;
2106      PreviousValue = Elt;
2107      Elt = EltDelta;
2108    }
2109    // Emit the index record.
2110    Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2111    IndexPos.clear();
2112  }
2113
2114  // Write the named metadata now.
2115  writeNamedMetadata(Record);
2116
2117  auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2118    SmallVector<uint64_t, 4> Record;
2119    Record.push_back(VE.getValueID(&GO));
2120    pushGlobalMetadataAttachment(Record, GO);
2121    Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2122  };
2123  for (const Function &F : M)
2124    if (F.isDeclaration() && F.hasMetadata())
2125      AddDeclAttachedMetadata(F);
2126  // FIXME: Only store metadata for declarations here, and move data for global
2127  // variable definitions to a separate block (PR28134).
2128  for (const GlobalVariable &GV : M.globals())
2129    if (GV.hasMetadata())
2130      AddDeclAttachedMetadata(GV);
2131
2132  Stream.ExitBlock();
2133}
2134
2135void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2136  if (!VE.hasMDs())
2137    return;
2138
2139  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2140  SmallVector<uint64_t, 64> Record;
2141  writeMetadataStrings(VE.getMDStrings(), Record);
2142  writeMetadataRecords(VE.getNonMDStrings(), Record);
2143  Stream.ExitBlock();
2144}
2145
2146void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2147    SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2148  // [n x [id, mdnode]]
2149  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2150  GO.getAllMetadata(MDs);
2151  for (const auto &I : MDs) {
2152    Record.push_back(I.first);
2153    Record.push_back(VE.getMetadataID(I.second));
2154  }
2155}
2156
2157void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2158  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2159
2160  SmallVector<uint64_t, 64> Record;
2161
2162  if (F.hasMetadata()) {
2163    pushGlobalMetadataAttachment(Record, F);
2164    Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2165    Record.clear();
2166  }
2167
2168  // Write metadata attachments
2169  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2170  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2171  for (const BasicBlock &BB : F)
2172    for (const Instruction &I : BB) {
2173      MDs.clear();
2174      I.getAllMetadataOtherThanDebugLoc(MDs);
2175
2176      // If no metadata, ignore instruction.
2177      if (MDs.empty()) continue;
2178
2179      Record.push_back(VE.getInstructionID(&I));
2180
2181      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2182        Record.push_back(MDs[i].first);
2183        Record.push_back(VE.getMetadataID(MDs[i].second));
2184      }
2185      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2186      Record.clear();
2187    }
2188
2189  Stream.ExitBlock();
2190}
2191
2192void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2193  SmallVector<uint64_t, 64> Record;
2194
2195  // Write metadata kinds
2196  // METADATA_KIND - [n x [id, name]]
2197  SmallVector<StringRef, 8> Names;
2198  M.getMDKindNames(Names);
2199
2200  if (Names.empty()) return;
2201
2202  Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2203
2204  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2205    Record.push_back(MDKindID);
2206    StringRef KName = Names[MDKindID];
2207    Record.append(KName.begin(), KName.end());
2208
2209    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2210    Record.clear();
2211  }
2212
2213  Stream.ExitBlock();
2214}
2215
2216void ModuleBitcodeWriter::writeOperandBundleTags() {
2217  // Write metadata kinds
2218  //
2219  // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2220  //
2221  // OPERAND_BUNDLE_TAG - [strchr x N]
2222
2223  SmallVector<StringRef, 8> Tags;
2224  M.getOperandBundleTags(Tags);
2225
2226  if (Tags.empty())
2227    return;
2228
2229  Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2230
2231  SmallVector<uint64_t, 64> Record;
2232
2233  for (auto Tag : Tags) {
2234    Record.append(Tag.begin(), Tag.end());
2235
2236    Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2237    Record.clear();
2238  }
2239
2240  Stream.ExitBlock();
2241}
2242
2243void ModuleBitcodeWriter::writeSyncScopeNames() {
2244  SmallVector<StringRef, 8> SSNs;
2245  M.getContext().getSyncScopeNames(SSNs);
2246  if (SSNs.empty())
2247    return;
2248
2249  Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2250
2251  SmallVector<uint64_t, 64> Record;
2252  for (auto SSN : SSNs) {
2253    Record.append(SSN.begin(), SSN.end());
2254    Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2255    Record.clear();
2256  }
2257
2258  Stream.ExitBlock();
2259}
2260
2261static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2262  if ((int64_t)V >= 0)
2263    Vals.push_back(V << 1);
2264  else
2265    Vals.push_back((-V << 1) | 1);
2266}
2267
2268void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2269                                         bool isGlobal) {
2270  if (FirstVal == LastVal) return;
2271
2272  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2273
2274  unsigned AggregateAbbrev = 0;
2275  unsigned String8Abbrev = 0;
2276  unsigned CString7Abbrev = 0;
2277  unsigned CString6Abbrev = 0;
2278  // If this is a constant pool for the module, emit module-specific abbrevs.
2279  if (isGlobal) {
2280    // Abbrev for CST_CODE_AGGREGATE.
2281    auto Abbv = std::make_shared<BitCodeAbbrev>();
2282    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2283    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2284    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2285    AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2286
2287    // Abbrev for CST_CODE_STRING.
2288    Abbv = std::make_shared<BitCodeAbbrev>();
2289    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2290    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2291    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2292    String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2293    // Abbrev for CST_CODE_CSTRING.
2294    Abbv = std::make_shared<BitCodeAbbrev>();
2295    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2296    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2297    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2298    CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2299    // Abbrev for CST_CODE_CSTRING.
2300    Abbv = std::make_shared<BitCodeAbbrev>();
2301    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2302    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2303    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2304    CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2305  }
2306
2307  SmallVector<uint64_t, 64> Record;
2308
2309  const ValueEnumerator::ValueList &Vals = VE.getValues();
2310  Type *LastTy = nullptr;
2311  for (unsigned i = FirstVal; i != LastVal; ++i) {
2312    const Value *V = Vals[i].first;
2313    // If we need to switch types, do so now.
2314    if (V->getType() != LastTy) {
2315      LastTy = V->getType();
2316      Record.push_back(VE.getTypeID(LastTy));
2317      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2318                        CONSTANTS_SETTYPE_ABBREV);
2319      Record.clear();
2320    }
2321
2322    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2323      Record.push_back(unsigned(IA->hasSideEffects()) |
2324                       unsigned(IA->isAlignStack()) << 1 |
2325                       unsigned(IA->getDialect()&1) << 2);
2326
2327      // Add the asm string.
2328      const std::string &AsmStr = IA->getAsmString();
2329      Record.push_back(AsmStr.size());
2330      Record.append(AsmStr.begin(), AsmStr.end());
2331
2332      // Add the constraint string.
2333      const std::string &ConstraintStr = IA->getConstraintString();
2334      Record.push_back(ConstraintStr.size());
2335      Record.append(ConstraintStr.begin(), ConstraintStr.end());
2336      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2337      Record.clear();
2338      continue;
2339    }
2340    const Constant *C = cast<Constant>(V);
2341    unsigned Code = -1U;
2342    unsigned AbbrevToUse = 0;
2343    if (C->isNullValue()) {
2344      Code = bitc::CST_CODE_NULL;
2345    } else if (isa<UndefValue>(C)) {
2346      Code = bitc::CST_CODE_UNDEF;
2347    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2348      if (IV->getBitWidth() <= 64) {
2349        uint64_t V = IV->getSExtValue();
2350        emitSignedInt64(Record, V);
2351        Code = bitc::CST_CODE_INTEGER;
2352        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2353      } else {                             // Wide integers, > 64 bits in size.
2354        // We have an arbitrary precision integer value to write whose
2355        // bit width is > 64. However, in canonical unsigned integer
2356        // format it is likely that the high bits are going to be zero.
2357        // So, we only write the number of active words.
2358        unsigned NWords = IV->getValue().getActiveWords();
2359        const uint64_t *RawWords = IV->getValue().getRawData();
2360        for (unsigned i = 0; i != NWords; ++i) {
2361          emitSignedInt64(Record, RawWords[i]);
2362        }
2363        Code = bitc::CST_CODE_WIDE_INTEGER;
2364      }
2365    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2366      Code = bitc::CST_CODE_FLOAT;
2367      Type *Ty = CFP->getType();
2368      if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2369        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2370      } else if (Ty->isX86_FP80Ty()) {
2371        // api needed to prevent premature destruction
2372        // bits are not in the same order as a normal i80 APInt, compensate.
2373        APInt api = CFP->getValueAPF().bitcastToAPInt();
2374        const uint64_t *p = api.getRawData();
2375        Record.push_back((p[1] << 48) | (p[0] >> 16));
2376        Record.push_back(p[0] & 0xffffLL);
2377      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2378        APInt api = CFP->getValueAPF().bitcastToAPInt();
2379        const uint64_t *p = api.getRawData();
2380        Record.push_back(p[0]);
2381        Record.push_back(p[1]);
2382      } else {
2383        assert(0 && "Unknown FP type!");
2384      }
2385    } else if (isa<ConstantDataSequential>(C) &&
2386               cast<ConstantDataSequential>(C)->isString()) {
2387      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2388      // Emit constant strings specially.
2389      unsigned NumElts = Str->getNumElements();
2390      // If this is a null-terminated string, use the denser CSTRING encoding.
2391      if (Str->isCString()) {
2392        Code = bitc::CST_CODE_CSTRING;
2393        --NumElts;  // Don't encode the null, which isn't allowed by char6.
2394      } else {
2395        Code = bitc::CST_CODE_STRING;
2396        AbbrevToUse = String8Abbrev;
2397      }
2398      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2399      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2400      for (unsigned i = 0; i != NumElts; ++i) {
2401        unsigned char V = Str->getElementAsInteger(i);
2402        Record.push_back(V);
2403        isCStr7 &= (V & 128) == 0;
2404        if (isCStrChar6)
2405          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2406      }
2407
2408      if (isCStrChar6)
2409        AbbrevToUse = CString6Abbrev;
2410      else if (isCStr7)
2411        AbbrevToUse = CString7Abbrev;
2412    } else if (const ConstantDataSequential *CDS =
2413                  dyn_cast<ConstantDataSequential>(C)) {
2414      Code = bitc::CST_CODE_DATA;
2415      Type *EltTy = CDS->getType()->getElementType();
2416      if (isa<IntegerType>(EltTy)) {
2417        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2418          Record.push_back(CDS->getElementAsInteger(i));
2419      } else {
2420        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2421          Record.push_back(
2422              CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2423      }
2424    } else if (isa<ConstantAggregate>(C)) {
2425      Code = bitc::CST_CODE_AGGREGATE;
2426      for (const Value *Op : C->operands())
2427        Record.push_back(VE.getValueID(Op));
2428      AbbrevToUse = AggregateAbbrev;
2429    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2430      switch (CE->getOpcode()) {
2431      default:
2432        if (Instruction::isCast(CE->getOpcode())) {
2433          Code = bitc::CST_CODE_CE_CAST;
2434          Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2435          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2436          Record.push_back(VE.getValueID(C->getOperand(0)));
2437          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2438        } else {
2439          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2440          Code = bitc::CST_CODE_CE_BINOP;
2441          Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2442          Record.push_back(VE.getValueID(C->getOperand(0)));
2443          Record.push_back(VE.getValueID(C->getOperand(1)));
2444          uint64_t Flags = getOptimizationFlags(CE);
2445          if (Flags != 0)
2446            Record.push_back(Flags);
2447        }
2448        break;
2449      case Instruction::FNeg: {
2450        assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2451        Code = bitc::CST_CODE_CE_UNOP;
2452        Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2453        Record.push_back(VE.getValueID(C->getOperand(0)));
2454        uint64_t Flags = getOptimizationFlags(CE);
2455        if (Flags != 0)
2456          Record.push_back(Flags);
2457        break;
2458      }
2459      case Instruction::GetElementPtr: {
2460        Code = bitc::CST_CODE_CE_GEP;
2461        const auto *GO = cast<GEPOperator>(C);
2462        Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2463        if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2464          Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2465          Record.push_back((*Idx << 1) | GO->isInBounds());
2466        } else if (GO->isInBounds())
2467          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2468        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2469          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2470          Record.push_back(VE.getValueID(C->getOperand(i)));
2471        }
2472        break;
2473      }
2474      case Instruction::Select:
2475        Code = bitc::CST_CODE_CE_SELECT;
2476        Record.push_back(VE.getValueID(C->getOperand(0)));
2477        Record.push_back(VE.getValueID(C->getOperand(1)));
2478        Record.push_back(VE.getValueID(C->getOperand(2)));
2479        break;
2480      case Instruction::ExtractElement:
2481        Code = bitc::CST_CODE_CE_EXTRACTELT;
2482        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2483        Record.push_back(VE.getValueID(C->getOperand(0)));
2484        Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2485        Record.push_back(VE.getValueID(C->getOperand(1)));
2486        break;
2487      case Instruction::InsertElement:
2488        Code = bitc::CST_CODE_CE_INSERTELT;
2489        Record.push_back(VE.getValueID(C->getOperand(0)));
2490        Record.push_back(VE.getValueID(C->getOperand(1)));
2491        Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2492        Record.push_back(VE.getValueID(C->getOperand(2)));
2493        break;
2494      case Instruction::ShuffleVector:
2495        // If the return type and argument types are the same, this is a
2496        // standard shufflevector instruction.  If the types are different,
2497        // then the shuffle is widening or truncating the input vectors, and
2498        // the argument type must also be encoded.
2499        if (C->getType() == C->getOperand(0)->getType()) {
2500          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2501        } else {
2502          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2503          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2504        }
2505        Record.push_back(VE.getValueID(C->getOperand(0)));
2506        Record.push_back(VE.getValueID(C->getOperand(1)));
2507        Record.push_back(VE.getValueID(C->getOperand(2)));
2508        break;
2509      case Instruction::ICmp:
2510      case Instruction::FCmp:
2511        Code = bitc::CST_CODE_CE_CMP;
2512        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2513        Record.push_back(VE.getValueID(C->getOperand(0)));
2514        Record.push_back(VE.getValueID(C->getOperand(1)));
2515        Record.push_back(CE->getPredicate());
2516        break;
2517      }
2518    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2519      Code = bitc::CST_CODE_BLOCKADDRESS;
2520      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2521      Record.push_back(VE.getValueID(BA->getFunction()));
2522      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2523    } else {
2524#ifndef NDEBUG
2525      C->dump();
2526#endif
2527      llvm_unreachable("Unknown constant!");
2528    }
2529    Stream.EmitRecord(Code, Record, AbbrevToUse);
2530    Record.clear();
2531  }
2532
2533  Stream.ExitBlock();
2534}
2535
2536void ModuleBitcodeWriter::writeModuleConstants() {
2537  const ValueEnumerator::ValueList &Vals = VE.getValues();
2538
2539  // Find the first constant to emit, which is the first non-globalvalue value.
2540  // We know globalvalues have been emitted by WriteModuleInfo.
2541  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2542    if (!isa<GlobalValue>(Vals[i].first)) {
2543      writeConstants(i, Vals.size(), true);
2544      return;
2545    }
2546  }
2547}
2548
2549/// pushValueAndType - The file has to encode both the value and type id for
2550/// many values, because we need to know what type to create for forward
2551/// references.  However, most operands are not forward references, so this type
2552/// field is not needed.
2553///
2554/// This function adds V's value ID to Vals.  If the value ID is higher than the
2555/// instruction ID, then it is a forward reference, and it also includes the
2556/// type ID.  The value ID that is written is encoded relative to the InstID.
2557bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2558                                           SmallVectorImpl<unsigned> &Vals) {
2559  unsigned ValID = VE.getValueID(V);
2560  // Make encoding relative to the InstID.
2561  Vals.push_back(InstID - ValID);
2562  if (ValID >= InstID) {
2563    Vals.push_back(VE.getTypeID(V->getType()));
2564    return true;
2565  }
2566  return false;
2567}
2568
2569void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2570                                              unsigned InstID) {
2571  SmallVector<unsigned, 64> Record;
2572  LLVMContext &C = CS.getInstruction()->getContext();
2573
2574  for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2575    const auto &Bundle = CS.getOperandBundleAt(i);
2576    Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2577
2578    for (auto &Input : Bundle.Inputs)
2579      pushValueAndType(Input, InstID, Record);
2580
2581    Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2582    Record.clear();
2583  }
2584}
2585
2586/// pushValue - Like pushValueAndType, but where the type of the value is
2587/// omitted (perhaps it was already encoded in an earlier operand).
2588void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2589                                    SmallVectorImpl<unsigned> &Vals) {
2590  unsigned ValID = VE.getValueID(V);
2591  Vals.push_back(InstID - ValID);
2592}
2593
2594void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2595                                          SmallVectorImpl<uint64_t> &Vals) {
2596  unsigned ValID = VE.getValueID(V);
2597  int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2598  emitSignedInt64(Vals, diff);
2599}
2600
2601/// WriteInstruction - Emit an instruction to the specified stream.
2602void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2603                                           unsigned InstID,
2604                                           SmallVectorImpl<unsigned> &Vals) {
2605  unsigned Code = 0;
2606  unsigned AbbrevToUse = 0;
2607  VE.setInstructionID(&I);
2608  switch (I.getOpcode()) {
2609  default:
2610    if (Instruction::isCast(I.getOpcode())) {
2611      Code = bitc::FUNC_CODE_INST_CAST;
2612      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2613        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2614      Vals.push_back(VE.getTypeID(I.getType()));
2615      Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2616    } else {
2617      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2618      Code = bitc::FUNC_CODE_INST_BINOP;
2619      if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2620        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2621      pushValue(I.getOperand(1), InstID, Vals);
2622      Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2623      uint64_t Flags = getOptimizationFlags(&I);
2624      if (Flags != 0) {
2625        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2626          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2627        Vals.push_back(Flags);
2628      }
2629    }
2630    break;
2631  case Instruction::FNeg: {
2632    Code = bitc::FUNC_CODE_INST_UNOP;
2633    if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2634      AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2635    Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2636    uint64_t Flags = getOptimizationFlags(&I);
2637    if (Flags != 0) {
2638      if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2639        AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2640      Vals.push_back(Flags);
2641    }
2642    break;
2643  }
2644  case Instruction::GetElementPtr: {
2645    Code = bitc::FUNC_CODE_INST_GEP;
2646    AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2647    auto &GEPInst = cast<GetElementPtrInst>(I);
2648    Vals.push_back(GEPInst.isInBounds());
2649    Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2650    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2651      pushValueAndType(I.getOperand(i), InstID, Vals);
2652    break;
2653  }
2654  case Instruction::ExtractValue: {
2655    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2656    pushValueAndType(I.getOperand(0), InstID, Vals);
2657    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2658    Vals.append(EVI->idx_begin(), EVI->idx_end());
2659    break;
2660  }
2661  case Instruction::InsertValue: {
2662    Code = bitc::FUNC_CODE_INST_INSERTVAL;
2663    pushValueAndType(I.getOperand(0), InstID, Vals);
2664    pushValueAndType(I.getOperand(1), InstID, Vals);
2665    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2666    Vals.append(IVI->idx_begin(), IVI->idx_end());
2667    break;
2668  }
2669  case Instruction::Select: {
2670    Code = bitc::FUNC_CODE_INST_VSELECT;
2671    pushValueAndType(I.getOperand(1), InstID, Vals);
2672    pushValue(I.getOperand(2), InstID, Vals);
2673    pushValueAndType(I.getOperand(0), InstID, Vals);
2674    uint64_t Flags = getOptimizationFlags(&I);
2675    if (Flags != 0)
2676      Vals.push_back(Flags);
2677    break;
2678  }
2679  case Instruction::ExtractElement:
2680    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2681    pushValueAndType(I.getOperand(0), InstID, Vals);
2682    pushValueAndType(I.getOperand(1), InstID, Vals);
2683    break;
2684  case Instruction::InsertElement:
2685    Code = bitc::FUNC_CODE_INST_INSERTELT;
2686    pushValueAndType(I.getOperand(0), InstID, Vals);
2687    pushValue(I.getOperand(1), InstID, Vals);
2688    pushValueAndType(I.getOperand(2), InstID, Vals);
2689    break;
2690  case Instruction::ShuffleVector:
2691    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2692    pushValueAndType(I.getOperand(0), InstID, Vals);
2693    pushValue(I.getOperand(1), InstID, Vals);
2694    pushValue(I.getOperand(2), InstID, Vals);
2695    break;
2696  case Instruction::ICmp:
2697  case Instruction::FCmp: {
2698    // compare returning Int1Ty or vector of Int1Ty
2699    Code = bitc::FUNC_CODE_INST_CMP2;
2700    pushValueAndType(I.getOperand(0), InstID, Vals);
2701    pushValue(I.getOperand(1), InstID, Vals);
2702    Vals.push_back(cast<CmpInst>(I).getPredicate());
2703    uint64_t Flags = getOptimizationFlags(&I);
2704    if (Flags != 0)
2705      Vals.push_back(Flags);
2706    break;
2707  }
2708
2709  case Instruction::Ret:
2710    {
2711      Code = bitc::FUNC_CODE_INST_RET;
2712      unsigned NumOperands = I.getNumOperands();
2713      if (NumOperands == 0)
2714        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2715      else if (NumOperands == 1) {
2716        if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2717          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2718      } else {
2719        for (unsigned i = 0, e = NumOperands; i != e; ++i)
2720          pushValueAndType(I.getOperand(i), InstID, Vals);
2721      }
2722    }
2723    break;
2724  case Instruction::Br:
2725    {
2726      Code = bitc::FUNC_CODE_INST_BR;
2727      const BranchInst &II = cast<BranchInst>(I);
2728      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2729      if (II.isConditional()) {
2730        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2731        pushValue(II.getCondition(), InstID, Vals);
2732      }
2733    }
2734    break;
2735  case Instruction::Switch:
2736    {
2737      Code = bitc::FUNC_CODE_INST_SWITCH;
2738      const SwitchInst &SI = cast<SwitchInst>(I);
2739      Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2740      pushValue(SI.getCondition(), InstID, Vals);
2741      Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2742      for (auto Case : SI.cases()) {
2743        Vals.push_back(VE.getValueID(Case.getCaseValue()));
2744        Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2745      }
2746    }
2747    break;
2748  case Instruction::IndirectBr:
2749    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2750    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2751    // Encode the address operand as relative, but not the basic blocks.
2752    pushValue(I.getOperand(0), InstID, Vals);
2753    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2754      Vals.push_back(VE.getValueID(I.getOperand(i)));
2755    break;
2756
2757  case Instruction::Invoke: {
2758    const InvokeInst *II = cast<InvokeInst>(&I);
2759    const Value *Callee = II->getCalledValue();
2760    FunctionType *FTy = II->getFunctionType();
2761
2762    if (II->hasOperandBundles())
2763      writeOperandBundles(II, InstID);
2764
2765    Code = bitc::FUNC_CODE_INST_INVOKE;
2766
2767    Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2768    Vals.push_back(II->getCallingConv() | 1 << 13);
2769    Vals.push_back(VE.getValueID(II->getNormalDest()));
2770    Vals.push_back(VE.getValueID(II->getUnwindDest()));
2771    Vals.push_back(VE.getTypeID(FTy));
2772    pushValueAndType(Callee, InstID, Vals);
2773
2774    // Emit value #'s for the fixed parameters.
2775    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2776      pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2777
2778    // Emit type/value pairs for varargs params.
2779    if (FTy->isVarArg()) {
2780      for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2781           i != e; ++i)
2782        pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2783    }
2784    break;
2785  }
2786  case Instruction::Resume:
2787    Code = bitc::FUNC_CODE_INST_RESUME;
2788    pushValueAndType(I.getOperand(0), InstID, Vals);
2789    break;
2790  case Instruction::CleanupRet: {
2791    Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2792    const auto &CRI = cast<CleanupReturnInst>(I);
2793    pushValue(CRI.getCleanupPad(), InstID, Vals);
2794    if (CRI.hasUnwindDest())
2795      Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2796    break;
2797  }
2798  case Instruction::CatchRet: {
2799    Code = bitc::FUNC_CODE_INST_CATCHRET;
2800    const auto &CRI = cast<CatchReturnInst>(I);
2801    pushValue(CRI.getCatchPad(), InstID, Vals);
2802    Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2803    break;
2804  }
2805  case Instruction::CleanupPad:
2806  case Instruction::CatchPad: {
2807    const auto &FuncletPad = cast<FuncletPadInst>(I);
2808    Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2809                                         : bitc::FUNC_CODE_INST_CLEANUPPAD;
2810    pushValue(FuncletPad.getParentPad(), InstID, Vals);
2811
2812    unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2813    Vals.push_back(NumArgOperands);
2814    for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2815      pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2816    break;
2817  }
2818  case Instruction::CatchSwitch: {
2819    Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2820    const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2821
2822    pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2823
2824    unsigned NumHandlers = CatchSwitch.getNumHandlers();
2825    Vals.push_back(NumHandlers);
2826    for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2827      Vals.push_back(VE.getValueID(CatchPadBB));
2828
2829    if (CatchSwitch.hasUnwindDest())
2830      Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2831    break;
2832  }
2833  case Instruction::CallBr: {
2834    const CallBrInst *CBI = cast<CallBrInst>(&I);
2835    const Value *Callee = CBI->getCalledValue();
2836    FunctionType *FTy = CBI->getFunctionType();
2837
2838    if (CBI->hasOperandBundles())
2839      writeOperandBundles(CBI, InstID);
2840
2841    Code = bitc::FUNC_CODE_INST_CALLBR;
2842
2843    Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2844
2845    Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2846                   1 << bitc::CALL_EXPLICIT_TYPE);
2847
2848    Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2849    Vals.push_back(CBI->getNumIndirectDests());
2850    for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2851      Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2852
2853    Vals.push_back(VE.getTypeID(FTy));
2854    pushValueAndType(Callee, InstID, Vals);
2855
2856    // Emit value #'s for the fixed parameters.
2857    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2858      pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2859
2860    // Emit type/value pairs for varargs params.
2861    if (FTy->isVarArg()) {
2862      for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2863           i != e; ++i)
2864        pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2865    }
2866    break;
2867  }
2868  case Instruction::Unreachable:
2869    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2870    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2871    break;
2872
2873  case Instruction::PHI: {
2874    const PHINode &PN = cast<PHINode>(I);
2875    Code = bitc::FUNC_CODE_INST_PHI;
2876    // With the newer instruction encoding, forward references could give
2877    // negative valued IDs.  This is most common for PHIs, so we use
2878    // signed VBRs.
2879    SmallVector<uint64_t, 128> Vals64;
2880    Vals64.push_back(VE.getTypeID(PN.getType()));
2881    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2882      pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2883      Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2884    }
2885
2886    uint64_t Flags = getOptimizationFlags(&I);
2887    if (Flags != 0)
2888      Vals64.push_back(Flags);
2889
2890    // Emit a Vals64 vector and exit.
2891    Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2892    Vals64.clear();
2893    return;
2894  }
2895
2896  case Instruction::LandingPad: {
2897    const LandingPadInst &LP = cast<LandingPadInst>(I);
2898    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2899    Vals.push_back(VE.getTypeID(LP.getType()));
2900    Vals.push_back(LP.isCleanup());
2901    Vals.push_back(LP.getNumClauses());
2902    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2903      if (LP.isCatch(I))
2904        Vals.push_back(LandingPadInst::Catch);
2905      else
2906        Vals.push_back(LandingPadInst::Filter);
2907      pushValueAndType(LP.getClause(I), InstID, Vals);
2908    }
2909    break;
2910  }
2911
2912  case Instruction::Alloca: {
2913    Code = bitc::FUNC_CODE_INST_ALLOCA;
2914    const AllocaInst &AI = cast<AllocaInst>(I);
2915    Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2916    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2917    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2918    unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2919    assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2920           "not enough bits for maximum alignment");
2921    assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2922    AlignRecord |= AI.isUsedWithInAlloca() << 5;
2923    AlignRecord |= 1 << 6;
2924    AlignRecord |= AI.isSwiftError() << 7;
2925    Vals.push_back(AlignRecord);
2926    break;
2927  }
2928
2929  case Instruction::Load:
2930    if (cast<LoadInst>(I).isAtomic()) {
2931      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2932      pushValueAndType(I.getOperand(0), InstID, Vals);
2933    } else {
2934      Code = bitc::FUNC_CODE_INST_LOAD;
2935      if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2936        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2937    }
2938    Vals.push_back(VE.getTypeID(I.getType()));
2939    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2940    Vals.push_back(cast<LoadInst>(I).isVolatile());
2941    if (cast<LoadInst>(I).isAtomic()) {
2942      Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2943      Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2944    }
2945    break;
2946  case Instruction::Store:
2947    if (cast<StoreInst>(I).isAtomic())
2948      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2949    else
2950      Code = bitc::FUNC_CODE_INST_STORE;
2951    pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2952    pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2953    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2954    Vals.push_back(cast<StoreInst>(I).isVolatile());
2955    if (cast<StoreInst>(I).isAtomic()) {
2956      Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2957      Vals.push_back(
2958          getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2959    }
2960    break;
2961  case Instruction::AtomicCmpXchg:
2962    Code = bitc::FUNC_CODE_INST_CMPXCHG;
2963    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2964    pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2965    pushValue(I.getOperand(2), InstID, Vals);        // newval.
2966    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2967    Vals.push_back(
2968        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2969    Vals.push_back(
2970        getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2971    Vals.push_back(
2972        getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2973    Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2974    break;
2975  case Instruction::AtomicRMW:
2976    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2977    pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2978    pushValue(I.getOperand(1), InstID, Vals);        // val.
2979    Vals.push_back(
2980        getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2981    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2982    Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2983    Vals.push_back(
2984        getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2985    break;
2986  case Instruction::Fence:
2987    Code = bitc::FUNC_CODE_INST_FENCE;
2988    Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2989    Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2990    break;
2991  case Instruction::Call: {
2992    const CallInst &CI = cast<CallInst>(I);
2993    FunctionType *FTy = CI.getFunctionType();
2994
2995    if (CI.hasOperandBundles())
2996      writeOperandBundles(&CI, InstID);
2997
2998    Code = bitc::FUNC_CODE_INST_CALL;
2999
3000    Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3001
3002    unsigned Flags = getOptimizationFlags(&I);
3003    Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3004                   unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3005                   unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3006                   1 << bitc::CALL_EXPLICIT_TYPE |
3007                   unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3008                   unsigned(Flags != 0) << bitc::CALL_FMF);
3009    if (Flags != 0)
3010      Vals.push_back(Flags);
3011
3012    Vals.push_back(VE.getTypeID(FTy));
3013    pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
3014
3015    // Emit value #'s for the fixed parameters.
3016    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3017      // Check for labels (can happen with asm labels).
3018      if (FTy->getParamType(i)->isLabelTy())
3019        Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3020      else
3021        pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3022    }
3023
3024    // Emit type/value pairs for varargs params.
3025    if (FTy->isVarArg()) {
3026      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
3027           i != e; ++i)
3028        pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3029    }
3030    break;
3031  }
3032  case Instruction::VAArg:
3033    Code = bitc::FUNC_CODE_INST_VAARG;
3034    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3035    pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3036    Vals.push_back(VE.getTypeID(I.getType())); // restype.
3037    break;
3038  case Instruction::Freeze:
3039    Code = bitc::FUNC_CODE_INST_FREEZE;
3040    pushValueAndType(I.getOperand(0), InstID, Vals);
3041    break;
3042  }
3043
3044  Stream.EmitRecord(Code, Vals, AbbrevToUse);
3045  Vals.clear();
3046}
3047
3048/// Write a GlobalValue VST to the module. The purpose of this data structure is
3049/// to allow clients to efficiently find the function body.
3050void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3051  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3052  // Get the offset of the VST we are writing, and backpatch it into
3053  // the VST forward declaration record.
3054  uint64_t VSTOffset = Stream.GetCurrentBitNo();
3055  // The BitcodeStartBit was the stream offset of the identification block.
3056  VSTOffset -= bitcodeStartBit();
3057  assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3058  // Note that we add 1 here because the offset is relative to one word
3059  // before the start of the identification block, which was historically
3060  // always the start of the regular bitcode header.
3061  Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3062
3063  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3064
3065  auto Abbv = std::make_shared<BitCodeAbbrev>();
3066  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3067  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3068  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3069  unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3070
3071  for (const Function &F : M) {
3072    uint64_t Record[2];
3073
3074    if (F.isDeclaration())
3075      continue;
3076
3077    Record[0] = VE.getValueID(&F);
3078
3079    // Save the word offset of the function (from the start of the
3080    // actual bitcode written to the stream).
3081    uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3082    assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3083    // Note that we add 1 here because the offset is relative to one word
3084    // before the start of the identification block, which was historically
3085    // always the start of the regular bitcode header.
3086    Record[1] = BitcodeIndex / 32 + 1;
3087
3088    Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3089  }
3090
3091  Stream.ExitBlock();
3092}
3093
3094/// Emit names for arguments, instructions and basic blocks in a function.
3095void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3096    const ValueSymbolTable &VST) {
3097  if (VST.empty())
3098    return;
3099
3100  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3101
3102  // FIXME: Set up the abbrev, we know how many values there are!
3103  // FIXME: We know if the type names can use 7-bit ascii.
3104  SmallVector<uint64_t, 64> NameVals;
3105
3106  for (const ValueName &Name : VST) {
3107    // Figure out the encoding to use for the name.
3108    StringEncoding Bits = getStringEncoding(Name.getKey());
3109
3110    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3111    NameVals.push_back(VE.getValueID(Name.getValue()));
3112
3113    // VST_CODE_ENTRY:   [valueid, namechar x N]
3114    // VST_CODE_BBENTRY: [bbid, namechar x N]
3115    unsigned Code;
3116    if (isa<BasicBlock>(Name.getValue())) {
3117      Code = bitc::VST_CODE_BBENTRY;
3118      if (Bits == SE_Char6)
3119        AbbrevToUse = VST_BBENTRY_6_ABBREV;
3120    } else {
3121      Code = bitc::VST_CODE_ENTRY;
3122      if (Bits == SE_Char6)
3123        AbbrevToUse = VST_ENTRY_6_ABBREV;
3124      else if (Bits == SE_Fixed7)
3125        AbbrevToUse = VST_ENTRY_7_ABBREV;
3126    }
3127
3128    for (const auto P : Name.getKey())
3129      NameVals.push_back((unsigned char)P);
3130
3131    // Emit the finished record.
3132    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3133    NameVals.clear();
3134  }
3135
3136  Stream.ExitBlock();
3137}
3138
3139void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3140  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3141  unsigned Code;
3142  if (isa<BasicBlock>(Order.V))
3143    Code = bitc::USELIST_CODE_BB;
3144  else
3145    Code = bitc::USELIST_CODE_DEFAULT;
3146
3147  SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3148  Record.push_back(VE.getValueID(Order.V));
3149  Stream.EmitRecord(Code, Record);
3150}
3151
3152void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3153  assert(VE.shouldPreserveUseListOrder() &&
3154         "Expected to be preserving use-list order");
3155
3156  auto hasMore = [&]() {
3157    return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3158  };
3159  if (!hasMore())
3160    // Nothing to do.
3161    return;
3162
3163  Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3164  while (hasMore()) {
3165    writeUseList(std::move(VE.UseListOrders.back()));
3166    VE.UseListOrders.pop_back();
3167  }
3168  Stream.ExitBlock();
3169}
3170
3171/// Emit a function body to the module stream.
3172void ModuleBitcodeWriter::writeFunction(
3173    const Function &F,
3174    DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3175  // Save the bitcode index of the start of this function block for recording
3176  // in the VST.
3177  FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3178
3179  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3180  VE.incorporateFunction(F);
3181
3182  SmallVector<unsigned, 64> Vals;
3183
3184  // Emit the number of basic blocks, so the reader can create them ahead of
3185  // time.
3186  Vals.push_back(VE.getBasicBlocks().size());
3187  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3188  Vals.clear();
3189
3190  // If there are function-local constants, emit them now.
3191  unsigned CstStart, CstEnd;
3192  VE.getFunctionConstantRange(CstStart, CstEnd);
3193  writeConstants(CstStart, CstEnd, false);
3194
3195  // If there is function-local metadata, emit it now.
3196  writeFunctionMetadata(F);
3197
3198  // Keep a running idea of what the instruction ID is.
3199  unsigned InstID = CstEnd;
3200
3201  bool NeedsMetadataAttachment = F.hasMetadata();
3202
3203  DILocation *LastDL = nullptr;
3204  // Finally, emit all the instructions, in order.
3205  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3206    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3207         I != E; ++I) {
3208      writeInstruction(*I, InstID, Vals);
3209
3210      if (!I->getType()->isVoidTy())
3211        ++InstID;
3212
3213      // If the instruction has metadata, write a metadata attachment later.
3214      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3215
3216      // If the instruction has a debug location, emit it.
3217      DILocation *DL = I->getDebugLoc();
3218      if (!DL)
3219        continue;
3220
3221      if (DL == LastDL) {
3222        // Just repeat the same debug loc as last time.
3223        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3224        continue;
3225      }
3226
3227      Vals.push_back(DL->getLine());
3228      Vals.push_back(DL->getColumn());
3229      Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3230      Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3231      Vals.push_back(DL->isImplicitCode());
3232      Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3233      Vals.clear();
3234
3235      LastDL = DL;
3236    }
3237
3238  // Emit names for all the instructions etc.
3239  if (auto *Symtab = F.getValueSymbolTable())
3240    writeFunctionLevelValueSymbolTable(*Symtab);
3241
3242  if (NeedsMetadataAttachment)
3243    writeFunctionMetadataAttachment(F);
3244  if (VE.shouldPreserveUseListOrder())
3245    writeUseListBlock(&F);
3246  VE.purgeFunction();
3247  Stream.ExitBlock();
3248}
3249
3250// Emit blockinfo, which defines the standard abbreviations etc.
3251void ModuleBitcodeWriter::writeBlockInfo() {
3252  // We only want to emit block info records for blocks that have multiple
3253  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3254  // Other blocks can define their abbrevs inline.
3255  Stream.EnterBlockInfoBlock();
3256
3257  { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3258    auto Abbv = std::make_shared<BitCodeAbbrev>();
3259    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3260    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3261    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3262    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3263    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3264        VST_ENTRY_8_ABBREV)
3265      llvm_unreachable("Unexpected abbrev ordering!");
3266  }
3267
3268  { // 7-bit fixed width VST_CODE_ENTRY strings.
3269    auto Abbv = std::make_shared<BitCodeAbbrev>();
3270    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3271    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3272    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3273    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3274    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3275        VST_ENTRY_7_ABBREV)
3276      llvm_unreachable("Unexpected abbrev ordering!");
3277  }
3278  { // 6-bit char6 VST_CODE_ENTRY strings.
3279    auto Abbv = std::make_shared<BitCodeAbbrev>();
3280    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3281    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3282    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3283    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3284    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3285        VST_ENTRY_6_ABBREV)
3286      llvm_unreachable("Unexpected abbrev ordering!");
3287  }
3288  { // 6-bit char6 VST_CODE_BBENTRY strings.
3289    auto Abbv = std::make_shared<BitCodeAbbrev>();
3290    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3291    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3292    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3293    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3294    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3295        VST_BBENTRY_6_ABBREV)
3296      llvm_unreachable("Unexpected abbrev ordering!");
3297  }
3298
3299  { // SETTYPE abbrev for CONSTANTS_BLOCK.
3300    auto Abbv = std::make_shared<BitCodeAbbrev>();
3301    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3302    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3303                              VE.computeBitsRequiredForTypeIndicies()));
3304    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3305        CONSTANTS_SETTYPE_ABBREV)
3306      llvm_unreachable("Unexpected abbrev ordering!");
3307  }
3308
3309  { // INTEGER abbrev for CONSTANTS_BLOCK.
3310    auto Abbv = std::make_shared<BitCodeAbbrev>();
3311    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3312    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3313    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3314        CONSTANTS_INTEGER_ABBREV)
3315      llvm_unreachable("Unexpected abbrev ordering!");
3316  }
3317
3318  { // CE_CAST abbrev for CONSTANTS_BLOCK.
3319    auto Abbv = std::make_shared<BitCodeAbbrev>();
3320    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3321    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3322    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3323                              VE.computeBitsRequiredForTypeIndicies()));
3324    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3325
3326    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3327        CONSTANTS_CE_CAST_Abbrev)
3328      llvm_unreachable("Unexpected abbrev ordering!");
3329  }
3330  { // NULL abbrev for CONSTANTS_BLOCK.
3331    auto Abbv = std::make_shared<BitCodeAbbrev>();
3332    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3333    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3334        CONSTANTS_NULL_Abbrev)
3335      llvm_unreachable("Unexpected abbrev ordering!");
3336  }
3337
3338  // FIXME: This should only use space for first class types!
3339
3340  { // INST_LOAD abbrev for FUNCTION_BLOCK.
3341    auto Abbv = std::make_shared<BitCodeAbbrev>();
3342    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3343    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3344    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3345                              VE.computeBitsRequiredForTypeIndicies()));
3346    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3347    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3348    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3349        FUNCTION_INST_LOAD_ABBREV)
3350      llvm_unreachable("Unexpected abbrev ordering!");
3351  }
3352  { // INST_UNOP abbrev for FUNCTION_BLOCK.
3353    auto Abbv = std::make_shared<BitCodeAbbrev>();
3354    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3355    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3356    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3357    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3358        FUNCTION_INST_UNOP_ABBREV)
3359      llvm_unreachable("Unexpected abbrev ordering!");
3360  }
3361  { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3362    auto Abbv = std::make_shared<BitCodeAbbrev>();
3363    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3364    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3365    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3366    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3367    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3368        FUNCTION_INST_UNOP_FLAGS_ABBREV)
3369      llvm_unreachable("Unexpected abbrev ordering!");
3370  }
3371  { // INST_BINOP abbrev for FUNCTION_BLOCK.
3372    auto Abbv = std::make_shared<BitCodeAbbrev>();
3373    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3374    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3375    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3376    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3377    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3378        FUNCTION_INST_BINOP_ABBREV)
3379      llvm_unreachable("Unexpected abbrev ordering!");
3380  }
3381  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3382    auto Abbv = std::make_shared<BitCodeAbbrev>();
3383    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3384    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3385    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3386    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3387    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3388    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3389        FUNCTION_INST_BINOP_FLAGS_ABBREV)
3390      llvm_unreachable("Unexpected abbrev ordering!");
3391  }
3392  { // INST_CAST abbrev for FUNCTION_BLOCK.
3393    auto Abbv = std::make_shared<BitCodeAbbrev>();
3394    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3395    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3396    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3397                              VE.computeBitsRequiredForTypeIndicies()));
3398    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3399    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3400        FUNCTION_INST_CAST_ABBREV)
3401      llvm_unreachable("Unexpected abbrev ordering!");
3402  }
3403
3404  { // INST_RET abbrev for FUNCTION_BLOCK.
3405    auto Abbv = std::make_shared<BitCodeAbbrev>();
3406    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3407    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3408        FUNCTION_INST_RET_VOID_ABBREV)
3409      llvm_unreachable("Unexpected abbrev ordering!");
3410  }
3411  { // INST_RET abbrev for FUNCTION_BLOCK.
3412    auto Abbv = std::make_shared<BitCodeAbbrev>();
3413    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3414    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3415    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3416        FUNCTION_INST_RET_VAL_ABBREV)
3417      llvm_unreachable("Unexpected abbrev ordering!");
3418  }
3419  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3420    auto Abbv = std::make_shared<BitCodeAbbrev>();
3421    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3422    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3423        FUNCTION_INST_UNREACHABLE_ABBREV)
3424      llvm_unreachable("Unexpected abbrev ordering!");
3425  }
3426  {
3427    auto Abbv = std::make_shared<BitCodeAbbrev>();
3428    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3429    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3430    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3431                              Log2_32_Ceil(VE.getTypes().size() + 1)));
3432    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3433    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3434    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3435        FUNCTION_INST_GEP_ABBREV)
3436      llvm_unreachable("Unexpected abbrev ordering!");
3437  }
3438
3439  Stream.ExitBlock();
3440}
3441
3442/// Write the module path strings, currently only used when generating
3443/// a combined index file.
3444void IndexBitcodeWriter::writeModStrings() {
3445  Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3446
3447  // TODO: See which abbrev sizes we actually need to emit
3448
3449  // 8-bit fixed-width MST_ENTRY strings.
3450  auto Abbv = std::make_shared<BitCodeAbbrev>();
3451  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3452  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3453  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3454  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3455  unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3456
3457  // 7-bit fixed width MST_ENTRY strings.
3458  Abbv = std::make_shared<BitCodeAbbrev>();
3459  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3460  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3461  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3462  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3463  unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3464
3465  // 6-bit char6 MST_ENTRY strings.
3466  Abbv = std::make_shared<BitCodeAbbrev>();
3467  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3468  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3469  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3470  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3471  unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3472
3473  // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3474  Abbv = std::make_shared<BitCodeAbbrev>();
3475  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3476  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3477  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3478  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3479  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3480  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3481  unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3482
3483  SmallVector<unsigned, 64> Vals;
3484  forEachModule(
3485      [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3486        StringRef Key = MPSE.getKey();
3487        const auto &Value = MPSE.getValue();
3488        StringEncoding Bits = getStringEncoding(Key);
3489        unsigned AbbrevToUse = Abbrev8Bit;
3490        if (Bits == SE_Char6)
3491          AbbrevToUse = Abbrev6Bit;
3492        else if (Bits == SE_Fixed7)
3493          AbbrevToUse = Abbrev7Bit;
3494
3495        Vals.push_back(Value.first);
3496        Vals.append(Key.begin(), Key.end());
3497
3498        // Emit the finished record.
3499        Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3500
3501        // Emit an optional hash for the module now
3502        const auto &Hash = Value.second;
3503        if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3504          Vals.assign(Hash.begin(), Hash.end());
3505          // Emit the hash record.
3506          Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3507        }
3508
3509        Vals.clear();
3510      });
3511  Stream.ExitBlock();
3512}
3513
3514/// Write the function type metadata related records that need to appear before
3515/// a function summary entry (whether per-module or combined).
3516static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3517                                             FunctionSummary *FS) {
3518  if (!FS->type_tests().empty())
3519    Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3520
3521  SmallVector<uint64_t, 64> Record;
3522
3523  auto WriteVFuncIdVec = [&](uint64_t Ty,
3524                             ArrayRef<FunctionSummary::VFuncId> VFs) {
3525    if (VFs.empty())
3526      return;
3527    Record.clear();
3528    for (auto &VF : VFs) {
3529      Record.push_back(VF.GUID);
3530      Record.push_back(VF.Offset);
3531    }
3532    Stream.EmitRecord(Ty, Record);
3533  };
3534
3535  WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3536                  FS->type_test_assume_vcalls());
3537  WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3538                  FS->type_checked_load_vcalls());
3539
3540  auto WriteConstVCallVec = [&](uint64_t Ty,
3541                                ArrayRef<FunctionSummary::ConstVCall> VCs) {
3542    for (auto &VC : VCs) {
3543      Record.clear();
3544      Record.push_back(VC.VFunc.GUID);
3545      Record.push_back(VC.VFunc.Offset);
3546      Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3547      Stream.EmitRecord(Ty, Record);
3548    }
3549  };
3550
3551  WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3552                     FS->type_test_assume_const_vcalls());
3553  WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3554                     FS->type_checked_load_const_vcalls());
3555}
3556
3557/// Collect type IDs from type tests used by function.
3558static void
3559getReferencedTypeIds(FunctionSummary *FS,
3560                     std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3561  if (!FS->type_tests().empty())
3562    for (auto &TT : FS->type_tests())
3563      ReferencedTypeIds.insert(TT);
3564
3565  auto GetReferencedTypesFromVFuncIdVec =
3566      [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3567        for (auto &VF : VFs)
3568          ReferencedTypeIds.insert(VF.GUID);
3569      };
3570
3571  GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3572  GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3573
3574  auto GetReferencedTypesFromConstVCallVec =
3575      [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3576        for (auto &VC : VCs)
3577          ReferencedTypeIds.insert(VC.VFunc.GUID);
3578      };
3579
3580  GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3581  GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3582}
3583
3584static void writeWholeProgramDevirtResolutionByArg(
3585    SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3586    const WholeProgramDevirtResolution::ByArg &ByArg) {
3587  NameVals.push_back(args.size());
3588  NameVals.insert(NameVals.end(), args.begin(), args.end());
3589
3590  NameVals.push_back(ByArg.TheKind);
3591  NameVals.push_back(ByArg.Info);
3592  NameVals.push_back(ByArg.Byte);
3593  NameVals.push_back(ByArg.Bit);
3594}
3595
3596static void writeWholeProgramDevirtResolution(
3597    SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3598    uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3599  NameVals.push_back(Id);
3600
3601  NameVals.push_back(Wpd.TheKind);
3602  NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3603  NameVals.push_back(Wpd.SingleImplName.size());
3604
3605  NameVals.push_back(Wpd.ResByArg.size());
3606  for (auto &A : Wpd.ResByArg)
3607    writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3608}
3609
3610static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3611                                     StringTableBuilder &StrtabBuilder,
3612                                     const std::string &Id,
3613                                     const TypeIdSummary &Summary) {
3614  NameVals.push_back(StrtabBuilder.add(Id));
3615  NameVals.push_back(Id.size());
3616
3617  NameVals.push_back(Summary.TTRes.TheKind);
3618  NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3619  NameVals.push_back(Summary.TTRes.AlignLog2);
3620  NameVals.push_back(Summary.TTRes.SizeM1);
3621  NameVals.push_back(Summary.TTRes.BitMask);
3622  NameVals.push_back(Summary.TTRes.InlineBits);
3623
3624  for (auto &W : Summary.WPDRes)
3625    writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3626                                      W.second);
3627}
3628
3629static void writeTypeIdCompatibleVtableSummaryRecord(
3630    SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3631    const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3632    ValueEnumerator &VE) {
3633  NameVals.push_back(StrtabBuilder.add(Id));
3634  NameVals.push_back(Id.size());
3635
3636  for (auto &P : Summary) {
3637    NameVals.push_back(P.AddressPointOffset);
3638    NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3639  }
3640}
3641
3642// Helper to emit a single function summary record.
3643void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3644    SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3645    unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3646    const Function &F) {
3647  NameVals.push_back(ValueID);
3648
3649  FunctionSummary *FS = cast<FunctionSummary>(Summary);
3650  writeFunctionTypeMetadataRecords(Stream, FS);
3651
3652  auto SpecialRefCnts = FS->specialRefCounts();
3653  NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3654  NameVals.push_back(FS->instCount());
3655  NameVals.push_back(getEncodedFFlags(FS->fflags()));
3656  NameVals.push_back(FS->refs().size());
3657  NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
3658  NameVals.push_back(SpecialRefCnts.second); // worefcnt
3659
3660  for (auto &RI : FS->refs())
3661    NameVals.push_back(VE.getValueID(RI.getValue()));
3662
3663  bool HasProfileData =
3664      F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3665  for (auto &ECI : FS->calls()) {
3666    NameVals.push_back(getValueId(ECI.first));
3667    if (HasProfileData)
3668      NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3669    else if (WriteRelBFToSummary)
3670      NameVals.push_back(ECI.second.RelBlockFreq);
3671  }
3672
3673  unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3674  unsigned Code =
3675      (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3676                      : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3677                                             : bitc::FS_PERMODULE));
3678
3679  // Emit the finished record.
3680  Stream.EmitRecord(Code, NameVals, FSAbbrev);
3681  NameVals.clear();
3682}
3683
3684// Collect the global value references in the given variable's initializer,
3685// and emit them in a summary record.
3686void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3687    const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3688    unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
3689  auto VI = Index->getValueInfo(V.getGUID());
3690  if (!VI || VI.getSummaryList().empty()) {
3691    // Only declarations should not have a summary (a declaration might however
3692    // have a summary if the def was in module level asm).
3693    assert(V.isDeclaration());
3694    return;
3695  }
3696  auto *Summary = VI.getSummaryList()[0].get();
3697  NameVals.push_back(VE.getValueID(&V));
3698  GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3699  NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3700  NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3701
3702  auto VTableFuncs = VS->vTableFuncs();
3703  if (!VTableFuncs.empty())
3704    NameVals.push_back(VS->refs().size());
3705
3706  unsigned SizeBeforeRefs = NameVals.size();
3707  for (auto &RI : VS->refs())
3708    NameVals.push_back(VE.getValueID(RI.getValue()));
3709  // Sort the refs for determinism output, the vector returned by FS->refs() has
3710  // been initialized from a DenseSet.
3711  llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3712
3713  if (VTableFuncs.empty())
3714    Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3715                      FSModRefsAbbrev);
3716  else {
3717    // VTableFuncs pairs should already be sorted by offset.
3718    for (auto &P : VTableFuncs) {
3719      NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
3720      NameVals.push_back(P.VTableOffset);
3721    }
3722
3723    Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
3724                      FSModVTableRefsAbbrev);
3725  }
3726  NameVals.clear();
3727}
3728
3729/// Emit the per-module summary section alongside the rest of
3730/// the module's bitcode.
3731void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3732  // By default we compile with ThinLTO if the module has a summary, but the
3733  // client can request full LTO with a module flag.
3734  bool IsThinLTO = true;
3735  if (auto *MD =
3736          mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3737    IsThinLTO = MD->getZExtValue();
3738  Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3739                                 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3740                       4);
3741
3742  Stream.EmitRecord(
3743      bitc::FS_VERSION,
3744      ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
3745
3746  // Write the index flags.
3747  uint64_t Flags = 0;
3748  // Bits 1-3 are set only in the combined index, skip them.
3749  if (Index->enableSplitLTOUnit())
3750    Flags |= 0x8;
3751  Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3752
3753  if (Index->begin() == Index->end()) {
3754    Stream.ExitBlock();
3755    return;
3756  }
3757
3758  for (const auto &GVI : valueIds()) {
3759    Stream.EmitRecord(bitc::FS_VALUE_GUID,
3760                      ArrayRef<uint64_t>{GVI.second, GVI.first});
3761  }
3762
3763  // Abbrev for FS_PERMODULE_PROFILE.
3764  auto Abbv = std::make_shared<BitCodeAbbrev>();
3765  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3766  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3767  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3768  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3769  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3770  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3771  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3772  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3773  // numrefs x valueid, n x (valueid, hotness)
3774  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3775  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3776  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3777
3778  // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3779  Abbv = std::make_shared<BitCodeAbbrev>();
3780  if (WriteRelBFToSummary)
3781    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3782  else
3783    Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3784  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3785  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3786  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3787  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3788  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3789  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3790  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3791  // numrefs x valueid, n x (valueid [, rel_block_freq])
3792  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3793  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3794  unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3795
3796  // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3797  Abbv = std::make_shared<BitCodeAbbrev>();
3798  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3799  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3800  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3801  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3802  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3803  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3804
3805  // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
3806  Abbv = std::make_shared<BitCodeAbbrev>();
3807  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
3808  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3809  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3810  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3811  // numrefs x valueid, n x (valueid , offset)
3812  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3813  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3814  unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3815
3816  // Abbrev for FS_ALIAS.
3817  Abbv = std::make_shared<BitCodeAbbrev>();
3818  Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3819  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3820  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3821  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3822  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3823
3824  // Abbrev for FS_TYPE_ID_METADATA
3825  Abbv = std::make_shared<BitCodeAbbrev>();
3826  Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
3827  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
3828  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
3829  // n x (valueid , offset)
3830  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3831  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3832  unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3833
3834  SmallVector<uint64_t, 64> NameVals;
3835  // Iterate over the list of functions instead of the Index to
3836  // ensure the ordering is stable.
3837  for (const Function &F : M) {
3838    // Summary emission does not support anonymous functions, they have to
3839    // renamed using the anonymous function renaming pass.
3840    if (!F.hasName())
3841      report_fatal_error("Unexpected anonymous function when writing summary");
3842
3843    ValueInfo VI = Index->getValueInfo(F.getGUID());
3844    if (!VI || VI.getSummaryList().empty()) {
3845      // Only declarations should not have a summary (a declaration might
3846      // however have a summary if the def was in module level asm).
3847      assert(F.isDeclaration());
3848      continue;
3849    }
3850    auto *Summary = VI.getSummaryList()[0].get();
3851    writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3852                                        FSCallsAbbrev, FSCallsProfileAbbrev, F);
3853  }
3854
3855  // Capture references from GlobalVariable initializers, which are outside
3856  // of a function scope.
3857  for (const GlobalVariable &G : M.globals())
3858    writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
3859                               FSModVTableRefsAbbrev);
3860
3861  for (const GlobalAlias &A : M.aliases()) {
3862    auto *Aliasee = A.getBaseObject();
3863    if (!Aliasee->hasName())
3864      // Nameless function don't have an entry in the summary, skip it.
3865      continue;
3866    auto AliasId = VE.getValueID(&A);
3867    auto AliaseeId = VE.getValueID(Aliasee);
3868    NameVals.push_back(AliasId);
3869    auto *Summary = Index->getGlobalValueSummary(A);
3870    AliasSummary *AS = cast<AliasSummary>(Summary);
3871    NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3872    NameVals.push_back(AliaseeId);
3873    Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3874    NameVals.clear();
3875  }
3876
3877  for (auto &S : Index->typeIdCompatibleVtableMap()) {
3878    writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
3879                                             S.second, VE);
3880    Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
3881                      TypeIdCompatibleVtableAbbrev);
3882    NameVals.clear();
3883  }
3884
3885  Stream.ExitBlock();
3886}
3887
3888/// Emit the combined summary section into the combined index file.
3889void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3890  Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3891  Stream.EmitRecord(
3892      bitc::FS_VERSION,
3893      ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
3894
3895  // Write the index flags.
3896  uint64_t Flags = 0;
3897  if (Index.withGlobalValueDeadStripping())
3898    Flags |= 0x1;
3899  if (Index.skipModuleByDistributedBackend())
3900    Flags |= 0x2;
3901  if (Index.hasSyntheticEntryCounts())
3902    Flags |= 0x4;
3903  if (Index.enableSplitLTOUnit())
3904    Flags |= 0x8;
3905  if (Index.partiallySplitLTOUnits())
3906    Flags |= 0x10;
3907  if (Index.withAttributePropagation())
3908    Flags |= 0x20;
3909  Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3910
3911  for (const auto &GVI : valueIds()) {
3912    Stream.EmitRecord(bitc::FS_VALUE_GUID,
3913                      ArrayRef<uint64_t>{GVI.second, GVI.first});
3914  }
3915
3916  // Abbrev for FS_COMBINED.
3917  auto Abbv = std::make_shared<BitCodeAbbrev>();
3918  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3919  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3920  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3921  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3922  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3923  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3924  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
3925  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3926  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3927  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3928  // numrefs x valueid, n x (valueid)
3929  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3930  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3931  unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3932
3933  // Abbrev for FS_COMBINED_PROFILE.
3934  Abbv = std::make_shared<BitCodeAbbrev>();
3935  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3936  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3937  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3938  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3939  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3940  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3941  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
3942  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3943  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3944  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3945  // numrefs x valueid, n x (valueid, hotness)
3946  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3947  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3948  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3949
3950  // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3951  Abbv = std::make_shared<BitCodeAbbrev>();
3952  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3953  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3954  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3955  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3956  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3957  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3958  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3959
3960  // Abbrev for FS_COMBINED_ALIAS.
3961  Abbv = std::make_shared<BitCodeAbbrev>();
3962  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3963  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3964  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3965  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3966  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3967  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3968
3969  // The aliases are emitted as a post-pass, and will point to the value
3970  // id of the aliasee. Save them in a vector for post-processing.
3971  SmallVector<AliasSummary *, 64> Aliases;
3972
3973  // Save the value id for each summary for alias emission.
3974  DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3975
3976  SmallVector<uint64_t, 64> NameVals;
3977
3978  // Set that will be populated during call to writeFunctionTypeMetadataRecords
3979  // with the type ids referenced by this index file.
3980  std::set<GlobalValue::GUID> ReferencedTypeIds;
3981
3982  // For local linkage, we also emit the original name separately
3983  // immediately after the record.
3984  auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3985    if (!GlobalValue::isLocalLinkage(S.linkage()))
3986      return;
3987    NameVals.push_back(S.getOriginalName());
3988    Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3989    NameVals.clear();
3990  };
3991
3992  std::set<GlobalValue::GUID> DefOrUseGUIDs;
3993  forEachSummary([&](GVInfo I, bool IsAliasee) {
3994    GlobalValueSummary *S = I.second;
3995    assert(S);
3996    DefOrUseGUIDs.insert(I.first);
3997    for (const ValueInfo &VI : S->refs())
3998      DefOrUseGUIDs.insert(VI.getGUID());
3999
4000    auto ValueId = getValueId(I.first);
4001    assert(ValueId);
4002    SummaryToValueIdMap[S] = *ValueId;
4003
4004    // If this is invoked for an aliasee, we want to record the above
4005    // mapping, but then not emit a summary entry (if the aliasee is
4006    // to be imported, we will invoke this separately with IsAliasee=false).
4007    if (IsAliasee)
4008      return;
4009
4010    if (auto *AS = dyn_cast<AliasSummary>(S)) {
4011      // Will process aliases as a post-pass because the reader wants all
4012      // global to be loaded first.
4013      Aliases.push_back(AS);
4014      return;
4015    }
4016
4017    if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4018      NameVals.push_back(*ValueId);
4019      NameVals.push_back(Index.getModuleId(VS->modulePath()));
4020      NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4021      NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4022      for (auto &RI : VS->refs()) {
4023        auto RefValueId = getValueId(RI.getGUID());
4024        if (!RefValueId)
4025          continue;
4026        NameVals.push_back(*RefValueId);
4027      }
4028
4029      // Emit the finished record.
4030      Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4031                        FSModRefsAbbrev);
4032      NameVals.clear();
4033      MaybeEmitOriginalName(*S);
4034      return;
4035    }
4036
4037    auto *FS = cast<FunctionSummary>(S);
4038    writeFunctionTypeMetadataRecords(Stream, FS);
4039    getReferencedTypeIds(FS, ReferencedTypeIds);
4040
4041    NameVals.push_back(*ValueId);
4042    NameVals.push_back(Index.getModuleId(FS->modulePath()));
4043    NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4044    NameVals.push_back(FS->instCount());
4045    NameVals.push_back(getEncodedFFlags(FS->fflags()));
4046    NameVals.push_back(FS->entryCount());
4047
4048    // Fill in below
4049    NameVals.push_back(0); // numrefs
4050    NameVals.push_back(0); // rorefcnt
4051    NameVals.push_back(0); // worefcnt
4052
4053    unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4054    for (auto &RI : FS->refs()) {
4055      auto RefValueId = getValueId(RI.getGUID());
4056      if (!RefValueId)
4057        continue;
4058      NameVals.push_back(*RefValueId);
4059      if (RI.isReadOnly())
4060        RORefCnt++;
4061      else if (RI.isWriteOnly())
4062        WORefCnt++;
4063      Count++;
4064    }
4065    NameVals[6] = Count;
4066    NameVals[7] = RORefCnt;
4067    NameVals[8] = WORefCnt;
4068
4069    bool HasProfileData = false;
4070    for (auto &EI : FS->calls()) {
4071      HasProfileData |=
4072          EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4073      if (HasProfileData)
4074        break;
4075    }
4076
4077    for (auto &EI : FS->calls()) {
4078      // If this GUID doesn't have a value id, it doesn't have a function
4079      // summary and we don't need to record any calls to it.
4080      GlobalValue::GUID GUID = EI.first.getGUID();
4081      auto CallValueId = getValueId(GUID);
4082      if (!CallValueId) {
4083        // For SamplePGO, the indirect call targets for local functions will
4084        // have its original name annotated in profile. We try to find the
4085        // corresponding PGOFuncName as the GUID.
4086        GUID = Index.getGUIDFromOriginalID(GUID);
4087        if (GUID == 0)
4088          continue;
4089        CallValueId = getValueId(GUID);
4090        if (!CallValueId)
4091          continue;
4092        // The mapping from OriginalId to GUID may return a GUID
4093        // that corresponds to a static variable. Filter it out here.
4094        // This can happen when
4095        // 1) There is a call to a library function which does not have
4096        // a CallValidId;
4097        // 2) There is a static variable with the  OriginalGUID identical
4098        // to the GUID of the library function in 1);
4099        // When this happens, the logic for SamplePGO kicks in and
4100        // the static variable in 2) will be found, which needs to be
4101        // filtered out.
4102        auto *GVSum = Index.getGlobalValueSummary(GUID, false);
4103        if (GVSum &&
4104            GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
4105          continue;
4106      }
4107      NameVals.push_back(*CallValueId);
4108      if (HasProfileData)
4109        NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4110    }
4111
4112    unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4113    unsigned Code =
4114        (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4115
4116    // Emit the finished record.
4117    Stream.EmitRecord(Code, NameVals, FSAbbrev);
4118    NameVals.clear();
4119    MaybeEmitOriginalName(*S);
4120  });
4121
4122  for (auto *AS : Aliases) {
4123    auto AliasValueId = SummaryToValueIdMap[AS];
4124    assert(AliasValueId);
4125    NameVals.push_back(AliasValueId);
4126    NameVals.push_back(Index.getModuleId(AS->modulePath()));
4127    NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4128    auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4129    assert(AliaseeValueId);
4130    NameVals.push_back(AliaseeValueId);
4131
4132    // Emit the finished record.
4133    Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4134    NameVals.clear();
4135    MaybeEmitOriginalName(*AS);
4136
4137    if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4138      getReferencedTypeIds(FS, ReferencedTypeIds);
4139  }
4140
4141  if (!Index.cfiFunctionDefs().empty()) {
4142    for (auto &S : Index.cfiFunctionDefs()) {
4143      if (DefOrUseGUIDs.count(
4144              GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4145        NameVals.push_back(StrtabBuilder.add(S));
4146        NameVals.push_back(S.size());
4147      }
4148    }
4149    if (!NameVals.empty()) {
4150      Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4151      NameVals.clear();
4152    }
4153  }
4154
4155  if (!Index.cfiFunctionDecls().empty()) {
4156    for (auto &S : Index.cfiFunctionDecls()) {
4157      if (DefOrUseGUIDs.count(
4158              GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4159        NameVals.push_back(StrtabBuilder.add(S));
4160        NameVals.push_back(S.size());
4161      }
4162    }
4163    if (!NameVals.empty()) {
4164      Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4165      NameVals.clear();
4166    }
4167  }
4168
4169  // Walk the GUIDs that were referenced, and write the
4170  // corresponding type id records.
4171  for (auto &T : ReferencedTypeIds) {
4172    auto TidIter = Index.typeIds().equal_range(T);
4173    for (auto It = TidIter.first; It != TidIter.second; ++It) {
4174      writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4175                               It->second.second);
4176      Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4177      NameVals.clear();
4178    }
4179  }
4180
4181  Stream.ExitBlock();
4182}
4183
4184/// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4185/// current llvm version, and a record for the epoch number.
4186static void writeIdentificationBlock(BitstreamWriter &Stream) {
4187  Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4188
4189  // Write the "user readable" string identifying the bitcode producer
4190  auto Abbv = std::make_shared<BitCodeAbbrev>();
4191  Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4192  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4193  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4194  auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4195  writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4196                    "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4197
4198  // Write the epoch version
4199  Abbv = std::make_shared<BitCodeAbbrev>();
4200  Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4201  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4202  auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4203  SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
4204  Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4205  Stream.ExitBlock();
4206}
4207
4208void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4209  // Emit the module's hash.
4210  // MODULE_CODE_HASH: [5*i32]
4211  if (GenerateHash) {
4212    uint32_t Vals[5];
4213    Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4214                                    Buffer.size() - BlockStartPos));
4215    StringRef Hash = Hasher.result();
4216    for (int Pos = 0; Pos < 20; Pos += 4) {
4217      Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4218    }
4219
4220    // Emit the finished record.
4221    Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4222
4223    if (ModHash)
4224      // Save the written hash value.
4225      llvm::copy(Vals, std::begin(*ModHash));
4226  }
4227}
4228
4229void ModuleBitcodeWriter::write() {
4230  writeIdentificationBlock(Stream);
4231
4232  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4233  size_t BlockStartPos = Buffer.size();
4234
4235  writeModuleVersion();
4236
4237  // Emit blockinfo, which defines the standard abbreviations etc.
4238  writeBlockInfo();
4239
4240  // Emit information describing all of the types in the module.
4241  writeTypeTable();
4242
4243  // Emit information about attribute groups.
4244  writeAttributeGroupTable();
4245
4246  // Emit information about parameter attributes.
4247  writeAttributeTable();
4248
4249  writeComdats();
4250
4251  // Emit top-level description of module, including target triple, inline asm,
4252  // descriptors for global variables, and function prototype info.
4253  writeModuleInfo();
4254
4255  // Emit constants.
4256  writeModuleConstants();
4257
4258  // Emit metadata kind names.
4259  writeModuleMetadataKinds();
4260
4261  // Emit metadata.
4262  writeModuleMetadata();
4263
4264  // Emit module-level use-lists.
4265  if (VE.shouldPreserveUseListOrder())
4266    writeUseListBlock(nullptr);
4267
4268  writeOperandBundleTags();
4269  writeSyncScopeNames();
4270
4271  // Emit function bodies.
4272  DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4273  for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4274    if (!F->isDeclaration())
4275      writeFunction(*F, FunctionToBitcodeIndex);
4276
4277  // Need to write after the above call to WriteFunction which populates
4278  // the summary information in the index.
4279  if (Index)
4280    writePerModuleGlobalValueSummary();
4281
4282  writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4283
4284  writeModuleHash(BlockStartPos);
4285
4286  Stream.ExitBlock();
4287}
4288
4289static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4290                               uint32_t &Position) {
4291  support::endian::write32le(&Buffer[Position], Value);
4292  Position += 4;
4293}
4294
4295/// If generating a bc file on darwin, we have to emit a
4296/// header and trailer to make it compatible with the system archiver.  To do
4297/// this we emit the following header, and then emit a trailer that pads the
4298/// file out to be a multiple of 16 bytes.
4299///
4300/// struct bc_header {
4301///   uint32_t Magic;         // 0x0B17C0DE
4302///   uint32_t Version;       // Version, currently always 0.
4303///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4304///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4305///   uint32_t CPUType;       // CPU specifier.
4306///   ... potentially more later ...
4307/// };
4308static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4309                                         const Triple &TT) {
4310  unsigned CPUType = ~0U;
4311
4312  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4313  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4314  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4315  // specific constants here because they are implicitly part of the Darwin ABI.
4316  enum {
4317    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4318    DARWIN_CPU_TYPE_X86        = 7,
4319    DARWIN_CPU_TYPE_ARM        = 12,
4320    DARWIN_CPU_TYPE_POWERPC    = 18
4321  };
4322
4323  Triple::ArchType Arch = TT.getArch();
4324  if (Arch == Triple::x86_64)
4325    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4326  else if (Arch == Triple::x86)
4327    CPUType = DARWIN_CPU_TYPE_X86;
4328  else if (Arch == Triple::ppc)
4329    CPUType = DARWIN_CPU_TYPE_POWERPC;
4330  else if (Arch == Triple::ppc64)
4331    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4332  else if (Arch == Triple::arm || Arch == Triple::thumb)
4333    CPUType = DARWIN_CPU_TYPE_ARM;
4334
4335  // Traditional Bitcode starts after header.
4336  assert(Buffer.size() >= BWH_HeaderSize &&
4337         "Expected header size to be reserved");
4338  unsigned BCOffset = BWH_HeaderSize;
4339  unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4340
4341  // Write the magic and version.
4342  unsigned Position = 0;
4343  writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4344  writeInt32ToBuffer(0, Buffer, Position); // Version.
4345  writeInt32ToBuffer(BCOffset, Buffer, Position);
4346  writeInt32ToBuffer(BCSize, Buffer, Position);
4347  writeInt32ToBuffer(CPUType, Buffer, Position);
4348
4349  // If the file is not a multiple of 16 bytes, insert dummy padding.
4350  while (Buffer.size() & 15)
4351    Buffer.push_back(0);
4352}
4353
4354/// Helper to write the header common to all bitcode files.
4355static void writeBitcodeHeader(BitstreamWriter &Stream) {
4356  // Emit the file header.
4357  Stream.Emit((unsigned)'B', 8);
4358  Stream.Emit((unsigned)'C', 8);
4359  Stream.Emit(0x0, 4);
4360  Stream.Emit(0xC, 4);
4361  Stream.Emit(0xE, 4);
4362  Stream.Emit(0xD, 4);
4363}
4364
4365BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4366    : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4367  writeBitcodeHeader(*Stream);
4368}
4369
4370BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4371
4372void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4373  Stream->EnterSubblock(Block, 3);
4374
4375  auto Abbv = std::make_shared<BitCodeAbbrev>();
4376  Abbv->Add(BitCodeAbbrevOp(Record));
4377  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4378  auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4379
4380  Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4381
4382  Stream->ExitBlock();
4383}
4384
4385void BitcodeWriter::writeSymtab() {
4386  assert(!WroteStrtab && !WroteSymtab);
4387
4388  // If any module has module-level inline asm, we will require a registered asm
4389  // parser for the target so that we can create an accurate symbol table for
4390  // the module.
4391  for (Module *M : Mods) {
4392    if (M->getModuleInlineAsm().empty())
4393      continue;
4394
4395    std::string Err;
4396    const Triple TT(M->getTargetTriple());
4397    const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4398    if (!T || !T->hasMCAsmParser())
4399      return;
4400  }
4401
4402  WroteSymtab = true;
4403  SmallVector<char, 0> Symtab;
4404  // The irsymtab::build function may be unable to create a symbol table if the
4405  // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4406  // table is not required for correctness, but we still want to be able to
4407  // write malformed modules to bitcode files, so swallow the error.
4408  if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4409    consumeError(std::move(E));
4410    return;
4411  }
4412
4413  writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4414            {Symtab.data(), Symtab.size()});
4415}
4416
4417void BitcodeWriter::writeStrtab() {
4418  assert(!WroteStrtab);
4419
4420  std::vector<char> Strtab;
4421  StrtabBuilder.finalizeInOrder();
4422  Strtab.resize(StrtabBuilder.getSize());
4423  StrtabBuilder.write((uint8_t *)Strtab.data());
4424
4425  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4426            {Strtab.data(), Strtab.size()});
4427
4428  WroteStrtab = true;
4429}
4430
4431void BitcodeWriter::copyStrtab(StringRef Strtab) {
4432  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4433  WroteStrtab = true;
4434}
4435
4436void BitcodeWriter::writeModule(const Module &M,
4437                                bool ShouldPreserveUseListOrder,
4438                                const ModuleSummaryIndex *Index,
4439                                bool GenerateHash, ModuleHash *ModHash) {
4440  assert(!WroteStrtab);
4441
4442  // The Mods vector is used by irsymtab::build, which requires non-const
4443  // Modules in case it needs to materialize metadata. But the bitcode writer
4444  // requires that the module is materialized, so we can cast to non-const here,
4445  // after checking that it is in fact materialized.
4446  assert(M.isMaterialized());
4447  Mods.push_back(const_cast<Module *>(&M));
4448
4449  ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4450                                   ShouldPreserveUseListOrder, Index,
4451                                   GenerateHash, ModHash);
4452  ModuleWriter.write();
4453}
4454
4455void BitcodeWriter::writeIndex(
4456    const ModuleSummaryIndex *Index,
4457    const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4458  IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4459                                 ModuleToSummariesForIndex);
4460  IndexWriter.write();
4461}
4462
4463/// Write the specified module to the specified output stream.
4464void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4465                              bool ShouldPreserveUseListOrder,
4466                              const ModuleSummaryIndex *Index,
4467                              bool GenerateHash, ModuleHash *ModHash) {
4468  SmallVector<char, 0> Buffer;
4469  Buffer.reserve(256*1024);
4470
4471  // If this is darwin or another generic macho target, reserve space for the
4472  // header.
4473  Triple TT(M.getTargetTriple());
4474  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4475    Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4476
4477  BitcodeWriter Writer(Buffer);
4478  Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4479                     ModHash);
4480  Writer.writeSymtab();
4481  Writer.writeStrtab();
4482
4483  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4484    emitDarwinBCHeaderAndTrailer(Buffer, TT);
4485
4486  // Write the generated bitstream to "Out".
4487  Out.write((char*)&Buffer.front(), Buffer.size());
4488}
4489
4490void IndexBitcodeWriter::write() {
4491  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4492
4493  writeModuleVersion();
4494
4495  // Write the module paths in the combined index.
4496  writeModStrings();
4497
4498  // Write the summary combined index records.
4499  writeCombinedGlobalValueSummary();
4500
4501  Stream.ExitBlock();
4502}
4503
4504// Write the specified module summary index to the given raw output stream,
4505// where it will be written in a new bitcode block. This is used when
4506// writing the combined index file for ThinLTO. When writing a subset of the
4507// index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4508void llvm::WriteIndexToFile(
4509    const ModuleSummaryIndex &Index, raw_ostream &Out,
4510    const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4511  SmallVector<char, 0> Buffer;
4512  Buffer.reserve(256 * 1024);
4513
4514  BitcodeWriter Writer(Buffer);
4515  Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4516  Writer.writeStrtab();
4517
4518  Out.write((char *)&Buffer.front(), Buffer.size());
4519}
4520
4521namespace {
4522
4523/// Class to manage the bitcode writing for a thin link bitcode file.
4524class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4525  /// ModHash is for use in ThinLTO incremental build, generated while writing
4526  /// the module bitcode file.
4527  const ModuleHash *ModHash;
4528
4529public:
4530  ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4531                        BitstreamWriter &Stream,
4532                        const ModuleSummaryIndex &Index,
4533                        const ModuleHash &ModHash)
4534      : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4535                                /*ShouldPreserveUseListOrder=*/false, &Index),
4536        ModHash(&ModHash) {}
4537
4538  void write();
4539
4540private:
4541  void writeSimplifiedModuleInfo();
4542};
4543
4544} // end anonymous namespace
4545
4546// This function writes a simpilified module info for thin link bitcode file.
4547// It only contains the source file name along with the name(the offset and
4548// size in strtab) and linkage for global values. For the global value info
4549// entry, in order to keep linkage at offset 5, there are three zeros used
4550// as padding.
4551void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4552  SmallVector<unsigned, 64> Vals;
4553  // Emit the module's source file name.
4554  {
4555    StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4556    BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4557    if (Bits == SE_Char6)
4558      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4559    else if (Bits == SE_Fixed7)
4560      AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4561
4562    // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4563    auto Abbv = std::make_shared<BitCodeAbbrev>();
4564    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4565    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4566    Abbv->Add(AbbrevOpToUse);
4567    unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4568
4569    for (const auto P : M.getSourceFileName())
4570      Vals.push_back((unsigned char)P);
4571
4572    Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4573    Vals.clear();
4574  }
4575
4576  // Emit the global variable information.
4577  for (const GlobalVariable &GV : M.globals()) {
4578    // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4579    Vals.push_back(StrtabBuilder.add(GV.getName()));
4580    Vals.push_back(GV.getName().size());
4581    Vals.push_back(0);
4582    Vals.push_back(0);
4583    Vals.push_back(0);
4584    Vals.push_back(getEncodedLinkage(GV));
4585
4586    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4587    Vals.clear();
4588  }
4589
4590  // Emit the function proto information.
4591  for (const Function &F : M) {
4592    // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4593    Vals.push_back(StrtabBuilder.add(F.getName()));
4594    Vals.push_back(F.getName().size());
4595    Vals.push_back(0);
4596    Vals.push_back(0);
4597    Vals.push_back(0);
4598    Vals.push_back(getEncodedLinkage(F));
4599
4600    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4601    Vals.clear();
4602  }
4603
4604  // Emit the alias information.
4605  for (const GlobalAlias &A : M.aliases()) {
4606    // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4607    Vals.push_back(StrtabBuilder.add(A.getName()));
4608    Vals.push_back(A.getName().size());
4609    Vals.push_back(0);
4610    Vals.push_back(0);
4611    Vals.push_back(0);
4612    Vals.push_back(getEncodedLinkage(A));
4613
4614    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4615    Vals.clear();
4616  }
4617
4618  // Emit the ifunc information.
4619  for (const GlobalIFunc &I : M.ifuncs()) {
4620    // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4621    Vals.push_back(StrtabBuilder.add(I.getName()));
4622    Vals.push_back(I.getName().size());
4623    Vals.push_back(0);
4624    Vals.push_back(0);
4625    Vals.push_back(0);
4626    Vals.push_back(getEncodedLinkage(I));
4627
4628    Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4629    Vals.clear();
4630  }
4631}
4632
4633void ThinLinkBitcodeWriter::write() {
4634  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4635
4636  writeModuleVersion();
4637
4638  writeSimplifiedModuleInfo();
4639
4640  writePerModuleGlobalValueSummary();
4641
4642  // Write module hash.
4643  Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4644
4645  Stream.ExitBlock();
4646}
4647
4648void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4649                                         const ModuleSummaryIndex &Index,
4650                                         const ModuleHash &ModHash) {
4651  assert(!WroteStrtab);
4652
4653  // The Mods vector is used by irsymtab::build, which requires non-const
4654  // Modules in case it needs to materialize metadata. But the bitcode writer
4655  // requires that the module is materialized, so we can cast to non-const here,
4656  // after checking that it is in fact materialized.
4657  assert(M.isMaterialized());
4658  Mods.push_back(const_cast<Module *>(&M));
4659
4660  ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4661                                       ModHash);
4662  ThinLinkWriter.write();
4663}
4664
4665// Write the specified thin link bitcode file to the given raw output stream,
4666// where it will be written in a new bitcode block. This is used when
4667// writing the per-module index file for ThinLTO.
4668void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4669                                      const ModuleSummaryIndex &Index,
4670                                      const ModuleHash &ModHash) {
4671  SmallVector<char, 0> Buffer;
4672  Buffer.reserve(256 * 1024);
4673
4674  BitcodeWriter Writer(Buffer);
4675  Writer.writeThinLinkBitcode(M, Index, ModHash);
4676  Writer.writeSymtab();
4677  Writer.writeStrtab();
4678
4679  Out.write((char *)&Buffer.front(), Buffer.size());
4680}
4681
4682static const char *getSectionNameForBitcode(const Triple &T) {
4683  switch (T.getObjectFormat()) {
4684  case Triple::MachO:
4685    return "__LLVM,__bitcode";
4686  case Triple::COFF:
4687  case Triple::ELF:
4688  case Triple::Wasm:
4689  case Triple::UnknownObjectFormat:
4690    return ".llvmbc";
4691  case Triple::XCOFF:
4692    llvm_unreachable("XCOFF is not yet implemented");
4693    break;
4694  }
4695  llvm_unreachable("Unimplemented ObjectFormatType");
4696}
4697
4698static const char *getSectionNameForCommandline(const Triple &T) {
4699  switch (T.getObjectFormat()) {
4700  case Triple::MachO:
4701    return "__LLVM,__cmdline";
4702  case Triple::COFF:
4703  case Triple::ELF:
4704  case Triple::Wasm:
4705  case Triple::UnknownObjectFormat:
4706    return ".llvmcmd";
4707  case Triple::XCOFF:
4708    llvm_unreachable("XCOFF is not yet implemented");
4709    break;
4710  }
4711  llvm_unreachable("Unimplemented ObjectFormatType");
4712}
4713
4714void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
4715                                bool EmbedBitcode, bool EmbedMarker,
4716                                const std::vector<uint8_t> *CmdArgs) {
4717  // Save llvm.compiler.used and remove it.
4718  SmallVector<Constant *, 2> UsedArray;
4719  SmallPtrSet<GlobalValue *, 4> UsedGlobals;
4720  Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
4721  GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
4722  for (auto *GV : UsedGlobals) {
4723    if (GV->getName() != "llvm.embedded.module" &&
4724        GV->getName() != "llvm.cmdline")
4725      UsedArray.push_back(
4726          ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4727  }
4728  if (Used)
4729    Used->eraseFromParent();
4730
4731  // Embed the bitcode for the llvm module.
4732  std::string Data;
4733  ArrayRef<uint8_t> ModuleData;
4734  Triple T(M.getTargetTriple());
4735  // Create a constant that contains the bitcode.
4736  // In case of embedding a marker, ignore the input Buf and use the empty
4737  // ArrayRef. It is also legal to create a bitcode marker even Buf is empty.
4738  if (EmbedBitcode) {
4739    if (!isBitcode((const unsigned char *)Buf.getBufferStart(),
4740                   (const unsigned char *)Buf.getBufferEnd())) {
4741      // If the input is LLVM Assembly, bitcode is produced by serializing
4742      // the module. Use-lists order need to be preserved in this case.
4743      llvm::raw_string_ostream OS(Data);
4744      llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
4745      ModuleData =
4746          ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
4747    } else
4748      // If the input is LLVM bitcode, write the input byte stream directly.
4749      ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
4750                                     Buf.getBufferSize());
4751  }
4752  llvm::Constant *ModuleConstant =
4753      llvm::ConstantDataArray::get(M.getContext(), ModuleData);
4754  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
4755      M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
4756      ModuleConstant);
4757  GV->setSection(getSectionNameForBitcode(T));
4758  UsedArray.push_back(
4759      ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4760  if (llvm::GlobalVariable *Old =
4761          M.getGlobalVariable("llvm.embedded.module", true)) {
4762    assert(Old->hasOneUse() &&
4763           "llvm.embedded.module can only be used once in llvm.compiler.used");
4764    GV->takeName(Old);
4765    Old->eraseFromParent();
4766  } else {
4767    GV->setName("llvm.embedded.module");
4768  }
4769
4770  // Skip if only bitcode needs to be embedded.
4771  if (EmbedMarker) {
4772    // Embed command-line options.
4773    ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()),
4774                              CmdArgs->size());
4775    llvm::Constant *CmdConstant =
4776        llvm::ConstantDataArray::get(M.getContext(), CmdData);
4777    GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
4778                                  llvm::GlobalValue::PrivateLinkage,
4779                                  CmdConstant);
4780    GV->setSection(getSectionNameForCommandline(T));
4781    UsedArray.push_back(
4782        ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4783    if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
4784      assert(Old->hasOneUse() &&
4785             "llvm.cmdline can only be used once in llvm.compiler.used");
4786      GV->takeName(Old);
4787      Old->eraseFromParent();
4788    } else {
4789      GV->setName("llvm.cmdline");
4790    }
4791  }
4792
4793  if (UsedArray.empty())
4794    return;
4795
4796  // Recreate llvm.compiler.used.
4797  ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
4798  auto *NewUsed = new GlobalVariable(
4799      M, ATy, false, llvm::GlobalValue::AppendingLinkage,
4800      llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
4801  NewUsed->setSection("llvm.metadata");
4802}
4803