1//===--------------------- Instruction.h ------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file defines abstractions used by the Pipeline to model register reads,
11/// register writes and instructions.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_MCA_INSTRUCTION_H
16#define LLVM_MCA_INSTRUCTION_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/MC/MCRegister.h" // definition of MCPhysReg.
22#include "llvm/Support/MathExtras.h"
23
24#ifndef NDEBUG
25#include "llvm/Support/raw_ostream.h"
26#endif
27
28#include <memory>
29
30namespace llvm {
31
32namespace mca {
33
34constexpr int UNKNOWN_CYCLES = -512;
35
36/// A register write descriptor.
37struct WriteDescriptor {
38  // Operand index. The index is negative for implicit writes only.
39  // For implicit writes, the actual operand index is computed performing
40  // a bitwise not of the OpIndex.
41  int OpIndex;
42  // Write latency. Number of cycles before write-back stage.
43  unsigned Latency;
44  // This field is set to a value different than zero only if this
45  // is an implicit definition.
46  MCPhysReg RegisterID;
47  // Instruction itineraries would set this field to the SchedClass ID.
48  // Otherwise, it defaults to the WriteResourceID from the MCWriteLatencyEntry
49  // element associated to this write.
50  // When computing read latencies, this value is matched against the
51  // "ReadAdvance" information. The hardware backend may implement
52  // dedicated forwarding paths to quickly propagate write results to dependent
53  // instructions waiting in the reservation station (effectively bypassing the
54  // write-back stage).
55  unsigned SClassOrWriteResourceID;
56  // True only if this is a write obtained from an optional definition.
57  // Optional definitions are allowed to reference regID zero (i.e. "no
58  // register").
59  bool IsOptionalDef;
60
61  bool isImplicitWrite() const { return OpIndex < 0; };
62};
63
64/// A register read descriptor.
65struct ReadDescriptor {
66  // A MCOperand index. This is used by the Dispatch logic to identify register
67  // reads. Implicit reads have negative indices. The actual operand index of an
68  // implicit read is the bitwise not of field OpIndex.
69  int OpIndex;
70  // The actual "UseIdx". This is used to query the ReadAdvance table. Explicit
71  // uses always come first in the sequence of uses.
72  unsigned UseIndex;
73  // This field is only set if this is an implicit read.
74  MCPhysReg RegisterID;
75  // Scheduling Class Index. It is used to query the scheduling model for the
76  // MCSchedClassDesc object.
77  unsigned SchedClassID;
78
79  bool isImplicitRead() const { return OpIndex < 0; };
80};
81
82class ReadState;
83
84/// A critical data dependency descriptor.
85///
86/// Field RegID is set to the invalid register for memory dependencies.
87struct CriticalDependency {
88  unsigned IID;
89  MCPhysReg RegID;
90  unsigned Cycles;
91};
92
93/// Tracks uses of a register definition (e.g. register write).
94///
95/// Each implicit/explicit register write is associated with an instance of
96/// this class. A WriteState object tracks the dependent users of a
97/// register write. It also tracks how many cycles are left before the write
98/// back stage.
99class WriteState {
100  const WriteDescriptor *WD;
101  // On instruction issue, this field is set equal to the write latency.
102  // Before instruction issue, this field defaults to -512, a special
103  // value that represents an "unknown" number of cycles.
104  int CyclesLeft;
105
106  // Actual register defined by this write. This field is only used
107  // to speedup queries on the register file.
108  // For implicit writes, this field always matches the value of
109  // field RegisterID from WD.
110  MCPhysReg RegisterID;
111
112  // Physical register file that serves register RegisterID.
113  unsigned PRFID;
114
115  // True if this write implicitly clears the upper portion of RegisterID's
116  // super-registers.
117  bool ClearsSuperRegs;
118
119  // True if this write is from a dependency breaking zero-idiom instruction.
120  bool WritesZero;
121
122  // True if this write has been eliminated at register renaming stage.
123  // Example: a register move doesn't consume scheduler/pipleline resources if
124  // it is eliminated at register renaming stage. It still consumes
125  // decode bandwidth, and ROB entries.
126  bool IsEliminated;
127
128  // This field is set if this is a partial register write, and it has a false
129  // dependency on any previous write of the same register (or a portion of it).
130  // DependentWrite must be able to complete before this write completes, so
131  // that we don't break the WAW, and the two writes can be merged together.
132  const WriteState *DependentWrite;
133
134  // A partial write that is in a false dependency with this write.
135  WriteState *PartialWrite;
136  unsigned DependentWriteCyclesLeft;
137
138  // Critical register dependency for this write.
139  CriticalDependency CRD;
140
141  // A list of dependent reads. Users is a set of dependent
142  // reads. A dependent read is added to the set only if CyclesLeft
143  // is "unknown". As soon as CyclesLeft is 'known', each user in the set
144  // gets notified with the actual CyclesLeft.
145
146  // The 'second' element of a pair is a "ReadAdvance" number of cycles.
147  SmallVector<std::pair<ReadState *, int>, 4> Users;
148
149public:
150  WriteState(const WriteDescriptor &Desc, MCPhysReg RegID,
151             bool clearsSuperRegs = false, bool writesZero = false)
152      : WD(&Desc), CyclesLeft(UNKNOWN_CYCLES), RegisterID(RegID), PRFID(0),
153        ClearsSuperRegs(clearsSuperRegs), WritesZero(writesZero),
154        IsEliminated(false), DependentWrite(nullptr), PartialWrite(nullptr),
155        DependentWriteCyclesLeft(0), CRD() {}
156
157  WriteState(const WriteState &Other) = default;
158  WriteState &operator=(const WriteState &Other) = default;
159
160  int getCyclesLeft() const { return CyclesLeft; }
161  unsigned getWriteResourceID() const { return WD->SClassOrWriteResourceID; }
162  MCPhysReg getRegisterID() const { return RegisterID; }
163  unsigned getRegisterFileID() const { return PRFID; }
164  unsigned getLatency() const { return WD->Latency; }
165  unsigned getDependentWriteCyclesLeft() const {
166    return DependentWriteCyclesLeft;
167  }
168  const WriteState *getDependentWrite() const { return DependentWrite; }
169  const CriticalDependency &getCriticalRegDep() const { return CRD; }
170
171  // This method adds Use to the set of data dependent reads. IID is the
172  // instruction identifier associated with this write. ReadAdvance is the
173  // number of cycles to subtract from the latency of this data dependency.
174  // Use is in a RAW dependency with this write.
175  void addUser(unsigned IID, ReadState *Use, int ReadAdvance);
176
177  // Use is a younger register write that is in a false dependency with this
178  // write. IID is the instruction identifier associated with this write.
179  void addUser(unsigned IID, WriteState *Use);
180
181  unsigned getNumUsers() const {
182    unsigned NumUsers = Users.size();
183    if (PartialWrite)
184      ++NumUsers;
185    return NumUsers;
186  }
187
188  bool clearsSuperRegisters() const { return ClearsSuperRegs; }
189  bool isWriteZero() const { return WritesZero; }
190  bool isEliminated() const { return IsEliminated; }
191
192  bool isReady() const {
193    if (DependentWrite)
194      return false;
195    unsigned CyclesLeft = getDependentWriteCyclesLeft();
196    return !CyclesLeft || CyclesLeft < getLatency();
197  }
198
199  bool isExecuted() const {
200    return CyclesLeft != UNKNOWN_CYCLES && CyclesLeft <= 0;
201  }
202
203  void setDependentWrite(const WriteState *Other) { DependentWrite = Other; }
204  void writeStartEvent(unsigned IID, MCPhysReg RegID, unsigned Cycles);
205  void setWriteZero() { WritesZero = true; }
206  void setEliminated() {
207    assert(Users.empty() && "Write is in an inconsistent state.");
208    CyclesLeft = 0;
209    IsEliminated = true;
210  }
211
212  void setPRF(unsigned PRF) { PRFID = PRF; }
213
214  // On every cycle, update CyclesLeft and notify dependent users.
215  void cycleEvent();
216  void onInstructionIssued(unsigned IID);
217
218#ifndef NDEBUG
219  void dump() const;
220#endif
221};
222
223/// Tracks register operand latency in cycles.
224///
225/// A read may be dependent on more than one write. This occurs when some
226/// writes only partially update the register associated to this read.
227class ReadState {
228  const ReadDescriptor *RD;
229  // Physical register identified associated to this read.
230  MCPhysReg RegisterID;
231  // Physical register file that serves register RegisterID.
232  unsigned PRFID;
233  // Number of writes that contribute to the definition of RegisterID.
234  // In the absence of partial register updates, the number of DependentWrites
235  // cannot be more than one.
236  unsigned DependentWrites;
237  // Number of cycles left before RegisterID can be read. This value depends on
238  // the latency of all the dependent writes. It defaults to UNKNOWN_CYCLES.
239  // It gets set to the value of field TotalCycles only when the 'CyclesLeft' of
240  // every dependent write is known.
241  int CyclesLeft;
242  // This field is updated on every writeStartEvent(). When the number of
243  // dependent writes (i.e. field DependentWrite) is zero, this value is
244  // propagated to field CyclesLeft.
245  unsigned TotalCycles;
246  // Longest register dependency.
247  CriticalDependency CRD;
248  // This field is set to true only if there are no dependent writes, and
249  // there are no `CyclesLeft' to wait.
250  bool IsReady;
251  // True if this is a read from a known zero register.
252  bool IsZero;
253  // True if this register read is from a dependency-breaking instruction.
254  bool IndependentFromDef;
255
256public:
257  ReadState(const ReadDescriptor &Desc, MCPhysReg RegID)
258      : RD(&Desc), RegisterID(RegID), PRFID(0), DependentWrites(0),
259        CyclesLeft(UNKNOWN_CYCLES), TotalCycles(0), CRD(), IsReady(true),
260        IsZero(false), IndependentFromDef(false) {}
261
262  const ReadDescriptor &getDescriptor() const { return *RD; }
263  unsigned getSchedClass() const { return RD->SchedClassID; }
264  MCPhysReg getRegisterID() const { return RegisterID; }
265  unsigned getRegisterFileID() const { return PRFID; }
266  const CriticalDependency &getCriticalRegDep() const { return CRD; }
267
268  bool isPending() const { return !IndependentFromDef && CyclesLeft > 0; }
269  bool isReady() const { return IsReady; }
270  bool isImplicitRead() const { return RD->isImplicitRead(); }
271
272  bool isIndependentFromDef() const { return IndependentFromDef; }
273  void setIndependentFromDef() { IndependentFromDef = true; }
274
275  void cycleEvent();
276  void writeStartEvent(unsigned IID, MCPhysReg RegID, unsigned Cycles);
277  void setDependentWrites(unsigned Writes) {
278    DependentWrites = Writes;
279    IsReady = !Writes;
280  }
281
282  bool isReadZero() const { return IsZero; }
283  void setReadZero() { IsZero = true; }
284  void setPRF(unsigned ID) { PRFID = ID; }
285};
286
287/// A sequence of cycles.
288///
289/// This class can be used as a building block to construct ranges of cycles.
290class CycleSegment {
291  unsigned Begin; // Inclusive.
292  unsigned End;   // Exclusive.
293  bool Reserved;  // Resources associated to this segment must be reserved.
294
295public:
296  CycleSegment(unsigned StartCycle, unsigned EndCycle, bool IsReserved = false)
297      : Begin(StartCycle), End(EndCycle), Reserved(IsReserved) {}
298
299  bool contains(unsigned Cycle) const { return Cycle >= Begin && Cycle < End; }
300  bool startsAfter(const CycleSegment &CS) const { return End <= CS.Begin; }
301  bool endsBefore(const CycleSegment &CS) const { return Begin >= CS.End; }
302  bool overlaps(const CycleSegment &CS) const {
303    return !startsAfter(CS) && !endsBefore(CS);
304  }
305  bool isExecuting() const { return Begin == 0 && End != 0; }
306  bool isExecuted() const { return End == 0; }
307  bool operator<(const CycleSegment &Other) const {
308    return Begin < Other.Begin;
309  }
310  CycleSegment &operator--(void) {
311    if (Begin)
312      Begin--;
313    if (End)
314      End--;
315    return *this;
316  }
317
318  bool isValid() const { return Begin <= End; }
319  unsigned size() const { return End - Begin; };
320  void subtract(unsigned Cycles) {
321    assert(End >= Cycles);
322    End -= Cycles;
323  }
324
325  unsigned begin() const { return Begin; }
326  unsigned end() const { return End; }
327  void setEnd(unsigned NewEnd) { End = NewEnd; }
328  bool isReserved() const { return Reserved; }
329  void setReserved() { Reserved = true; }
330};
331
332/// Helper used by class InstrDesc to describe how hardware resources
333/// are used.
334///
335/// This class describes how many resource units of a specific resource kind
336/// (and how many cycles) are "used" by an instruction.
337struct ResourceUsage {
338  CycleSegment CS;
339  unsigned NumUnits;
340  ResourceUsage(CycleSegment Cycles, unsigned Units = 1)
341      : CS(Cycles), NumUnits(Units) {}
342  unsigned size() const { return CS.size(); }
343  bool isReserved() const { return CS.isReserved(); }
344  void setReserved() { CS.setReserved(); }
345};
346
347/// An instruction descriptor
348struct InstrDesc {
349  SmallVector<WriteDescriptor, 4> Writes; // Implicit writes are at the end.
350  SmallVector<ReadDescriptor, 4> Reads;   // Implicit reads are at the end.
351
352  // For every resource used by an instruction of this kind, this vector
353  // reports the number of "consumed cycles".
354  SmallVector<std::pair<uint64_t, ResourceUsage>, 4> Resources;
355
356  // A bitmask of used hardware buffers.
357  uint64_t UsedBuffers;
358
359  // A bitmask of used processor resource units.
360  uint64_t UsedProcResUnits;
361
362  // A bitmask of used processor resource groups.
363  uint64_t UsedProcResGroups;
364
365  unsigned MaxLatency;
366  // Number of MicroOps for this instruction.
367  unsigned NumMicroOps;
368  // SchedClassID used to construct this InstrDesc.
369  // This information is currently used by views to do fast queries on the
370  // subtarget when computing the reciprocal throughput.
371  unsigned SchedClassID;
372
373  bool MayLoad;
374  bool MayStore;
375  bool HasSideEffects;
376  bool BeginGroup;
377  bool EndGroup;
378
379  // True if all buffered resources are in-order, and there is at least one
380  // buffer which is a dispatch hazard (BufferSize = 0).
381  bool MustIssueImmediately;
382
383  // A zero latency instruction doesn't consume any scheduler resources.
384  bool isZeroLatency() const { return !MaxLatency && Resources.empty(); }
385
386  InstrDesc() = default;
387  InstrDesc(const InstrDesc &Other) = delete;
388  InstrDesc &operator=(const InstrDesc &Other) = delete;
389};
390
391/// Base class for instructions consumed by the simulation pipeline.
392///
393/// This class tracks data dependencies as well as generic properties
394/// of the instruction.
395class InstructionBase {
396  const InstrDesc &Desc;
397
398  // This field is set for instructions that are candidates for move
399  // elimination. For more information about move elimination, see the
400  // definition of RegisterMappingTracker in RegisterFile.h
401  bool IsOptimizableMove;
402
403  // Output dependencies.
404  // One entry per each implicit and explicit register definition.
405  SmallVector<WriteState, 4> Defs;
406
407  // Input dependencies.
408  // One entry per each implicit and explicit register use.
409  SmallVector<ReadState, 4> Uses;
410
411public:
412  InstructionBase(const InstrDesc &D) : Desc(D), IsOptimizableMove(false) {}
413
414  SmallVectorImpl<WriteState> &getDefs() { return Defs; }
415  const ArrayRef<WriteState> getDefs() const { return Defs; }
416  SmallVectorImpl<ReadState> &getUses() { return Uses; }
417  const ArrayRef<ReadState> getUses() const { return Uses; }
418  const InstrDesc &getDesc() const { return Desc; }
419
420  unsigned getLatency() const { return Desc.MaxLatency; }
421  unsigned getNumMicroOps() const { return Desc.NumMicroOps; }
422
423  bool hasDependentUsers() const {
424    return any_of(Defs,
425                  [](const WriteState &Def) { return Def.getNumUsers() > 0; });
426  }
427
428  unsigned getNumUsers() const {
429    unsigned NumUsers = 0;
430    for (const WriteState &Def : Defs)
431      NumUsers += Def.getNumUsers();
432    return NumUsers;
433  }
434
435  // Returns true if this instruction is a candidate for move elimination.
436  bool isOptimizableMove() const { return IsOptimizableMove; }
437  void setOptimizableMove() { IsOptimizableMove = true; }
438  bool isMemOp() const { return Desc.MayLoad || Desc.MayStore; }
439};
440
441/// An instruction propagated through the simulated instruction pipeline.
442///
443/// This class is used to monitor changes to the internal state of instructions
444/// that are sent to the various components of the simulated hardware pipeline.
445class Instruction : public InstructionBase {
446  enum InstrStage {
447    IS_INVALID,    // Instruction in an invalid state.
448    IS_DISPATCHED, // Instruction dispatched but operands are not ready.
449    IS_PENDING,    // Instruction is not ready, but operand latency is known.
450    IS_READY,      // Instruction dispatched and operands ready.
451    IS_EXECUTING,  // Instruction issued.
452    IS_EXECUTED,   // Instruction executed. Values are written back.
453    IS_RETIRED     // Instruction retired.
454  };
455
456  // The current instruction stage.
457  enum InstrStage Stage;
458
459  // This value defaults to the instruction latency. This instruction is
460  // considered executed when field CyclesLeft goes to zero.
461  int CyclesLeft;
462
463  // Retire Unit token ID for this instruction.
464  unsigned RCUTokenID;
465
466  // LS token ID for this instruction.
467  // This field is set to the invalid null token if this is not a memory
468  // operation.
469  unsigned LSUTokenID;
470
471  // A resource mask which identifies buffered resources consumed by this
472  // instruction at dispatch stage. In the absence of macro-fusion, this value
473  // should always match the value of field `UsedBuffers` from the instruction
474  // descriptor (see field InstrBase::Desc).
475  uint64_t UsedBuffers;
476
477  // Critical register dependency.
478  CriticalDependency CriticalRegDep;
479
480  // Critical memory dependency.
481  CriticalDependency CriticalMemDep;
482
483  // A bitmask of busy processor resource units.
484  // This field is set to zero only if execution is not delayed during this
485  // cycle because of unavailable pipeline resources.
486  uint64_t CriticalResourceMask;
487
488  // True if this instruction has been optimized at register renaming stage.
489  bool IsEliminated;
490
491public:
492  Instruction(const InstrDesc &D)
493      : InstructionBase(D), Stage(IS_INVALID), CyclesLeft(UNKNOWN_CYCLES),
494        RCUTokenID(0), LSUTokenID(0), UsedBuffers(D.UsedBuffers),
495        CriticalRegDep(), CriticalMemDep(), CriticalResourceMask(0),
496        IsEliminated(false) {}
497
498  unsigned getRCUTokenID() const { return RCUTokenID; }
499  unsigned getLSUTokenID() const { return LSUTokenID; }
500  void setLSUTokenID(unsigned LSUTok) { LSUTokenID = LSUTok; }
501
502  uint64_t getUsedBuffers() const { return UsedBuffers; }
503  void setUsedBuffers(uint64_t Mask) { UsedBuffers = Mask; }
504  void clearUsedBuffers() { UsedBuffers = 0ULL; }
505
506  int getCyclesLeft() const { return CyclesLeft; }
507
508  // Transition to the dispatch stage, and assign a RCUToken to this
509  // instruction. The RCUToken is used to track the completion of every
510  // register write performed by this instruction.
511  void dispatch(unsigned RCUTokenID);
512
513  // Instruction issued. Transition to the IS_EXECUTING state, and update
514  // all the register definitions.
515  void execute(unsigned IID);
516
517  // Force a transition from the IS_DISPATCHED state to the IS_READY or
518  // IS_PENDING state. State transitions normally occur either at the beginning
519  // of a new cycle (see method cycleEvent()), or as a result of another issue
520  // event. This method is called every time the instruction might have changed
521  // in state. It internally delegates to method updateDispatched() and
522  // updateWaiting().
523  void update();
524  bool updateDispatched();
525  bool updatePending();
526
527  bool isDispatched() const { return Stage == IS_DISPATCHED; }
528  bool isPending() const { return Stage == IS_PENDING; }
529  bool isReady() const { return Stage == IS_READY; }
530  bool isExecuting() const { return Stage == IS_EXECUTING; }
531  bool isExecuted() const { return Stage == IS_EXECUTED; }
532  bool isRetired() const { return Stage == IS_RETIRED; }
533  bool isEliminated() const { return IsEliminated; }
534
535  // Forces a transition from state IS_DISPATCHED to state IS_EXECUTED.
536  void forceExecuted();
537  void setEliminated() { IsEliminated = true; }
538
539  void retire() {
540    assert(isExecuted() && "Instruction is in an invalid state!");
541    Stage = IS_RETIRED;
542  }
543
544  const CriticalDependency &getCriticalRegDep() const { return CriticalRegDep; }
545  const CriticalDependency &getCriticalMemDep() const { return CriticalMemDep; }
546  const CriticalDependency &computeCriticalRegDep();
547  void setCriticalMemDep(const CriticalDependency &MemDep) {
548    CriticalMemDep = MemDep;
549  }
550
551  uint64_t getCriticalResourceMask() const { return CriticalResourceMask; }
552  void setCriticalResourceMask(uint64_t ResourceMask) {
553    CriticalResourceMask = ResourceMask;
554  }
555
556  void cycleEvent();
557};
558
559/// An InstRef contains both a SourceMgr index and Instruction pair.  The index
560/// is used as a unique identifier for the instruction.  MCA will make use of
561/// this index as a key throughout MCA.
562class InstRef {
563  std::pair<unsigned, Instruction *> Data;
564
565public:
566  InstRef() : Data(std::make_pair(0, nullptr)) {}
567  InstRef(unsigned Index, Instruction *I) : Data(std::make_pair(Index, I)) {}
568
569  bool operator==(const InstRef &Other) const { return Data == Other.Data; }
570  bool operator!=(const InstRef &Other) const { return Data != Other.Data; }
571  bool operator<(const InstRef &Other) const {
572    return Data.first < Other.Data.first;
573  }
574
575  unsigned getSourceIndex() const { return Data.first; }
576  Instruction *getInstruction() { return Data.second; }
577  const Instruction *getInstruction() const { return Data.second; }
578
579  /// Returns true if this references a valid instruction.
580  explicit operator bool() const { return Data.second != nullptr; }
581
582  /// Invalidate this reference.
583  void invalidate() { Data.second = nullptr; }
584
585#ifndef NDEBUG
586  void print(raw_ostream &OS) const { OS << getSourceIndex(); }
587#endif
588};
589
590#ifndef NDEBUG
591inline raw_ostream &operator<<(raw_ostream &OS, const InstRef &IR) {
592  IR.print(OS);
593  return OS;
594}
595#endif
596
597/// A reference to a register write.
598///
599/// This class is mainly used by the register file to describe register
600/// mappings. It correlates a register write to the source index of the
601/// defining instruction.
602class WriteRef {
603  std::pair<unsigned, WriteState *> Data;
604  static const unsigned INVALID_IID;
605
606public:
607  WriteRef() : Data(INVALID_IID, nullptr) {}
608  WriteRef(unsigned SourceIndex, WriteState *WS) : Data(SourceIndex, WS) {}
609
610  unsigned getSourceIndex() const { return Data.first; }
611  const WriteState *getWriteState() const { return Data.second; }
612  WriteState *getWriteState() { return Data.second; }
613  void invalidate() { Data.second = nullptr; }
614  bool isWriteZero() const {
615    assert(isValid() && "Invalid null WriteState found!");
616    return getWriteState()->isWriteZero();
617  }
618
619  /// Returns true if this register write has been executed, and the new
620  /// register value is therefore available to users.
621  bool isAvailable() const {
622    if (getSourceIndex() == INVALID_IID)
623      return false;
624    const WriteState *WS = getWriteState();
625    return !WS || WS->isExecuted();
626  }
627
628  bool isValid() const { return Data.second && Data.first != INVALID_IID; }
629  bool operator==(const WriteRef &Other) const { return Data == Other.Data; }
630
631#ifndef NDEBUG
632  void dump() const;
633#endif
634};
635
636} // namespace mca
637} // namespace llvm
638
639#endif // LLVM_MCA_INSTRUCTION_H
640