1//==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes an abstract interface used to get information about a
10// target machines register file.  This information is used for a variety of
11// purposed, especially register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
16#define LLVM_CODEGEN_TARGETREGISTERINFO_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/iterator_range.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/IR/CallingConv.h"
24#include "llvm/MC/LaneBitmask.h"
25#include "llvm/MC/MCRegisterInfo.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MachineValueType.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/Printable.h"
30#include <cassert>
31#include <cstdint>
32#include <functional>
33
34namespace llvm {
35
36class BitVector;
37class LiveRegMatrix;
38class MachineFunction;
39class MachineInstr;
40class RegScavenger;
41class VirtRegMap;
42class LiveIntervals;
43
44class TargetRegisterClass {
45public:
46  using iterator = const MCPhysReg *;
47  using const_iterator = const MCPhysReg *;
48  using sc_iterator = const TargetRegisterClass* const *;
49
50  // Instance variables filled by tablegen, do not use!
51  const MCRegisterClass *MC;
52  const uint32_t *SubClassMask;
53  const uint16_t *SuperRegIndices;
54  const LaneBitmask LaneMask;
55  /// Classes with a higher priority value are assigned first by register
56  /// allocators using a greedy heuristic. The value is in the range [0,63].
57  const uint8_t AllocationPriority;
58  /// Whether the class supports two (or more) disjunct subregister indices.
59  const bool HasDisjunctSubRegs;
60  /// Whether a combination of subregisters can cover every register in the
61  /// class. See also the CoveredBySubRegs description in Target.td.
62  const bool CoveredBySubRegs;
63  const sc_iterator SuperClasses;
64  ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
65
66  /// Return the register class ID number.
67  unsigned getID() const { return MC->getID(); }
68
69  /// begin/end - Return all of the registers in this class.
70  ///
71  iterator       begin() const { return MC->begin(); }
72  iterator         end() const { return MC->end(); }
73
74  /// Return the number of registers in this class.
75  unsigned getNumRegs() const { return MC->getNumRegs(); }
76
77  iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
78  getRegisters() const {
79    return make_range(MC->begin(), MC->end());
80  }
81
82  /// Return the specified register in the class.
83  unsigned getRegister(unsigned i) const {
84    return MC->getRegister(i);
85  }
86
87  /// Return true if the specified register is included in this register class.
88  /// This does not include virtual registers.
89  bool contains(unsigned Reg) const {
90    /// FIXME: Historically this function has returned false when given vregs
91    ///        but it should probably only receive physical registers
92    if (!Register::isPhysicalRegister(Reg))
93      return false;
94    return MC->contains(Reg);
95  }
96
97  /// Return true if both registers are in this class.
98  bool contains(unsigned Reg1, unsigned Reg2) const {
99    /// FIXME: Historically this function has returned false when given a vregs
100    ///        but it should probably only receive physical registers
101    if (!Register::isPhysicalRegister(Reg1) ||
102        !Register::isPhysicalRegister(Reg2))
103      return false;
104    return MC->contains(Reg1, Reg2);
105  }
106
107  /// Return the cost of copying a value between two registers in this class.
108  /// A negative number means the register class is very expensive
109  /// to copy e.g. status flag register classes.
110  int getCopyCost() const { return MC->getCopyCost(); }
111
112  /// Return true if this register class may be used to create virtual
113  /// registers.
114  bool isAllocatable() const { return MC->isAllocatable(); }
115
116  /// Return true if the specified TargetRegisterClass
117  /// is a proper sub-class of this TargetRegisterClass.
118  bool hasSubClass(const TargetRegisterClass *RC) const {
119    return RC != this && hasSubClassEq(RC);
120  }
121
122  /// Returns true if RC is a sub-class of or equal to this class.
123  bool hasSubClassEq(const TargetRegisterClass *RC) const {
124    unsigned ID = RC->getID();
125    return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
126  }
127
128  /// Return true if the specified TargetRegisterClass is a
129  /// proper super-class of this TargetRegisterClass.
130  bool hasSuperClass(const TargetRegisterClass *RC) const {
131    return RC->hasSubClass(this);
132  }
133
134  /// Returns true if RC is a super-class of or equal to this class.
135  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
136    return RC->hasSubClassEq(this);
137  }
138
139  /// Returns a bit vector of subclasses, including this one.
140  /// The vector is indexed by class IDs.
141  ///
142  /// To use it, consider the returned array as a chunk of memory that
143  /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
144  /// contains a bitset of the ID of the subclasses in big-endian style.
145
146  /// I.e., the representation of the memory from left to right at the
147  /// bit level looks like:
148  /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
149  ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
150  /// Where the number represents the class ID and XXX bits that
151  /// should be ignored.
152  ///
153  /// See the implementation of hasSubClassEq for an example of how it
154  /// can be used.
155  const uint32_t *getSubClassMask() const {
156    return SubClassMask;
157  }
158
159  /// Returns a 0-terminated list of sub-register indices that project some
160  /// super-register class into this register class. The list has an entry for
161  /// each Idx such that:
162  ///
163  ///   There exists SuperRC where:
164  ///     For all Reg in SuperRC:
165  ///       this->contains(Reg:Idx)
166  const uint16_t *getSuperRegIndices() const {
167    return SuperRegIndices;
168  }
169
170  /// Returns a NULL-terminated list of super-classes.  The
171  /// classes are ordered by ID which is also a topological ordering from large
172  /// to small classes.  The list does NOT include the current class.
173  sc_iterator getSuperClasses() const {
174    return SuperClasses;
175  }
176
177  /// Return true if this TargetRegisterClass is a subset
178  /// class of at least one other TargetRegisterClass.
179  bool isASubClass() const {
180    return SuperClasses[0] != nullptr;
181  }
182
183  /// Returns the preferred order for allocating registers from this register
184  /// class in MF. The raw order comes directly from the .td file and may
185  /// include reserved registers that are not allocatable.
186  /// Register allocators should also make sure to allocate
187  /// callee-saved registers only after all the volatiles are used. The
188  /// RegisterClassInfo class provides filtered allocation orders with
189  /// callee-saved registers moved to the end.
190  ///
191  /// The MachineFunction argument can be used to tune the allocatable
192  /// registers based on the characteristics of the function, subtarget, or
193  /// other criteria.
194  ///
195  /// By default, this method returns all registers in the class.
196  ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
197    return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
198  }
199
200  /// Returns the combination of all lane masks of register in this class.
201  /// The lane masks of the registers are the combination of all lane masks
202  /// of their subregisters. Returns 1 if there are no subregisters.
203  LaneBitmask getLaneMask() const {
204    return LaneMask;
205  }
206};
207
208/// Extra information, not in MCRegisterDesc, about registers.
209/// These are used by codegen, not by MC.
210struct TargetRegisterInfoDesc {
211  unsigned CostPerUse;          // Extra cost of instructions using register.
212  bool inAllocatableClass;      // Register belongs to an allocatable regclass.
213};
214
215/// Each TargetRegisterClass has a per register weight, and weight
216/// limit which must be less than the limits of its pressure sets.
217struct RegClassWeight {
218  unsigned RegWeight;
219  unsigned WeightLimit;
220};
221
222/// TargetRegisterInfo base class - We assume that the target defines a static
223/// array of TargetRegisterDesc objects that represent all of the machine
224/// registers that the target has.  As such, we simply have to track a pointer
225/// to this array so that we can turn register number into a register
226/// descriptor.
227///
228class TargetRegisterInfo : public MCRegisterInfo {
229public:
230  using regclass_iterator = const TargetRegisterClass * const *;
231  using vt_iterator = const MVT::SimpleValueType *;
232  struct RegClassInfo {
233    unsigned RegSize, SpillSize, SpillAlignment;
234    vt_iterator VTList;
235  };
236private:
237  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
238  const char *const *SubRegIndexNames;        // Names of subreg indexes.
239  // Pointer to array of lane masks, one per sub-reg index.
240  const LaneBitmask *SubRegIndexLaneMasks;
241
242  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
243  LaneBitmask CoveringLanes;
244  const RegClassInfo *const RCInfos;
245  unsigned HwMode;
246
247protected:
248  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
249                     regclass_iterator RCB,
250                     regclass_iterator RCE,
251                     const char *const *SRINames,
252                     const LaneBitmask *SRILaneMasks,
253                     LaneBitmask CoveringLanes,
254                     const RegClassInfo *const RCIs,
255                     unsigned Mode = 0);
256  virtual ~TargetRegisterInfo();
257
258public:
259  // Register numbers can represent physical registers, virtual registers, and
260  // sometimes stack slots. The unsigned values are divided into these ranges:
261  //
262  //   0           Not a register, can be used as a sentinel.
263  //   [1;2^30)    Physical registers assigned by TableGen.
264  //   [2^30;2^31) Stack slots. (Rarely used.)
265  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
266  //
267  // Further sentinels can be allocated from the small negative integers.
268  // DenseMapInfo<unsigned> uses -1u and -2u.
269
270  /// Return the size in bits of a register from class RC.
271  unsigned getRegSizeInBits(const TargetRegisterClass &RC) const {
272    return getRegClassInfo(RC).RegSize;
273  }
274
275  /// Return the size in bytes of the stack slot allocated to hold a spilled
276  /// copy of a register from class RC.
277  unsigned getSpillSize(const TargetRegisterClass &RC) const {
278    return getRegClassInfo(RC).SpillSize / 8;
279  }
280
281  /// Return the minimum required alignment in bytes for a spill slot for
282  /// a register of this class.
283  unsigned getSpillAlignment(const TargetRegisterClass &RC) const {
284    return getRegClassInfo(RC).SpillAlignment / 8;
285  }
286
287  /// Return true if the given TargetRegisterClass has the ValueType T.
288  bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
289    for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
290      if (MVT(*I) == T)
291        return true;
292    return false;
293  }
294
295  /// Loop over all of the value types that can be represented by values
296  /// in the given register class.
297  vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
298    return getRegClassInfo(RC).VTList;
299  }
300
301  vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
302    vt_iterator I = legalclasstypes_begin(RC);
303    while (*I != MVT::Other)
304      ++I;
305    return I;
306  }
307
308  /// Returns the Register Class of a physical register of the given type,
309  /// picking the most sub register class of the right type that contains this
310  /// physreg.
311  const TargetRegisterClass *
312    getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
313
314  /// Return the maximal subclass of the given register class that is
315  /// allocatable or NULL.
316  const TargetRegisterClass *
317    getAllocatableClass(const TargetRegisterClass *RC) const;
318
319  /// Returns a bitset indexed by register number indicating if a register is
320  /// allocatable or not. If a register class is specified, returns the subset
321  /// for the class.
322  BitVector getAllocatableSet(const MachineFunction &MF,
323                              const TargetRegisterClass *RC = nullptr) const;
324
325  /// Return the additional cost of using this register instead
326  /// of other registers in its class.
327  unsigned getCostPerUse(unsigned RegNo) const {
328    return InfoDesc[RegNo].CostPerUse;
329  }
330
331  /// Return true if the register is in the allocation of any register class.
332  bool isInAllocatableClass(unsigned RegNo) const {
333    return InfoDesc[RegNo].inAllocatableClass;
334  }
335
336  /// Return the human-readable symbolic target-specific
337  /// name for the specified SubRegIndex.
338  const char *getSubRegIndexName(unsigned SubIdx) const {
339    assert(SubIdx && SubIdx < getNumSubRegIndices() &&
340           "This is not a subregister index");
341    return SubRegIndexNames[SubIdx-1];
342  }
343
344  /// Return a bitmask representing the parts of a register that are covered by
345  /// SubIdx \see LaneBitmask.
346  ///
347  /// SubIdx == 0 is allowed, it has the lane mask ~0u.
348  LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
349    assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
350    return SubRegIndexLaneMasks[SubIdx];
351  }
352
353  /// The lane masks returned by getSubRegIndexLaneMask() above can only be
354  /// used to determine if sub-registers overlap - they can't be used to
355  /// determine if a set of sub-registers completely cover another
356  /// sub-register.
357  ///
358  /// The X86 general purpose registers have two lanes corresponding to the
359  /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
360  /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
361  /// sub_32bit sub-register.
362  ///
363  /// On the other hand, the ARM NEON lanes fully cover their registers: The
364  /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
365  /// This is related to the CoveredBySubRegs property on register definitions.
366  ///
367  /// This function returns a bit mask of lanes that completely cover their
368  /// sub-registers. More precisely, given:
369  ///
370  ///   Covering = getCoveringLanes();
371  ///   MaskA = getSubRegIndexLaneMask(SubA);
372  ///   MaskB = getSubRegIndexLaneMask(SubB);
373  ///
374  /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
375  /// SubB.
376  LaneBitmask getCoveringLanes() const { return CoveringLanes; }
377
378  /// Returns true if the two registers are equal or alias each other.
379  /// The registers may be virtual registers.
380  bool regsOverlap(Register regA, Register regB) const {
381    if (regA == regB) return true;
382    if (regA.isVirtual() || regB.isVirtual())
383      return false;
384
385    // Regunits are numerically ordered. Find a common unit.
386    MCRegUnitIterator RUA(regA, this);
387    MCRegUnitIterator RUB(regB, this);
388    do {
389      if (*RUA == *RUB) return true;
390      if (*RUA < *RUB) ++RUA;
391      else             ++RUB;
392    } while (RUA.isValid() && RUB.isValid());
393    return false;
394  }
395
396  /// Returns true if Reg contains RegUnit.
397  bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
398    for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
399      if (*Units == RegUnit)
400        return true;
401    return false;
402  }
403
404  /// Returns the original SrcReg unless it is the target of a copy-like
405  /// operation, in which case we chain backwards through all such operations
406  /// to the ultimate source register.  If a physical register is encountered,
407  /// we stop the search.
408  virtual unsigned lookThruCopyLike(unsigned SrcReg,
409                                    const MachineRegisterInfo *MRI) const;
410
411  /// Return a null-terminated list of all of the callee-saved registers on
412  /// this target. The register should be in the order of desired callee-save
413  /// stack frame offset. The first register is closest to the incoming stack
414  /// pointer if stack grows down, and vice versa.
415  /// Notice: This function does not take into account disabled CSRs.
416  ///         In most cases you will want to use instead the function
417  ///         getCalleeSavedRegs that is implemented in MachineRegisterInfo.
418  virtual const MCPhysReg*
419  getCalleeSavedRegs(const MachineFunction *MF) const = 0;
420
421  /// Return a mask of call-preserved registers for the given calling convention
422  /// on the current function. The mask should include all call-preserved
423  /// aliases. This is used by the register allocator to determine which
424  /// registers can be live across a call.
425  ///
426  /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
427  /// A set bit indicates that all bits of the corresponding register are
428  /// preserved across the function call.  The bit mask is expected to be
429  /// sub-register complete, i.e. if A is preserved, so are all its
430  /// sub-registers.
431  ///
432  /// Bits are numbered from the LSB, so the bit for physical register Reg can
433  /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
434  ///
435  /// A NULL pointer means that no register mask will be used, and call
436  /// instructions should use implicit-def operands to indicate call clobbered
437  /// registers.
438  ///
439  virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
440                                               CallingConv::ID) const {
441    // The default mask clobbers everything.  All targets should override.
442    return nullptr;
443  }
444
445  /// Return a register mask that clobbers everything.
446  virtual const uint32_t *getNoPreservedMask() const {
447    llvm_unreachable("target does not provide no preserved mask");
448  }
449
450  /// Return a list of all of the registers which are clobbered "inside" a call
451  /// to the given function. For example, these might be needed for PLT
452  /// sequences of long-branch veneers.
453  virtual ArrayRef<MCPhysReg>
454  getIntraCallClobberedRegs(const MachineFunction *MF) const {
455    return {};
456  }
457
458  /// Return true if all bits that are set in mask \p mask0 are also set in
459  /// \p mask1.
460  bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
461
462  /// Return all the call-preserved register masks defined for this target.
463  virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
464  virtual ArrayRef<const char *> getRegMaskNames() const = 0;
465
466  /// Returns a bitset indexed by physical register number indicating if a
467  /// register is a special register that has particular uses and should be
468  /// considered unavailable at all times, e.g. stack pointer, return address.
469  /// A reserved register:
470  /// - is not allocatable
471  /// - is considered always live
472  /// - is ignored by liveness tracking
473  /// It is often necessary to reserve the super registers of a reserved
474  /// register as well, to avoid them getting allocated indirectly. You may use
475  /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
476  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
477
478  /// Returns false if we can't guarantee that Physreg, specified as an IR asm
479  /// clobber constraint, will be preserved across the statement.
480  virtual bool isAsmClobberable(const MachineFunction &MF,
481                               unsigned PhysReg) const {
482    return true;
483  }
484
485  /// Returns true if PhysReg is unallocatable and constant throughout the
486  /// function.  Used by MachineRegisterInfo::isConstantPhysReg().
487  virtual bool isConstantPhysReg(unsigned PhysReg) const { return false; }
488
489  /// Returns true if the register class is considered divergent.
490  virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const {
491    return false;
492  }
493
494  /// Physical registers that may be modified within a function but are
495  /// guaranteed to be restored before any uses. This is useful for targets that
496  /// have call sequences where a GOT register may be updated by the caller
497  /// prior to a call and is guaranteed to be restored (also by the caller)
498  /// after the call.
499  virtual bool isCallerPreservedPhysReg(unsigned PhysReg,
500                                        const MachineFunction &MF) const {
501    return false;
502  }
503
504  /// This is a wrapper around getCallPreservedMask().
505  /// Return true if the register is preserved after the call.
506  virtual bool isCalleeSavedPhysReg(unsigned PhysReg,
507                                    const MachineFunction &MF) const;
508
509  /// Prior to adding the live-out mask to a stackmap or patchpoint
510  /// instruction, provide the target the opportunity to adjust it (mainly to
511  /// remove pseudo-registers that should be ignored).
512  virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
513
514  /// Return a super-register of the specified register
515  /// Reg so its sub-register of index SubIdx is Reg.
516  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
517                               const TargetRegisterClass *RC) const {
518    return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
519  }
520
521  /// Return a subclass of the specified register
522  /// class A so that each register in it has a sub-register of the
523  /// specified sub-register index which is in the specified register class B.
524  ///
525  /// TableGen will synthesize missing A sub-classes.
526  virtual const TargetRegisterClass *
527  getMatchingSuperRegClass(const TargetRegisterClass *A,
528                           const TargetRegisterClass *B, unsigned Idx) const;
529
530  // For a copy-like instruction that defines a register of class DefRC with
531  // subreg index DefSubReg, reading from another source with class SrcRC and
532  // subregister SrcSubReg return true if this is a preferable copy
533  // instruction or an earlier use should be used.
534  virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
535                                    unsigned DefSubReg,
536                                    const TargetRegisterClass *SrcRC,
537                                    unsigned SrcSubReg) const;
538
539  /// Returns the largest legal sub-class of RC that
540  /// supports the sub-register index Idx.
541  /// If no such sub-class exists, return NULL.
542  /// If all registers in RC already have an Idx sub-register, return RC.
543  ///
544  /// TableGen generates a version of this function that is good enough in most
545  /// cases.  Targets can override if they have constraints that TableGen
546  /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
547  /// supported by the full GR32 register class in 64-bit mode, but only by the
548  /// GR32_ABCD regiister class in 32-bit mode.
549  ///
550  /// TableGen will synthesize missing RC sub-classes.
551  virtual const TargetRegisterClass *
552  getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
553    assert(Idx == 0 && "Target has no sub-registers");
554    return RC;
555  }
556
557  /// Return the subregister index you get from composing
558  /// two subregister indices.
559  ///
560  /// The special null sub-register index composes as the identity.
561  ///
562  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
563  /// returns c. Note that composeSubRegIndices does not tell you about illegal
564  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
565  /// b, composeSubRegIndices doesn't tell you.
566  ///
567  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
568  /// ssub_0:S0 - ssub_3:S3 subregs.
569  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
570  unsigned composeSubRegIndices(unsigned a, unsigned b) const {
571    if (!a) return b;
572    if (!b) return a;
573    return composeSubRegIndicesImpl(a, b);
574  }
575
576  /// Transforms a LaneMask computed for one subregister to the lanemask that
577  /// would have been computed when composing the subsubregisters with IdxA
578  /// first. @sa composeSubRegIndices()
579  LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
580                                         LaneBitmask Mask) const {
581    if (!IdxA)
582      return Mask;
583    return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
584  }
585
586  /// Transform a lanemask given for a virtual register to the corresponding
587  /// lanemask before using subregister with index \p IdxA.
588  /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
589  /// valie lane mask (no invalid bits set) the following holds:
590  /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
591  /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
592  /// => X1 == Mask
593  LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
594                                                LaneBitmask LaneMask) const {
595    if (!IdxA)
596      return LaneMask;
597    return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
598  }
599
600  /// Debugging helper: dump register in human readable form to dbgs() stream.
601  static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
602                      const TargetRegisterInfo* TRI = nullptr);
603
604protected:
605  /// Overridden by TableGen in targets that have sub-registers.
606  virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
607    llvm_unreachable("Target has no sub-registers");
608  }
609
610  /// Overridden by TableGen in targets that have sub-registers.
611  virtual LaneBitmask
612  composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
613    llvm_unreachable("Target has no sub-registers");
614  }
615
616  virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
617                                                            LaneBitmask) const {
618    llvm_unreachable("Target has no sub-registers");
619  }
620
621public:
622  /// Find a common super-register class if it exists.
623  ///
624  /// Find a register class, SuperRC and two sub-register indices, PreA and
625  /// PreB, such that:
626  ///
627  ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
628  ///
629  ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
630  ///
631  ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
632  ///
633  /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
634  /// requirements, and there is no register class with a smaller spill size
635  /// that satisfies the requirements.
636  ///
637  /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
638  ///
639  /// Either of the PreA and PreB sub-register indices may be returned as 0. In
640  /// that case, the returned register class will be a sub-class of the
641  /// corresponding argument register class.
642  ///
643  /// The function returns NULL if no register class can be found.
644  const TargetRegisterClass*
645  getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
646                         const TargetRegisterClass *RCB, unsigned SubB,
647                         unsigned &PreA, unsigned &PreB) const;
648
649  //===--------------------------------------------------------------------===//
650  // Register Class Information
651  //
652protected:
653  const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
654    return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
655  }
656
657public:
658  /// Register class iterators
659  regclass_iterator regclass_begin() const { return RegClassBegin; }
660  regclass_iterator regclass_end() const { return RegClassEnd; }
661  iterator_range<regclass_iterator> regclasses() const {
662    return make_range(regclass_begin(), regclass_end());
663  }
664
665  unsigned getNumRegClasses() const {
666    return (unsigned)(regclass_end()-regclass_begin());
667  }
668
669  /// Returns the register class associated with the enumeration value.
670  /// See class MCOperandInfo.
671  const TargetRegisterClass *getRegClass(unsigned i) const {
672    assert(i < getNumRegClasses() && "Register Class ID out of range");
673    return RegClassBegin[i];
674  }
675
676  /// Returns the name of the register class.
677  const char *getRegClassName(const TargetRegisterClass *Class) const {
678    return MCRegisterInfo::getRegClassName(Class->MC);
679  }
680
681  /// Find the largest common subclass of A and B.
682  /// Return NULL if there is no common subclass.
683  const TargetRegisterClass *
684  getCommonSubClass(const TargetRegisterClass *A,
685                    const TargetRegisterClass *B) const;
686
687  /// Returns a TargetRegisterClass used for pointer values.
688  /// If a target supports multiple different pointer register classes,
689  /// kind specifies which one is indicated.
690  virtual const TargetRegisterClass *
691  getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
692    llvm_unreachable("Target didn't implement getPointerRegClass!");
693  }
694
695  /// Returns a legal register class to copy a register in the specified class
696  /// to or from. If it is possible to copy the register directly without using
697  /// a cross register class copy, return the specified RC. Returns NULL if it
698  /// is not possible to copy between two registers of the specified class.
699  virtual const TargetRegisterClass *
700  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
701    return RC;
702  }
703
704  /// Returns the largest super class of RC that is legal to use in the current
705  /// sub-target and has the same spill size.
706  /// The returned register class can be used to create virtual registers which
707  /// means that all its registers can be copied and spilled.
708  virtual const TargetRegisterClass *
709  getLargestLegalSuperClass(const TargetRegisterClass *RC,
710                            const MachineFunction &) const {
711    /// The default implementation is very conservative and doesn't allow the
712    /// register allocator to inflate register classes.
713    return RC;
714  }
715
716  /// Return the register pressure "high water mark" for the specific register
717  /// class. The scheduler is in high register pressure mode (for the specific
718  /// register class) if it goes over the limit.
719  ///
720  /// Note: this is the old register pressure model that relies on a manually
721  /// specified representative register class per value type.
722  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
723                                       MachineFunction &MF) const {
724    return 0;
725  }
726
727  /// Return a heuristic for the machine scheduler to compare the profitability
728  /// of increasing one register pressure set versus another.  The scheduler
729  /// will prefer increasing the register pressure of the set which returns
730  /// the largest value for this function.
731  virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
732                                          unsigned PSetID) const {
733    return PSetID;
734  }
735
736  /// Get the weight in units of pressure for this register class.
737  virtual const RegClassWeight &getRegClassWeight(
738    const TargetRegisterClass *RC) const = 0;
739
740  /// Returns size in bits of a phys/virtual/generic register.
741  unsigned getRegSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI) const;
742
743  /// Get the weight in units of pressure for this register unit.
744  virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
745
746  /// Get the number of dimensions of register pressure.
747  virtual unsigned getNumRegPressureSets() const = 0;
748
749  /// Get the name of this register unit pressure set.
750  virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
751
752  /// Get the register unit pressure limit for this dimension.
753  /// This limit must be adjusted dynamically for reserved registers.
754  virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
755                                          unsigned Idx) const = 0;
756
757  /// Get the dimensions of register pressure impacted by this register class.
758  /// Returns a -1 terminated array of pressure set IDs.
759  virtual const int *getRegClassPressureSets(
760    const TargetRegisterClass *RC) const = 0;
761
762  /// Get the dimensions of register pressure impacted by this register unit.
763  /// Returns a -1 terminated array of pressure set IDs.
764  virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
765
766  /// Get a list of 'hint' registers that the register allocator should try
767  /// first when allocating a physical register for the virtual register
768  /// VirtReg. These registers are effectively moved to the front of the
769  /// allocation order. If true is returned, regalloc will try to only use
770  /// hints to the greatest extent possible even if it means spilling.
771  ///
772  /// The Order argument is the allocation order for VirtReg's register class
773  /// as returned from RegisterClassInfo::getOrder(). The hint registers must
774  /// come from Order, and they must not be reserved.
775  ///
776  /// The default implementation of this function will only add target
777  /// independent register allocation hints. Targets that override this
778  /// function should typically call this default implementation as well and
779  /// expect to see generic copy hints added.
780  virtual bool getRegAllocationHints(unsigned VirtReg,
781                                     ArrayRef<MCPhysReg> Order,
782                                     SmallVectorImpl<MCPhysReg> &Hints,
783                                     const MachineFunction &MF,
784                                     const VirtRegMap *VRM = nullptr,
785                                     const LiveRegMatrix *Matrix = nullptr)
786    const;
787
788  /// A callback to allow target a chance to update register allocation hints
789  /// when a register is "changed" (e.g. coalesced) to another register.
790  /// e.g. On ARM, some virtual registers should target register pairs,
791  /// if one of pair is coalesced to another register, the allocation hint of
792  /// the other half of the pair should be changed to point to the new register.
793  virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg,
794                                  MachineFunction &MF) const {
795    // Do nothing.
796  }
797
798  /// Allow the target to reverse allocation order of local live ranges. This
799  /// will generally allocate shorter local live ranges first. For targets with
800  /// many registers, this could reduce regalloc compile time by a large
801  /// factor. It is disabled by default for three reasons:
802  /// (1) Top-down allocation is simpler and easier to debug for targets that
803  /// don't benefit from reversing the order.
804  /// (2) Bottom-up allocation could result in poor evicition decisions on some
805  /// targets affecting the performance of compiled code.
806  /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
807  virtual bool reverseLocalAssignment() const { return false; }
808
809  /// Allow the target to override the cost of using a callee-saved register for
810  /// the first time. Default value of 0 means we will use a callee-saved
811  /// register if it is available.
812  virtual unsigned getCSRFirstUseCost() const { return 0; }
813
814  /// Returns true if the target requires (and can make use of) the register
815  /// scavenger.
816  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
817    return false;
818  }
819
820  /// Returns true if the target wants to use frame pointer based accesses to
821  /// spill to the scavenger emergency spill slot.
822  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
823    return true;
824  }
825
826  /// Returns true if the target requires post PEI scavenging of registers for
827  /// materializing frame index constants.
828  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
829    return false;
830  }
831
832  /// Returns true if the target requires using the RegScavenger directly for
833  /// frame elimination despite using requiresFrameIndexScavenging.
834  virtual bool requiresFrameIndexReplacementScavenging(
835      const MachineFunction &MF) const {
836    return false;
837  }
838
839  /// Returns true if the target wants the LocalStackAllocation pass to be run
840  /// and virtual base registers used for more efficient stack access.
841  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
842    return false;
843  }
844
845  /// Return true if target has reserved a spill slot in the stack frame of
846  /// the given function for the specified register. e.g. On x86, if the frame
847  /// register is required, the first fixed stack object is reserved as its
848  /// spill slot. This tells PEI not to create a new stack frame
849  /// object for the given register. It should be called only after
850  /// determineCalleeSaves().
851  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
852                                    int &FrameIdx) const {
853    return false;
854  }
855
856  /// Returns true if the live-ins should be tracked after register allocation.
857  virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
858    return false;
859  }
860
861  /// True if the stack can be realigned for the target.
862  virtual bool canRealignStack(const MachineFunction &MF) const;
863
864  /// True if storage within the function requires the stack pointer to be
865  /// aligned more than the normal calling convention calls for.
866  /// This cannot be overriden by the target, but canRealignStack can be
867  /// overridden.
868  bool needsStackRealignment(const MachineFunction &MF) const;
869
870  /// Get the offset from the referenced frame index in the instruction,
871  /// if there is one.
872  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
873                                           int Idx) const {
874    return 0;
875  }
876
877  /// Returns true if the instruction's frame index reference would be better
878  /// served by a base register other than FP or SP.
879  /// Used by LocalStackFrameAllocation to determine which frame index
880  /// references it should create new base registers for.
881  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
882    return false;
883  }
884
885  /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
886  /// before insertion point I.
887  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
888                                            unsigned BaseReg, int FrameIdx,
889                                            int64_t Offset) const {
890    llvm_unreachable("materializeFrameBaseRegister does not exist on this "
891                     "target");
892  }
893
894  /// Resolve a frame index operand of an instruction
895  /// to reference the indicated base register plus offset instead.
896  virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
897                                 int64_t Offset) const {
898    llvm_unreachable("resolveFrameIndex does not exist on this target");
899  }
900
901  /// Determine whether a given base register plus offset immediate is
902  /// encodable to resolve a frame index.
903  virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
904                                  int64_t Offset) const {
905    llvm_unreachable("isFrameOffsetLegal does not exist on this target");
906  }
907
908  /// Spill the register so it can be used by the register scavenger.
909  /// Return true if the register was spilled, false otherwise.
910  /// If this function does not spill the register, the scavenger
911  /// will instead spill it to the emergency spill slot.
912  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
913                                     MachineBasicBlock::iterator I,
914                                     MachineBasicBlock::iterator &UseMI,
915                                     const TargetRegisterClass *RC,
916                                     unsigned Reg) const {
917    return false;
918  }
919
920  /// This method must be overriden to eliminate abstract frame indices from
921  /// instructions which may use them. The instruction referenced by the
922  /// iterator contains an MO_FrameIndex operand which must be eliminated by
923  /// this method. This method may modify or replace the specified instruction,
924  /// as long as it keeps the iterator pointing at the finished product.
925  /// SPAdj is the SP adjustment due to call frame setup instruction.
926  /// FIOperandNum is the FI operand number.
927  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
928                                   int SPAdj, unsigned FIOperandNum,
929                                   RegScavenger *RS = nullptr) const = 0;
930
931  /// Return the assembly name for \p Reg.
932  virtual StringRef getRegAsmName(unsigned Reg) const {
933    // FIXME: We are assuming that the assembly name is equal to the TableGen
934    // name converted to lower case
935    //
936    // The TableGen name is the name of the definition for this register in the
937    // target's tablegen files.  For example, the TableGen name of
938    // def EAX : Register <...>; is "EAX"
939    return StringRef(getName(Reg));
940  }
941
942  //===--------------------------------------------------------------------===//
943  /// Subtarget Hooks
944
945  /// SrcRC and DstRC will be morphed into NewRC if this returns true.
946  virtual bool shouldCoalesce(MachineInstr *MI,
947                              const TargetRegisterClass *SrcRC,
948                              unsigned SubReg,
949                              const TargetRegisterClass *DstRC,
950                              unsigned DstSubReg,
951                              const TargetRegisterClass *NewRC,
952                              LiveIntervals &LIS) const
953  { return true; }
954
955  //===--------------------------------------------------------------------===//
956  /// Debug information queries.
957
958  /// getFrameRegister - This method should return the register used as a base
959  /// for values allocated in the current stack frame.
960  virtual Register getFrameRegister(const MachineFunction &MF) const = 0;
961
962  /// Mark a register and all its aliases as reserved in the given set.
963  void markSuperRegs(BitVector &RegisterSet, unsigned Reg) const;
964
965  /// Returns true if for every register in the set all super registers are part
966  /// of the set as well.
967  bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
968      ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
969
970  virtual const TargetRegisterClass *
971  getConstrainedRegClassForOperand(const MachineOperand &MO,
972                                   const MachineRegisterInfo &MRI) const {
973    return nullptr;
974  }
975
976  /// Returns the physical register number of sub-register "Index"
977  /// for physical register RegNo. Return zero if the sub-register does not
978  /// exist.
979  inline Register getSubReg(MCRegister Reg, unsigned Idx) const {
980    return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx);
981  }
982};
983
984//===----------------------------------------------------------------------===//
985//                           SuperRegClassIterator
986//===----------------------------------------------------------------------===//
987//
988// Iterate over the possible super-registers for a given register class. The
989// iterator will visit a list of pairs (Idx, Mask) corresponding to the
990// possible classes of super-registers.
991//
992// Each bit mask will have at least one set bit, and each set bit in Mask
993// corresponds to a SuperRC such that:
994//
995//   For all Reg in SuperRC: Reg:Idx is in RC.
996//
997// The iterator can include (O, RC->getSubClassMask()) as the first entry which
998// also satisfies the above requirement, assuming Reg:0 == Reg.
999//
1000class SuperRegClassIterator {
1001  const unsigned RCMaskWords;
1002  unsigned SubReg = 0;
1003  const uint16_t *Idx;
1004  const uint32_t *Mask;
1005
1006public:
1007  /// Create a SuperRegClassIterator that visits all the super-register classes
1008  /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
1009  SuperRegClassIterator(const TargetRegisterClass *RC,
1010                        const TargetRegisterInfo *TRI,
1011                        bool IncludeSelf = false)
1012    : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
1013      Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
1014    if (!IncludeSelf)
1015      ++*this;
1016  }
1017
1018  /// Returns true if this iterator is still pointing at a valid entry.
1019  bool isValid() const { return Idx; }
1020
1021  /// Returns the current sub-register index.
1022  unsigned getSubReg() const { return SubReg; }
1023
1024  /// Returns the bit mask of register classes that getSubReg() projects into
1025  /// RC.
1026  /// See TargetRegisterClass::getSubClassMask() for how to use it.
1027  const uint32_t *getMask() const { return Mask; }
1028
1029  /// Advance iterator to the next entry.
1030  void operator++() {
1031    assert(isValid() && "Cannot move iterator past end.");
1032    Mask += RCMaskWords;
1033    SubReg = *Idx++;
1034    if (!SubReg)
1035      Idx = nullptr;
1036  }
1037};
1038
1039//===----------------------------------------------------------------------===//
1040//                           BitMaskClassIterator
1041//===----------------------------------------------------------------------===//
1042/// This class encapuslates the logic to iterate over bitmask returned by
1043/// the various RegClass related APIs.
1044/// E.g., this class can be used to iterate over the subclasses provided by
1045/// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1046class BitMaskClassIterator {
1047  /// Total number of register classes.
1048  const unsigned NumRegClasses;
1049  /// Base index of CurrentChunk.
1050  /// In other words, the number of bit we read to get at the
1051  /// beginning of that chunck.
1052  unsigned Base = 0;
1053  /// Adjust base index of CurrentChunk.
1054  /// Base index + how many bit we read within CurrentChunk.
1055  unsigned Idx = 0;
1056  /// Current register class ID.
1057  unsigned ID = 0;
1058  /// Mask we are iterating over.
1059  const uint32_t *Mask;
1060  /// Current chunk of the Mask we are traversing.
1061  uint32_t CurrentChunk;
1062
1063  /// Move ID to the next set bit.
1064  void moveToNextID() {
1065    // If the current chunk of memory is empty, move to the next one,
1066    // while making sure we do not go pass the number of register
1067    // classes.
1068    while (!CurrentChunk) {
1069      // Move to the next chunk.
1070      Base += 32;
1071      if (Base >= NumRegClasses) {
1072        ID = NumRegClasses;
1073        return;
1074      }
1075      CurrentChunk = *++Mask;
1076      Idx = Base;
1077    }
1078    // Otherwise look for the first bit set from the right
1079    // (representation of the class ID is big endian).
1080    // See getSubClassMask for more details on the representation.
1081    unsigned Offset = countTrailingZeros(CurrentChunk);
1082    // Add the Offset to the adjusted base number of this chunk: Idx.
1083    // This is the ID of the register class.
1084    ID = Idx + Offset;
1085
1086    // Consume the zeros, if any, and the bit we just read
1087    // so that we are at the right spot for the next call.
1088    // Do not do Offset + 1 because Offset may be 31 and 32
1089    // will be UB for the shift, though in that case we could
1090    // have make the chunk being equal to 0, but that would
1091    // have introduced a if statement.
1092    moveNBits(Offset);
1093    moveNBits(1);
1094  }
1095
1096  /// Move \p NumBits Bits forward in CurrentChunk.
1097  void moveNBits(unsigned NumBits) {
1098    assert(NumBits < 32 && "Undefined behavior spotted!");
1099    // Consume the bit we read for the next call.
1100    CurrentChunk >>= NumBits;
1101    // Adjust the base for the chunk.
1102    Idx += NumBits;
1103  }
1104
1105public:
1106  /// Create a BitMaskClassIterator that visits all the register classes
1107  /// represented by \p Mask.
1108  ///
1109  /// \pre \p Mask != nullptr
1110  BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1111      : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
1112    // Move to the first ID.
1113    moveToNextID();
1114  }
1115
1116  /// Returns true if this iterator is still pointing at a valid entry.
1117  bool isValid() const { return getID() != NumRegClasses; }
1118
1119  /// Returns the current register class ID.
1120  unsigned getID() const { return ID; }
1121
1122  /// Advance iterator to the next entry.
1123  void operator++() {
1124    assert(isValid() && "Cannot move iterator past end.");
1125    moveToNextID();
1126  }
1127};
1128
1129// This is useful when building IndexedMaps keyed on virtual registers
1130struct VirtReg2IndexFunctor {
1131  using argument_type = unsigned;
1132  unsigned operator()(unsigned Reg) const {
1133    return Register::virtReg2Index(Reg);
1134  }
1135};
1136
1137/// Prints virtual and physical registers with or without a TRI instance.
1138///
1139/// The format is:
1140///   %noreg          - NoRegister
1141///   %5              - a virtual register.
1142///   %5:sub_8bit     - a virtual register with sub-register index (with TRI).
1143///   %eax            - a physical register
1144///   %physreg17      - a physical register when no TRI instance given.
1145///
1146/// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
1147Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr,
1148                   unsigned SubIdx = 0,
1149                   const MachineRegisterInfo *MRI = nullptr);
1150
1151/// Create Printable object to print register units on a \ref raw_ostream.
1152///
1153/// Register units are named after their root registers:
1154///
1155///   al      - Single root.
1156///   fp0~st7 - Dual roots.
1157///
1158/// Usage: OS << printRegUnit(Unit, TRI) << '\n';
1159Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1160
1161/// Create Printable object to print virtual registers and physical
1162/// registers on a \ref raw_ostream.
1163Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1164
1165/// Create Printable object to print register classes or register banks
1166/// on a \ref raw_ostream.
1167Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
1168                              const TargetRegisterInfo *TRI);
1169
1170} // end namespace llvm
1171
1172#endif // LLVM_CODEGEN_TARGETREGISTERINFO_H
1173