1//===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the SelectionDAG class, and transitively defines the
10// SDNode class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_SELECTIONDAG_H
15#define LLVM_CODEGEN_SELECTIONDAG_H
16
17#include "llvm/ADT/APFloat.h"
18#include "llvm/ADT/APInt.h"
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/FoldingSet.h"
23#include "llvm/ADT/SetVector.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringMap.h"
26#include "llvm/ADT/ilist.h"
27#include "llvm/ADT/iterator.h"
28#include "llvm/ADT/iterator_range.h"
29#include "llvm/CodeGen/DAGCombine.h"
30#include "llvm/CodeGen/FunctionLoweringInfo.h"
31#include "llvm/CodeGen/ISDOpcodes.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineMemOperand.h"
34#include "llvm/CodeGen/SelectionDAGNodes.h"
35#include "llvm/CodeGen/ValueTypes.h"
36#include "llvm/IR/DebugLoc.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/Metadata.h"
39#include "llvm/Support/Allocator.h"
40#include "llvm/Support/ArrayRecycler.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/CodeGen.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/MachineValueType.h"
46#include "llvm/Support/RecyclingAllocator.h"
47#include <algorithm>
48#include <cassert>
49#include <cstdint>
50#include <functional>
51#include <map>
52#include <string>
53#include <tuple>
54#include <utility>
55#include <vector>
56
57namespace llvm {
58
59class AAResults;
60class BlockAddress;
61class BlockFrequencyInfo;
62class Constant;
63class ConstantFP;
64class ConstantInt;
65class DataLayout;
66struct fltSemantics;
67class GlobalValue;
68struct KnownBits;
69class LegacyDivergenceAnalysis;
70class LLVMContext;
71class MachineBasicBlock;
72class MachineConstantPoolValue;
73class MCSymbol;
74class OptimizationRemarkEmitter;
75class ProfileSummaryInfo;
76class SDDbgValue;
77class SDDbgLabel;
78class SelectionDAG;
79class SelectionDAGTargetInfo;
80class TargetLibraryInfo;
81class TargetLowering;
82class TargetMachine;
83class TargetSubtargetInfo;
84class Value;
85
86class SDVTListNode : public FoldingSetNode {
87  friend struct FoldingSetTrait<SDVTListNode>;
88
89  /// A reference to an Interned FoldingSetNodeID for this node.
90  /// The Allocator in SelectionDAG holds the data.
91  /// SDVTList contains all types which are frequently accessed in SelectionDAG.
92  /// The size of this list is not expected to be big so it won't introduce
93  /// a memory penalty.
94  FoldingSetNodeIDRef FastID;
95  const EVT *VTs;
96  unsigned int NumVTs;
97  /// The hash value for SDVTList is fixed, so cache it to avoid
98  /// hash calculation.
99  unsigned HashValue;
100
101public:
102  SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
103      FastID(ID), VTs(VT), NumVTs(Num) {
104    HashValue = ID.ComputeHash();
105  }
106
107  SDVTList getSDVTList() {
108    SDVTList result = {VTs, NumVTs};
109    return result;
110  }
111};
112
113/// Specialize FoldingSetTrait for SDVTListNode
114/// to avoid computing temp FoldingSetNodeID and hash value.
115template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
116  static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
117    ID = X.FastID;
118  }
119
120  static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
121                     unsigned IDHash, FoldingSetNodeID &TempID) {
122    if (X.HashValue != IDHash)
123      return false;
124    return ID == X.FastID;
125  }
126
127  static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
128    return X.HashValue;
129  }
130};
131
132template <> struct ilist_alloc_traits<SDNode> {
133  static void deleteNode(SDNode *) {
134    llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
135  }
136};
137
138/// Keeps track of dbg_value information through SDISel.  We do
139/// not build SDNodes for these so as not to perturb the generated code;
140/// instead the info is kept off to the side in this structure. Each SDNode may
141/// have one or more associated dbg_value entries. This information is kept in
142/// DbgValMap.
143/// Byval parameters are handled separately because they don't use alloca's,
144/// which busts the normal mechanism.  There is good reason for handling all
145/// parameters separately:  they may not have code generated for them, they
146/// should always go at the beginning of the function regardless of other code
147/// motion, and debug info for them is potentially useful even if the parameter
148/// is unused.  Right now only byval parameters are handled separately.
149class SDDbgInfo {
150  BumpPtrAllocator Alloc;
151  SmallVector<SDDbgValue*, 32> DbgValues;
152  SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
153  SmallVector<SDDbgLabel*, 4> DbgLabels;
154  using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
155  DbgValMapType DbgValMap;
156
157public:
158  SDDbgInfo() = default;
159  SDDbgInfo(const SDDbgInfo &) = delete;
160  SDDbgInfo &operator=(const SDDbgInfo &) = delete;
161
162  void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
163    if (isParameter) {
164      ByvalParmDbgValues.push_back(V);
165    } else     DbgValues.push_back(V);
166    if (Node)
167      DbgValMap[Node].push_back(V);
168  }
169
170  void add(SDDbgLabel *L) {
171    DbgLabels.push_back(L);
172  }
173
174  /// Invalidate all DbgValues attached to the node and remove
175  /// it from the Node-to-DbgValues map.
176  void erase(const SDNode *Node);
177
178  void clear() {
179    DbgValMap.clear();
180    DbgValues.clear();
181    ByvalParmDbgValues.clear();
182    DbgLabels.clear();
183    Alloc.Reset();
184  }
185
186  BumpPtrAllocator &getAlloc() { return Alloc; }
187
188  bool empty() const {
189    return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
190  }
191
192  ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const {
193    auto I = DbgValMap.find(Node);
194    if (I != DbgValMap.end())
195      return I->second;
196    return ArrayRef<SDDbgValue*>();
197  }
198
199  using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
200  using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator;
201
202  DbgIterator DbgBegin() { return DbgValues.begin(); }
203  DbgIterator DbgEnd()   { return DbgValues.end(); }
204  DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
205  DbgIterator ByvalParmDbgEnd()   { return ByvalParmDbgValues.end(); }
206  DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
207  DbgLabelIterator DbgLabelEnd()   { return DbgLabels.end(); }
208};
209
210void checkForCycles(const SelectionDAG *DAG, bool force = false);
211
212/// This is used to represent a portion of an LLVM function in a low-level
213/// Data Dependence DAG representation suitable for instruction selection.
214/// This DAG is constructed as the first step of instruction selection in order
215/// to allow implementation of machine specific optimizations
216/// and code simplifications.
217///
218/// The representation used by the SelectionDAG is a target-independent
219/// representation, which has some similarities to the GCC RTL representation,
220/// but is significantly more simple, powerful, and is a graph form instead of a
221/// linear form.
222///
223class SelectionDAG {
224  const TargetMachine &TM;
225  const SelectionDAGTargetInfo *TSI = nullptr;
226  const TargetLowering *TLI = nullptr;
227  const TargetLibraryInfo *LibInfo = nullptr;
228  MachineFunction *MF;
229  Pass *SDAGISelPass = nullptr;
230  LLVMContext *Context;
231  CodeGenOpt::Level OptLevel;
232
233  LegacyDivergenceAnalysis * DA = nullptr;
234  FunctionLoweringInfo * FLI = nullptr;
235
236  /// The function-level optimization remark emitter.  Used to emit remarks
237  /// whenever manipulating the DAG.
238  OptimizationRemarkEmitter *ORE;
239
240  ProfileSummaryInfo *PSI = nullptr;
241  BlockFrequencyInfo *BFI = nullptr;
242
243  /// The starting token.
244  SDNode EntryNode;
245
246  /// The root of the entire DAG.
247  SDValue Root;
248
249  /// A linked list of nodes in the current DAG.
250  ilist<SDNode> AllNodes;
251
252  /// The AllocatorType for allocating SDNodes. We use
253  /// pool allocation with recycling.
254  using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
255                                               sizeof(LargestSDNode),
256                                               alignof(MostAlignedSDNode)>;
257
258  /// Pool allocation for nodes.
259  NodeAllocatorType NodeAllocator;
260
261  /// This structure is used to memoize nodes, automatically performing
262  /// CSE with existing nodes when a duplicate is requested.
263  FoldingSet<SDNode> CSEMap;
264
265  /// Pool allocation for machine-opcode SDNode operands.
266  BumpPtrAllocator OperandAllocator;
267  ArrayRecycler<SDUse> OperandRecycler;
268
269  /// Pool allocation for misc. objects that are created once per SelectionDAG.
270  BumpPtrAllocator Allocator;
271
272  /// Tracks dbg_value and dbg_label information through SDISel.
273  SDDbgInfo *DbgInfo;
274
275  using CallSiteInfo = MachineFunction::CallSiteInfo;
276  using CallSiteInfoImpl = MachineFunction::CallSiteInfoImpl;
277
278  struct CallSiteDbgInfo {
279    CallSiteInfo CSInfo;
280    MDNode *HeapAllocSite = nullptr;
281  };
282
283  DenseMap<const SDNode *, CallSiteDbgInfo> SDCallSiteDbgInfo;
284
285  uint16_t NextPersistentId = 0;
286
287public:
288  /// Clients of various APIs that cause global effects on
289  /// the DAG can optionally implement this interface.  This allows the clients
290  /// to handle the various sorts of updates that happen.
291  ///
292  /// A DAGUpdateListener automatically registers itself with DAG when it is
293  /// constructed, and removes itself when destroyed in RAII fashion.
294  struct DAGUpdateListener {
295    DAGUpdateListener *const Next;
296    SelectionDAG &DAG;
297
298    explicit DAGUpdateListener(SelectionDAG &D)
299      : Next(D.UpdateListeners), DAG(D) {
300      DAG.UpdateListeners = this;
301    }
302
303    virtual ~DAGUpdateListener() {
304      assert(DAG.UpdateListeners == this &&
305             "DAGUpdateListeners must be destroyed in LIFO order");
306      DAG.UpdateListeners = Next;
307    }
308
309    /// The node N that was deleted and, if E is not null, an
310    /// equivalent node E that replaced it.
311    virtual void NodeDeleted(SDNode *N, SDNode *E);
312
313    /// The node N that was updated.
314    virtual void NodeUpdated(SDNode *N);
315
316    /// The node N that was inserted.
317    virtual void NodeInserted(SDNode *N);
318  };
319
320  struct DAGNodeDeletedListener : public DAGUpdateListener {
321    std::function<void(SDNode *, SDNode *)> Callback;
322
323    DAGNodeDeletedListener(SelectionDAG &DAG,
324                           std::function<void(SDNode *, SDNode *)> Callback)
325        : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
326
327    void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
328
329   private:
330    virtual void anchor();
331  };
332
333  /// When true, additional steps are taken to
334  /// ensure that getConstant() and similar functions return DAG nodes that
335  /// have legal types. This is important after type legalization since
336  /// any illegally typed nodes generated after this point will not experience
337  /// type legalization.
338  bool NewNodesMustHaveLegalTypes = false;
339
340private:
341  /// DAGUpdateListener is a friend so it can manipulate the listener stack.
342  friend struct DAGUpdateListener;
343
344  /// Linked list of registered DAGUpdateListener instances.
345  /// This stack is maintained by DAGUpdateListener RAII.
346  DAGUpdateListener *UpdateListeners = nullptr;
347
348  /// Implementation of setSubgraphColor.
349  /// Return whether we had to truncate the search.
350  bool setSubgraphColorHelper(SDNode *N, const char *Color,
351                              DenseSet<SDNode *> &visited,
352                              int level, bool &printed);
353
354  template <typename SDNodeT, typename... ArgTypes>
355  SDNodeT *newSDNode(ArgTypes &&... Args) {
356    return new (NodeAllocator.template Allocate<SDNodeT>())
357        SDNodeT(std::forward<ArgTypes>(Args)...);
358  }
359
360  /// Build a synthetic SDNodeT with the given args and extract its subclass
361  /// data as an integer (e.g. for use in a folding set).
362  ///
363  /// The args to this function are the same as the args to SDNodeT's
364  /// constructor, except the second arg (assumed to be a const DebugLoc&) is
365  /// omitted.
366  template <typename SDNodeT, typename... ArgTypes>
367  static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
368                                               ArgTypes &&... Args) {
369    // The compiler can reduce this expression to a constant iff we pass an
370    // empty DebugLoc.  Thankfully, the debug location doesn't have any bearing
371    // on the subclass data.
372    return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
373        .getRawSubclassData();
374  }
375
376  template <typename SDNodeTy>
377  static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
378                                                SDVTList VTs, EVT MemoryVT,
379                                                MachineMemOperand *MMO) {
380    return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
381         .getRawSubclassData();
382  }
383
384  void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
385
386  void removeOperands(SDNode *Node) {
387    if (!Node->OperandList)
388      return;
389    OperandRecycler.deallocate(
390        ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
391        Node->OperandList);
392    Node->NumOperands = 0;
393    Node->OperandList = nullptr;
394  }
395  void CreateTopologicalOrder(std::vector<SDNode*>& Order);
396
397public:
398  // Maximum depth for recursive analysis such as computeKnownBits, etc.
399  static constexpr unsigned MaxRecursionDepth = 6;
400
401  explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
402  SelectionDAG(const SelectionDAG &) = delete;
403  SelectionDAG &operator=(const SelectionDAG &) = delete;
404  ~SelectionDAG();
405
406  /// Prepare this SelectionDAG to process code in the given MachineFunction.
407  void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
408            Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
409            LegacyDivergenceAnalysis * Divergence,
410            ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin);
411
412  void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
413    FLI = FuncInfo;
414  }
415
416  /// Clear state and free memory necessary to make this
417  /// SelectionDAG ready to process a new block.
418  void clear();
419
420  MachineFunction &getMachineFunction() const { return *MF; }
421  const Pass *getPass() const { return SDAGISelPass; }
422
423  const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
424  const TargetMachine &getTarget() const { return TM; }
425  const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
426  const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
427  const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
428  const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
429  const LegacyDivergenceAnalysis *getDivergenceAnalysis() const { return DA; }
430  LLVMContext *getContext() const { return Context; }
431  OptimizationRemarkEmitter &getORE() const { return *ORE; }
432  ProfileSummaryInfo *getPSI() const { return PSI; }
433  BlockFrequencyInfo *getBFI() const { return BFI; }
434
435  /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
436  void viewGraph(const std::string &Title);
437  void viewGraph();
438
439#ifndef NDEBUG
440  std::map<const SDNode *, std::string> NodeGraphAttrs;
441#endif
442
443  /// Clear all previously defined node graph attributes.
444  /// Intended to be used from a debugging tool (eg. gdb).
445  void clearGraphAttrs();
446
447  /// Set graph attributes for a node. (eg. "color=red".)
448  void setGraphAttrs(const SDNode *N, const char *Attrs);
449
450  /// Get graph attributes for a node. (eg. "color=red".)
451  /// Used from getNodeAttributes.
452  const std::string getGraphAttrs(const SDNode *N) const;
453
454  /// Convenience for setting node color attribute.
455  void setGraphColor(const SDNode *N, const char *Color);
456
457  /// Convenience for setting subgraph color attribute.
458  void setSubgraphColor(SDNode *N, const char *Color);
459
460  using allnodes_const_iterator = ilist<SDNode>::const_iterator;
461
462  allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
463  allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
464
465  using allnodes_iterator = ilist<SDNode>::iterator;
466
467  allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
468  allnodes_iterator allnodes_end() { return AllNodes.end(); }
469
470  ilist<SDNode>::size_type allnodes_size() const {
471    return AllNodes.size();
472  }
473
474  iterator_range<allnodes_iterator> allnodes() {
475    return make_range(allnodes_begin(), allnodes_end());
476  }
477  iterator_range<allnodes_const_iterator> allnodes() const {
478    return make_range(allnodes_begin(), allnodes_end());
479  }
480
481  /// Return the root tag of the SelectionDAG.
482  const SDValue &getRoot() const { return Root; }
483
484  /// Return the token chain corresponding to the entry of the function.
485  SDValue getEntryNode() const {
486    return SDValue(const_cast<SDNode *>(&EntryNode), 0);
487  }
488
489  /// Set the current root tag of the SelectionDAG.
490  ///
491  const SDValue &setRoot(SDValue N) {
492    assert((!N.getNode() || N.getValueType() == MVT::Other) &&
493           "DAG root value is not a chain!");
494    if (N.getNode())
495      checkForCycles(N.getNode(), this);
496    Root = N;
497    if (N.getNode())
498      checkForCycles(this);
499    return Root;
500  }
501
502#ifndef NDEBUG
503  void VerifyDAGDiverence();
504#endif
505
506  /// This iterates over the nodes in the SelectionDAG, folding
507  /// certain types of nodes together, or eliminating superfluous nodes.  The
508  /// Level argument controls whether Combine is allowed to produce nodes and
509  /// types that are illegal on the target.
510  void Combine(CombineLevel Level, AAResults *AA,
511               CodeGenOpt::Level OptLevel);
512
513  /// This transforms the SelectionDAG into a SelectionDAG that
514  /// only uses types natively supported by the target.
515  /// Returns "true" if it made any changes.
516  ///
517  /// Note that this is an involved process that may invalidate pointers into
518  /// the graph.
519  bool LegalizeTypes();
520
521  /// This transforms the SelectionDAG into a SelectionDAG that is
522  /// compatible with the target instruction selector, as indicated by the
523  /// TargetLowering object.
524  ///
525  /// Note that this is an involved process that may invalidate pointers into
526  /// the graph.
527  void Legalize();
528
529  /// Transforms a SelectionDAG node and any operands to it into a node
530  /// that is compatible with the target instruction selector, as indicated by
531  /// the TargetLowering object.
532  ///
533  /// \returns true if \c N is a valid, legal node after calling this.
534  ///
535  /// This essentially runs a single recursive walk of the \c Legalize process
536  /// over the given node (and its operands). This can be used to incrementally
537  /// legalize the DAG. All of the nodes which are directly replaced,
538  /// potentially including N, are added to the output parameter \c
539  /// UpdatedNodes so that the delta to the DAG can be understood by the
540  /// caller.
541  ///
542  /// When this returns false, N has been legalized in a way that make the
543  /// pointer passed in no longer valid. It may have even been deleted from the
544  /// DAG, and so it shouldn't be used further. When this returns true, the
545  /// N passed in is a legal node, and can be immediately processed as such.
546  /// This may still have done some work on the DAG, and will still populate
547  /// UpdatedNodes with any new nodes replacing those originally in the DAG.
548  bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
549
550  /// This transforms the SelectionDAG into a SelectionDAG
551  /// that only uses vector math operations supported by the target.  This is
552  /// necessary as a separate step from Legalize because unrolling a vector
553  /// operation can introduce illegal types, which requires running
554  /// LegalizeTypes again.
555  ///
556  /// This returns true if it made any changes; in that case, LegalizeTypes
557  /// is called again before Legalize.
558  ///
559  /// Note that this is an involved process that may invalidate pointers into
560  /// the graph.
561  bool LegalizeVectors();
562
563  /// This method deletes all unreachable nodes in the SelectionDAG.
564  void RemoveDeadNodes();
565
566  /// Remove the specified node from the system.  This node must
567  /// have no referrers.
568  void DeleteNode(SDNode *N);
569
570  /// Return an SDVTList that represents the list of values specified.
571  SDVTList getVTList(EVT VT);
572  SDVTList getVTList(EVT VT1, EVT VT2);
573  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
574  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
575  SDVTList getVTList(ArrayRef<EVT> VTs);
576
577  //===--------------------------------------------------------------------===//
578  // Node creation methods.
579
580  /// Create a ConstantSDNode wrapping a constant value.
581  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
582  ///
583  /// If only legal types can be produced, this does the necessary
584  /// transformations (e.g., if the vector element type is illegal).
585  /// @{
586  SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
587                      bool isTarget = false, bool isOpaque = false);
588  SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
589                      bool isTarget = false, bool isOpaque = false);
590
591  SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
592                             bool IsOpaque = false) {
593    return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
594                       VT, IsTarget, IsOpaque);
595  }
596
597  SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
598                      bool isTarget = false, bool isOpaque = false);
599  SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
600                            bool isTarget = false);
601  SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL,
602                                 bool LegalTypes = true);
603
604  SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
605                            bool isOpaque = false) {
606    return getConstant(Val, DL, VT, true, isOpaque);
607  }
608  SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
609                            bool isOpaque = false) {
610    return getConstant(Val, DL, VT, true, isOpaque);
611  }
612  SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
613                            bool isOpaque = false) {
614    return getConstant(Val, DL, VT, true, isOpaque);
615  }
616
617  /// Create a true or false constant of type \p VT using the target's
618  /// BooleanContent for type \p OpVT.
619  SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
620  /// @}
621
622  /// Create a ConstantFPSDNode wrapping a constant value.
623  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
624  ///
625  /// If only legal types can be produced, this does the necessary
626  /// transformations (e.g., if the vector element type is illegal).
627  /// The forms that take a double should only be used for simple constants
628  /// that can be exactly represented in VT.  No checks are made.
629  /// @{
630  SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
631                        bool isTarget = false);
632  SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
633                        bool isTarget = false);
634  SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
635                        bool isTarget = false);
636  SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
637    return getConstantFP(Val, DL, VT, true);
638  }
639  SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
640    return getConstantFP(Val, DL, VT, true);
641  }
642  SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
643    return getConstantFP(Val, DL, VT, true);
644  }
645  /// @}
646
647  SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
648                           int64_t offset = 0, bool isTargetGA = false,
649                           unsigned TargetFlags = 0);
650  SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
651                                 int64_t offset = 0, unsigned TargetFlags = 0) {
652    return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
653  }
654  SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
655  SDValue getTargetFrameIndex(int FI, EVT VT) {
656    return getFrameIndex(FI, VT, true);
657  }
658  SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
659                       unsigned TargetFlags = 0);
660  SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags = 0) {
661    return getJumpTable(JTI, VT, true, TargetFlags);
662  }
663  SDValue getConstantPool(const Constant *C, EVT VT, unsigned Align = 0,
664                          int Offs = 0, bool isT = false,
665                          unsigned TargetFlags = 0);
666  SDValue getTargetConstantPool(const Constant *C, EVT VT, unsigned Align = 0,
667                                int Offset = 0, unsigned TargetFlags = 0) {
668    return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
669  }
670  SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
671                          unsigned Align = 0, int Offs = 0, bool isT=false,
672                          unsigned TargetFlags = 0);
673  SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT,
674                                unsigned Align = 0, int Offset = 0,
675                                unsigned TargetFlags = 0) {
676    return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
677  }
678  SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
679                         unsigned TargetFlags = 0);
680  // When generating a branch to a BB, we don't in general know enough
681  // to provide debug info for the BB at that time, so keep this one around.
682  SDValue getBasicBlock(MachineBasicBlock *MBB);
683  SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
684  SDValue getExternalSymbol(const char *Sym, EVT VT);
685  SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
686  SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
687                                  unsigned TargetFlags = 0);
688  SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
689
690  SDValue getValueType(EVT);
691  SDValue getRegister(unsigned Reg, EVT VT);
692  SDValue getRegisterMask(const uint32_t *RegMask);
693  SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
694  SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
695                       MCSymbol *Label);
696  SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0,
697                          bool isTarget = false, unsigned TargetFlags = 0);
698  SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
699                                int64_t Offset = 0, unsigned TargetFlags = 0) {
700    return getBlockAddress(BA, VT, Offset, true, TargetFlags);
701  }
702
703  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
704                       SDValue N) {
705    return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
706                   getRegister(Reg, N.getValueType()), N);
707  }
708
709  // This version of the getCopyToReg method takes an extra operand, which
710  // indicates that there is potentially an incoming glue value (if Glue is not
711  // null) and that there should be a glue result.
712  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
713                       SDValue Glue) {
714    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
715    SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
716    return getNode(ISD::CopyToReg, dl, VTs,
717                   makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
718  }
719
720  // Similar to last getCopyToReg() except parameter Reg is a SDValue
721  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
722                       SDValue Glue) {
723    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
724    SDValue Ops[] = { Chain, Reg, N, Glue };
725    return getNode(ISD::CopyToReg, dl, VTs,
726                   makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
727  }
728
729  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
730    SDVTList VTs = getVTList(VT, MVT::Other);
731    SDValue Ops[] = { Chain, getRegister(Reg, VT) };
732    return getNode(ISD::CopyFromReg, dl, VTs, Ops);
733  }
734
735  // This version of the getCopyFromReg method takes an extra operand, which
736  // indicates that there is potentially an incoming glue value (if Glue is not
737  // null) and that there should be a glue result.
738  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
739                         SDValue Glue) {
740    SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
741    SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
742    return getNode(ISD::CopyFromReg, dl, VTs,
743                   makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
744  }
745
746  SDValue getCondCode(ISD::CondCode Cond);
747
748  /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
749  /// which must be a vector type, must match the number of mask elements
750  /// NumElts. An integer mask element equal to -1 is treated as undefined.
751  SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
752                           ArrayRef<int> Mask);
753
754  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
755  /// which must be a vector type, must match the number of operands in Ops.
756  /// The operands must have the same type as (or, for integers, a type wider
757  /// than) VT's element type.
758  SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
759    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
760    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
761  }
762
763  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
764  /// which must be a vector type, must match the number of operands in Ops.
765  /// The operands must have the same type as (or, for integers, a type wider
766  /// than) VT's element type.
767  SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
768    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
769    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
770  }
771
772  /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
773  /// elements. VT must be a vector type. Op's type must be the same as (or,
774  /// for integers, a type wider than) VT's element type.
775  SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
776    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
777    if (Op.getOpcode() == ISD::UNDEF) {
778      assert((VT.getVectorElementType() == Op.getValueType() ||
779              (VT.isInteger() &&
780               VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
781             "A splatted value must have a width equal or (for integers) "
782             "greater than the vector element type!");
783      return getNode(ISD::UNDEF, SDLoc(), VT);
784    }
785
786    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
787    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
788  }
789
790  // Return a splat ISD::SPLAT_VECTOR node, consisting of Op splatted to all
791  // elements.
792  SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op) {
793    if (Op.getOpcode() == ISD::UNDEF) {
794      assert((VT.getVectorElementType() == Op.getValueType() ||
795              (VT.isInteger() &&
796               VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
797             "A splatted value must have a width equal or (for integers) "
798             "greater than the vector element type!");
799      return getNode(ISD::UNDEF, SDLoc(), VT);
800    }
801    return getNode(ISD::SPLAT_VECTOR, DL, VT, Op);
802  }
803
804  /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
805  /// the shuffle node in input but with swapped operands.
806  ///
807  /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
808  SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
809
810  /// Convert Op, which must be of float type, to the
811  /// float type VT, by either extending or rounding (by truncation).
812  SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
813
814  /// Convert Op, which must be a STRICT operation of float type, to the
815  /// float type VT, by either extending or rounding (by truncation).
816  std::pair<SDValue, SDValue>
817  getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT);
818
819  /// Convert Op, which must be of integer type, to the
820  /// integer type VT, by either any-extending or truncating it.
821  SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
822
823  /// Convert Op, which must be of integer type, to the
824  /// integer type VT, by either sign-extending or truncating it.
825  SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
826
827  /// Convert Op, which must be of integer type, to the
828  /// integer type VT, by either zero-extending or truncating it.
829  SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
830
831  /// Return the expression required to zero extend the Op
832  /// value assuming it was the smaller SrcTy value.
833  SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
834
835  /// Convert Op, which must be of integer type, to the integer type VT, by
836  /// either truncating it or performing either zero or sign extension as
837  /// appropriate extension for the pointer's semantics.
838  SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
839
840  /// Return the expression required to extend the Op as a pointer value
841  /// assuming it was the smaller SrcTy value. This may be either a zero extend
842  /// or a sign extend.
843  SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
844
845  /// Convert Op, which must be of integer type, to the integer type VT,
846  /// by using an extension appropriate for the target's
847  /// BooleanContent for type OpVT or truncating it.
848  SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
849
850  /// Create a bitwise NOT operation as (XOR Val, -1).
851  SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
852
853  /// Create a logical NOT operation as (XOR Val, BooleanOne).
854  SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
855
856  /// Returns sum of the base pointer and offset.
857  /// Unlike getObjectPtrOffset this does not set NoUnsignedWrap by default.
858  SDValue getMemBasePlusOffset(SDValue Base, int64_t Offset, const SDLoc &DL,
859                               const SDNodeFlags Flags = SDNodeFlags());
860  SDValue getMemBasePlusOffset(SDValue Base, SDValue Offset, const SDLoc &DL,
861                               const SDNodeFlags Flags = SDNodeFlags());
862
863  /// Create an add instruction with appropriate flags when used for
864  /// addressing some offset of an object. i.e. if a load is split into multiple
865  /// components, create an add nuw from the base pointer to the offset.
866  SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, int64_t Offset) {
867    SDNodeFlags Flags;
868    Flags.setNoUnsignedWrap(true);
869    return getMemBasePlusOffset(Ptr, Offset, SL, Flags);
870  }
871
872  SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, SDValue Offset) {
873    // The object itself can't wrap around the address space, so it shouldn't be
874    // possible for the adds of the offsets to the split parts to overflow.
875    SDNodeFlags Flags;
876    Flags.setNoUnsignedWrap(true);
877    return getMemBasePlusOffset(Ptr, Offset, SL, Flags);
878  }
879
880  /// Return a new CALLSEQ_START node, that starts new call frame, in which
881  /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
882  /// OutSize specifies part of the frame set up prior to the sequence.
883  SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
884                           const SDLoc &DL) {
885    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
886    SDValue Ops[] = { Chain,
887                      getIntPtrConstant(InSize, DL, true),
888                      getIntPtrConstant(OutSize, DL, true) };
889    return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
890  }
891
892  /// Return a new CALLSEQ_END node, which always must have a
893  /// glue result (to ensure it's not CSE'd).
894  /// CALLSEQ_END does not have a useful SDLoc.
895  SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
896                         SDValue InGlue, const SDLoc &DL) {
897    SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
898    SmallVector<SDValue, 4> Ops;
899    Ops.push_back(Chain);
900    Ops.push_back(Op1);
901    Ops.push_back(Op2);
902    if (InGlue.getNode())
903      Ops.push_back(InGlue);
904    return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
905  }
906
907  /// Return true if the result of this operation is always undefined.
908  bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
909
910  /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
911  SDValue getUNDEF(EVT VT) {
912    return getNode(ISD::UNDEF, SDLoc(), VT);
913  }
914
915  /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
916  SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
917    return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
918  }
919
920  /// Gets or creates the specified node.
921  ///
922  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
923                  ArrayRef<SDUse> Ops);
924  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
925                  ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
926  SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
927                  ArrayRef<SDValue> Ops);
928  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
929                  ArrayRef<SDValue> Ops);
930
931  // Specialize based on number of operands.
932  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
933  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
934                  const SDNodeFlags Flags = SDNodeFlags());
935  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
936                  SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
937  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
938                  SDValue N2, SDValue N3,
939                  const SDNodeFlags Flags = SDNodeFlags());
940  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
941                  SDValue N2, SDValue N3, SDValue N4);
942  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
943                  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
944
945  // Specialize again based on number of operands for nodes with a VTList
946  // rather than a single VT.
947  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
948  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
949  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
950                  SDValue N2);
951  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
952                  SDValue N2, SDValue N3);
953  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
954                  SDValue N2, SDValue N3, SDValue N4);
955  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
956                  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
957
958  /// Compute a TokenFactor to force all the incoming stack arguments to be
959  /// loaded from the stack. This is used in tail call lowering to protect
960  /// stack arguments from being clobbered.
961  SDValue getStackArgumentTokenFactor(SDValue Chain);
962
963  SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
964                    SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
965                    bool isTailCall, MachinePointerInfo DstPtrInfo,
966                    MachinePointerInfo SrcPtrInfo);
967
968  SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
969                     SDValue Size, unsigned Align, bool isVol, bool isTailCall,
970                     MachinePointerInfo DstPtrInfo,
971                     MachinePointerInfo SrcPtrInfo);
972
973  SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
974                    SDValue Size, unsigned Align, bool isVol, bool isTailCall,
975                    MachinePointerInfo DstPtrInfo);
976
977  SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
978                          unsigned DstAlign, SDValue Src, unsigned SrcAlign,
979                          SDValue Size, Type *SizeTy, unsigned ElemSz,
980                          bool isTailCall, MachinePointerInfo DstPtrInfo,
981                          MachinePointerInfo SrcPtrInfo);
982
983  SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
984                           unsigned DstAlign, SDValue Src, unsigned SrcAlign,
985                           SDValue Size, Type *SizeTy, unsigned ElemSz,
986                           bool isTailCall, MachinePointerInfo DstPtrInfo,
987                           MachinePointerInfo SrcPtrInfo);
988
989  SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
990                          unsigned DstAlign, SDValue Value, SDValue Size,
991                          Type *SizeTy, unsigned ElemSz, bool isTailCall,
992                          MachinePointerInfo DstPtrInfo);
993
994  /// Helper function to make it easier to build SetCC's if you just have an
995  /// ISD::CondCode instead of an SDValue.
996  SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
997                   ISD::CondCode Cond, SDValue Chain = SDValue(),
998                   bool IsSignaling = false) {
999    assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
1000           "Cannot compare scalars to vectors");
1001    assert(LHS.getValueType().isVector() == VT.isVector() &&
1002           "Cannot compare scalars to vectors");
1003    assert(Cond != ISD::SETCC_INVALID &&
1004           "Cannot create a setCC of an invalid node.");
1005    if (Chain)
1006      return getNode(IsSignaling ? ISD::STRICT_FSETCCS : ISD::STRICT_FSETCC, DL,
1007                     {VT, MVT::Other}, {Chain, LHS, RHS, getCondCode(Cond)});
1008    return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
1009  }
1010
1011  /// Helper function to make it easier to build Select's if you just have
1012  /// operands and don't want to check for vector.
1013  SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
1014                    SDValue RHS) {
1015    assert(LHS.getValueType() == RHS.getValueType() &&
1016           "Cannot use select on differing types");
1017    assert(VT.isVector() == LHS.getValueType().isVector() &&
1018           "Cannot mix vectors and scalars");
1019    auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
1020    return getNode(Opcode, DL, VT, Cond, LHS, RHS);
1021  }
1022
1023  /// Helper function to make it easier to build SelectCC's if you just have an
1024  /// ISD::CondCode instead of an SDValue.
1025  SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
1026                      SDValue False, ISD::CondCode Cond) {
1027    return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
1028                   False, getCondCode(Cond));
1029  }
1030
1031  /// Try to simplify a select/vselect into 1 of its operands or a constant.
1032  SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal);
1033
1034  /// Try to simplify a shift into 1 of its operands or a constant.
1035  SDValue simplifyShift(SDValue X, SDValue Y);
1036
1037  /// Try to simplify a floating-point binary operation into 1 of its operands
1038  /// or a constant.
1039  SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y);
1040
1041  /// VAArg produces a result and token chain, and takes a pointer
1042  /// and a source value as input.
1043  SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1044                   SDValue SV, unsigned Align);
1045
1046  /// Gets a node for an atomic cmpxchg op. There are two
1047  /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
1048  /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
1049  /// a success flag (initially i1), and a chain.
1050  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1051                           SDVTList VTs, SDValue Chain, SDValue Ptr,
1052                           SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
1053
1054  /// Gets a node for an atomic op, produces result (if relevant)
1055  /// and chain and takes 2 operands.
1056  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
1057                    SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
1058
1059  /// Gets a node for an atomic op, produces result and chain and
1060  /// takes 1 operand.
1061  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
1062                    SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
1063
1064  /// Gets a node for an atomic op, produces result and chain and takes N
1065  /// operands.
1066  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1067                    SDVTList VTList, ArrayRef<SDValue> Ops,
1068                    MachineMemOperand *MMO);
1069
1070  /// Creates a MemIntrinsicNode that may produce a
1071  /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1072  /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1073  /// less than FIRST_TARGET_MEMORY_OPCODE.
1074  SDValue getMemIntrinsicNode(
1075    unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1076    ArrayRef<SDValue> Ops, EVT MemVT,
1077    MachinePointerInfo PtrInfo,
1078    unsigned Align = 0,
1079    MachineMemOperand::Flags Flags
1080    = MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
1081    uint64_t Size = 0,
1082    const AAMDNodes &AAInfo = AAMDNodes());
1083
1084  SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1085                              ArrayRef<SDValue> Ops, EVT MemVT,
1086                              MachineMemOperand *MMO);
1087
1088  /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1089  /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
1090  /// offsets `Offset` and `Offset + Size`.
1091  SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain,
1092                          int FrameIndex, int64_t Size, int64_t Offset = -1);
1093
1094  /// Create a MERGE_VALUES node from the given operands.
1095  SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
1096
1097  /// Loads are not normal binary operators: their result type is not
1098  /// determined by their operands, and they produce a value AND a token chain.
1099  ///
1100  /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1101  /// you want.  The MOStore flag must not be set.
1102  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1103                  MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1104                  MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1105                  const AAMDNodes &AAInfo = AAMDNodes(),
1106                  const MDNode *Ranges = nullptr);
1107  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1108                  MachineMemOperand *MMO);
1109  SDValue
1110  getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1111             SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1112             unsigned Alignment = 0,
1113             MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1114             const AAMDNodes &AAInfo = AAMDNodes());
1115  SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1116                     SDValue Chain, SDValue Ptr, EVT MemVT,
1117                     MachineMemOperand *MMO);
1118  SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1119                         SDValue Offset, ISD::MemIndexedMode AM);
1120  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1121                  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1122                  MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
1123                  MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1124                  const AAMDNodes &AAInfo = AAMDNodes(),
1125                  const MDNode *Ranges = nullptr);
1126  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1127                  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1128                  EVT MemVT, MachineMemOperand *MMO);
1129
1130  /// Helper function to build ISD::STORE nodes.
1131  ///
1132  /// This function will set the MOStore flag on MMOFlags, but you can set it if
1133  /// you want.  The MOLoad and MOInvariant flags must not be set.
1134  SDValue
1135  getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1136           MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1137           MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1138           const AAMDNodes &AAInfo = AAMDNodes());
1139  SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1140                   MachineMemOperand *MMO);
1141  SDValue
1142  getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1143                MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0,
1144                MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1145                const AAMDNodes &AAInfo = AAMDNodes());
1146  SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1147                        SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1148  SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1149                          SDValue Offset, ISD::MemIndexedMode AM);
1150
1151  SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base,
1152                        SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT,
1153                        MachineMemOperand *MMO, ISD::MemIndexedMode AM,
1154                        ISD::LoadExtType, bool IsExpanding = false);
1155  SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1156                               SDValue Offset, ISD::MemIndexedMode AM);
1157  SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1158                         SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT,
1159                         MachineMemOperand *MMO, ISD::MemIndexedMode AM,
1160                         bool IsTruncating = false, bool IsCompressing = false);
1161  SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
1162                                SDValue Base, SDValue Offset,
1163                                ISD::MemIndexedMode AM);
1164  SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
1165                          ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1166                          ISD::MemIndexType IndexType);
1167  SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
1168                           ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1169                           ISD::MemIndexType IndexType);
1170
1171  /// Return (create a new or find existing) a target-specific node.
1172  /// TargetMemSDNode should be derived class from MemSDNode.
1173  template <class TargetMemSDNode>
1174  SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
1175                             const SDLoc &dl, EVT MemVT,
1176                             MachineMemOperand *MMO);
1177
1178  /// Construct a node to track a Value* through the backend.
1179  SDValue getSrcValue(const Value *v);
1180
1181  /// Return an MDNodeSDNode which holds an MDNode.
1182  SDValue getMDNode(const MDNode *MD);
1183
1184  /// Return a bitcast using the SDLoc of the value operand, and casting to the
1185  /// provided type. Use getNode to set a custom SDLoc.
1186  SDValue getBitcast(EVT VT, SDValue V);
1187
1188  /// Return an AddrSpaceCastSDNode.
1189  SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1190                           unsigned DestAS);
1191
1192  /// Return the specified value casted to
1193  /// the target's desired shift amount type.
1194  SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1195
1196  /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1197  SDValue expandVAArg(SDNode *Node);
1198
1199  /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1200  SDValue expandVACopy(SDNode *Node);
1201
1202  /// Returs an GlobalAddress of the function from the current module with
1203  /// name matching the given ExternalSymbol. Additionally can provide the
1204  /// matched function.
1205  /// Panics the function doesn't exists.
1206  SDValue getSymbolFunctionGlobalAddress(SDValue Op,
1207                                         Function **TargetFunction = nullptr);
1208
1209  /// *Mutate* the specified node in-place to have the
1210  /// specified operands.  If the resultant node already exists in the DAG,
1211  /// this does not modify the specified node, instead it returns the node that
1212  /// already exists.  If the resultant node does not exist in the DAG, the
1213  /// input node is returned.  As a degenerate case, if you specify the same
1214  /// input operands as the node already has, the input node is returned.
1215  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1216  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1217  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1218                               SDValue Op3);
1219  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1220                               SDValue Op3, SDValue Op4);
1221  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1222                               SDValue Op3, SDValue Op4, SDValue Op5);
1223  SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1224
1225  /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1226  /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1227  /// the final TokenFactor has less than 64k operands.
1228  SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals);
1229
1230  /// *Mutate* the specified machine node's memory references to the provided
1231  /// list.
1232  void setNodeMemRefs(MachineSDNode *N,
1233                      ArrayRef<MachineMemOperand *> NewMemRefs);
1234
1235  // Propagates the change in divergence to users
1236  void updateDivergence(SDNode * N);
1237
1238  /// These are used for target selectors to *mutate* the
1239  /// specified node to have the specified return type, Target opcode, and
1240  /// operands.  Note that target opcodes are stored as
1241  /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
1242  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1243  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
1244  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1245                       SDValue Op1, SDValue Op2);
1246  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1247                       SDValue Op1, SDValue Op2, SDValue Op3);
1248  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1249                       ArrayRef<SDValue> Ops);
1250  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
1251  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1252                       EVT VT2, ArrayRef<SDValue> Ops);
1253  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1254                       EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1255  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1256                       EVT VT2, SDValue Op1);
1257  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1258                       EVT VT2, SDValue Op1, SDValue Op2);
1259  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
1260                       ArrayRef<SDValue> Ops);
1261
1262  /// This *mutates* the specified node to have the specified
1263  /// return type, opcode, and operands.
1264  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1265                      ArrayRef<SDValue> Ops);
1266
1267  /// Mutate the specified strict FP node to its non-strict equivalent,
1268  /// unlinking the node from its chain and dropping the metadata arguments.
1269  /// The node must be a strict FP node.
1270  SDNode *mutateStrictFPToFP(SDNode *Node);
1271
1272  /// These are used for target selectors to create a new node
1273  /// with specified return type(s), MachineInstr opcode, and operands.
1274  ///
1275  /// Note that getMachineNode returns the resultant node.  If there is already
1276  /// a node of the specified opcode and operands, it returns that node instead
1277  /// of the current one.
1278  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1279  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1280                                SDValue Op1);
1281  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1282                                SDValue Op1, SDValue Op2);
1283  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1284                                SDValue Op1, SDValue Op2, SDValue Op3);
1285  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1286                                ArrayRef<SDValue> Ops);
1287  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1288                                EVT VT2, SDValue Op1, SDValue Op2);
1289  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1290                                EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1291  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1292                                EVT VT2, ArrayRef<SDValue> Ops);
1293  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1294                                EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1295  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1296                                EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1297                                SDValue Op3);
1298  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1299                                EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1300  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1301                                ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1302  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1303                                ArrayRef<SDValue> Ops);
1304
1305  /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1306  SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1307                                 SDValue Operand);
1308
1309  /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1310  SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1311                                SDValue Operand, SDValue Subreg);
1312
1313  /// Get the specified node if it's already available, or else return NULL.
1314  SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops,
1315                          const SDNodeFlags Flags = SDNodeFlags());
1316
1317  /// Creates a SDDbgValue node.
1318  SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
1319                          unsigned R, bool IsIndirect, const DebugLoc &DL,
1320                          unsigned O);
1321
1322  /// Creates a constant SDDbgValue node.
1323  SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
1324                                  const Value *C, const DebugLoc &DL,
1325                                  unsigned O);
1326
1327  /// Creates a FrameIndex SDDbgValue node.
1328  SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1329                                    unsigned FI, bool IsIndirect,
1330                                    const DebugLoc &DL, unsigned O);
1331
1332  /// Creates a VReg SDDbgValue node.
1333  SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
1334                              unsigned VReg, bool IsIndirect,
1335                              const DebugLoc &DL, unsigned O);
1336
1337  /// Creates a SDDbgLabel node.
1338  SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
1339
1340  /// Transfer debug values from one node to another, while optionally
1341  /// generating fragment expressions for split-up values. If \p InvalidateDbg
1342  /// is set, debug values are invalidated after they are transferred.
1343  void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
1344                         unsigned SizeInBits = 0, bool InvalidateDbg = true);
1345
1346  /// Remove the specified node from the system. If any of its
1347  /// operands then becomes dead, remove them as well. Inform UpdateListener
1348  /// for each node deleted.
1349  void RemoveDeadNode(SDNode *N);
1350
1351  /// This method deletes the unreachable nodes in the
1352  /// given list, and any nodes that become unreachable as a result.
1353  void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1354
1355  /// Modify anything using 'From' to use 'To' instead.
1356  /// This can cause recursive merging of nodes in the DAG.  Use the first
1357  /// version if 'From' is known to have a single result, use the second
1358  /// if you have two nodes with identical results (or if 'To' has a superset
1359  /// of the results of 'From'), use the third otherwise.
1360  ///
1361  /// These methods all take an optional UpdateListener, which (if not null) is
1362  /// informed about nodes that are deleted and modified due to recursive
1363  /// changes in the dag.
1364  ///
1365  /// These functions only replace all existing uses. It's possible that as
1366  /// these replacements are being performed, CSE may cause the From node
1367  /// to be given new uses. These new uses of From are left in place, and
1368  /// not automatically transferred to To.
1369  ///
1370  void ReplaceAllUsesWith(SDValue From, SDValue To);
1371  void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1372  void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1373
1374  /// Replace any uses of From with To, leaving
1375  /// uses of other values produced by From.getNode() alone.
1376  void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1377
1378  /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1379  /// This correctly handles the case where
1380  /// there is an overlap between the From values and the To values.
1381  void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1382                                  unsigned Num);
1383
1384  /// If an existing load has uses of its chain, create a token factor node with
1385  /// that chain and the new memory node's chain and update users of the old
1386  /// chain to the token factor. This ensures that the new memory node will have
1387  /// the same relative memory dependency position as the old load. Returns the
1388  /// new merged load chain.
1389  SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
1390
1391  /// Topological-sort the AllNodes list and a
1392  /// assign a unique node id for each node in the DAG based on their
1393  /// topological order. Returns the number of nodes.
1394  unsigned AssignTopologicalOrder();
1395
1396  /// Move node N in the AllNodes list to be immediately
1397  /// before the given iterator Position. This may be used to update the
1398  /// topological ordering when the list of nodes is modified.
1399  void RepositionNode(allnodes_iterator Position, SDNode *N) {
1400    AllNodes.insert(Position, AllNodes.remove(N));
1401  }
1402
1403  /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1404  /// a vector type, the element semantics are returned.
1405  static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
1406    switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1407    default: llvm_unreachable("Unknown FP format");
1408    case MVT::f16:     return APFloat::IEEEhalf();
1409    case MVT::f32:     return APFloat::IEEEsingle();
1410    case MVT::f64:     return APFloat::IEEEdouble();
1411    case MVT::f80:     return APFloat::x87DoubleExtended();
1412    case MVT::f128:    return APFloat::IEEEquad();
1413    case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1414    }
1415  }
1416
1417  /// Add a dbg_value SDNode. If SD is non-null that means the
1418  /// value is produced by SD.
1419  void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
1420
1421  /// Add a dbg_label SDNode.
1422  void AddDbgLabel(SDDbgLabel *DB);
1423
1424  /// Get the debug values which reference the given SDNode.
1425  ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const {
1426    return DbgInfo->getSDDbgValues(SD);
1427  }
1428
1429public:
1430  /// Return true if there are any SDDbgValue nodes associated
1431  /// with this SelectionDAG.
1432  bool hasDebugValues() const { return !DbgInfo->empty(); }
1433
1434  SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
1435  SDDbgInfo::DbgIterator DbgEnd() const  { return DbgInfo->DbgEnd(); }
1436
1437  SDDbgInfo::DbgIterator ByvalParmDbgBegin() const {
1438    return DbgInfo->ByvalParmDbgBegin();
1439  }
1440  SDDbgInfo::DbgIterator ByvalParmDbgEnd() const {
1441    return DbgInfo->ByvalParmDbgEnd();
1442  }
1443
1444  SDDbgInfo::DbgLabelIterator DbgLabelBegin() const {
1445    return DbgInfo->DbgLabelBegin();
1446  }
1447  SDDbgInfo::DbgLabelIterator DbgLabelEnd() const {
1448    return DbgInfo->DbgLabelEnd();
1449  }
1450
1451  /// To be invoked on an SDNode that is slated to be erased. This
1452  /// function mirrors \c llvm::salvageDebugInfo.
1453  void salvageDebugInfo(SDNode &N);
1454
1455  void dump() const;
1456
1457  /// Create a stack temporary, suitable for holding the specified value type.
1458  /// If minAlign is specified, the slot size will have at least that alignment.
1459  SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1460
1461  /// Create a stack temporary suitable for holding either of the specified
1462  /// value types.
1463  SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1464
1465  SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1466                           const GlobalAddressSDNode *GA,
1467                           const SDNode *N2);
1468
1469  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1470                                 SDNode *N1, SDNode *N2);
1471
1472  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1473                                 const ConstantSDNode *C1,
1474                                 const ConstantSDNode *C2);
1475
1476  SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1477                                       ArrayRef<SDValue> Ops,
1478                                       const SDNodeFlags Flags = SDNodeFlags());
1479
1480  /// Fold floating-point operations with 2 operands when both operands are
1481  /// constants and/or undefined.
1482  SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT,
1483                             SDValue N1, SDValue N2);
1484
1485  /// Constant fold a setcc to true or false.
1486  SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1487                    const SDLoc &dl);
1488
1489  /// See if the specified operand can be simplified with the knowledge that
1490  /// only the bits specified by DemandedBits are used.  If so, return the
1491  /// simpler operand, otherwise return a null SDValue.
1492  ///
1493  /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1494  /// simplify nodes with multiple uses more aggressively.)
1495  SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits);
1496
1497  /// See if the specified operand can be simplified with the knowledge that
1498  /// only the bits specified by DemandedBits are used in the elements specified
1499  /// by DemandedElts.  If so, return the simpler operand, otherwise return a
1500  /// null SDValue.
1501  ///
1502  /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1503  /// simplify nodes with multiple uses more aggressively.)
1504  SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits,
1505                          const APInt &DemandedElts);
1506
1507  /// Return true if the sign bit of Op is known to be zero.
1508  /// We use this predicate to simplify operations downstream.
1509  bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1510
1511  /// Return true if 'Op & Mask' is known to be zero.  We
1512  /// use this predicate to simplify operations downstream.  Op and Mask are
1513  /// known to be the same type.
1514  bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1515                         unsigned Depth = 0) const;
1516
1517  /// Return true if 'Op & Mask' is known to be zero in DemandedElts.  We
1518  /// use this predicate to simplify operations downstream.  Op and Mask are
1519  /// known to be the same type.
1520  bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1521                         const APInt &DemandedElts, unsigned Depth = 0) const;
1522
1523  /// Return true if '(Op & Mask) == Mask'.
1524  /// Op and Mask are known to be the same type.
1525  bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask,
1526                            unsigned Depth = 0) const;
1527
1528  /// Determine which bits of Op are known to be either zero or one and return
1529  /// them in Known. For vectors, the known bits are those that are shared by
1530  /// every vector element.
1531  /// Targets can implement the computeKnownBitsForTargetNode method in the
1532  /// TargetLowering class to allow target nodes to be understood.
1533  KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
1534
1535  /// Determine which bits of Op are known to be either zero or one and return
1536  /// them in Known. The DemandedElts argument allows us to only collect the
1537  /// known bits that are shared by the requested vector elements.
1538  /// Targets can implement the computeKnownBitsForTargetNode method in the
1539  /// TargetLowering class to allow target nodes to be understood.
1540  KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
1541                             unsigned Depth = 0) const;
1542
1543  /// Used to represent the possible overflow behavior of an operation.
1544  /// Never: the operation cannot overflow.
1545  /// Always: the operation will always overflow.
1546  /// Sometime: the operation may or may not overflow.
1547  enum OverflowKind {
1548    OFK_Never,
1549    OFK_Sometime,
1550    OFK_Always,
1551  };
1552
1553  /// Determine if the result of the addition of 2 node can overflow.
1554  OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
1555
1556  /// Test if the given value is known to have exactly one bit set. This differs
1557  /// from computeKnownBits in that it doesn't necessarily determine which bit
1558  /// is set.
1559  bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1560
1561  /// Return the number of times the sign bit of the register is replicated into
1562  /// the other bits. We know that at least 1 bit is always equal to the sign
1563  /// bit (itself), but other cases can give us information. For example,
1564  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1565  /// to each other, so we return 3. Targets can implement the
1566  /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1567  /// target nodes to be understood.
1568  unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
1569
1570  /// Return the number of times the sign bit of the register is replicated into
1571  /// the other bits. We know that at least 1 bit is always equal to the sign
1572  /// bit (itself), but other cases can give us information. For example,
1573  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1574  /// to each other, so we return 3. The DemandedElts argument allows
1575  /// us to only collect the minimum sign bits of the requested vector elements.
1576  /// Targets can implement the ComputeNumSignBitsForTarget method in the
1577  /// TargetLowering class to allow target nodes to be understood.
1578  unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
1579                              unsigned Depth = 0) const;
1580
1581  /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1582  /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1583  /// is guaranteed to have the same semantics as an ADD. This handles the
1584  /// equivalence:
1585  ///     X|Cst == X+Cst iff X&Cst = 0.
1586  bool isBaseWithConstantOffset(SDValue Op) const;
1587
1588  /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1589  /// true, returns if \p Op is known to never be a signaling NaN (it may still
1590  /// be a qNaN).
1591  bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
1592
1593  /// \returns true if \p Op is known to never be a signaling NaN.
1594  bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
1595    return isKnownNeverNaN(Op, true, Depth);
1596  }
1597
1598  /// Test whether the given floating point SDValue is known to never be
1599  /// positive or negative zero.
1600  bool isKnownNeverZeroFloat(SDValue Op) const;
1601
1602  /// Test whether the given SDValue is known to contain non-zero value(s).
1603  bool isKnownNeverZero(SDValue Op) const;
1604
1605  /// Test whether two SDValues are known to compare equal. This
1606  /// is true if they are the same value, or if one is negative zero and the
1607  /// other positive zero.
1608  bool isEqualTo(SDValue A, SDValue B) const;
1609
1610  /// Return true if A and B have no common bits set. As an example, this can
1611  /// allow an 'add' to be transformed into an 'or'.
1612  bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
1613
1614  /// Test whether \p V has a splatted value for all the demanded elements.
1615  ///
1616  /// On success \p UndefElts will indicate the elements that have UNDEF
1617  /// values instead of the splat value, this is only guaranteed to be correct
1618  /// for \p DemandedElts.
1619  ///
1620  /// NOTE: The function will return true for a demanded splat of UNDEF values.
1621  bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts);
1622
1623  /// Test whether \p V has a splatted value.
1624  bool isSplatValue(SDValue V, bool AllowUndefs = false);
1625
1626  /// If V is a splatted value, return the source vector and its splat index.
1627  SDValue getSplatSourceVector(SDValue V, int &SplatIndex);
1628
1629  /// If V is a splat vector, return its scalar source operand by extracting
1630  /// that element from the source vector.
1631  SDValue getSplatValue(SDValue V);
1632
1633  /// Match a binop + shuffle pyramid that represents a horizontal reduction
1634  /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1635  /// Extract. The reduction must use one of the opcodes listed in /p
1636  /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1637  /// Returns the vector that is being reduced on, or SDValue() if a reduction
1638  /// was not matched. If \p AllowPartials is set then in the case of a
1639  /// reduction pattern that only matches the first few stages, the extracted
1640  /// subvector of the start of the reduction is returned.
1641  SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
1642                              ArrayRef<ISD::NodeType> CandidateBinOps,
1643                              bool AllowPartials = false);
1644
1645  /// Utility function used by legalize and lowering to
1646  /// "unroll" a vector operation by splitting out the scalars and operating
1647  /// on each element individually.  If the ResNE is 0, fully unroll the vector
1648  /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1649  /// If the  ResNE is greater than the width of the vector op, unroll the
1650  /// vector op and fill the end of the resulting vector with UNDEFS.
1651  SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
1652
1653  /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
1654  /// This is a separate function because those opcodes have two results.
1655  std::pair<SDValue, SDValue> UnrollVectorOverflowOp(SDNode *N,
1656                                                     unsigned ResNE = 0);
1657
1658  /// Return true if loads are next to each other and can be
1659  /// merged. Check that both are nonvolatile and if LD is loading
1660  /// 'Bytes' bytes from a location that is 'Dist' units away from the
1661  /// location that the 'Base' load is loading from.
1662  bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
1663                                      unsigned Bytes, int Dist) const;
1664
1665  /// Infer alignment of a load / store address. Return 0 if
1666  /// it cannot be inferred.
1667  unsigned InferPtrAlignment(SDValue Ptr) const;
1668
1669  /// Compute the VTs needed for the low/hi parts of a type
1670  /// which is split (or expanded) into two not necessarily identical pieces.
1671  std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
1672
1673  /// Split the vector with EXTRACT_SUBVECTOR using the provides
1674  /// VTs and return the low/high part.
1675  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
1676                                          const EVT &LoVT, const EVT &HiVT);
1677
1678  /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1679  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
1680    EVT LoVT, HiVT;
1681    std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
1682    return SplitVector(N, DL, LoVT, HiVT);
1683  }
1684
1685  /// Split the node's operand with EXTRACT_SUBVECTOR and
1686  /// return the low/high part.
1687  std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
1688  {
1689    return SplitVector(N->getOperand(OpNo), SDLoc(N));
1690  }
1691
1692  /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
1693  SDValue WidenVector(const SDValue &N, const SDLoc &DL);
1694
1695  /// Append the extracted elements from Start to Count out of the vector Op
1696  /// in Args. If Count is 0, all of the elements will be extracted.
1697  void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
1698                             unsigned Start = 0, unsigned Count = 0);
1699
1700  /// Compute the default alignment value for the given type.
1701  unsigned getEVTAlignment(EVT MemoryVT) const;
1702
1703  /// Test whether the given value is a constant int or similar node.
1704  SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
1705
1706  /// Test whether the given value is a constant FP or similar node.
1707  SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
1708
1709  /// \returns true if \p N is any kind of constant or build_vector of
1710  /// constants, int or float. If a vector, it may not necessarily be a splat.
1711  inline bool isConstantValueOfAnyType(SDValue N) {
1712    return isConstantIntBuildVectorOrConstantInt(N) ||
1713           isConstantFPBuildVectorOrConstantFP(N);
1714  }
1715
1716  void addCallSiteInfo(const SDNode *CallNode, CallSiteInfoImpl &&CallInfo) {
1717    SDCallSiteDbgInfo[CallNode].CSInfo = std::move(CallInfo);
1718  }
1719
1720  CallSiteInfo getSDCallSiteInfo(const SDNode *CallNode) {
1721    auto I = SDCallSiteDbgInfo.find(CallNode);
1722    if (I != SDCallSiteDbgInfo.end())
1723      return std::move(I->second).CSInfo;
1724    return CallSiteInfo();
1725  }
1726
1727  void addHeapAllocSite(const SDNode *Node, MDNode *MD) {
1728    SDCallSiteDbgInfo[Node].HeapAllocSite = MD;
1729  }
1730
1731  /// Return the HeapAllocSite type associated with the SDNode, if it exists.
1732  MDNode *getHeapAllocSite(const SDNode *Node) {
1733    auto It = SDCallSiteDbgInfo.find(Node);
1734    if (It == SDCallSiteDbgInfo.end())
1735      return nullptr;
1736    return It->second.HeapAllocSite;
1737  }
1738
1739  /// Return the current function's default denormal handling kind for the given
1740  /// floating point type.
1741  DenormalMode getDenormalMode(EVT VT) const {
1742    return MF->getDenormalMode(EVTToAPFloatSemantics(VT));
1743  }
1744
1745  bool shouldOptForSize() const;
1746
1747private:
1748  void InsertNode(SDNode *N);
1749  bool RemoveNodeFromCSEMaps(SDNode *N);
1750  void AddModifiedNodeToCSEMaps(SDNode *N);
1751  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
1752  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
1753                               void *&InsertPos);
1754  SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1755                               void *&InsertPos);
1756  SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
1757
1758  void DeleteNodeNotInCSEMaps(SDNode *N);
1759  void DeallocateNode(SDNode *N);
1760
1761  void allnodes_clear();
1762
1763  /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
1764  /// not, return the insertion token that will make insertion faster.  This
1765  /// overload is for nodes other than Constant or ConstantFP, use the other one
1766  /// for those.
1767  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
1768
1769  /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
1770  /// not, return the insertion token that will make insertion faster.  Performs
1771  /// additional processing for constant nodes.
1772  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
1773                              void *&InsertPos);
1774
1775  /// List of non-single value types.
1776  FoldingSet<SDVTListNode> VTListMap;
1777
1778  /// Maps to auto-CSE operations.
1779  std::vector<CondCodeSDNode*> CondCodeNodes;
1780
1781  std::vector<SDNode*> ValueTypeNodes;
1782  std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
1783  StringMap<SDNode*> ExternalSymbols;
1784
1785  std::map<std::pair<std::string, unsigned>, SDNode *> TargetExternalSymbols;
1786  DenseMap<MCSymbol *, SDNode *> MCSymbols;
1787};
1788
1789template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
1790  using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
1791
1792  static nodes_iterator nodes_begin(SelectionDAG *G) {
1793    return nodes_iterator(G->allnodes_begin());
1794  }
1795
1796  static nodes_iterator nodes_end(SelectionDAG *G) {
1797    return nodes_iterator(G->allnodes_end());
1798  }
1799};
1800
1801template <class TargetMemSDNode>
1802SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
1803                                         ArrayRef<SDValue> Ops,
1804                                         const SDLoc &dl, EVT MemVT,
1805                                         MachineMemOperand *MMO) {
1806  /// Compose node ID and try to find an existing node.
1807  FoldingSetNodeID ID;
1808  unsigned Opcode =
1809    TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
1810  ID.AddInteger(Opcode);
1811  ID.AddPointer(VTs.VTs);
1812  for (auto& Op : Ops) {
1813    ID.AddPointer(Op.getNode());
1814    ID.AddInteger(Op.getResNo());
1815  }
1816  ID.AddInteger(MemVT.getRawBits());
1817  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
1818  ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
1819    dl.getIROrder(), VTs, MemVT, MMO));
1820
1821  void *IP = nullptr;
1822  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
1823    cast<TargetMemSDNode>(E)->refineAlignment(MMO);
1824    return SDValue(E, 0);
1825  }
1826
1827  /// Existing node was not found. Create a new one.
1828  auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
1829                                       MemVT, MMO);
1830  createOperands(N, Ops);
1831  CSEMap.InsertNode(N, IP);
1832  InsertNode(N);
1833  return SDValue(N, 0);
1834}
1835
1836} // end namespace llvm
1837
1838#endif // LLVM_CODEGEN_SELECTIONDAG_H
1839