1//===- llvm/CallingConvLower.h - Calling Conventions ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the CCState and CCValAssign classes, used for lowering
10// and implementing calling conventions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H
15#define LLVM_CODEGEN_CALLINGCONVLOWER_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/TargetCallingConv.h"
21#include "llvm/IR/CallingConv.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/Support/Alignment.h"
24
25namespace llvm {
26
27class CCState;
28class MVT;
29class TargetMachine;
30class TargetRegisterInfo;
31
32/// CCValAssign - Represent assignment of one arg/retval to a location.
33class CCValAssign {
34public:
35  enum LocInfo {
36    Full,      // The value fills the full location.
37    SExt,      // The value is sign extended in the location.
38    ZExt,      // The value is zero extended in the location.
39    AExt,      // The value is extended with undefined upper bits.
40    SExtUpper, // The value is in the upper bits of the location and should be
41               // sign extended when retrieved.
42    ZExtUpper, // The value is in the upper bits of the location and should be
43               // zero extended when retrieved.
44    AExtUpper, // The value is in the upper bits of the location and should be
45               // extended with undefined upper bits when retrieved.
46    BCvt,      // The value is bit-converted in the location.
47    Trunc,     // The value is truncated in the location.
48    VExt,      // The value is vector-widened in the location.
49               // FIXME: Not implemented yet. Code that uses AExt to mean
50               // vector-widen should be fixed to use VExt instead.
51    FPExt,     // The floating-point value is fp-extended in the location.
52    Indirect   // The location contains pointer to the value.
53    // TODO: a subset of the value is in the location.
54  };
55
56private:
57  /// ValNo - This is the value number begin assigned (e.g. an argument number).
58  unsigned ValNo;
59
60  /// Loc is either a stack offset or a register number.
61  unsigned Loc;
62
63  /// isMem - True if this is a memory loc, false if it is a register loc.
64  unsigned isMem : 1;
65
66  /// isCustom - True if this arg/retval requires special handling.
67  unsigned isCustom : 1;
68
69  /// Information about how the value is assigned.
70  LocInfo HTP : 6;
71
72  /// ValVT - The type of the value being assigned.
73  MVT ValVT;
74
75  /// LocVT - The type of the location being assigned to.
76  MVT LocVT;
77public:
78
79  static CCValAssign getReg(unsigned ValNo, MVT ValVT,
80                            unsigned RegNo, MVT LocVT,
81                            LocInfo HTP) {
82    CCValAssign Ret;
83    Ret.ValNo = ValNo;
84    Ret.Loc = RegNo;
85    Ret.isMem = false;
86    Ret.isCustom = false;
87    Ret.HTP = HTP;
88    Ret.ValVT = ValVT;
89    Ret.LocVT = LocVT;
90    return Ret;
91  }
92
93  static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT,
94                                  unsigned RegNo, MVT LocVT,
95                                  LocInfo HTP) {
96    CCValAssign Ret;
97    Ret = getReg(ValNo, ValVT, RegNo, LocVT, HTP);
98    Ret.isCustom = true;
99    return Ret;
100  }
101
102  static CCValAssign getMem(unsigned ValNo, MVT ValVT,
103                            unsigned Offset, MVT LocVT,
104                            LocInfo HTP) {
105    CCValAssign Ret;
106    Ret.ValNo = ValNo;
107    Ret.Loc = Offset;
108    Ret.isMem = true;
109    Ret.isCustom = false;
110    Ret.HTP = HTP;
111    Ret.ValVT = ValVT;
112    Ret.LocVT = LocVT;
113    return Ret;
114  }
115
116  static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT,
117                                  unsigned Offset, MVT LocVT,
118                                  LocInfo HTP) {
119    CCValAssign Ret;
120    Ret = getMem(ValNo, ValVT, Offset, LocVT, HTP);
121    Ret.isCustom = true;
122    return Ret;
123  }
124
125  // There is no need to differentiate between a pending CCValAssign and other
126  // kinds, as they are stored in a different list.
127  static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
128                                LocInfo HTP, unsigned ExtraInfo = 0) {
129    return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
130  }
131
132  void convertToReg(unsigned RegNo) {
133    Loc = RegNo;
134    isMem = false;
135  }
136
137  void convertToMem(unsigned Offset) {
138    Loc = Offset;
139    isMem = true;
140  }
141
142  unsigned getValNo() const { return ValNo; }
143  MVT getValVT() const { return ValVT; }
144
145  bool isRegLoc() const { return !isMem; }
146  bool isMemLoc() const { return isMem; }
147
148  bool needsCustom() const { return isCustom; }
149
150  Register getLocReg() const { assert(isRegLoc()); return Loc; }
151  unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
152  unsigned getExtraInfo() const { return Loc; }
153  MVT getLocVT() const { return LocVT; }
154
155  LocInfo getLocInfo() const { return HTP; }
156  bool isExtInLoc() const {
157    return (HTP == AExt || HTP == SExt || HTP == ZExt);
158  }
159
160  bool isUpperBitsInLoc() const {
161    return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper;
162  }
163};
164
165/// Describes a register that needs to be forwarded from the prologue to a
166/// musttail call.
167struct ForwardedRegister {
168  ForwardedRegister(unsigned VReg, MCPhysReg PReg, MVT VT)
169      : VReg(VReg), PReg(PReg), VT(VT) {}
170  unsigned VReg;
171  MCPhysReg PReg;
172  MVT VT;
173};
174
175/// CCAssignFn - This function assigns a location for Val, updating State to
176/// reflect the change.  It returns 'true' if it failed to handle Val.
177typedef bool CCAssignFn(unsigned ValNo, MVT ValVT,
178                        MVT LocVT, CCValAssign::LocInfo LocInfo,
179                        ISD::ArgFlagsTy ArgFlags, CCState &State);
180
181/// CCCustomFn - This function assigns a location for Val, possibly updating
182/// all args to reflect changes and indicates if it handled it. It must set
183/// isCustom if it handles the arg and returns true.
184typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT,
185                        MVT &LocVT, CCValAssign::LocInfo &LocInfo,
186                        ISD::ArgFlagsTy &ArgFlags, CCState &State);
187
188/// CCState - This class holds information needed while lowering arguments and
189/// return values.  It captures which registers are already assigned and which
190/// stack slots are used.  It provides accessors to allocate these values.
191class CCState {
192private:
193  CallingConv::ID CallingConv;
194  bool IsVarArg;
195  bool AnalyzingMustTailForwardedRegs = false;
196  MachineFunction &MF;
197  const TargetRegisterInfo &TRI;
198  SmallVectorImpl<CCValAssign> &Locs;
199  LLVMContext &Context;
200
201  unsigned StackOffset;
202  Align MaxStackArgAlign;
203  SmallVector<uint32_t, 16> UsedRegs;
204  SmallVector<CCValAssign, 4> PendingLocs;
205  SmallVector<ISD::ArgFlagsTy, 4> PendingArgFlags;
206
207  // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
208  //
209  // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers
210  // tracking.
211  // Or, in another words it tracks byval parameters that are stored in
212  // general purpose registers.
213  //
214  // For 4 byte stack alignment,
215  // instance index means byval parameter number in formal
216  // arguments set. Assume, we have some "struct_type" with size = 4 bytes,
217  // then, for function "foo":
218  //
219  // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t)
220  //
221  // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2)
222  // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4).
223  //
224  // In case of 8 bytes stack alignment,
225  // ByValRegs may also contain information about wasted registers.
226  // In function shown above, r3 would be wasted according to AAPCS rules.
227  // And in that case ByValRegs[1].Waste would be "true".
228  // ByValRegs vector size still would be 2,
229  // while "%t" goes to the stack: it wouldn't be described in ByValRegs.
230  //
231  // Supposed use-case for this collection:
232  // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0.
233  // 2. HandleByVal fillups ByValRegs.
234  // 3. Argument analysis (LowerFormatArguments, for example). After
235  // some byval argument was analyzed, InRegsParamsProcessed is increased.
236  struct ByValInfo {
237    ByValInfo(unsigned B, unsigned E, bool IsWaste = false) :
238      Begin(B), End(E), Waste(IsWaste) {}
239    // First register allocated for current parameter.
240    unsigned Begin;
241
242    // First after last register allocated for current parameter.
243    unsigned End;
244
245    // Means that current range of registers doesn't belong to any
246    // parameters. It was wasted due to stack alignment rules.
247    // For more information see:
248    // AAPCS, 5.5 Parameter Passing, Stage C, C.3.
249    bool Waste;
250  };
251  SmallVector<ByValInfo, 4 > ByValRegs;
252
253  // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed
254  // during argument analysis.
255  unsigned InRegsParamsProcessed;
256
257public:
258  CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
259          SmallVectorImpl<CCValAssign> &locs, LLVMContext &C);
260
261  void addLoc(const CCValAssign &V) {
262    Locs.push_back(V);
263  }
264
265  LLVMContext &getContext() const { return Context; }
266  MachineFunction &getMachineFunction() const { return MF; }
267  CallingConv::ID getCallingConv() const { return CallingConv; }
268  bool isVarArg() const { return IsVarArg; }
269
270  /// getNextStackOffset - Return the next stack offset such that all stack
271  /// slots satisfy their alignment requirements.
272  unsigned getNextStackOffset() const {
273    return StackOffset;
274  }
275
276  /// getAlignedCallFrameSize - Return the size of the call frame needed to
277  /// be able to store all arguments and such that the alignment requirement
278  /// of each of the arguments is satisfied.
279  unsigned getAlignedCallFrameSize() const {
280    return alignTo(StackOffset, MaxStackArgAlign);
281  }
282
283  /// isAllocated - Return true if the specified register (or an alias) is
284  /// allocated.
285  bool isAllocated(unsigned Reg) const {
286    return UsedRegs[Reg/32] & (1 << (Reg&31));
287  }
288
289  /// AnalyzeFormalArguments - Analyze an array of argument values,
290  /// incorporating info about the formals into this state.
291  void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
292                              CCAssignFn Fn);
293
294  /// The function will invoke AnalyzeFormalArguments.
295  void AnalyzeArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
296                        CCAssignFn Fn) {
297    AnalyzeFormalArguments(Ins, Fn);
298  }
299
300  /// AnalyzeReturn - Analyze the returned values of a return,
301  /// incorporating info about the result values into this state.
302  void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
303                     CCAssignFn Fn);
304
305  /// CheckReturn - Analyze the return values of a function, returning
306  /// true if the return can be performed without sret-demotion, and
307  /// false otherwise.
308  bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
309                   CCAssignFn Fn);
310
311  /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
312  /// incorporating info about the passed values into this state.
313  void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
314                           CCAssignFn Fn);
315
316  /// AnalyzeCallOperands - Same as above except it takes vectors of types
317  /// and argument flags.
318  void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
319                           SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
320                           CCAssignFn Fn);
321
322  /// The function will invoke AnalyzeCallOperands.
323  void AnalyzeArguments(const SmallVectorImpl<ISD::OutputArg> &Outs,
324                        CCAssignFn Fn) {
325    AnalyzeCallOperands(Outs, Fn);
326  }
327
328  /// AnalyzeCallResult - Analyze the return values of a call,
329  /// incorporating info about the passed values into this state.
330  void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
331                         CCAssignFn Fn);
332
333  /// A shadow allocated register is a register that was allocated
334  /// but wasn't added to the location list (Locs).
335  /// \returns true if the register was allocated as shadow or false otherwise.
336  bool IsShadowAllocatedReg(unsigned Reg) const;
337
338  /// AnalyzeCallResult - Same as above except it's specialized for calls which
339  /// produce a single value.
340  void AnalyzeCallResult(MVT VT, CCAssignFn Fn);
341
342  /// getFirstUnallocated - Return the index of the first unallocated register
343  /// in the set, or Regs.size() if they are all allocated.
344  unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const {
345    for (unsigned i = 0; i < Regs.size(); ++i)
346      if (!isAllocated(Regs[i]))
347        return i;
348    return Regs.size();
349  }
350
351  /// AllocateReg - Attempt to allocate one register.  If it is not available,
352  /// return zero.  Otherwise, return the register, marking it and any aliases
353  /// as allocated.
354  unsigned AllocateReg(unsigned Reg) {
355    if (isAllocated(Reg)) return 0;
356    MarkAllocated(Reg);
357    return Reg;
358  }
359
360  /// Version of AllocateReg with extra register to be shadowed.
361  unsigned AllocateReg(unsigned Reg, unsigned ShadowReg) {
362    if (isAllocated(Reg)) return 0;
363    MarkAllocated(Reg);
364    MarkAllocated(ShadowReg);
365    return Reg;
366  }
367
368  /// AllocateReg - Attempt to allocate one of the specified registers.  If none
369  /// are available, return zero.  Otherwise, return the first one available,
370  /// marking it and any aliases as allocated.
371  unsigned AllocateReg(ArrayRef<MCPhysReg> Regs) {
372    unsigned FirstUnalloc = getFirstUnallocated(Regs);
373    if (FirstUnalloc == Regs.size())
374      return 0;    // Didn't find the reg.
375
376    // Mark the register and any aliases as allocated.
377    unsigned Reg = Regs[FirstUnalloc];
378    MarkAllocated(Reg);
379    return Reg;
380  }
381
382  /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
383  /// registers. If this is not possible, return zero. Otherwise, return the first
384  /// register of the block that were allocated, marking the entire block as allocated.
385  unsigned AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) {
386    if (RegsRequired > Regs.size())
387      return 0;
388
389    for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired;
390         ++StartIdx) {
391      bool BlockAvailable = true;
392      // Check for already-allocated regs in this block
393      for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
394        if (isAllocated(Regs[StartIdx + BlockIdx])) {
395          BlockAvailable = false;
396          break;
397        }
398      }
399      if (BlockAvailable) {
400        // Mark the entire block as allocated
401        for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
402          MarkAllocated(Regs[StartIdx + BlockIdx]);
403        }
404        return Regs[StartIdx];
405      }
406    }
407    // No block was available
408    return 0;
409  }
410
411  /// Version of AllocateReg with list of registers to be shadowed.
412  unsigned AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) {
413    unsigned FirstUnalloc = getFirstUnallocated(Regs);
414    if (FirstUnalloc == Regs.size())
415      return 0;    // Didn't find the reg.
416
417    // Mark the register and any aliases as allocated.
418    unsigned Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
419    MarkAllocated(Reg);
420    MarkAllocated(ShadowReg);
421    return Reg;
422  }
423
424  /// AllocateStack - Allocate a chunk of stack space with the specified size
425  /// and alignment.
426  unsigned AllocateStack(unsigned Size, unsigned Alignment) {
427    const Align CheckedAlignment(Alignment);
428    StackOffset = alignTo(StackOffset, CheckedAlignment);
429    unsigned Result = StackOffset;
430    StackOffset += Size;
431    MaxStackArgAlign = std::max(CheckedAlignment, MaxStackArgAlign);
432    ensureMaxAlignment(CheckedAlignment);
433    return Result;
434  }
435
436  void ensureMaxAlignment(Align Alignment) {
437    if (!AnalyzingMustTailForwardedRegs)
438      MF.getFrameInfo().ensureMaxAlignment(Alignment.value());
439  }
440
441  /// Version of AllocateStack with extra register to be shadowed.
442  unsigned AllocateStack(unsigned Size, unsigned Align, unsigned ShadowReg) {
443    MarkAllocated(ShadowReg);
444    return AllocateStack(Size, Align);
445  }
446
447  /// Version of AllocateStack with list of extra registers to be shadowed.
448  /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers.
449  unsigned AllocateStack(unsigned Size, unsigned Align,
450                         ArrayRef<MCPhysReg> ShadowRegs) {
451    for (unsigned i = 0; i < ShadowRegs.size(); ++i)
452      MarkAllocated(ShadowRegs[i]);
453    return AllocateStack(Size, Align);
454  }
455
456  // HandleByVal - Allocate a stack slot large enough to pass an argument by
457  // value. The size and alignment information of the argument is encoded in its
458  // parameter attribute.
459  void HandleByVal(unsigned ValNo, MVT ValVT,
460                   MVT LocVT, CCValAssign::LocInfo LocInfo,
461                   int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags);
462
463  // Returns count of byval arguments that are to be stored (even partly)
464  // in registers.
465  unsigned getInRegsParamsCount() const { return ByValRegs.size(); }
466
467  // Returns count of byval in-regs arguments proceed.
468  unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; }
469
470  // Get information about N-th byval parameter that is stored in registers.
471  // Here "ByValParamIndex" is N.
472  void getInRegsParamInfo(unsigned InRegsParamRecordIndex,
473                          unsigned& BeginReg, unsigned& EndReg) const {
474    assert(InRegsParamRecordIndex < ByValRegs.size() &&
475           "Wrong ByVal parameter index");
476
477    const ByValInfo& info = ByValRegs[InRegsParamRecordIndex];
478    BeginReg = info.Begin;
479    EndReg = info.End;
480  }
481
482  // Add information about parameter that is kept in registers.
483  void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) {
484    ByValRegs.push_back(ByValInfo(RegBegin, RegEnd));
485  }
486
487  // Goes either to next byval parameter (excluding "waste" record), or
488  // to the end of collection.
489  // Returns false, if end is reached.
490  bool nextInRegsParam() {
491    unsigned e = ByValRegs.size();
492    if (InRegsParamsProcessed < e)
493      ++InRegsParamsProcessed;
494    return InRegsParamsProcessed < e;
495  }
496
497  // Clear byval registers tracking info.
498  void clearByValRegsInfo() {
499    InRegsParamsProcessed = 0;
500    ByValRegs.clear();
501  }
502
503  // Rewind byval registers tracking info.
504  void rewindByValRegsInfo() {
505    InRegsParamsProcessed = 0;
506  }
507
508  // Get list of pending assignments
509  SmallVectorImpl<CCValAssign> &getPendingLocs() {
510    return PendingLocs;
511  }
512
513  // Get a list of argflags for pending assignments.
514  SmallVectorImpl<ISD::ArgFlagsTy> &getPendingArgFlags() {
515    return PendingArgFlags;
516  }
517
518  /// Compute the remaining unused register parameters that would be used for
519  /// the given value type. This is useful when varargs are passed in the
520  /// registers that normal prototyped parameters would be passed in, or for
521  /// implementing perfect forwarding.
522  void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT,
523                                   CCAssignFn Fn);
524
525  /// Compute the set of registers that need to be preserved and forwarded to
526  /// any musttail calls.
527  void analyzeMustTailForwardedRegisters(
528      SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
529      CCAssignFn Fn);
530
531  /// Returns true if the results of the two calling conventions are compatible.
532  /// This is usually part of the check for tailcall eligibility.
533  static bool resultsCompatible(CallingConv::ID CalleeCC,
534                                CallingConv::ID CallerCC, MachineFunction &MF,
535                                LLVMContext &C,
536                                const SmallVectorImpl<ISD::InputArg> &Ins,
537                                CCAssignFn CalleeFn, CCAssignFn CallerFn);
538
539  /// The function runs an additional analysis pass over function arguments.
540  /// It will mark each argument with the attribute flag SecArgPass.
541  /// After running, it will sort the locs list.
542  template <class T>
543  void AnalyzeArgumentsSecondPass(const SmallVectorImpl<T> &Args,
544                                  CCAssignFn Fn) {
545    unsigned NumFirstPassLocs = Locs.size();
546
547    /// Creates similar argument list to \p Args in which each argument is
548    /// marked using SecArgPass flag.
549    SmallVector<T, 16> SecPassArg;
550    // SmallVector<ISD::InputArg, 16> SecPassArg;
551    for (auto Arg : Args) {
552      Arg.Flags.setSecArgPass();
553      SecPassArg.push_back(Arg);
554    }
555
556    // Run the second argument pass
557    AnalyzeArguments(SecPassArg, Fn);
558
559    // Sort the locations of the arguments according to their original position.
560    SmallVector<CCValAssign, 16> TmpArgLocs;
561    TmpArgLocs.swap(Locs);
562    auto B = TmpArgLocs.begin(), E = TmpArgLocs.end();
563    std::merge(B, B + NumFirstPassLocs, B + NumFirstPassLocs, E,
564               std::back_inserter(Locs),
565               [](const CCValAssign &A, const CCValAssign &B) -> bool {
566                 return A.getValNo() < B.getValNo();
567               });
568  }
569
570private:
571  /// MarkAllocated - Mark a register and all of its aliases as allocated.
572  void MarkAllocated(unsigned Reg);
573};
574
575} // end namespace llvm
576
577#endif // LLVM_CODEGEN_CALLINGCONVLOWER_H
578