1//===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_ADT_TWINE_H
10#define LLVM_ADT_TWINE_H
11
12#include "llvm/ADT/SmallVector.h"
13#include "llvm/ADT/StringRef.h"
14#include "llvm/Support/ErrorHandling.h"
15#include <cassert>
16#include <cstdint>
17#include <string>
18
19namespace llvm {
20
21  class formatv_object_base;
22  class raw_ostream;
23
24  /// Twine - A lightweight data structure for efficiently representing the
25  /// concatenation of temporary values as strings.
26  ///
27  /// A Twine is a kind of rope, it represents a concatenated string using a
28  /// binary-tree, where the string is the preorder of the nodes. Since the
29  /// Twine can be efficiently rendered into a buffer when its result is used,
30  /// it avoids the cost of generating temporary values for intermediate string
31  /// results -- particularly in cases when the Twine result is never
32  /// required. By explicitly tracking the type of leaf nodes, we can also avoid
33  /// the creation of temporary strings for conversions operations (such as
34  /// appending an integer to a string).
35  ///
36  /// A Twine is not intended for use directly and should not be stored, its
37  /// implementation relies on the ability to store pointers to temporary stack
38  /// objects which may be deallocated at the end of a statement. Twines should
39  /// only be used accepted as const references in arguments, when an API wishes
40  /// to accept possibly-concatenated strings.
41  ///
42  /// Twines support a special 'null' value, which always concatenates to form
43  /// itself, and renders as an empty string. This can be returned from APIs to
44  /// effectively nullify any concatenations performed on the result.
45  ///
46  /// \b Implementation
47  ///
48  /// Given the nature of a Twine, it is not possible for the Twine's
49  /// concatenation method to construct interior nodes; the result must be
50  /// represented inside the returned value. For this reason a Twine object
51  /// actually holds two values, the left- and right-hand sides of a
52  /// concatenation. We also have nullary Twine objects, which are effectively
53  /// sentinel values that represent empty strings.
54  ///
55  /// Thus, a Twine can effectively have zero, one, or two children. The \see
56  /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
57  /// testing the number of children.
58  ///
59  /// We maintain a number of invariants on Twine objects (FIXME: Why):
60  ///  - Nullary twines are always represented with their Kind on the left-hand
61  ///    side, and the Empty kind on the right-hand side.
62  ///  - Unary twines are always represented with the value on the left-hand
63  ///    side, and the Empty kind on the right-hand side.
64  ///  - If a Twine has another Twine as a child, that child should always be
65  ///    binary (otherwise it could have been folded into the parent).
66  ///
67  /// These invariants are check by \see isValid().
68  ///
69  /// \b Efficiency Considerations
70  ///
71  /// The Twine is designed to yield efficient and small code for common
72  /// situations. For this reason, the concat() method is inlined so that
73  /// concatenations of leaf nodes can be optimized into stores directly into a
74  /// single stack allocated object.
75  ///
76  /// In practice, not all compilers can be trusted to optimize concat() fully,
77  /// so we provide two additional methods (and accompanying operator+
78  /// overloads) to guarantee that particularly important cases (cstring plus
79  /// StringRef) codegen as desired.
80  class Twine {
81    /// NodeKind - Represent the type of an argument.
82    enum NodeKind : unsigned char {
83      /// An empty string; the result of concatenating anything with it is also
84      /// empty.
85      NullKind,
86
87      /// The empty string.
88      EmptyKind,
89
90      /// A pointer to a Twine instance.
91      TwineKind,
92
93      /// A pointer to a C string instance.
94      CStringKind,
95
96      /// A pointer to an std::string instance.
97      StdStringKind,
98
99      /// A pointer to a StringRef instance.
100      StringRefKind,
101
102      /// A pointer to a SmallString instance.
103      SmallStringKind,
104
105      /// A pointer to a formatv_object_base instance.
106      FormatvObjectKind,
107
108      /// A char value, to render as a character.
109      CharKind,
110
111      /// An unsigned int value, to render as an unsigned decimal integer.
112      DecUIKind,
113
114      /// An int value, to render as a signed decimal integer.
115      DecIKind,
116
117      /// A pointer to an unsigned long value, to render as an unsigned decimal
118      /// integer.
119      DecULKind,
120
121      /// A pointer to a long value, to render as a signed decimal integer.
122      DecLKind,
123
124      /// A pointer to an unsigned long long value, to render as an unsigned
125      /// decimal integer.
126      DecULLKind,
127
128      /// A pointer to a long long value, to render as a signed decimal integer.
129      DecLLKind,
130
131      /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
132      /// integer.
133      UHexKind
134    };
135
136    union Child
137    {
138      const Twine *twine;
139      const char *cString;
140      const std::string *stdString;
141      const StringRef *stringRef;
142      const SmallVectorImpl<char> *smallString;
143      const formatv_object_base *formatvObject;
144      char character;
145      unsigned int decUI;
146      int decI;
147      const unsigned long *decUL;
148      const long *decL;
149      const unsigned long long *decULL;
150      const long long *decLL;
151      const uint64_t *uHex;
152    };
153
154    /// LHS - The prefix in the concatenation, which may be uninitialized for
155    /// Null or Empty kinds.
156    Child LHS = {0};
157
158    /// RHS - The suffix in the concatenation, which may be uninitialized for
159    /// Null or Empty kinds.
160    Child RHS = {0};
161
162    /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
163    NodeKind LHSKind = EmptyKind;
164
165    /// RHSKind - The NodeKind of the right hand side, \see getRHSKind().
166    NodeKind RHSKind = EmptyKind;
167
168    /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
169    explicit Twine(NodeKind Kind) : LHSKind(Kind) {
170      assert(isNullary() && "Invalid kind!");
171    }
172
173    /// Construct a binary twine.
174    explicit Twine(const Twine &LHS, const Twine &RHS)
175        : LHSKind(TwineKind), RHSKind(TwineKind) {
176      this->LHS.twine = &LHS;
177      this->RHS.twine = &RHS;
178      assert(isValid() && "Invalid twine!");
179    }
180
181    /// Construct a twine from explicit values.
182    explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind)
183        : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) {
184      assert(isValid() && "Invalid twine!");
185    }
186
187    /// Check for the null twine.
188    bool isNull() const {
189      return getLHSKind() == NullKind;
190    }
191
192    /// Check for the empty twine.
193    bool isEmpty() const {
194      return getLHSKind() == EmptyKind;
195    }
196
197    /// Check if this is a nullary twine (null or empty).
198    bool isNullary() const {
199      return isNull() || isEmpty();
200    }
201
202    /// Check if this is a unary twine.
203    bool isUnary() const {
204      return getRHSKind() == EmptyKind && !isNullary();
205    }
206
207    /// Check if this is a binary twine.
208    bool isBinary() const {
209      return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
210    }
211
212    /// Check if this is a valid twine (satisfying the invariants on
213    /// order and number of arguments).
214    bool isValid() const {
215      // Nullary twines always have Empty on the RHS.
216      if (isNullary() && getRHSKind() != EmptyKind)
217        return false;
218
219      // Null should never appear on the RHS.
220      if (getRHSKind() == NullKind)
221        return false;
222
223      // The RHS cannot be non-empty if the LHS is empty.
224      if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
225        return false;
226
227      // A twine child should always be binary.
228      if (getLHSKind() == TwineKind &&
229          !LHS.twine->isBinary())
230        return false;
231      if (getRHSKind() == TwineKind &&
232          !RHS.twine->isBinary())
233        return false;
234
235      return true;
236    }
237
238    /// Get the NodeKind of the left-hand side.
239    NodeKind getLHSKind() const { return LHSKind; }
240
241    /// Get the NodeKind of the right-hand side.
242    NodeKind getRHSKind() const { return RHSKind; }
243
244    /// Print one child from a twine.
245    void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
246
247    /// Print the representation of one child from a twine.
248    void printOneChildRepr(raw_ostream &OS, Child Ptr,
249                           NodeKind Kind) const;
250
251  public:
252    /// @name Constructors
253    /// @{
254
255    /// Construct from an empty string.
256    /*implicit*/ Twine() {
257      assert(isValid() && "Invalid twine!");
258    }
259
260    Twine(const Twine &) = default;
261
262    /// Construct from a C string.
263    ///
264    /// We take care here to optimize "" into the empty twine -- this will be
265    /// optimized out for string constants. This allows Twine arguments have
266    /// default "" values, without introducing unnecessary string constants.
267    /*implicit*/ Twine(const char *Str) {
268      if (Str[0] != '\0') {
269        LHS.cString = Str;
270        LHSKind = CStringKind;
271      } else
272        LHSKind = EmptyKind;
273
274      assert(isValid() && "Invalid twine!");
275    }
276    /// Delete the implicit conversion from nullptr as Twine(const char *)
277    /// cannot take nullptr.
278    /*implicit*/ Twine(std::nullptr_t) = delete;
279
280    /// Construct from an std::string.
281    /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) {
282      LHS.stdString = &Str;
283      assert(isValid() && "Invalid twine!");
284    }
285
286    /// Construct from a StringRef.
287    /*implicit*/ Twine(const StringRef &Str) : LHSKind(StringRefKind) {
288      LHS.stringRef = &Str;
289      assert(isValid() && "Invalid twine!");
290    }
291
292    /// Construct from a SmallString.
293    /*implicit*/ Twine(const SmallVectorImpl<char> &Str)
294        : LHSKind(SmallStringKind) {
295      LHS.smallString = &Str;
296      assert(isValid() && "Invalid twine!");
297    }
298
299    /// Construct from a formatv_object_base.
300    /*implicit*/ Twine(const formatv_object_base &Fmt)
301        : LHSKind(FormatvObjectKind) {
302      LHS.formatvObject = &Fmt;
303      assert(isValid() && "Invalid twine!");
304    }
305
306    /// Construct from a char.
307    explicit Twine(char Val) : LHSKind(CharKind) {
308      LHS.character = Val;
309    }
310
311    /// Construct from a signed char.
312    explicit Twine(signed char Val) : LHSKind(CharKind) {
313      LHS.character = static_cast<char>(Val);
314    }
315
316    /// Construct from an unsigned char.
317    explicit Twine(unsigned char Val) : LHSKind(CharKind) {
318      LHS.character = static_cast<char>(Val);
319    }
320
321    /// Construct a twine to print \p Val as an unsigned decimal integer.
322    explicit Twine(unsigned Val) : LHSKind(DecUIKind) {
323      LHS.decUI = Val;
324    }
325
326    /// Construct a twine to print \p Val as a signed decimal integer.
327    explicit Twine(int Val) : LHSKind(DecIKind) {
328      LHS.decI = Val;
329    }
330
331    /// Construct a twine to print \p Val as an unsigned decimal integer.
332    explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) {
333      LHS.decUL = &Val;
334    }
335
336    /// Construct a twine to print \p Val as a signed decimal integer.
337    explicit Twine(const long &Val) : LHSKind(DecLKind) {
338      LHS.decL = &Val;
339    }
340
341    /// Construct a twine to print \p Val as an unsigned decimal integer.
342    explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) {
343      LHS.decULL = &Val;
344    }
345
346    /// Construct a twine to print \p Val as a signed decimal integer.
347    explicit Twine(const long long &Val) : LHSKind(DecLLKind) {
348      LHS.decLL = &Val;
349    }
350
351    // FIXME: Unfortunately, to make sure this is as efficient as possible we
352    // need extra binary constructors from particular types. We can't rely on
353    // the compiler to be smart enough to fold operator+()/concat() down to the
354    // right thing. Yet.
355
356    /// Construct as the concatenation of a C string and a StringRef.
357    /*implicit*/ Twine(const char *LHS, const StringRef &RHS)
358        : LHSKind(CStringKind), RHSKind(StringRefKind) {
359      this->LHS.cString = LHS;
360      this->RHS.stringRef = &RHS;
361      assert(isValid() && "Invalid twine!");
362    }
363
364    /// Construct as the concatenation of a StringRef and a C string.
365    /*implicit*/ Twine(const StringRef &LHS, const char *RHS)
366        : LHSKind(StringRefKind), RHSKind(CStringKind) {
367      this->LHS.stringRef = &LHS;
368      this->RHS.cString = RHS;
369      assert(isValid() && "Invalid twine!");
370    }
371
372    /// Since the intended use of twines is as temporary objects, assignments
373    /// when concatenating might cause undefined behavior or stack corruptions
374    Twine &operator=(const Twine &) = delete;
375
376    /// Create a 'null' string, which is an empty string that always
377    /// concatenates to form another empty string.
378    static Twine createNull() {
379      return Twine(NullKind);
380    }
381
382    /// @}
383    /// @name Numeric Conversions
384    /// @{
385
386    // Construct a twine to print \p Val as an unsigned hexadecimal integer.
387    static Twine utohexstr(const uint64_t &Val) {
388      Child LHS, RHS;
389      LHS.uHex = &Val;
390      RHS.twine = nullptr;
391      return Twine(LHS, UHexKind, RHS, EmptyKind);
392    }
393
394    /// @}
395    /// @name Predicate Operations
396    /// @{
397
398    /// Check if this twine is trivially empty; a false return value does not
399    /// necessarily mean the twine is empty.
400    bool isTriviallyEmpty() const {
401      return isNullary();
402    }
403
404    /// Return true if this twine can be dynamically accessed as a single
405    /// StringRef value with getSingleStringRef().
406    bool isSingleStringRef() const {
407      if (getRHSKind() != EmptyKind) return false;
408
409      switch (getLHSKind()) {
410      case EmptyKind:
411      case CStringKind:
412      case StdStringKind:
413      case StringRefKind:
414      case SmallStringKind:
415        return true;
416      default:
417        return false;
418      }
419    }
420
421    /// @}
422    /// @name String Operations
423    /// @{
424
425    Twine concat(const Twine &Suffix) const;
426
427    /// @}
428    /// @name Output & Conversion.
429    /// @{
430
431    /// Return the twine contents as a std::string.
432    std::string str() const;
433
434    /// Append the concatenated string into the given SmallString or SmallVector.
435    void toVector(SmallVectorImpl<char> &Out) const;
436
437    /// This returns the twine as a single StringRef.  This method is only valid
438    /// if isSingleStringRef() is true.
439    StringRef getSingleStringRef() const {
440      assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
441      switch (getLHSKind()) {
442      default: llvm_unreachable("Out of sync with isSingleStringRef");
443      case EmptyKind:      return StringRef();
444      case CStringKind:    return StringRef(LHS.cString);
445      case StdStringKind:  return StringRef(*LHS.stdString);
446      case StringRefKind:  return *LHS.stringRef;
447      case SmallStringKind:
448        return StringRef(LHS.smallString->data(), LHS.smallString->size());
449      }
450    }
451
452    /// This returns the twine as a single StringRef if it can be
453    /// represented as such. Otherwise the twine is written into the given
454    /// SmallVector and a StringRef to the SmallVector's data is returned.
455    StringRef toStringRef(SmallVectorImpl<char> &Out) const {
456      if (isSingleStringRef())
457        return getSingleStringRef();
458      toVector(Out);
459      return StringRef(Out.data(), Out.size());
460    }
461
462    /// This returns the twine as a single null terminated StringRef if it
463    /// can be represented as such. Otherwise the twine is written into the
464    /// given SmallVector and a StringRef to the SmallVector's data is returned.
465    ///
466    /// The returned StringRef's size does not include the null terminator.
467    StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
468
469    /// Write the concatenated string represented by this twine to the
470    /// stream \p OS.
471    void print(raw_ostream &OS) const;
472
473    /// Dump the concatenated string represented by this twine to stderr.
474    void dump() const;
475
476    /// Write the representation of this twine to the stream \p OS.
477    void printRepr(raw_ostream &OS) const;
478
479    /// Dump the representation of this twine to stderr.
480    void dumpRepr() const;
481
482    /// @}
483  };
484
485  /// @name Twine Inline Implementations
486  /// @{
487
488  inline Twine Twine::concat(const Twine &Suffix) const {
489    // Concatenation with null is null.
490    if (isNull() || Suffix.isNull())
491      return Twine(NullKind);
492
493    // Concatenation with empty yields the other side.
494    if (isEmpty())
495      return Suffix;
496    if (Suffix.isEmpty())
497      return *this;
498
499    // Otherwise we need to create a new node, taking care to fold in unary
500    // twines.
501    Child NewLHS, NewRHS;
502    NewLHS.twine = this;
503    NewRHS.twine = &Suffix;
504    NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
505    if (isUnary()) {
506      NewLHS = LHS;
507      NewLHSKind = getLHSKind();
508    }
509    if (Suffix.isUnary()) {
510      NewRHS = Suffix.LHS;
511      NewRHSKind = Suffix.getLHSKind();
512    }
513
514    return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
515  }
516
517  inline Twine operator+(const Twine &LHS, const Twine &RHS) {
518    return LHS.concat(RHS);
519  }
520
521  /// Additional overload to guarantee simplified codegen; this is equivalent to
522  /// concat().
523
524  inline Twine operator+(const char *LHS, const StringRef &RHS) {
525    return Twine(LHS, RHS);
526  }
527
528  /// Additional overload to guarantee simplified codegen; this is equivalent to
529  /// concat().
530
531  inline Twine operator+(const StringRef &LHS, const char *RHS) {
532    return Twine(LHS, RHS);
533  }
534
535  inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
536    RHS.print(OS);
537    return OS;
538  }
539
540  /// @}
541
542} // end namespace llvm
543
544#endif // LLVM_ADT_TWINE_H
545